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Abstract

A novel criterion for brittle fracture of entangled polymer liquids is presented: Crack initiation follows from rupture of primary C–C bonds,

when the strain energy of an entanglement segment reaches the energy of the covalent bond. Thermal fluctuations lead to a short-time con-

centration of the strain energy on one C–C bond of the entanglement segment, and the chain ruptures. This limits the maximum achievable

stretch of entanglement segments to a critical stretch of fc � 6. Recent experimental data of Huang et al. [Phys. Rev. Lett. 117, 087801

(2016)]] and Huang and Hassager [Soft Matter 13, 3470–3474 (2017)] on fracture of solutions of nearly monodisperse polystyrenes dissolved

in oligomeric styrene and of a well characterized polydisperse polystyrene melt, are in general agreement with this fracture criterion. For

quantitative agreement, finite extensibility effects have to be considered. VC 2017 The Society of Rheology.
https://doi.org/10.1122/1.4995497

I. INTRODUCTION

The phenomenon of failure in elongational deformation of

molten polymeric systems is among the least known and most

researched fields in the study of soft matter. This phenomenon

has been subjected to vast experimental, theoretical, and com-

putational research endeavors for a long time, while the por-

trayal of a clear picture of the failure mechanism is yet to be

accomplished. The occurrence of failure, which includes

necking (“ductile failure”) and rupture or brittle fracture

(“cohesive failure”) during extensional flow, is of significant

concern for the polymer industry when processes such as

blow molding, fiber spinning, film blowing, and paint spray

are involved. Moreover, the defects in the extrusion process

such as melt fracture and sharkskin are directly linked to this

phenomenon. The understanding of failure requires a system-

atic knowledge of the nonlinear rheology of polymer melts,

and its correlation with molecular aspects such as entangle-

ments. The nonlinear deformation behavior of entangled poly-

mers is mainly dependent on the response of the topological

constraints resulting from the intertwining of polymer chains

to the imposed deformation. Due to the substantial depen-

dence of extensional deformations on the molecular structure

of the polymer (degree of branching, molecular weight, poly-

dispersity, etc.), the understanding of this type of flow not

only sheds light on the mechanism of failure but also reveals

the role of entanglements and other molecular characteristics

behind this phenomenon. However, due to the clear limitation

of reliable datasets on failure, the quantitative modeling of

this phenomenon to predict its occurrence, as well as the

understanding of its governing molecular mechanisms, has

remained an elusive goal so far [1,2].

Reiner and Freudenthal [3] proposed a dynamical theory

of strength based on the assumption that tensile stress

exceeding a critical value (6 KG)1/2 will lead to rupture,

where G is the shear modulus and K is the elastic energy per

unit volume (i.e., resilience). The Reiner theory states that

ruptures occur at a critical strain that is independent of the

stretch rate and demonstrates a strain-rate independence for

the failure strain in the rubbery regime and a stress at rupture

that is rate independent [2].

The Considère construction [4] is a concept from solid

mechanics and states that the nonuniform deformation

(necking) occurs when the engineering stress (tensile force/

initial cross sectional area) passes through a maximum. The

mentioned maximum in the Considère criterion sets the

limiting strain for uniform extension. McKinley and

Hassager [5] applied the Doi–Edwards (DE) [6] and pom-

pom [7] models in conjunction with the Considère criterion

to simulate the melt behavior of linear and long-chain

branched (LCB) polymers, respectively. According to this

construction, uniform uniaxial extensional deformation

cannot occur after the force maximum (corresponding to

low strain); yet, this statement is in clear contradiction

with the extensional experimental studies. This construc-

tion at best provides a good estimate of necking at high

Weissenberg numbers, although the failure in this region is

mainly due to rupture.
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Vinogradov and coworkers were first to develop an exten-

sive body of data on failure and rupture in the extensional

flow of monodisperse polymer melts [8–14]. Later, Malkin

and Petrie [15] presented a master curve based on the data of

Vinogradov et al. describing different regimes of failure as a

function of strain rate. Malkin and Petrie’s work [15] demon-

strates four zones of failure during extensional flow: Steady-

state elongational flow can be observed at very low rates

only (purely viscous zone), while necking instabilities take

place at higher elongation rates (viscoelastic zone). Necking

ultimately leads to failure, which prevents steady flow. This

process is a fluid mechanical phenomenon distinct from sol-

idlike fracture. At high (rubbery zone) and very high (glassy

zone) elongation rates, the polymer fractures in a rubber- or

solidlike fashion.

In a series of studies [16–20], Wang and coworkers con-

cluded that the maximum in engineering tensile stress reng

coincides with the onset of necking. Hence, they concluded

that the maxima in the tensile force in extensional deformation

have the same mechanism as those observed in shear.

According to the authors, the visible material failure due to

nonuniform extension representing the yield point (i.e., the

maximum of reng) occurs when the elastic retraction force

equals the intermolecular gripping force, and the molecular

deformation ceases to increase (and eventually starts decreas-

ing) due to interchain sliding, leading to disentanglement.

However, beyond a critical strain rate, entangled melts and

solutions were found to undergo a yield-to-rupture transition

[18–20]. Wang and coworkers showed that the onset of the

“glasslike” zone as defined by Malkin and Petrie [15] is actu-

ally in the middle of the rubbery plateau where the mechanical

response of entangled melts is not dictated by glassy chain

dynamics. Birefringence measurements indicate that rupture

takes place when the strands between entanglements undergo

non-Gaussian stretching on their path to full extension, and

the linear stress-optical rule starts to break down. The authors

concluded that rupture occurs plausibly through chain scission

in the limit of finite chain extensibility.

Progress on the experimental side has recently been made

by the seminal work of Huang et al. [21] and Huang and

Hassager [22] on well characterized monodisperse polystyr-

enes (PSs) dispersed in oligomeric styrene (OS) via VADER

1000, Rheo Filament ApS, a commercially available filament

stretching rheometer [23]. By measuring the local diameter of

the polymer sample during elongation, the true Hencky strain

and strain rate can be determined, while from the global defor-

mation of the sample, only nominal values of strain and strain

rate can be obtained. Huang and Hassager showed [22] that

when true Hencky strain rates are utilized rather than nominal

Hencky rates, the four zones in the Malkin plot are reduced to

just two states: liquid and solid, and a clear distinction exists

between liquid (steady-state elongation) behavior and solid

(fracture) behavior. For two monodisperse PS solutions (with

33% and 17% polymer volume fractions), they found that the

value of the critical stress for rupture is between the plateau

(Ge) modulus and the glassy (G0) modulus, and at least 2

orders of magnitude higher than Ge. The authors confirmed

that within 4 �WiR � 100, the critical strain remains

constant and the critical stress increases only slightly with

increasing elongation rate.

Based on Vinogradov and coworker’s dataset [8–14], sev-

eral research groups attempted to analyze and rheologically

model the failure phenomenon in melts [2,5,16–20,24–27].

However, those modeling attempts were based on the con-

ceptual and schematic failure master curve produced by

Malkin and Petrie [15] and derived from elongational meas-

urements based on nominal Hencky strain rates, which was

recently challenged by the Filament Stretching Rheometer’s

ability to measure the true Hencky rate [21,22] as discussed

earlier. The scaling theory of Joshi and Denn [2,24,25] dem-

onstrated impressive qualitative agreement with the narrow-

distribution polyisoprene failure data of Vinogradov’s team

within about 50% uncertainty in the reptation time [2]. This

theory is based on the scaling analysis of Brochard and de

Gennes [28] for failure in shear (“slip”) near a solid surface.

It assumes that catastrophic failure occurs when the frictional

force of an entangled chain can no longer balance the tension

in the molecular chain and predicts failure by disentangle-

ment of the polymer chains considering the recoverable pro-

portion of the total strain. It should be noted that the failure

model of Joshi and Denn [2,24,25] predicts an increasing

strain to failure with increasing Weissenberg number in the

viscoelastic and the rubbery failure zone, and is therefore not

in agreement with the experimental data of Huang et al. [21]

and Huang and Hassager [22] for well characterized mono-

disperse PS solutions featuring a constant critical strain

within the experimental range of 4 �WiR � 100.

The origin of crack initiation in polymeric solutions and

melts has not been broadly studied. The idea of the largest

pre-existing microcrack (i.e., weakest-link), inherited from the

Griffith theory [29], is not in agreement with the data of

Huang and Hassager, owing to the extreme reproducibility of

critical stress/strain, as well as simultaneous initiation and

propagation of multiple cracks at different spatial positions in

polymer solutions as observed in [21,22]. To account for the

incongruities between the Griffith theory and the experimental

observations during the uniaxial deformation of polymer solu-

tions, Huang et al. [21] proposed a thermally induced fluctua-

tion mechanism for crack initiation in melts and solutions

based on a modified Griffith theory [29] developed by

Pomeau [30] and used by Tabuteau and coworkers [31,32] for

oil-in-water droplet microemulsion connected to each other

by telechelic polymers. They hypothesized that thermal fluctu-

ations result in local spots of lower polymer density.

However, it should be noted that this model does not take into

account the presence of entanglements (see, e.g., review by

Ligoure and Mora [33]), and the fracture in the systems stud-

ied by Tabuteau et al. occurs already in the linear-viscoelastic

regime, which is clearly not the case for the entangled poly-

mer solutions studied by Huang et al. [21,22].

As entangled polymer solutions and melts fracture in the

rubbery zone, i.e., at elongation rates, which are larger than

the inverse Rouse time sR of the polymer chain, it may be

useful to consider shortly the fracture of crosslinked rubber

networks. Fracture of rubbers causes inevitably the breakage

of covalent bonds. Lake and coworkers [34–36] assumed

that when a network strand with Nx carbon bonds between
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two chemical crosslinks is stretched and fails by rupture of

one C–C bond along the strand, an energy equivalent to Nx

times the bond energy U of one C–C bond is dissipated,

because all carbon bonds in the strand are stretched to the

limit. Therefore, the threshold fracture energy C0 per unit of

fracture surface area is given by

C0 ffi NxUR; (1)

with

R ffi � l N1=2
x ; (2)

where R is the areal density of chains crossing the interface,

U the C–C bond energy, � the density of network strands,

and l the length of a monomer unit. With q and M0 being the

monomeric density and molar mass, this results in

C0 ffi U
lq
M0

N1=2
x : (3)

The threshold fracture energy C0 can be measured directly in

tearing tests by extrapolating the energy required to create a

unit of facture surface to zero crack speed, thereby eliminat-

ing other dissipative processes [37]. Equation (3) is in quali-

tative agreement with data of elastomers [37] and hydrogels

[38]. However, Mazich and Samus [39] found that for a pol-

y(dimethylsi1oxane) (PDMS) network with a large number

of trapped entanglements, the molar mass Me between entan-

glements determines the threshold fracture energy and

showed that C0 / ðMe=M0Þ1=2
, i.e., the threshold fracture

energy depends on the number of C–C bonds in an entangle-

ment segment.

It should be noted that the threshold fracture energy can-

not be determined in a tensile test, because the nonaffine

deformation of the network strands is not known a priori,
and the crack speed (and therefore other dissipative pro-

cesses than fracture) cannot be controlled. What can be

determined is the critical Hencky strain at rupture, ec, and

the critical stress at rupture, rc, which is related to the rup-

ture force Fc of a C–C bond by rc ffi � Fc L, where � is the

density and L the length of the fully stretched network

strands. From atomic force microscope experiments, the rup-

ture force is reported as Fc ffi 4 nN ¼ 4� 10�9N [40]. Ab
initio calculations predict rupture forces of 6.8 nN for poly-

isoprene and 7.2 nN for polybutadiene [41].

Inspired by the findings of Mazich and Samus [39] that

trapped entanglements determine the fracture of polymer net-

works, we consider in this contribution the brittle fracture of

entangled polymer solutions and melts in elongational flow

and present a novel hypothesis for crack initiation based on

energy considerations. Model predictions are then compared to

the experimental data of Huang and coworkers [21,22,42–45].

II. THE STRAIN ENERGY OF A CHAIN IN A TUBE

Starting from the tube model, the entropic free-energy ws

of a chain segment of a linear entangled chain with a large

number of monomers Ne (Kuhn steps with length b) in a tube

with diameter a is given by [46–48]

ws ¼ 3kT
Neb2

a2
þ cst: (4)

If Ne represents the number of monomers in an entanglement

segment of length and diameter a0 at equilibrium with

Neb2 ¼ a2
o, and the constant cst is set to zero, ws represents

the free energy of an entanglement segment confined in a

tube with strain-dependent tube diameter a,

ws ¼ 3kT
a2

0

a2
¼ 3kTf 2: (5)

f has been called the molecular stress function (MSF) [49].

In the Gaussian regime, stress is proportional to stretch, and f
also represents the molecular stretch. The thermal energy

weq of the entanglement segment at equilibrium, i.e., when

a¼ a0 and f¼ 1, is then simply given by

weq ¼ 3kT: (6)

At larger deformations, i.e., smaller tube diameters a, the strain

energy of the entanglement segment is a multiple of weq,

ws ¼ weqf 2; (7)

i.e., the strain energy increases with the square of chain

stretch f, as long as Gaussian chain statistics apply and finite

extensibility effects can be neglected.

III. THE BOND ENERGY OF CARBON-CARBON
BONDS

The bond energy of carbon-carbon bonds in hydrocarbons

is reported as 348 kJ/mol (see, e.g., [36,37]), i.e., the bond

energy of a single C–C bond is with Avogadro’s number

NA ¼ 6:02� 1023

U ¼ 348 kJ

NA
¼ 5:78� 10�19J: (8)

On the other hand, the thermal energy weq at a temperature T
of 393 K (120 �C) is

weq ¼ 3kT ¼ 1:62� 10�20J; (9)

with Boltzmann’s constant k ¼ 1:38� 10�23J=K. Thus, the

bond energy U is 36 times larger than the thermal energy weq,

which is why the polymer chain will not rupture due to

Brownian motion at equilibrium, while chain scission may be

caused by ultraviolet radiation with more than 3.6 eV [40].

IV. HYPOTHESIS ON FRACTURE INITIATION

The strain energy of an entanglement segment is distrib-

uted along the segment. However, we make the hypothesis
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that when due to stretch, the energy of the entanglement seg-

ment reaches the critical energy

wc ¼ 3kTf 2
c ¼ U; (10)

the total strain energy of the chain segment will be concen-

trated on one C–C bond by thermal fluctuations, and this

bond then ruptures. Thermal vibration frequencies are

reported to be in the range of xth ¼ 1010–1012s�1 [33] and

include bond rotation and bond stretching. Using simplisti-

cally an Arrhenius ansatz, the lifetime of a C–C bond can be

estimated as s0 ¼ ð1=xthÞ expðU=kTÞ. According to the

Eyring kinetic theory of fracture, the lifetime also depends

on the force F carried by a link of length d, whose stored

energy can supply a portion of the activation energy [33]. If

we identify this link with an entanglement segment carrying

a strain energy ws, the bond life time becomes s ¼ 1=xthexp

ðU � ws=kTÞ ¼ s0 expð�ws=kTÞ. When the strain energy ws

reaches the bond energy U, the bond will rupture within a

very short time. We assume that this will happen indepen-

dently of the number of bonds, i.e., the length of the chain

segment, as long as Ne is large enough for Gaussian chain

statistics to apply. When the bond ruptures, the newly cre-

ated ends of the chain segment will recoil within a segmental

Rouse time, thereby dissipating the strain energy, which may

then be transmitted to primary C–C bonds of adjacent chains

leading to further chain scissions. When a sufficient concen-

tration of locally ruptured chains is reached, crack initiation

will occur. This can take place at several locations simulta-

neously along the polymer sample under tension, and high-

speed images revealed indeed that multiple cracks propagate

[21,22], one of which leading to rupture of the sample, while

the others close up elastically. Cracks start always at the

sample surface [21,22], which may be due to the specific

condition at the polymer liquid/air interface being slightly

different from the bulk. The surface energy that must be

overcome for the creation of a critical crack size is extremely

low, as the crack will start in the solvent of the polymer solu-

tion. Crack initiation is expected as soon as chains rupture,

which leads within a very short time (about 200 ms accord-

ing to Huang et al. [21]) to brittle fracture of the polymer

liquid.

From the fracture hypothesis, Eq. (10), it follows with Eq.

(7) a maximum achievable (critical) molecular stretch fc

fc �
ffiffiffiffiffiffiffiffiffiffiffiffi
U

weq

¼
s ffiffiffiffiffiffiffiffi

U

3kT

r
ffi 6; (11)

at which rupture of primary C–C bonds and thus brittle frac-

ture is expected to occur. We call this fracture mode

“entropic fracture,” as it is caused by thermal fluctuations, in

contrast to the enthalpic fracture hypothesis of Lake and

Thomas [36] as modified by Mazich and Samus [39], assum-

ing that when a chain with N C–C bonds between two entan-

glements ruptures, the strain energy wc ¼ NU corresponding

to the bond energy of all N C–C bonds in the entangled chain

segment is dissipated. According to this assumption, the

entangled chain will only rupture, if the entanglement

segment is fully stretched to length L ffi N l ffi Neb, i.e.,

when fc ffi N1=2
e , and when the covalent bonds are stretched

by the tension in the chain to such an extent that the rupture

force Fc of the C–C bonds is reached.

Next, we briefly recall a rheological constitutive equation

which has been shown to accurately model the rheology of

monodisperse polymer melts and solutions, and to allow the

prediction of the molecular stretch f.

V. THE MSF MODEL AND THE INTERCHAIN TUBE
PRESSURE

The MSF model is a generalized tube segment model

with strain-dependent tube diameter [50–52]. According to

this model, the segmental chain stretch, f , is inversely pro-

portional to the diameter a of a tube segment. The tube diam-

eter can be viewed as the mean field of the surrounding

chains which is independent of the orientation of tube seg-

ments, and it decreases from its equilibrium value a0 with

increasing stretch. The extra stress tensor r of the MSF

model is expressed as

rðtÞ ¼
ðt

�1

@G t� t0ð Þ
@t0

f 2 t; t0ð ÞSIA
DE t; t0ð Þdt0: (12)

Here, G(t) is the linear-viscoelastic relaxation modulus,

which may be expressed by a sum of discrete relaxation

modes, GðtÞ ¼
Pn

i¼1 gi e�t=ki . SIA
DE is the DE orientation ten-

sor assuming an independent alignment (IA) of tube seg-

ments [53], which is five times the second-order orientation

tensor S

SIA
DE t; t0ð Þ � 5

�
u0u0

u02

�
¼ 5S t; t0ð Þ: (13)

S is the relative second-order orientation tensor. The bracket

denotes an average over an isotropic distribution of unit vec-

tors uðt0Þ at time t0 and can be expressed as a surface integral

over the unit sphere

h io �
1

4p
�½ � sin hdohoduo: (14)

At the observation time t, the unit vectors are deformed to

vectors u0, which are calculated from the affine deformation

hypothesis [with F�1ðt; t0Þ as the relative deformation gradi-

ent tensor] as

u0ðt; t0Þ ¼ F�1ðt; t0Þ 	 uðt0Þ: (15)

u0 indicates the length of the vector u0.
The MSF f ¼ f ðt; t0Þ is the inverse of the relative tube

diameter

f ðt; t0Þ ¼ a0=aðt; t0Þ: (16)

f ¼ f ðt; t0Þ is a function of both the observation time t and

the time t0 of creation of tube segments by reptation. Thus,

chain segments with long relaxation times, i.e., those

224 WAGNER, NARIMISSA, AND HUANG



preferably in the middle of the tube, are exposed to higher

stretches than chain segments with short relaxation times,

i.e., those at the chain ends.

Assuming an on average affine deformation of the chain,

the evolution equation for f can be expressed as

@f

@t
¼ f K : Sð Þ; (17)

with the starting condition f(t¼ t0,t0)¼ 1, which has the solu-

tion [49]

f ¼ exp hln u0ð Þi
� �

¼ exp
wor

3kT

� �
: (18a)

wor is the orientational free energy of a tube segment and

represents the strain energy potential of the DE IA stress ten-

sor [Eq. (13)]. For elongational flows, wor can be expressed

in analytical form in terms of Hencky strain e by the use of

Eqs. (14) and (15) as

wor

3kT
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp 3eð Þ � 1
p tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp 3eð Þ � 1

q� �
þ e� 1:

(18b)

In the elastic limit, i.e., without tube diameter relaxation

effects, Eq. (18) relates molecular stretch f as well as the

free energy ws of a tube segment [Eq. (5)] directly to mac-

roscopic deformation of the sample, and the extra stress

[Eq. (12)] can be derived from the strain energy potential

W ¼ � ws [51].

Considering stretch relaxation processes, Pearson et al.
[54] assumed that the stretch created by affine deformation

of the chain is balanced by a linear spring force. The corre-

sponding evolution equation of the MSF is then expressed as

@f

@t
¼ f K : Sð Þ � 1

sR
f � 1ð Þ; (19)

where sR is the Rouse stretch-relaxation time of the chain,

and K the velocity gradient tensor. However, in elongational

flow with the strain rate _e, Eq. (19) leads to unbounded

stretch at Weissenberg numbers Wi ¼ _esR ! 1, and is not in

agreement with the steady-state elongational viscosity data

of monodisperse PS melts [55,56], which show a continu-

ously decreasing elongational viscosity with a scaling of

approximately ð_eÞ�1=2
. To explain this scaling, Marrucci and

Ianniruberto [57] proposed an interchain pressure (IP) term

based on the free energy of a polymer chain confined by

fixed walls of a tube [53]. They assumed that the reduction

of the tube diameter due to deformation is balanced by an

increase of the radial pressure of the confined chain. Later,

by considering that the pressures of a chain exerted on the

walls of a confining box are anisotropic if the dimensions of

the box are anisotropic, an extended interchain pressure

(EIP) model was developed with 1/3 Rouse relaxation in the

longitudinal direction (no walls) and 2/3 IP in the lateral

direction of a tube segment [58]

@f

@t
¼ f K : Sð Þ � 1

3

f � 1

sR
� 2

3

f 2 f 3 � 1
� �

3sR
: (20)

Equation (20) becomes equivalent to Eq. (19) in the first

order of stretch, i.e., for f � 1
 1, but avoids the singularity

in the classical relation when Wi! 1. It does not contain

any nonlinear parameter since the Rouse time of the chain

can be evaluated from linear viscoelasticity. Thus, Eqs. (12)

and (20) represent a nonlinear integro-differential constitu-

tive relation with no free parameters. This was shown to be

in excellent agreement with start-up and steady-state elonga-

tional viscosity data of several linear monodisperse PS melts

[58], and of concentrated solutions of monodisperse PS in

OS [59]. These findings demonstrated the importance of the

IP term in polymer rheology.

For solutions, the shift aTg of the glass transitions temper-

ature from melt to solution has to be taken into account and

the evolution equations is given by [60]

@f

@t
¼ f K : Sð Þ � 1� 2

3
aTg

� �
f � 1

sR
� 2

3
aTg

f 2 f 3 � 1
� �

3sR
:

(21)

VI. COMPARISON OF THE NOVEL FRACTURE
HYPOTHESIS TO EXPERIMENTAL EVIDENCE

Here, we compare predictions of our entropic fracture

model for the origin of brittle fracture of entangled polymer

liquids to the experimental data of Huang and coworkers.

Table I gives the samples name, molecular weight, polydis-

persity index, weight fraction, and testing or reference tem-

perature of 7 solutions of PS in OS as solvent, and one PS

melt investigated in uniaxial extensional deformation tests

via filament stretching rheometry.

TABLE I. Samples description of PS solutions and melt.

Sample name Mw of PS (kg/mol) PDI Oligomeric styrene (kg/mol) PS (wt. %) Test or reference temp. (�C) Study

PS-864 k/4 k-17 864 <1.15 4 17 120 [21,22]

PS-864 k/4 k-33 864 <1.15 4 33 120 [21,22]

PS-545 k/1 k-52 545 1.12 1 52 130 [44,59]

PS-545 k/2 k-58 545 1.12 2 58 130 [59,61]

PS-545 k/4 k-17 545 1.12 4 17 120 [21]

PS-900 k/4 k-33 900 1.10 4 33 130 [45]

PS-3280k/4 k-13 3280 1.11 4 13 130 [45]

PS-CAS-0993-53-6 230 3.7 — 100 120 [21,42]
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Figure 1 shows the experimental data of true stress as a

function of Hencky strain for PS-864k/4k-17 and PS-864k/

4k-33. Dotted lines indicate predictions of Eqs. (12) and

(18), which are in excellent agreement with experimental

data up to a Hencky strain of 2, when the stress data show a

stronger increase than predicted. Solid lines are predictions

of Eqs. (12) and (18) assuming that the entanglement stretch

is limited to fc¼ 6. As demonstrated in Fig. 1, the entropic

rupture hypothesis, Eq. (11), is in general agreement with the

Hencky strain at rupture observed.

Employing evolution equation (21) instead of Eq. (18), i.e.,

allowing for tube diameter relaxation, has little effect on the

predictions, as the Weissenberg number Wi� 1 (Fig. 2). The

maximal value of the MSF follows from Eq. (21) at @f=@t
¼ 0 and can be approximated for sufficiently large f by

f 2
max ffi

3

2

ffiffiffiffiffiffiffiffiffiffi
2

_esR

aTg

s
¼ 3

2

ffiffiffiffiffiffiffiffiffi
2Wi
p

: (22)

According to the hypothesis proposed, rupture will occur at

strain rates, for which fmax � fc ¼ 6, i.e., for Wi ¼ ð_esR=aTgÞ
� 288. For PS-864/4k-33, the limiting strain rate for rupture

is predicted to be 0.0075 s�1, and for PS-864/4k-17 it is

0.012 s�1 (see in Fig. 3 the divergence of the strain at rupture

predicted). Below these strain rates, we expect that steady-

state elongation is possible. As can be seen from Fig. 3, the

strain at rupture is correctly predicted by the entropic fracture

hypothesis for PS-864/4k-17, while PS-884/4k-33 ruptures

already at a smaller Hencky strain.

For sufficiently fast deformations, from Eqs. (12) and

(22), the fracture stress is predicted to be

rc ffi 5Gef 2
c ¼ 180Ge ¼ 180G0

Nu2: (23)

Ge is the plateau modulus of the polymer solution

considered, G0
N the plateau modulus of the melt (taken as

G0
N ¼ 2� 105Pa for PS) and u the polymer volume fraction

[the exponent of 2 in Eq. (23) assumes a dilution exponent of

1]. For PS-864/4k-33, Eq. (23) results in rc ffi 180G0
Nu2

¼ 4� 106Pa, which is in good agreement with the experi-

mental data shown in Fig. 4, while for PS-864/4k-17, a value

of rc ffi 180G0
Nu2 ¼ 106Pa is predicted, which is somewhat

FIG. 1. Experimental data (symbols) of stress as a function of Hencky strain

for PS-864k/4k-17 and PS-864k/4k-33. Open symbols indicate repeat experi-

ments. Dotted lines: Predictions of Eqs. (12) and (18). Full lines: Predictions

of rupture of PS solutions by Eqs. (12) and (18) with fc¼ 6.

FIG. 2. Experimental data (symbols) of stress as a function of Hencky strain

for PS-864k/4k-17 and PS-864k/4k-33. Dotted lines: Predictions of Eqs.

(12) and (18). Full lines: Predictions of rupture of PS solutions by Eqs. (12)

and (21) with fc¼ 6.

FIG. 3. Experimental data (symbols) of strain at rupture ec of PS solutions

as a function of strain rate. Predictions of Eqs. (12) and (21) with fc¼ 6 for

PS-864/4k-33 (solid line) and PS-864/4k-17 (long dotted line). Dotted line

indicates ec from Eqs. (12) and (18) with fc¼ 6.
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smaller than the experimental data. The weak increase of the

fracture stress with increasing strain rate as predicted by Eqs.

(12) and (21) is due to the combined effect of tube diameter

relaxation and contributions of the glassy relaxation modes

of the polymer solutions.

While the entropic fracture model is in general (if not fully

quantitative) agreement with the experimental data of PS-864/

4k-33 and PS-864/4k-17, predictions of the enthalpic fracture

hypothesis do not agree with experimental evidence:

According to Fang et al. [62], the maximum stretch km for PS

melt can be obtained as km ¼ dt=b, where b ¼ 1:48 nm is the

Kuhn step length for PS [63], and dt the average end-to-end

distance of the entanglement segment. This is related to the

packing length p by dt ¼ 19p, with p ¼ 0:3948 nm for PS

[64,65], leading to a value of km¼ 5.07. Alternatively, km can

be calculated from km ¼ 0:82
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Me=Mb=C1

p
[66]. The factor

0.82 takes into account the arrangement of monomer units in

the “zig-zag” conformation of the chain when Me is the

molar mass per entanglement, Mb is the molar mass of

the monomer, and C1 is the characteristic ratio. For PS

with Me ¼ 18 100 g mol�1 [67], Mb ¼ 52 g mol�1 and C1
¼ 9:64 [63], a value of km ¼ 4:93 is obtained. We use a

value of km ¼ 5 for PS melt in the following. For PS solu-

tions, the maximum stretch is therefore km ffi 5u�1=2 (see

e.g., [68], which results in km ffi 8:7 for PS-864/4k-33, and

km ffi 12:1 for PS-864/4k-17. This is clearly much larger

than the critical stretch observed, which means that entangle-

ment segments at rupture are not fully stretched. Also,

according to the enthalpic fracture hypothesis, the critical

stress needed to rupture the chains (assuming fully stretched

and oriented chain segments) would be

rc ffi � Fc L ffi G0
Nu2

kT
Fc b km: (24)

With b¼ 1.48 nm for PS and Fc¼ 4 nN, this results in rc

ffi 2:7� 108Pa for PS-864/4k-33, and rc ffi 9:9� 107Pa for

PS-864/4k-17, which is more than an order of magnitude

larger than the stress at rupture observed experimentally.

Figures 5–7 demonstrate predictions of the entropic frac-

ture model [Eqs. (12) and (21) with fc¼ 6) for the polymer

solutions PS-545k/2k-58, PS-545k/1k-52, and PS-900k/4k-

33, which were investigated earlier by Huang and coworkers.

For PS-545k/2k-58 (Fig. 5), fracture at a strain rate of

0.45 s�1 is predicted, while at lower strain rates, steady-state

elongation at large strain is expected in accordance with

experimental evidence. For solution PS-545k/1k-52, the

entropic fracture model predicts fracture at the two highest

strain rates investigated, which is in general agreement with

experimental evidence, although fracture occurs at lower

Hencky strains than predicted (Fig. 6). The evidence of frac-

ture at the strain rate of 3.73 s�1 is less clear. In the case of

PS-900k/4k-33 (Fig. 7), the model predicts brittle fracture at

strain rate 0.002 s�1 in good agreement with experimental

data, while no fracture at strain rate 0.007 s�1 is observed

experimentally. However, the transition to steady-state elon-

gation at lower strain rates is predicted correctly. It should

be noted that no free parameter is used in any of these pre-

dictions so far, as all material parameters are fully deter-

mined by linear-viscoelastic data and the entropic fracture

hypothesis as defined in Eq. (11).

VII. NON-GAUSSIAN EFFECTS

Overall, predictions of the entropic fracture model are in

general agreement with experimental data. However, in

some cases, it seems that the model overpredicts the critical

strain, and in other cases underpredicts the stress at rupture.

It seems that the chain becomes stiffer with increasing strain

loading as seen in Figs. 1 and 2 indicating a transition to

FIG. 4. Experimental data (symbols) of the stress at rupture rc of PS solu-

tions as a function of strain rate. Predictions of Eqs. (12) and (21) with fc¼ 6

for PS-864/4k-33 (solid line) and PS-864/4k-17 (long-dotted line).

Predictions of Eq. (23) are indicated by horizontal short-dotted lines.

FIG. 5. Stress-strain data PS-545k/2k-58 (symbols). Predictions by Eqs.

(12) and (21) limited to fc¼ 6 (solid lines).
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non-Gaussian effects. This is in general agreement with the

findings of Wang and coworkers [18–20] that rupture occurs

when the strands between entanglements undergo non-

Gaussian stretching on their path to full extension, and the

linear stress-optical rule starts to break down. According to

Bird et al. [69], non-Gaussian effects become significant

when the stretch reaches half of the maximum stretch

(f¼ 0.5 km). In the following, we investigate possible conse-

quences for the entropic fracture model.

Following Rol�on-Garrido et al. [68], we model non-

Gaussian effects simplistically by introducing a stress

enhancing factor c(f 2) in the stress calculator

rðtÞ ¼
ðt

�1

@G t� t0ð Þ
@t0

c f 2
� �

f 2 t; t0ð ÞSIA
DE t; t0ð Þdt0; (25)

where c is a nonlinear spring coefficient, representing a rela-

tive Pad�e inverse Langevin function with [70]

cðf 2Þ ¼
3� f 2

f 2
m

 !
	 1� 1

f 2
m

� �

3� 1

f 2
m

� �
	 1� f 2

f 2
m

 ! : (26)

Reasonable agreement between the modified fracture model

[Eqs. (21), (25), and (26)] and the data of the solutions PS-

864/4k-33, PS-864/4k-17, and PS-3280k/4k-13 is obtained

for a value fm¼ 6.5 (Figs. 8–10). Interestingly, from the

available experimental evidence, the finite extensibility

parameter fm seems to be independent of the degree of dilu-

tion and thus from the maximal stretch km, and is close to

fc¼ 6, which means that stiffening of the chain may be

caused by the reduction of the tube diameter, thus limiting

the available lateral chain conformations and increasing non-

entropic (enthalpic) effects. Also, as seen from Fig. 9, PS-

864/4k-33 ruptures already at fc¼ 5, possibly due to the

lower number of monomers, Ne¼ 66.1 [21], contained in an

entanglement segment and lower maximal stretch km ffi 8:7
compared to PS-864/4k-17 with Ne¼ 128.3 [21] and

km ffi 12:1. Nearly quantitative agreement of the experimen-

tal data of strain (Fig. 9) and stress at rupture (Fig. 10) with

predictions can be obtained for PS-864/4k-33 by use of

fc¼ 5, while the stress at rupture of PS-864k/4k-17 is in

good agreement with the experimental data for fc¼ 6. For

FIG. 6. Stress-strain data of PS-545k/1k-52 (symbols). Predictions by Eqs.

(12) and (21) limited to fc¼ 6 (solid lines).

FIG. 7. Stress-strain data of PS-900k/4k-33 (symbols). Predictions by Eqs.

(12) and (21) limited to fc¼ 6 (solid lines).

FIG. 8. Experimental data of stress as a function of Hencky strain for PS-

864k/4k-33, PS-864k/4k-17, and PS-3280k/4k-13 (symbols). Dotted lines:

Predictions by Eqs. (12) and (18). Full lines: Predictions of rupture by Eqs.

(21), (25), and (26) for PS-864/4k-33 (fc¼ 5), and for PS-864/4k-17 and PS-

3280/4k-13 (fc¼ 6). Finite extensibility parameter fm¼ 6.5.

228 WAGNER, NARIMISSA, AND HUANG



the solution of PS-3280k/4k-13 with Ne¼ 169.2 and maxi-

mal stretch km ffi 13:9, the non-Gaussian effect seems to be

small, as expected (Fig. 8).

For PS-864k/4k-17, the transition to steady elongational

flow as predicted by Eq. (12) for strain rates less than

0.012 s�1, which is indicated by the divergence of the strain

at rupture in Figs. 3 and 9, is documented in more detail in

Fig. 11: While for strain rates of 0.03 s�1 and larger, fracture

is observed and predicted, the polymer liquid can be

extended up to a Hencky strain of six without failure at a

strain rate of 0.01 s�1.

Finite extensibility effects are also clearly visible for the

solution PS-545k/1k-52 (Fig. 12). Compared to Fig. 6, much

better agreement between data and predictions can be

obtained for a critical stretch at break of fc¼ 5 in combina-

tion with a finite extensibility parameter of fm¼ 6.5, which is

FIG. 9. Experimental data of strain at rupture ec of PS solutions as a function

of strain rate (symbols). Predictions by Eqs. (12) and (18) with fc¼ 5 for PS-

864/4k-33 and fc¼ 6 for PS-864/4k-17 (short dotted lines). Predictions by

Eqs. (21), (25), and (26) with fc¼ 5 for PS-864/4k-33, and fc¼ 6 for PS-864/

4k-17 (solid and long dotted lines, respectively). Finite extensibility parame-

ter fm¼ 6.5.

FIG. 10. Experimental data of the stress at rupture rc of PS solutions as a

function of strain rate (symbols). Predictions by Eqs. (21), (25), and (26)

with fc¼ 5 for PS-864/4k-33 (solid line), and fc¼ 6 for PS-864/4k-17 (dotted

line). Finite extensibility parameter fm¼ 6.5.

FIG. 11. Experimental data of stress as a function of Hencky strain for PS-

864k/4k-17 (symbols). Lines: Predictions of rupture by Eqs. (21), (25), and

(26) for critical stretch fc¼ 6. Finite extensibility parameter fm¼ 6.5.

FIG. 12. Stress-strain data of PS-545k/1k-52 (symbols). Predictions by Eqs.

(21), (25), and (26) with fc¼ 5 (lines). Finite extensibility parameter

fm¼ 6.5.
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close to the maximal stretch expected from the relation

km ffi 5u�1=2 ¼ 6:9. Interestingly, the same polymer PS-

545k dissolved in 4k OS at a volume fraction of 17% (PS-

545k/4k-17) also shows a considerable non-Gaussian effect

in the stress at a strain rate of 0.6 s�1, albeit fracture occurs

at a critical stretch of fc¼ 6 (Fig. 13). Table II summarizes

the results for maximal stretch according to the relation

km ffi 5u�1=2 and the critical stretch fc found when consider-

ing non-Gaussian effects.

Finite extensibility is associated with a stretch energy

function, which increases more strongly with stretch f than

predicted by Eq. (7), and diverges at the finite extensibility

parameter fm. Adapting the empirical strain energy function

proposed by Gent [71] to a corresponding stretch energy

function for finite extensibility, wf , results in

wf ¼ �weqf 2
m ln 1� f 2

f 2
m

 !
; (27)

which reduces to Eq. (7) in the limit of fm !1 and diverges

at f ¼ fm. The critical stretch at rupture fc is reached when

wf ¼ U, i.e., fc is given by

fc ¼ fm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ecp

�U=3kT

f 2
m

 !vuut : (28)

For fm ¼ 6:5, a value of fc ¼ 4:9 is found. This is in qualita-

tive agreement with experimental evidence for the more

concentrated solutions PS-545k/1k-52 and PS-864k/4k-33

with finite extensibilities km < 9 (see Table II), and indi-

cates a partial transition from the entropic to the enthalpic

fracture mode due to finite extensibility effects, as the

energy barrier of the C–C bonds is reduced due to stretch of

the bonds.

VIII. COMPARISON TO DATA OF A POLYDISPERSE
PS MELT

Figure 14 presents data of a polydisperse PS melt as

reported by Huang et al. [21] and Huang [42]. Due to its

polydispersity (see Table I), a maximum stretch km > 5 can

be expected because of dilution by low molar mass compo-

nents. Brittle fracture is observed experimentally for strain

rates of 0.6 [21], 0.1, 0.06, and 0.03 s�1 [42]. Although the

MSF model used here is best suited for monodisperse poly-

mer melts and solutions with a dominant relaxation mode,

agreement of model predictions of Eqs. (20), (25), and (26)

using a rupture stretch of fc¼ 5 and a finite extensibility

parameter of fm¼ 6.5 is nearly quantitative. At strain rates of

0.01 s�1 and lower, steady-state elongation is predicted at

large Hencky strains in agreement with experimental evi-

dence. Deviations between model and data at lower strain

rates are caused by the polydispersity of the melt.

FIG. 13. Stress-strain data of PS-545k/4k-17 (symbols). Predictions of rup-

ture by Eqs. (21), (25), and (26) with fc¼ 6 (lines). Finite extensibility

parameter fm¼ 6.5.

TABLE II. Comparison of maximum stretch km and critical stretch fc.

Sample name

Mw of PS

(kg/mol)

Oligomeric

styrene

(kg/mol)

PS

(wt. %)

Maximum

stretch km

Critical

stretch fc

PS-864 k/4 k-17 864 4 17 12.1 6

PS-864 k/4 k-33 864 4 33 8.7 5

PS-545 k/1 k-52 545 1 52 6.9 5

PS-545 k/4 k-17 545 4 17 12.1 6

PS-3280k/4 k-13 3280 4 13 13.9 6

FIG. 14. Stress-strain data of PS melt (symbols). Predictions of extensional

stress and rupture of PS melt as a function of Hencky strain by Eqs. (20),

(25), and (26) with f(t,t0) limited to fc¼ 5 and fm¼ 6.5 (solid lines). Strain

rates from top to bottom: 0.6, 0.1, 0.06, 0.03, 0.01, 0.003, 0.001, 0.0003,

0.0001, and 0.00003 s�1.

230 WAGNER, NARIMISSA, AND HUANG



IX. CONCLUSIONS

A physical explanation for the deterministic brittle fracture

of entangled polymer solutions and melts has been presented.

Crack initiation is caused by rupture of primary C–C bonds.

Assuming Gaussian chain statistics, a C–C bond ruptures

when due to molecular stretch f , the total strain energy ws ¼
3kTf 2 of an entanglement segment reaches the bond energy U
of a covalent C–C bond. Thermal fluctuations will lead to a

short-time concentration of the strain energy on one C–C

bond of the entangled chain segment, and the bond ruptures.

This limits the maximum stretch of entanglement segments to

a critical stretch of fc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U=3kT

p
ffi 6. Available experimen-

tal data of solutions of nearly monodisperse PSs dissolved in

OS and of a well characterized polydisperse PS melt are in

general agreement with this entropic fracture model.

In contrast, the enthalpic fracture hypothesis of Lake and

Thomas [36] as modified by Mazich and Samus [39], who

assumed that a chain will only rupture, when it is fully

stretched and the strain energy wc ¼ NEC�C corresponding to

the bond energy of all N C–C bonds in an entanglement seg-

ment is dissipated, predicts much higher strains and stresses at

rupture than observed for entangled polymer liquids.

However, finite extensibility effects are visible in some of

the data by a stress increasing over-proportionally with the

square of the average stretch. This means that due to the

stretch of C–C bonds, the strain energy of the chain contains

a certain fraction of enthalpic energy, which reduces the

energy barrier of the C–C bonds and leads to a critical frac-

ture stretch of fc < 6. For the more concentrated solutions

PS-545k/1k-52 and PS-864k/4k-33 and a PS melt with finite

extensibilities km < 9, a critical stretch of fc ffi 5 is found,

indicating a partial transition from the entropic to the

enthalpic fracture mode, due to a reduction of the energy bar-

rier of the C–C bond by stretching of the bond.

We may expect that a cross-over exists from the fracture

criterion of well-cured rubbers to the fracture of polymer

melts and solutions: For rubbers with NxK � NeM, where NxK

is the number of Kuhn steps between two crosslinks and NeM

the number of Kuhn steps in an entanglement segment of the

corresponding melt, the maximal stretch is km ffi N
1=2
xK , which

is usually less than 6 and fracture does not occur by thermal

fluctuations, but when the tension in the chain exceeds the

rupture force of C–C bonds (enthalpic fracture). On the other

hand for polymer gels, melts, and solutions with maximal

stretch km ffi ðNeMu�1Þ1=2 � 6, the stretch at rupture is lim-

ited by thermal fluctuations (entropic fracture) to

fc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U=3kT

p
ffi 6, which represents an upper limit for the

critical stretch at rupture for both entangled polymer liquids

and elastomers. Entropic fracture of polymer liquids with

maximal stretch km < 9 is influenced by finite extensibility

effects, as the C–C bonds are stretched and therefore the

energy required for chain scission is reduced, and these poly-

mer liquids fracture at a critical molecular stretch fc < 6.
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