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___________________________________________________________________________24 

ABSTRACT 25 

 26 

The influence of metabolite diffusion within the cheese matrix on growth of non-starter lactic 27 

acid bacteria (NSLAB) during Cheddar cheese ripening was mathematically modelled. The 28 

model was calibrated at a realistic range of diffusion of metabolites and the decay and growth 29 

parameters of immobilised starter LAB (SLAB) and NSLAB colonies, respectively. 30 

Metabolite diffusion is the limiting factor for NSLAB growth only if essential metabolite 31 

molecules are extremely large or otherwise immobilised in the matrix. For relatively small 32 

molecules diffusion cannot be a limiting factor; the diffusive replenishment of small molecule 33 

nutrients around the NSLAB colonies consuming them is generally faster than the release rate 34 

from all possible sources within the curd. Assuming that the only nutrient source limiting 35 

NSLAB growth is the release of metabolites from lysed SLAB colonies, the decay rate of 36 

SLAB, rather than metabolite diffusion, most probably determines the rate of NSLAB growth 37 

during Cheddar cheese ripening.  38 

___________________________________________________________________________ 39 

 40 

  41 
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1. Introduction 42 

 43 

 Cheese microbiota is pivotal to nearly all processes taking place during cheese 44 

production. Starter lactic acid bacteria (SLAB) are responsible for the conversion of lactose to 45 

lactate during the fermentation of milk and results in a pH decrease. The species of SLAB 46 

used for the manufacture of cheese depends on the cheese type, with mesophilic species such 47 

as Lactococcus lactis subsp. lactis and subsp. cremoris used for the production of Cheddar 48 

and cottage cheese types. These mesophilic species can be supplemented with citrate 49 

fermenting Lactococcus lactis and various Leuconostoc species for the production of Gouda 50 

and Danbo cheese types. In addition to the mesophilic SLAB, thermophilic SLAB, such as 51 

Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus 52 

helveticus are used for the production of pasta-filata and Swiss-type cheeses. Frequently, S. 53 

thermophilus and/or Lb. helveticus cultures may be added to the core mesophilic cultures used 54 

for Cheddar and Gouda cheese types to produce a meso-thermo blend. Such meso-thermo 55 

blends give improved phage robustness and increased flavour properties. Besides the 56 

fermentation of lactose,  SLAB are also critical for degradation of casein into peptides and 57 

free amino acids, and in the biotransformation of these free amino acids into a very diverse 58 

range of aroma compounds (McSweeney, 2017; Yvon, Thirouin, Rijnen, Fromentier, & 59 

Gripon, 1997).  The SLAB used for the manufacture of cheese are carefully selected and 60 

controlled by the cheese producer, and normally obtained from specialist suppliers in freeze-61 

dried or frozen format.  62 

In contrast to the SLAB, the non-starter lactic acid bacteria (NSLAB) are not 63 

controlled due to the non-aseptic nature of industrial cheese production. Pasteurisation of the 64 

cheese milk only lowers NSLAB levels, but does not eliminate them from the cheese milk 65 

(De Angelis et al., 2004). The NSLAB isolated from cheese belong to a very heterogeneous 66 
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group, frequently they are members of the Lactobacillus species and include Lactobacillus 67 

casei, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus pentosus, 68 

Lactobacillus curvatus, Lactobacillus rhamnosus, Lactobacillus fermentum, Lactobacillus 69 

parabuchneri and Lactobacillus brevis. The non-Lactobacillus species of NSLAB commonly 70 

isolated from cheese comprise Pediococcus acidilactici, Pediococcus pentosaceus, 71 

Enterococcus durans, Enterococcus faecalis, and Enterococcus faecium (Settanni & 72 

Moschetti, 2010). NSLAB originate from the cheese milk and the cheese making 73 

environment, and may vary significantly from one dairy plant to another (Banks & Williams, 74 

2004; Settanni & Moschetti, 2010; Sgarbi et al., 2013).  75 

The conversion of milk to cheese can be considered as a two-step process. In the first 76 

step, milk is converted into a fresh curd, while in the second step the fresh curd is converted 77 

into ripened cheese. In the first step, SLAB grow rapidly in the milk due to the abundance of 78 

available substrate (lactose), and after approximately 24 hours reach levels of 109 cfu g-1 in 79 

the fresh curd. No further growth of SLAB occurs in the fresh curd due to the hostile 80 

environment encountered (absence of a fermentable carbohydrate, high salt concentration, and 81 

low pH). In the second step, which occurs over several months, the SLAB numbers begin to 82 

decline, while the NSLAB numbers begin to increase. At the beginning of ripening the 83 

NSLAB start at rather low levels of 101–103 cfu g-1, and may in fact be undetectable using 84 

conventional plating techniques. As ripening progresses their number increases to 85 

approximately 107–108 cfu g-1 (De Dea Lindner et al., 2008; Fitzsimons, Cogan, Condon, & 86 

Beresford, 2001; Gatti et al., 2008; McMahon et al., 2014). The SLAB and NSLAB all grow 87 

as immobilised colonies in the cheese during ripening, making them dependent on diffusion 88 

of metabolites in the cheese matrix. The distribution of the immobilised bacteria cells in the 89 

cheese matrix is random and therefore the mean distance between the colonies is strongly 90 

affected by the initial inoculation levels (Jeanson et al., 2011).  91 
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The substrate source(s) and how they migrate to the regions in which the NSLAB cells 92 

are sparsely distributed within the cheese matrix is not fully elucidated (Gobbetti, De Angelis, 93 

Di Cagno, Mancini, & Fox, 2015). Considering the fact that sugars such as lactose, glucose 94 

and galactose are rapidly depleted after a few days ripening (Budinich et al., 2011), then other 95 

substrate sources must be present. In particular, SLAB derived substrate sources as a result of 96 

cell death have been considered as potential carbon and nitrogen sources for NSLAB growth. 97 

A typical SLAB cell composition, based on percentage of total dry weight, is approximately 98 

45% protein, 12–15% polysaccharide, 10% teichoic acid, 6–8% RNA, 7% inorganic ions, 99 

5.5% amino sugars, 4–4.3% lipid and 3–3.3% DNA (Novák & Loubiere, 2000). Other 100 

possible substrate sources include either more complex milk-derived carbohydrates from κ-101 

casein or the milk fat globular membrane (Moe, Faye, Abrahamsen, Østlie, & Skeie, 2012) 102 

and free amino acids and small peptides from the caseins. Strong evidence supports the theory 103 

that it is the SLAB derived carbon that the NSLAB use as a growth source. In several studies 104 

(Adamberg et al., 2005; Sgarbi et al., 2013; Thomas, 1987; Williams, Withers, & Banks, 105 

2000) it has been demonstrated in vitro that NSLAB are able to grow on dead SLAB material 106 

such as ribose and cell-wall  originating sugars.  Furthermore, it has been confirmed that 107 

NSLAB grew faster in Cheddar cheese manufactured with a fast lysing SLAB than a slow 108 

lysing SLAB (Lane, Fox, Walsh, Folkertsma, & McSweeney, 1997). More recently (Moe et 109 

al., 2012), it has been demonstrated that NSLAB can utilise likely sources of nitrogen to 110 

support the growth of NSLAB during cheese ripening are free amino acids and peptides 111 

released from the casein due to the action of the rennet, as well as SLAB cell-wall associated 112 

proteinase and intracellular peptidases (Cotter & Beresford, 2017). These sources of nitrogen 113 

are abundantly available in the ripening cheese.  114 

Very little is known about how and at what rate the SLAB cell components, in 115 

particular the limited carbohydrate substrate sources (polysaccharide, teichoic acids, RNA, 116 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 5

DNA and amino sugars) migrate from the SLAB regions of the cheese matrix to the NSLAB 117 

regions. Hydrolysis of the polymeric SLAB cell components (polysaccharide, teichoic acids, 118 

RNA, DNA) into their constituent monomers (N-acetylglucosamine, N-acetylmuramic acid, 119 

ribose and deoxyribose) would be a necessary step prior to diffusion in the cheese matrix. 120 

Furthermore, high concentrations of casein-derived free amino acids and peptides are 121 

expected to be localised in the SLAB regions, and it is unknown how and at what rate these 122 

components migrate to the NSLAB regions. Recently, Floury et al. (2015) reported that milk 123 

proteins (bovine serum albumin, lactoferrin and αS1-casein) could not penetrate the inside of 124 

bacterial colonies immobilised in a model cheese system. Interestingly, the effect of the 125 

spatial distribution of L. lactis colonies (small colonies or large colonies) in the same model 126 

cheese system was shown to influence the rate of degradation and production of various 127 

cheese metabolites such as caseins, free amino acids and volatiles (Le Boucher et al., 2016).  128 

This study, through the use of mathematical modelling, seeks to address the key 129 

question regarding how the SLAB and NSLAB grow as immobilised colonies in the cheese 130 

matrix during ripening. The micro-ecological approach we take here has not often been taken 131 

in dairy research yet, even though ripening cheese provides an ideal setting for both 132 

theoretical and experimental studies in microbial ecology (Wolfe & Dutton, 2014). The 133 

essential features of the three component processes of cheese ripening – SLAB decay, nutrient 134 

substrate diffusion and NSLAB growth – are concisely represented in a simple reaction-135 

diffusion system. Studying numerical realisations of the model with known values of the rates 136 

of SLAB decay, nutrient diffusion and NSLAB growth, the potential effects of the component 137 

processes on the course of ripening can be assessed separately, providing experimentally 138 

testable predictions on the ripening process itself. Specifically, the model examines 139 

metabolite diffusion rates and their influence on the space-time dynamics of SLAB death and 140 

NSLAB growth. Furthermore, it seeks to examine the effect of a slow lysing SLAB versus a 141 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 6

fast lysing SLAB on the growth rate of the NSLAB population. The model proposed here is 142 

applicable for dry-salted cheeses such as Cheddar, in which the SLAB are immediately 143 

present in a high salt environment post manufacture. 144 

 145 

2. Material and methods 146 

 147 

2.1. The model 148 

 149 

The presented mathematical model simulates the dynamics of SLAB lysis and NSLAB 150 

growth during cheese ripening, based on a typical Cheddar cheese ripening scenario.  In the 151 

model the SLAB can be set to start decaying within the curd immediately after salting or at 152 

any time after that. Upon SLAB lysis, nutrients are directly released from the cytosol or 153 

produced by the hydrolytic enzymes of the decaying SLAB cells. These nutrients comprise 154 

SLAB cell wall monomer components (N-acetylglucosamine, N-acetylmuramic acid), sugars 155 

from hydrolysed nucleic acids (ribose and deoxyribose), free amino acids, and small peptides 156 

(10–15 amino acid residues). All these are assumed to diffuse from the localised, lysed SLAB 157 

cells within the cheese matrix. The model is set to predict the growth of NSLAB colonies 158 

utilising the diffusing material as their nutrient source. We assume that the nutrients actually 159 

limiting NSLAB growth in the curd (whether they are nucleotides, nucleobases, sugars or 160 

essential co-factors) originate from lysed SLAB cells and need to diffuse to the localised 161 

NSLAB colonies. For simplicity we assume that both the SLAB and the NSLAB are 162 

homogeneous with respect to their dynamical properties, i.e., all SLAB strains have the same 163 

probability of death/lysis, �����, and the expected maximum growth rates of NSLAB strains, 164 

������, are also the same for all NSLAB bacteria in the cheese matrix. If diffusion is limiting 165 
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for NSLAB growth it is the diffusion parameter D that is the critical parameter for NSLAB 166 

growth. Fig. 1 explains the details of the corresponding dynamics.  167 

With these simplifying assumptions, the model is implemented as a system of partial 168 

differential equations in two spatial dimensions, one equation for each of SLAB (S), nutrient 169 

(L) and NSLAB (N): 170 

 171 

��(
,�,)
� = −�����	�(�, �, �)         [1] 172 

    173 

��(
,�,)
� = � ����(
,�,)�
� + ���(
,�,)

��� � + ����� 	�(�, �, �) − ������ �(
,�,)
�(
,�,)���(�, �, �)   [2] 174 

 175 

��(
,�,)
� = ������ �(
,�,)

�(
,�,)���(�, �, �)        [3] 176 

 177 

where t is time from salting, x and y are coordinates in two spatial dimensions, representing 178 

spatial positions in the perpendicular projection of the 3D cheese volume onto a plane. The 179 

reduction of the number of spatial dimensions to two is necessary for computational reasons 180 

(diffusion in 3D is extremely slow to simulate), and it does not affect the conclusions in the 181 

qualitative sense. The decay coefficient ����� of the SLAB population implies that SLAB 182 

decay is a random process, with each bacterium carrying the same risk of death and lysis 183 

within any small period of time, resulting in an exponential decay curve for the SLAB 184 

population. The constancy of the decay rate implies that the environment within the curd (salt 185 

concentration, pH, temperature) is essentially constant during the ripening process. Nutrients 186 

released from lysed SLAB cells move within the matrix following Fick’s second law of 187 

diffusion, and they are locally consumed by NSLAB, which have a saturating consumption 188 

response to local nutrient concentration, i.e., the higher the nutrient concentration L around an 189 
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NSLAB colony the closer the actual growth rate of that colony to its maximum. We assume, 190 

again without a loss of generality in the qualitative sense, that the conversion factor is 1, 191 

meaning that the limiting component of the cell material from the lysis of a single SLAB cell 192 

is sufficient for the production of one NSLAB cell. Note that nutrient sources other than 193 

SLAB lysate (e.g., amino acids and small peptides from the proteolysis of the casein matrix) 194 

may be present in excess, but in the model we assume that the nutrients supporting NSLAB 195 

growth are released from lysed SLAB cells. Changing the conversion factor to any arbitrary 196 

number less than 1 would just decrease the stationary density of NSLAB accordingly. 197 

We follow the time course of the total masses of S, L and N within a small, square 198 

shaped region (10 mm side length) of the cheese, using periodic boundary conditions. 199 

Defining periodic boundaries amounts to assuming that the focal square region, and those of 200 

the same size and shape adjacent to it, are identical, which means that the curd consists of an 201 

infinite repetition (lattice) of the focal region in both spatial dimensions. Fig. 2 is an 202 

illustration of the model dynamics within the focal region, with arbitrary parameters. Digital 203 

Supplement 1 is a video showing the time course of the same process. 204 

The initial patterns of both the SLAB and the NSLAB colonies are random, and the 205 

number of NSLAB colonies per focal region is a parameter of the model. Since the cell count 206 

of SLAB at salting is about 109 cfu g-1 and it is evenly distributed within the curd, it is safe to 207 

assume that the actual initial SLAB distribution is continuous and uniform – so this is what 208 

we assume in all the simulations. The initial NSLAB distribution is still random and discrete, 209 

since NSLAB is present in the curd at very low density, represented by only a few individuals 210 

within the focal region (about 10 cfu g-1) initially. The founders of NSLAB colonies are 211 

implemented as very narrow and very low Gaussian shaped N(t,x,y) initial density curves 212 

representing single colony forming units. The height, width and the number of these colonies 213 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 9

within the focal region are parameters of the model. Fig. 3 shows the time course of the log 214 

total densities of S, L an N within the same sample. 215 

 216 

2.2. Model calibration 217 

 218 

We have determined a biologically/chemically feasible range for each of the three key 219 

parameters of the model (SLAB decay rate: dSLAB; Nutrient diffusion rate from lysed SLAB: 220 

D; and NSLAB population growth rate under excess resource supply: rNSLAB) based on 221 

fundamental empirical data from the literature. SLAB decay rates and NSLAB growth rates 222 

are calculated from known lysis times of different SLAB cultures and replication times of 223 

NSLAB at different temperatures, respectively (see below). The metabolite diffusion rates 224 

used in the simulations include the range from the diffusivity of small molecules in water to 225 

that of large peptides in gels. These parameter ranges have been scanned for sections at which 226 

SLAB decay, diffusion or NSLAB growth would be the limiting factor of NSLAB growth and 227 

thus of the speed of cheese ripening. The calibrated parameter ranges are the following:  228 

 229 

2.2.1. SLAB decay rate (dSLAB) 230 

One of the features by which starter cultures are specified is their characteristic time to 231 

complete lysis during the ripening process. For Cheddar this may extend from about 3 months 232 

(Fox, Guinee, Cogan, & McSweeney, 2017) or 2160 h (using a “fast lysing” SLAB culture 233 

like L. lactis AM1 or AM2) to approximately 9 months or 6480 h (“slowly lysing” SLAB 234 

culture). Assuming exponential decay of the SLAB culture,  235 

 236 

�(�) = �(0) × !"#$%&'           [4] 237 

 238 
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the relation between the time for 99% of SLAB to lyse,  ��% , and the decay rate, d , is 239 

�()
�()) = !"#$%&'*% = 0.01          [5] 240 

from which 241 

−�-./0��% = ln0.01 = −4.6         [6] 242 

that is, 243 

�-./0 = 5.6
*%            [7] 244 

This yields �-./0 = 0.00213 (h-1) for “fast” SLAB cultures (t1% = 2160 h), and 245 

�-./0 = 0.00071 (h-1) for “slow” ones (t1% = 6480 h). We have used dSLAB = 0.0025 (h-1)  246 

and dSLAB = 0.0007 (h-1)  for the simulations. 247 

 248 

2.2.2.  Diffusion rate of nutrients from lysed SLAB (DLys) 249 

The sample of cheese that we simulate is 10 × 10 mm in size; therefore, the diffusion 250 

rates of small-molecule nutrients (like monosaccharides or amino acids) from the literature 251 

are rescaled to mm2 h-1 dimensions for convenience. Literature data for the diffusion rates of 252 

the smallest mono- and disaccharides in water at 25 °C range from 5 × 10-10  to 6 × 10-10 m2 s-1 253 

(Ziegler, Benado, & Rizvi, 1987), which translates to 1.8 to 2.16 mm2 h-1. Bovine serum 254 

albumin (BSA), a peptide with 583 amino acid residues and of 66.5 kDa molecular mass has a 255 

diffusion rate of 0.28 mm2 h-1 at 25 °C and pH = 7 in water (Torres, Komiya, Okajima, & 256 

Maruyama, 2012). Notice that the difference between the diffusivities of a small sugar 257 

molecule and a rather large peptide is less than an order of magnitude, at least in water. We 258 

consider 2.0 mm2 h-1 an upper limit for the rate of nutrients diffusion in the curd, and scan the 259 

range decreasing across 4 orders of magnitude to 0.0002 mm2 h-1 during the simulations. 260 

Note that we do not take the effect of the casein matrix as a physical barrier to the free 261 

diffusion of molecules into account here. It is obvious that very large molecules, just as the 262 

bacteria themselves, could be stuck within the matrix and thus immobilised. However, 263 
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Chapeau, Silva, Schuck, Thierry, and Floury (2016) and Silva, Lortal, and Floury (2015) 264 

show that even very large dextrans (with molecular masses of 2000 kDa) diffuse freely within 265 

the casein matrix of ripening cheese without being trapped in it. Therefore, we assume that all 266 

molecules of the size readily ingested and metabolised by NSLAB also diffuse freely within 267 

the aqueous phase of the curd. However, it should be noted here that the diffusion in cheese 268 

depends on the actual water activity of the curd, which is in the range  aw = 0.950–0.975  in 269 

ripening Cheddar (Schmidt & Fontana Jr., 2007), implying about an order of magnitude 270 

decrease in diffusion rate compared with that in water. Until we have better data available on 271 

the diffusion of different small-molecule metabolites (monosaccharides, amino acids) and 272 

oligopeptides of different sizes (experimental work in progress), shapes and surface charges 273 

in Cheddar we will use this approximation for model calibration.   274 

Considering these facts, the estimated realistic range of diffusion for metabolites 275 

available as nutrients for NSLAB growth is about 0.2–0.02 mm2 h-1 in ripening Cheddar with 276 

a water activity around 0.95.  277 

 278 

2.2.3. NSLAB growth rate 279 

Under ideal conditions (i.e., for unlimited food supply allowing for maximum 280 

population growth rate, at optimal temperature, pH, etc.) the generation time of a typical lactic 281 

acid bacteria strain is about half an hour (tgen = 0.5 h) (Kunji, Slotboom, & Poolman, 2003). 282 

Calculations similar to Eqs. 4–7 show that the maximum rate of population growth 283 

corresponding to this generation time is rNSLAB = 1.386 h-1. Note that at ripening temperature 284 

(9–10 °C) the growth rate is about an order of magnitude lower than at the temperature 285 

optimal for population growth. Assuming nutrient limitation, we have defined the nutrient-286 

dependent growth rate to be of the form: 287 

�(:) = ������ × �
���           [8] 288 
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We have set  rNSLAB = 1.4 h-1 to be the highest possible growth rate (at optimum 289 

conditions in all respects), and assumed that at ripening conditions (lower temperature and 290 

pH) the growth rate is at least an order of magnitude lower (rNSLAB = 0.14 h-1).  The 291 

simulations have been carried out using these two values of the NSLAB growth parameter. 292 

 293 

2.3.  Parameter range of model simulations  294 

 295 

The part of the parameter space covered by the model simulations is shown in Table 1.  296 

The model simulations are focussed on four combinations of two characteristic SLAB decay 297 

rates and two characteristic NSLAB growth rates, corresponding to fast and slowly lysing 298 

SLAB (dSLAB = 0.0025 and 0.0007 h-1, respectively) providing nutrients to fast and slowly 299 

growing NSLAB (rNSLAB = 1.4 and 0.14 h-1, respectively). Each of the four possible (dSLab, 300 

rNSLAB) combinations was simulated at nutrient diffusion rates varying across four orders of 301 

magnitude (at D = 2.0000, 0.2000, 0.0200, 0.0020 and 0.0002 mm2 h-1). The time courses of 302 

changes in SLAB (S), lysed SLAB (nutrient; L) and NSLAB (N) density during the first 3 303 

months of the ripening process are shown on Figs. 4–7. The curves on all these figures are 304 

obtained by numerical integration with respect to the spatial dimensions x and y of the 305 

corresponding �(�, �, �), :(�, �, �) and �(�, �, �) functions across the 2D cheese sample:  306 

 307 

�̅(�) = <�(�, �, �)	��	��
=

"=
 

:>(�) = <:(�, �, �)	��	��
=

"=
 

�?(�) = <�(�, �, �)	��	��
=

"=
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 308 

where �̅(�),	:>(�)and �?(�) are the total masses of SLAB, nutrients and NSLAB, respectively, 309 

within the 10 × 10 mm2 cheese samples, at time t.  310 

The ripening process strongly depends on the activity of NSLAB that produces many 311 

of the aromatic compounds responsible for flavour development. Therefore, we can use the 312 

time integral of  �?(�), i.e., 313 

 314 

�@(A) = B �?(�)
C

)
�� 

 315 

as an approximate measure of the ripening accomplished within the cheese sample by time T  316 

from salting. In other words, �@(A) is the total microbial activity provided by the growing 317 

NSLAB population on ripening the curd. This is the target function of the model: the faster 318 

the NSLAB population grows, the shorter the time T needed to achieve a certain level of 319 

ripeness 	�@.  320 

 321 

3.  Results 322 

 323 

Simulation results for four different parameter scenarios are considered below: (i) fast 324 

decaying SLAB and fast growing NSLAB; (ii) slowly decaying SLAB and fast growing 325 

NSLAB; (iii) fast decaying SLAB and slowly growing NSLAB; (iv) slowly decaying SLAB 326 

and slowly growing NSLAB. 327 

 328 

3.1. Fast decaying SLAB and fast growing NSLAB 329 

 330 
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This case corresponds to using a fast decaying SLAB culture and ripening Cheddar 331 

cheese at room temperature (about 20 °C). Diffusion is almost completely irrelevant with 332 

regard to NSLAB growth during ripening: the NSLAB growth curves corresponding to 333 

different diffusion rates almost coincide, suggesting that there is no considerable diffusion 334 

limitation on the ripening process at this parameter setting. Lysed SLAB density (i.e., the 335 

concentration of the limiting metabolite) is close to zero almost all along the process, 336 

indicating prompt consumption of the metabolites upon lysis (Fig. 4). 337 

 338 

3.2. Slowly decaying SLAB and fast growing NSLAB 339 

 340 

This case is essentially the same as the previous one, except that the SLAB population 341 

lyses slower, and thus the ripening process also proceeds slower (Fig. 5). Diffusion does not 342 

really make a substantial difference here either. Also, for these scenarios, ripening is limited 343 

by SLAB decay rather than diffusion. 344 

 345 

3.3. Fast decaying SLAB and slowly growing NSLAB 346 

 347 

This is the most “realistic” scenario set to simulate the ripening of Cheddar inoculated 348 

with a fast lysing starter culture such as L. lactis AM1 and AM2 (Fox et al., 2017) and 349 

ripened at 9–10 °C (Fig. 6). The conspicuous difference in the dynamics relative to that of the 350 

first case (which represents optimum conditions for NSLAB growth) is that diffusion is 351 

obviously much more important in determining NSLAB growth in this case: the growth 352 

curves are quite different at different nutrient diffusion rates. Slowly growing NSLAB seem 353 

to be more sensitive to the rate of nutrient replenishment into the depletion zone around the 354 

NSLAB colonies. However, the essential difference is confined to very low diffusion rates 355 
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(0.0200–0.0002 mm2 h-1 – which is most probably below the realistic range for the nutrients 356 

that bacteria can readily utilise). At feasible diffusion rates (0.0200–0.2000 mm2 h-1) the 357 

difference in the growth curves is small, meaning that moderate diffusion limitation is to be 358 

expected only at the lowest realistic rate of metabolite diffusion, where the time integral of the 359 

growth curve of NSLAB, �@(A) is somewhat smaller than at faster diffusion rates. Note that 360 

within the realistic range of diffusion rates the differences in total ripening accomplished 361 

during the three months of simulated time are still very limited. In other words, the diffusion 362 

of small molecules (like amino acids or monosaccharides, with diffusion rates in the range 0.2 363 

to 0.3) is not limiting the speed of ripening, whereas the possibly limited accessibility of 364 

larger molecules like oligopeptides may have some effect on NSLAB growth, and thereby 365 

also on ripening time. 366 

 367 

3.4. Slowly decaying SLAB and slowly growing NSLAB 368 

 369 

Another “realistic” scenario set to simulate the ripening of Cheddar assuming that the 370 

SLAB inoculum is a slowly lysing starter culture such as L. lactis Z8, ML1 and HP (Fox et 371 

al., 2017), and the cheese is stored at 9–10 °C during the ripening phase (Fig. 7). The 372 

dynamics are similar to that of case (iii): the NSLAB growth curves are quite similar within 373 

the realistic range of nutrient diffusion rates (at D = 0.0200 and 0.2000 mm2 h-1), while at 374 

lower rates the growth of NSLAB is significantly affected.  375 

 376 

4. Discussion 377 

 378 

Establishment of NSLAB flora during cheese ripening is considered essential for the 379 

normal flavour development in long ripened cheeses such as Cheddar, Gouda and Grana type 380 
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cheeses (Crow, Curry, & Hayes, 2001; Santarelli, Bottari, Lazzi, Neviani, & Gatti, 2013). 381 

Therefore, to control the ripening process it is important to understand how the NSLAB 382 

population develops over time. In this study we have used mathematical modelling to 383 

elucidate some of the possible limiting factors for NSLAB growth in a dry-salted cheese such 384 

as Cheddar.  385 

The only possible scenarios in which diffusion can limit the speed of cheese ripening 386 

are either (i) some nutrient molecules essential for NSLAB growth are prevented from 387 

moving freely within the Cheddar cheese matrix and, therefore, diffuse much slower than 388 

measured in other systems, or (ii) NSLAB growth is dependent on the supply of some nutrient 389 

consisting of rather large molecules like a large peptide, the diffusion rate of which could be 390 

significantly lower than that of small metabolites.  391 

Scenario (i) is not completely unrealistic, considering small metabolites possibly 392 

immobilised on the casein matrix by covalent or strong secondary (e.g., ionic) bonds, but we 393 

have no examples of such cases in mind.  With respect to (ii), we do not know examples of 394 

cultivated NSLAB strains requiring such large molecules for their growth either; therefore, 395 

we see no reason why this should be the case when growing in the cheese matrix.  Thus, we 396 

see none of the above suggested scenarios realistic and, therefore, on the basis of the 397 

simulation studies performed with the model, we conclude that diffusion is most probably not 398 

limiting NSLAB growth. This applies to systems with slow or fast lysing SLAB cultures 399 

alike. 400 

It is important to stress that the model is built on the assumption that nutrients released 401 

from autolysed SLAB cells diffuse into the surroundings immediately after lysis. During this 402 

process the lysed cell carbohydrate components such as polysaccharides, teichoic acids, RNA 403 

and DNA are expected to be rapidly hydrolysed into their constituent monomers (N-404 

acetylglucosamine, N-acetylmuramic acid, ribose and deoxyribose), which means that it is 405 
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most probably this pool of small-molecule nutrients that is released into the cheese matrix. 406 

Similarly, released peptidases are expected to rapidly hydrolyse the casein and large casein-407 

derived peptides into small peptides and free amino acids, which will also rapidly diffuse into 408 

the surrounding cheese matrix.  409 

The simulation results indicated that for all four scenarios of the three component 410 

processes (SLAB decay, limiting nutrient diffusion and NSLAB population growth) it is the 411 

decay rate of the SLAB culture that is the main determining factor for the population growth 412 

of NSLAB. Considering that the development of typical cheese flavour in Cheddar is 413 

correlated with the development of NSLAB (Coolbear et al., 2008), then the model presented 414 

here suggests that the supply of small-molecule nutrients (provided by lysed SLAB cells) to 415 

the NSLAB, rather than their rate of diffusion in the cheese matrix that is the predominant 416 

parameter for NSLAB growth. The model predicts that within the realistic small molecule 417 

nutrient diffusivity ranges of 0.02 to 0.20 mm2 h-1 the rate of NSLAB  growth is sufficiently 418 

high to keep the limited SLAB carbohydrate sources  concentration close to zero in the cheese 419 

matrix even at the suboptimal  conditions (9–10 °C, pH 4–5) of cheese ripening. The model 420 

assumes that free amino acids and small peptides are in abundance. It is only at extremely 421 

(and for the relatively small molecules of typical nutrients of NSLAB, unrealistically) low 422 

diffusion rates that nutrient diffusion become limiting to such an extent that the limited 423 

carbohydrate sources released due to SLAB lysis will not be immediately accessible to 424 

NSLAB. In this situation, the limiting carbohydrate concentrations within the curd would 425 

markedly exceed zero during the ripening period, which is not what we see: carbohydrates 426 

disappear from the curd very early during ripening. 427 

Thus, although we can conclude from these modelling studies that diffusion 428 

limitations are most probably not limiting NSLAB growth, it should be emphasised that we 429 

cannot exclude that other parameters rather than SLAB lysis could influence NSLAB growth. 430 
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For example, carbohydrates from κ-casein or the milk fat globular membrane present in the 431 

cheese matrix, as previously suggested (Adamberg et al., 2005; Moe et al., 2012) could also 432 

be important for NSLAB growth, and this needs to be still fully elucidated. Furthermore, the 433 

situation may be more complex than that modelled here, as it has been shown (Hickey, 434 

Fallico, Wilkinson, & Sheehan, 2018) that some starter cells may die but not lyse, and thus 435 

prevent the release of cellular material into the cheese matrix. Another scenario not accounted 436 

for in this model could be that the starter cells may be non-culturable but still alive. 437 

Nevertheless, if these molecules are important for NSLAB growth it is most probably the 438 

release rate of these molecules into the Cheddar cheese matrix that is determining NSLAB 439 

growth rather than their ability to diffuse to the immobilised NSLAB colonies in the matrix. 440 

Comparison of the simulation results at optimum growth temperature (25 °C) for 441 

NSLAB (Figs. 4 and 5) with the corresponding results (Figs 6 and 7) for the temperature of 442 

Cheddar cheese ripening (9–10 °C) indicates that the difference in the effect of very small 443 

nutrient diffusions is conspicuous, and somewhat puzzling at first glance. One would expect 444 

the effect of nutrient diffusion to be even weaker on a population of lower growth rate than on 445 

a fast growing one, but in fact it is just the opposite: very slow nutrient diffusion affects 446 

slowly growing NSLAB colonies considerably more than fast ones. This effect may be 447 

explained by spatial constraints: slowly growing colonies cannot decrease the nutrient 448 

concentration at their boundary as efficiently as the fast growing cells. Therefore, at any given 449 

(very low) diffusion rate the concentration gradient at the boundary of slow growing NSLAB 450 

colonies is less steep than that of fast growing NSLABs, resulting in slower nutrient 451 

replenishment and, consequently, slower population growth. Note that this difference is 452 

evident only at unrealistically low diffusion rates: changing nutrient diffusivity within the 453 

realistic range does not have a significant dynamical effect either on a fast or a slowly 454 

growing NSLAB population. 455 
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 456 

5. Conclusions 457 

 458 

Mathematical modelling based on realistic assumptions and modelling scenarios of the 459 

component processes of ripening of a dry-salted cheese such as Cheddar and applying 460 

parameters for SLAB decay, nutrient diffusion and NSLAB growth taken from the literature 461 

has shown that nutrient diffusion most probably cannot be the bottleneck for NSLAB growth 462 

during ripening. Neither could the growth potential of the NSLAB colonies be the limiting 463 

factor, not even at the suboptimal conditions at which they persist during ripening. The 464 

component process determining the rate of NSLAB growth (and thus also the rate of the 465 

ripening process) seems to be the supply of the nutrient that is present at limiting density 466 

within the cheese, and that in its turn depends on the decay rate of SLAB cells. Which type of 467 

nutrient is the one limiting NSLAB growth remains an open question that calls for further 468 

experimental work.   469 
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Figure legends 

 

Fig. 1. Schematic representation (a) and detailed explanation (b) of the component processes of 

the cheese ripening model. SLAB death and autolysis provides diffusible nutrients for NSLAB 

population growth. The nutrient supply of the NSLAB colonies, which are fixed within the curd,  

depends on the speed of SLAB decay and the diffusivity in the curd of the nutrients released 

from autolysed SLAB cells. The key parameters of the three component processes are: SLAB 

decay: dSLAB; nutrient diffusion: DLys; NSLAB growth: rNSLAB. 

 

Fig. 2. Graphical demonstration of the space-time dynamics of the Cheddar ripening model with 

random initial patterns of 10 SLAB and 10 NSLAB colonies and arbitrary parameters: SLAB 

decay rate dSLAB = 0.01 h-1, diffusion rate of nutrients from lysed SLAB DLys = 0.18 mm2 h-1, 

NSLAB population growth rate rNSLAB = 0.1 h-1. Each row of panels shows the spatial density 

distribution of SLAB, lysed SLAB (nutrient source) and NSLAB colonies, respectively, at the 

corresponding time (t = 0, 60, 160 and 500). 

 

 Fig. 3. The dynamics of the total densities of SLAB (blue), lysed SLAB (orange) and NSLAB 

(green) within the 10 × 10 mm sample of curd, obtained by integration of local densities across 

the sample at every 4th hour. Data points are means and standard errors for 10 replicate 

simulations (produced with the same parameter set but different random number sequences). 

Parameters are the same as in Fig. 2; the graph represents the demo dynamics shown on Fig. 2.  
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 Fig. 4. Simulated total densities of fast decaying SLAB (blue), lysed SLAB (orange) and fast 

growing NSLAB (green) cells at different nutrient diffusivities within the 10 × 10 mm cheese 

sample. Calibrated parameters of the model:  SLAB decay rate dSLAB = 0.0025 h-1; NSLAB 

growth rate rNSLAB = 1.4 h-1; the diffusion rate of the nutrients released from lysed SLAB cells 

within the cheese matrix are D = 2.0, 0.2, 0.02, 0.002 and 0.0002 mm2 h-1. 

 

Fig. 5.   Simulated total densities of slowly decaying SLAB (blue), lysed SLAB (orange) and fast 

growing NSLAB (green) cells at different nutrient diffusivities within the 10 × 10 mm cheese 

sample. Parameters are the same as in Fig. 4, except for SLAB decay rate: dSLAB = 0.0007 h-1. 

 

Fig. 6. Simulated total densities of fast decaying SLAB (blue), lysed SLAB (orange) and slowly 

growing NSLAB (green) cells at different nutrient diffusivities within the 10 × 10 mm cheese 

sample. Parameters are the same as in Fig. 4, except for NSLAB growth rate: rNSLAB = 0.14 h-1.  

 

Fig. 7. Simulated total densities of slowly decaying SLAB (blue), lysed SLAB (orange) and 

slowly growing NSLAB (green) cells at different nutrient diffusivities within the 10 × 10 mm 

cheese sample. Parameters are the same as in Fig. 6, except for SLAB decay rate: dSLAB = 0.0007 

h-1. 
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Table 1 

The parameter range of the simulations. 

 

Parameter Lower limit Upper limit Dimension 

SLAB decay rate, dSLAB 0.0007 0.0025 h-1 

Lysed SLAB (nutrient) diffusion rate, DLys 0.0002 2.0000 mm2 h-1 

NSLAB maximum growth rate, rNSLAB 0.0140 1.4000 h-1 
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