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The origin and importance of nonlocal damping is discussed through simulations with
the generalized nonlocal optical response (GNOR) theory, in conjunction with time-

dependent density-functional-theory (TDDFT) calculations and equivalent circuit mod-
eling, for some of the most typical plasmonic architectures: metal-dielectric interfaces,
metal-dielectric-metal gaps, spherical nanoparticles, and nanoparticle dimers. It is shown
that diffusive damping, as introduced by the convective-diffusive GNOR theory, describes

well the enhanced losses and plasmon broadening predicted by ab initio calculations in
few-nm particles or few-to-sub-nm gaps. Through the evaluation of a local effective di-
electric function, it is shown that absorptive losses appear dominantly close to the metal
surface, in agreement with TDDFT and the mechanism of Landau damping due to

generation of electron-hole pairs near the interface. Diffusive nonlocal theories provide
therefore an efficient means to tackle plasmon damping when electron tunneling can be
safely disregarded, without the need to resort to more accurate, but time-consuming
fully quantum-mechanical studies.

Keywords: Nonlocal optical response; plasmon damping; convective-diffusive theory.

1. Introduction

Following advances in nanofabrication, the research field of plasmonics has devel-

oped on the foundation of classical electrodynamics and semiclassical descriptions

of light-matter interactions.1,2,3 In most cases, the collective oscillations of free elec-

trons subject to optical fields are conceptually analyzed within the Drude theory,4

inherently using the local-response approximation (LRA). Within this picture, the

material response occurs only at the spatial position of the perturbation, while

there is not even the slightest response at any short range away.5 For dielectric

media, this is a well-established and accurate approach, while metals in principle

support short-range correlations that are potentially important to true nanoscale

plasmonics and applications in the field of quantum plasmonics.6,7,8,9 Despite its

simplifications, the LRA framework has fostered both theory predictions and exper-

imental confirmations of a large range of plasmonic phenomena, such as confining of

light beyond the diffraction limit10,11 and tuning the optical properties of metallic

architectures through size and shape variations.12 Large enhancement of electric

fields in the vicinity of metal nanostructures13,14,15 is another interesting plasmonic

property, where abrupt variations in metal-surface topology may support huge am-

plifications. Such field enhancement is intimately linked to field singularities, which

are inherent to LRA.

Accounts of light-matter interactions commonly rely on linear-response theory.

For dielectric materials the further simplification associated with LRA usually holds

all the way down to the atomic scale. The success of LRA is in some way more

intriguing in the case of nanoplasmonics. On the one hand, experimental charac-

terization of gold dimers with narrow, few-nm gaps has been found to agree well

with classical electrodynamics.16 On the other hand, when light interacts with the

free electrons in metals, the optical response is anticipated to exhibit a nonlocal

character, with the corresponding response function becoming spatially dispersive.5

The underlying quantum wave dynamics of the electron gas manifests itself at a

length scale intrinsic to the metal: the Fermi-wavelength scale. For most metals, this



On the origin of nonlocal damping in plasmonic monomers and dimers 3

lies in the nanometer-to-Angstrom scale regime.4 Such a small scale can therefore

justify the success of LRA and the application of Drude theory to plasmonics even in

nanoscale metallic structures. At the same time, it also hints to the mesoscopic size

regime for which a departure from the predictions of classical electrodynamics can be

anticipated. This expectation has been confirmed, for example, for arbitrarily sharp

changes in the metal-surface topography and in dimers with vanishing gaps, where

disregarding nonlocality causes the field to diverge within the LRA response.15,17

Here we review aspects of the nonlocal response of metallic nanoparticles,

which was recently revived18,19,20,21 by the realization of state-of-the-art experi-

mens on plasmonics in structures of ever smaller dimensions.22,23,24,25,26,27,28,29,30,31

In particular, we first explore the real-space formulation21,32 and numerical

implementations33 of the long-existing nonlocal hydrodynamic theory.34,35,36,37 We

then address a recent extension of this theory which accounts for drift-diffusion

dynamics, namely the generalized nonlocal optical response (GNOR) theory.38 By

extracting an effective local dielectric function of the metal from GNOR simulations,

and in comparison with time-dependent density functional theory (TDDFT) calcu-

lations for metal-dielectric interfaces, we show that the increased plasmon damping

in small nanoparticles and narrow gaps can be fully understood in terms of induced-

charge diffusion, thus providing a connection between Landau damping and the

nonlocal optical response.39,40,41,42

2. Nonlocal electrodynamics

Theoretical modeling of plasmonic phenomena widely relies on the macroscopic

Maxwell’s equations.1 Here, the optical response of metals is described through

constitutive relations connecting the response of the material to the applied field.

In particular, the displacement field D generated at a point r in response to a

perturbing electric field E is in general given by the nonlocal constitutive relation

D(ω, r) = ε0

∫
dr′ε(ω, r, r′)E(ω, r′), (1)

where ε0 is the vacuum permittivity, ω is the angular frequency of light and ε is

the corresponding (nonlocal) permittivity of the metal. Introducing Eq. (1) into

Maxwell’s equations one arrives at the integro-differential wave equation

∇×∇×E(ω, r) =
(ω
c

)2
∫

dr′ε(ω, r, r′)E(ω, r′), (2)

where c is the velocity of light in vacuum. The above equation is not particularly

appealing, as it is not straightforward to solve it, either analytically or numerically.

However, if one focuses on short-range correlations, it can be transformed into a

regular partial differential equation32,38,43

∇×∇×E(ω, r) =
(ω
c

)2 [
εLRA(ω) + ξ2∇(∇·)

]
E(ω, r). (3)
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Here, ξ gives the range for the nonlocal response, while εLRA is the usual Drude

contribution. Within GNOR hydrodynamics, the nonlocal length scale is given by38

ξ2 =
β2

ω(ω + iγ)
+

D

iω
(4)

where β2 = 3/5v2F with vF being the Fermi velocity, while D ∝ v2Fτ is a diffusion

constant associated with impurity scattering, τ is the free-electron relaxation time,

and γ = 1/τ is the usual Drude damping rate.32,38 Setting D = 0 in Eq. (4), one

immediately retrieves the standard nonlocal hydrodynamic Drude model (HDM),

which predicts modal blueshifts but no additional broadening.32

To get more physical insight into the role of the diffusion term in the hydrody-

namic description of the electron gas, the relaxation dynamics has to be considered.

Under the influence of an external electric field, the free electrons in an initially

charge-neutral metallic nanostructure are drawn away from their equilibrium posi-

tions, leaving regions near the surfaces with excess and deficit densities of charge,

i.e. an induced net surface charge. At the same time, of course, the bulk remains un-

charged, since the positive ions remain fully screened by a corresponding density of

negatively charged conduction electrons. As a consequence of entropy, the induced

spatially inhomogeneous charge density will relax towards its equilibrium distri-

bution, a relaxation driven by surface scattering and many-body electron-electron

interactions. Classically, this is described as diffusion and in a drift-diffusion theory

this is captured by the diffusion constant D. Since diffusion relaxes the induced

charge, it also relaxes the polarization field, and consequently it is a damping mech-

anism.

3. Bridging the nonclassical response of monomers and dimers

Individual metallic nanoparticles, and their dimer counterparts, consist the archety-

pal plasmonic structures. In the following we show that GNOR is versatile enough

to offer an understanding of enhanced damping mechanisms in both. Several at-

tempts to tackle this issue have been presented over the years. Among the pioneers,

Kreibig and co-workers presented a phenomenological model (referred to as SDB in

what follows) which successfully captures the size-dependent spectral broadening

observed in few-nm, nearly-spherical nanoparticles.44 Apart from its phenomeno-

logical character, the main disadvantage of this approach is the absence of simple

guidelines on how to apply it to non-spherical monomers or to strongly interact-

ing dimers composed of particles that are not necessarily small themselves. In a

recent effort to deal with nonclassical effects in dimers, Esteban et al. developed a

quantum-corrected model,45 which introduces quantum tunneling as the main driv-

ing force behind the dimer nonclassical optical response. Tunneling-based theories,

however, can naturally not address the nonclassical aspects of the optical response

of the corresponding monomers. This is where GNOR proves versatile and with

a predictive power reaching far beyond either limiting case described above. De-

spite its simplicity and semi-classical nature, GNOR provides a unified description
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Fig. 1. Schematic representation of typical extinction spectra calculated within the LRA (light
red), SDB (dark red), HDM (light blue), and GNOR (dark blue) models, for a few-nm plasmonic
nanosphere.

of both size-dependent damping in monomers and gap-dependent broadening in

dimers, and stresses the connection between the two, simply through the addition

of a diffusive term to standard hydrodynamics.

Let us first briefly discuss the case of a monomer. We consider a metallic

nanosphere of radius R, for which the complex-valued nonlocal length scale ξ in

Eq. (4) leads to 1/R corrections to both the dipole resonance frequency and to

its linewidth.38 This observation provides an immediate link between the diffusion

constant D and the A coefficient appearing in the approach developed by Kreibig et

al.,44 in which the Drude damping rate γ is corrected by adding the term AvF/R.

For most metals, A is experimentally found to be of order unity. This plasmon

broadening, and the way it is captured by the SDB and GNOR models, is schemat-

ically depicted in Fig. 1, where we show typical extinction spectra for a few-nm

metallic nanoparticle within the LRA, SDB, HDM and GNOR models. A more de-

tailed description of the differences between the four models and their application

to different types of metals and statistical ensembles of small, weakly interacting

nanoparticles can be found in Ref. 46.

In a similar manner, it has also been shown that the very same choice of the diffu-

sion constant D can qualitatively explain the gap-dependent broadening of spectra

for dimers as well.38 So, what is the important common feature of monomers and

dimers? Can the experimentally observed broadening24,47 be attributed exclusively

to a short-circuiting of the capacitive junction due to tunneling – as described in the

quantum-corrected model45 and its more recent extensions?48,49 Or could diffusive

damping – for which we will give a microscopic explanation below – account for

it? Of course, there is no reason why these mechanisms could not co-exist and act
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simultaneously.

To facilitate a qualitative discussion we employ a circuit model that addresses

the relative importance of diffusive damping (characterized by a resistance Rdif)

and the damping associated with the relaxation of the quantum tunneling current

(characterized by Rtun) short-circuiting the classically impenetrable capacitive gap

(characterized by a capacitance C). Within this equivalent circuit model, C and

Rtun are connected in parallel to describe the plasmonic gap,50,51 and this branch

is then connected in series with Rdif . The equivalent impedance is given by

Z = Rdif +
Rtun

1 + iωτtun

= Rdif −
i

ωC
+O[1/(ωτtun)

2] , (5)

where τtun = RtunC is interpreted as the tunneling RC time.50 This RC model

has been successful in analyzing the ultra-fast response of a scanning-tunneling

microscope.50 Here, we extended it to include dissipation associated with the diffu-

sive dynamics.

The tunneling dynamics simplifies in the slow adiabatic-following regime and

the limit of fast external driving.52 The high-frequency dimer dynamics is therefore

entirely dominated by the diffusive broadening and the junction capacitance, see the

second equality in Eq. (5). In the context of the mesoscopic capacitance,53 ultra-fast

tunneling experiments have reported tunneling RC times that lie in the picosecond

range,50,54 implying that at optical frequencies the plasmon response may just be

too fast. If this is the case, ωτtun ≫ 1, and the relaxation will be dominated by

diffusive broadening.

The above circuit analysis does not depend on the exact tunneling mechanism.

Whether tunneling relaxation occurs within the gap, as assumed in the quantum-

corrected model,45 or inside the metal surfaces, as in the model by Hohenester49

(in agreement with the common understanding of relaxation processes in meso-

scopic quantum electron transport), is not relevant here, and the conclusions are

unaltered. Nevertheless, it should be stressed that, given the qualitative nature of

the above analysis, and the lack of conclusive data for the RC time in plasmonic

dimers, the situation remains still open. In fact, for few-Angstrom gaps a different,

shorter RC time might be reasonable, in which case tunneling shall indeed become

important.42,55

4. Connection between diffusion and Landau damping

The SDB correction introduced by Kreibig et al. has already been linked to quan-

tum mechanical calculations of Landau damping associated with surface-enhanced

electron-hole pair generation in the metal.39,56,57 More recently, ab initio studies42

and electron spectroscopy30,58,59 have established plasmon damping exceeding the

expectations based on bulk material parameters at the very surface of metals. The

underlying many-body interaction within the electron gas is captured by GNOR

with one single and entirely classical parameter: the diffusion constant D. Since the

induced charge resides near the metal surface, this is where diffusion is also effective,
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Fig. 2. GNOR results for the real part (top panels) and imaginary part (lower panels) of εeff,x

(where x corresponds to the direction normal to the interface) for different frequencies (normalized

to the metal plasma frequency ωp) throughout the optical range, as a function of distance x
(normalized to the plasma wavelength λp = 2πc/ωp). (a) A single metal-air interface with an
infinite work function and a homogeneous equilibrium electron density that vanishes abruptly
outside the metal surface. (b) Corresponding metal-air-metal cavity with a 0.01 λp gap separating

the two surfaces. Right and top axis scales give the corresponding values in energy and length,
assuming a plasma energy ~ωp = 5 eV. Dashed lines denote the metal-air interfaces.

as it is shown by the nonlocal correction term in Eq. (3), which mainly contributes

near the surface where the E field changes most. This is why our drift-diffusion

model mimics both longitudinal pressure waves and Landau-like damping so well.

The enhanced damping near the surface is illustrated in Fig. 2 where we show the

local effective permittivity εeff,x(r, ω) (the component normal to the metal-air in-

terface, x axis) extracted from GNOR simulations (γ = 0.0023ωp, vF = 0.0045c,

D = 2ωp/c
2) via D(r, ω) ≡ ε0εeff(r, ω)E(r, ω), for either a flat metal-air interface

(a) or a narrow metal-air-metal cavity (b). It is important to notice here that, due

to the abrupt termination of the surface and the associated hard-wall boundary

condition for the normal component of the current, the additional damping occurs

slightly inside the surface. This links up to the Feibelman parameter60 and its as-

sociated quantum corrections to electrodynamics.61 The importance of relaxing the

hard-wall boundary condition and considering the actual position of the surface of

the electron plasma was recently discussed by Teperik and co-workers62,63 in the

context of plasmonic ruler effects of sub-nm gap dimers. In the spirit of our current

discussion, it has recently been shown that density-gradient and spill-out effects can

also be included in self-consistent hydrodynamic models.64,65,66

The role of Landau damping for both monomers and dimers can be pictorially
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Fig. 3. Equilibrium density in the jellium model (top panels), exhibiting both Friedel oscillations
and electron spill-out, along with the TDDFT results for the real part (middle panels) and imag-

inary part (lower panels) of εeff,x as a function of frequency. (a) A single Air-Na interface. (b)
Full TDDFT calculation for two interacting Na surfaces separated by a 0.5-nm air gap. (c) The
same metal-air-metal gap as in (b), with the results obtained by a superposition of two of the

independent surfaces shown in (a). All contours share a common color scale.

illustrated by the time-dependent optical response of the electron gas near the

surface of the metal.42 We consider a simple metal, such as Na, described within

a jellium approximation, and exploit TDDFT to obtain its response to a time-

dependent electrical field.42,62 The calculation provides both the (space dependent)

equilibrium density n0(r) and the induced charge density n1(r). Additionally, one

also obtains the displacement field D generated by the perturbing E field, and from

this one may again infer an effective relative dielectric function εeff(r, ω), where the

imaginary part holds key information about damping and its spatial localization.

The top panel of Fig. 3(a) illustrates the equilibrium density (exhibiting both Friedel

oscillations and quantum spill-out) along with the real part (middle panel) and

imaginary part (lower panel) of εeff,x as a function of frequency. Observing the

imaginary part of εeff,x, one can immediately notice how large Landau damping

(exceeding the bulk damping) takes place in the near vicinity of the surface. We

also note that this large imaginary part of εeff,x is always accompanied by a change

in sign for the real part, which denotes the presence of a metal-dielectric interface,

and is the prerequisite for plasmon excitation. In addition, we note that the large

imaginary part regularizes the field enhancement driven by the vanishing real part,

as first explored by Öztürk et al.67
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Fig. 4. Real (left-hand contour) and imaginary (right-hand contour) part of the effective dielectric
function, εeff , calculated at the resonant wavelength (λ = 370 nm) for a Drude nanosphere (εb =

4.1, ~ωp = 9.3 eV, ~γb = 0.013 eV, ~γs = 0.83 eV) of radius R = 5 nm, calculated according to
Eq. (6).

The same calculation can be done for dimers as well. In the one-dimensional

example studied above, this corresponds to two opposing jellium surfaces separated

only by a sub-nm gap. The corresponding calculation for a 0.5-nm gap is shown in

Fig. 3(b), where we recover the physical picture obtained for the single interface.

Significant Landau damping occurs now at both interfaces, while there is no appre-

ciable damping inside the gap. In fact, the response of the dimer is well represented

by a simple superposition of the response of two opposing independent surfaces, see

Fig. 3(c), thus confirming the suggestion of the circuit analysis: even for a gap of 0.5

nm, the dissipation is dominated by Landau damping, and tunneling currents do

not change the plasmon-energy dissipation. We note that the typical ab initio sim-

ulations of the electron-gas dynamics include no energy-relaxation processes (e.g.

coupling to a thermalizing phonon bath) and as such tunneling currents are nec-

essarily relaxed only through the generation of electron-hole pairs. We emphasize

that the observed importance of Landau damping does not rule out the existence of

quantum tunneling currents at optical frequencies; in the present context of 0.5-nm

gaps such currents start to appear, but they do not significantly influence the gap-

dependent broadening of dimers yet. One needs to enter the true Angstrom-scale

regime, where the individual atoms start to matter.

To further advance our description, we shift attention from flat interfaces to sin-

gle metallic nanoparticles. In addition to the methods described above, the effective

dielectric function can also be calculated by adding up in the Drude expression the

bulk (γb) and surface broadening damping rate [γs(r)], according to Matthiesen’s
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Fig. 5. GNOR calculations for an Ag nanosphere dimer (R = 5 nm) separated by a 2-nm gap,
illuminated by a plane wave polarized along the dimer axis (x axis). (a) Real (left-hand contour)

and imaginary (right-hand contour) part of the x component of the effective dielectric function,
εeff,x, calculated at the resonant wavelength (λ = 363 nm) at a plane going through the middle of
the particles. (b) Wavelength dependence of the real (left-hand contour) and imaginary (right-hand
contour) part of εeff,x along the dashed line in (a). Contour plots in (a) and (b) share common

color scales.

rule as41

ε(r) = εb −
ω2
p

ω2 + iω [γs(r) + γb]
, (6)

where εb is the background dielectric constant. The surface collision damping and

spectral broadening γs can be viewed as originating from direct transitions between

two free-electron states near the Fermi level in the metal, enabled by the collision

with a metal wall, which would otherwise be prohibited by the momentum conser-

vation requirement. In that respect, a collision with the metal surface is considered

to be no different from any other collision, with say, a phonon or a defect. The

transition rate has been estimated using extended in momentum (k)-space wave-

functions and a wavevector-dependent Lindhard dielectric function, as described

in Refs. 40, 68. Applying the inverse Fourier transform to these results, one can

obtain the spatial distribution of the effective dielectric constant, as follows from
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Fig. 6. (a) Real (left-hand contour) and imaginary (right-hand contour) part of the x component

of the effective dielectric function, εeff,x, calculated at the resonant wavelength (λ = 373 nm) for
an Ag nanosphere dimer (R = 5 nm) separated by a 1-nm gap and illuminated by a plane wave
polarized along the x axis. (b) Real (left-hand contour) and imaginary (right-hand contour) part
of the z component of the effective dielectric function, εeff,z , calculated at the resonant wavelength

(λ = 349 nm) for an Ag nanosphere dimer (R = 5 nm) separated by a 2-nm gap and illuminated
by a plane wave polarized along the z axis. Contour plots in (a) and (b) share common color scales.
All calculations are performed with the GNOR theory.

the consideration outlined below. When the plasmon polariton gets absorbed, the

electrons (holes) get excited in the wide energy range from the Fermi level EF to

EF + ~ω, i.e. in the wave vector range from kF (the Fermi wavenumber) to about

kF + ω/vF. Due to the boundary condition at the surface, all the wavefunctions

are in phase and form a wave packet with a full-width at half-maximum of roughly

∆L ≃ πvF/ω = λvF/(2c), or about 0.7 nm for λ = 370 nm. The shape of position-

dependent absorption γs(r) obviously follows the shape of the excited wave packet,

which leads to the effective dielectric function of Eq. (6) exhibiting a spatial depen-

dence, as shown in Fig. 4 for an R = 5nm Drude nanosphere (εb = 4.1, ~ωp = 9.3

eV, ~γb = 0.013 eV, and ~γs relaxing at 0.83 eV41). One indeed observes a very

strong dependence for the imaginary part, and much less pronounced for the real

part.

To further explore nonlocal damping in plasmonic nanostructures, we now turn

to noble metals, and study in Fig. 5 the case of an Ag nanosphere dimer in air, using

the implementation of the GNOR model69 to a commercial finite-element solver

(Comsol Multiphysics 5.0).70 Silver is described here by a Drude model, with the

core-electron part of the dielectric function obtained from the experimental dielectric

function of Johnson and Christy,71 as described in Ref. 46. The two spheres, of radius
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R = 5 nm, are separated by a 2-nm gap, and illuminated by a plane wave polarized

along the dimer axis (taken to be the x axis), as shown in the schematics. This dimer

is characterized by the excitation of a bonding dimer plasmon, with its resonance

at 363 nm. For the specific nanoparticle sizes and separations, nonlocal effects are

expected to be important both because of the reduced size of the individual spheres

and because of their narrow separation. In Fig. 5(a) we show the real (left-hand

contour) and imaginary (right-hand contour) part of the x component of the effective

dielectric function, retrieved within GNOR on resonance. Clearly, εeff,x remains

almost constant within the bulk of the particles, but large deviations occur near

the interfaces, and the imaginary part obtains its largest values in a narrow region

of a few Angstrom near the sphere boundaries, supporting again the picture of

enhanced Landau damping as the main mechanism behind loss in small plasmonic

systems. We note that additional small features inside the particles appear due to

numerical instabilities owing to the increased meshing requirements in the finite-

element method. In Fig. 5(b) we plot εeff,x spectra for the same dimer, calculated

along a line crossing the right-hand sphere at its middle, along the dashed lines

of Fig. 5(a). The calculated dielectric function follows well the experimental one71

inside the bulk of the particles, with the real part changing sign at about 330 nm,

and large nonlocal deviations only appear near the surfaces. It is also worth noticing

the behavior of the imaginary part, which is large near the surface for all wavelengths

in agreement with our previous discussion, but becomes important also inside the

particles for wavelengths shorter than 320 nm, were interband transitions dominate

in silver.4 Finally, we note that decreasing the gap increases the interaction between

the spheres,15 and this is accompanied by accordingly higher values of the imaginary

part of the effective dielectric function near the surfaces, as shown in Fig. 6(a) for

the dimer of Fig. 5 and a 1-nm gap. On the other hand, changing the polarization

(taking for example E along the z axis) leads to a charge accumulation in this

direction at the two corresponding sides of the spheres, and Landau damping is

mostly experienced there, as shown in Fig. 6(b) for a 2-nm-gap dimer.

5. Conclusion

In summary, we have discussed the origin of plasmon damping in flat metal-dielectric

interfaces, small metallic nanoparticles, and nanoparticle dimers, in view of the re-

cent GNOR theory for nonlocal plasmonics. Through calculations of the effective

dielectric function, using the GNOR model, a generalized Lindhard approach, or

through ab initio TDDFT calculations, we have shown that in monomers, and in

dimers with separations larger than a few Angstrom and/or a large metal work func-

tion, plasmon damping and the corresponding modal broadening are adequately de-

scribed by nonlocal convection-diffusion theory, which fully captures Landau damp-

ing near the metal surfaces.
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(2006).
16. H. Duan, A. I. Fernández-Domı́nguez, M. Bosman, S. A. Maier, and J. K. W. Yang,

Nano Lett. 12, 1683 (2012).
17. A. Wiener, A. I. Fernández-Domı́nguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier,

Nano Lett. 12, 3308 (2012).
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