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Summary (English)

Vast amount of data are collected minute by minute from wind turbines around
the world. This thesis represents a focused research effort into discovering new
ways of processing these data streams in order to gain insights which can be
used to lower the maintenance costs of wind turbines and increase the turbine
availability.

First, it is demonstrated how simple sensor data streams can be leveraged based
on a combination of non-linear predictive models and unsupervised fault detec-
tion to provide warnings of a critical bearing failure more than a month earlier
compared to existing alarm systems.

Second, early fault identification based on analysis of complex vibration patterns
which is a domain previously reserved for human experts, is shown to be solved
with high accuracy using deep learning architectures trained in a fully supervised
sense from the data collected in a large scale wind turbine monitoring platform.

The research shows a way towards a fully automatized data-driven wind turbine
diagnostic processing system that is highly scalable and requires little or no
feature engineering and system modeling.
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Summary (Danish)

Store mængder data hentes hvert minut fra vindmøller verden over. Denne af-
handling repræsenterer en fokuseret forskningsindsats i forhold til at opdage nye
måder at behandle disse datastrømme for skabe indsigt der kan anvendes til at
reducere omkostninger til vedligehold på møllerne samt forbedre deres oppetid.

Først vises det hvordan simple sensormålinger kan udnyttes, baseret på en kom-
bination af ikke-lineære prediktive modeller og ikke-superviseret fejldetektion, til
at give advarsler om kritiske lejefejl mere end en måned tidligere sammenlignet
med de nuværende alarmsystemer.

Dernæst vises det at tidlig fejldetektion baseret på analyse af komplekse vibra-
tionsmønstre, et område der tidligere var forbeholdt menneskelige eksperter, nu
kan løses med høj nøjagtighed ved hjælp af dybe netværk trænet fuldt supervi-
seret fra data indsamlet i et storskala mølleovervågningssystem.

Denne forskning viser en vej henimod et fuldautomatiseret data-dreven diag-
nostisk system til vindmøller, der er fuld skalerbart og kræver lidt eller ingen
feature engineering og systemmodellering
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Preface

This thesis was prepared at DTU Compute and Siemens Diagnostic Center in
fulfillment of the requirements for acquiring a Ph.D. in Engineering.

The thesis consists of a summary report and three research papers.

Lyngby, 15-March-2017

Martin Bach-Andersen
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Chapter 1

Introduction

Data in one form or another is now ubiquitous in modern society. The advent of
mobile and interconnected devices, low cost sensors and low cost computing and
storage resources is now driving business model innovation at a fast pace. This
development is also having an impact in the industrial arena where companies
are now struggling to gain insight and more importantly, value, from the streams
of data being collected from their critical assets. This ongoing effort serves as
the back drop for the work presented in this thesis.

With the above perspective fresh in mind, the remainder of this thesis will
now zoom in on a very particular industrial problem domain, namely condition
monitoring applications for wind turbines. The scientific field of condition mon-
itoring is a rich interdisciplinary field drawing from research in the disciplines
of sensor technology, material sciences, signal processing and data science to
name just a few. The research presented here will strictly touch upon the data
modeling side of this equation to demonstrate how improved modeling can have
a significant effect on the quality and timeliness of the outputs of existing wind
turbine monitoring systems.

The common theme of the work presented in the following is a data-driven mind-
set where we put less emphasis on any preconceived models of reality and more
emphasis on the large volume of data itself using highly flexible general models.
The key benefit of such models is that they can alleviate the need of complex
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hand tuned feature engineering, which can be both time consuming and subop-
timal. Also, for physical systems of only moderate complexity such modeling is
quickly becoming infeasible. However, data-driven means data hungry and the
presented methods require a certain scale to be applicable.

The primary target audience of this work is researchers and practitioners within
the field of wind turbine condition monitoring seeking a more data-driven per-
spective on this topic, but the work should also be of interest to readers work-
ing with industrial data analysis in general, as the methods presented here are
broadly applicable in nature. Another reason why this work may spur interest
here, is that the wind industry in many ways has been a precursor in terms of
machine connectivity, industrial data management and predictive maintenance
applications when comparing with other industries. This development has been
a result of pure necessity. Wind farms are often located in remote areas and
access may be restricted for extended periods of time, often counted in months,
due to adverse weather conditions. This is particularly true for turbines placed
offshore. It was quickly realized that the ability to operate the turbine remotely
and to collect data at the same time could provide substantial benefits in terms
of turbine availability and reduced maintenance costs. In the last decades, wind
farms are therefore typically interfaced to a global control and data acquisition
infrastructure. A rather unique combination here is the sheer scale, typically
counted in thousands of turbines, and the data complexity drawing from hun-
dreds of sensors mounted in each turbine. With the rapid growth in global wind
energy installations the largest monitoring platforms are now collecting data
continuously from tens of thousands of turbines simultaneously. The work in
this thesis is specifically motivated by the challenges experienced when devel-
oping and operating such large scale monitoring platforms, and may provide
insights relevant for other industries which are on a similar path of development
in terms of scale and complexity.

As a final humble ambition, the work is also hoped to serve as an inspiration
to machine learning researchers in order to facilitate new research into how
machine intelligence can provide answers to some of the challenges experienced
in wind energy systems.

1.1 Thesis outline

Given this diverse target audience chapter 2 will first be spent on providing
a basic introduction to wind turbines and the current and future role of wind
energy. Next, the basic concepts of statistical learning is introduced in chapter
3 which underpins the data-driven methods discussed in the following chapters.
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The specific modeling efforts are then described in 4 for temperature data mod-
eling and chapter 5 which contains a primer on vibration-based monitoring and
a description of the learning algorithms employed for vibration-based, super-
vised learning. The work is concluded in 6. The research papers can be found
in appendices A, B and C.
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Chapter 2

Wind power

2.1 The modern wind turbine

To provide the necessary background for discussing the monitoring aspects of
modern wind turbines, some basic wind turbine design will first be described
here briefly. The aerodynamic design principles will be gracefully ignored, and
the focus will be on the key physical characteristics of wind turbines. The
illustration in figure 2.1 show a typical configuration of a geared wind turbine.
The wind is converted into rotational energy by the turbine rotor in a three-blade
configuration. The blades are attached to the rotor hub, and can be pitched in
an out of the wind by rotating the blades using a hydraulic system. The pitch
system ensures that the wind production is optimized, and enables accurate
control of the performance of the turbine. Modern wind turbine designs are
mostly variable-speed, where the rotational speed of the rotor will move up and
down with the wind speed. This should be contrasted with older designs where
the speed typically was locked to the electrical grid frequency.

The rotor hub is mounted to the main shaft which is supported by one or two
main bearings. At the rated power, the rotor and main shaft will typically
rotate at a speed of 12-15 rpm. To efficiently convert this mechanical energy
to electrical energy, the speed is first increased. This is done using a gear box
which contains one or more planetary and helical gear stages depending on the
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design requirements. From the gear box the speed of the output shaft is now
close to 1500 rpm, which is then mounted to a generator in the back of the
turbine, typically of the induction type. Variable-speed designs also require
power electronics in the form of frequency converters before the connection to
the grid. The entire house, or nacelle, of the wind turbine is mounted on a
large yaw bearing on top of the tower that allows the turbine turn towards the
wind as the wind direction changes. The components in the turbine drive train,
consisting of the rotor bearing(s), gear box and generator are critical for the
operation of the turbine, and exchange and repairs of these components require
significant resources. Combined with the often random nature of faults in the
drive train, the drive train is therefore the primary target for advanced condition
monitoring systems as discussed in the later chapters.

It must be noted that significant variations exist within the overall turbine
designs, particularly in terms of the drive train layout. Geared wind turbine
designs have historically proven most popular, but turbine manufacturers are
pursuing other designs to push reliability up and costs down. For example,
the gear box has been completely removed in some turbine designs by using
a low-speed synchronous generator (so called direct-drive technology). Hybrid
solutions also exist using medium speed gear boxes and synchronous generators.

So how much power can a wind turbine produce? Most wind turbines sold for
on-shore locations range from 2.0-3.5 MW of rated power, and this power is
typically reached at wind speeds of 12-13 m/s. For offshore turbines, the rated
power and turbine size increase significantly. The newest off-shore turbines are
behemoths with rotor diameters of more than 150 meters and power ratings of
8 MW, with each turbine generating electricity for 8000 European households
on a yearly basis.

2.2 Global wind energy trends

To illustrate how wind energy is changing the modern electricity system, it is
enlightening to observe some numbers from one of the countries which embraced
wind energy at an early stage, namely Denmark. In all of 2015, a record breaking
42% of the total Danish demand for electricity was supplied by wind turbines
[1]. Moreover, the wind energy production exceeded the actual demand in a
total of 409 hours throughout the year, with a peak supply of 138% compared
to the demand measured a July morning in 2015. These numbers demonstrate
not only the potential of wind energy, but also highlight some the challenges
faced in the energy system when adopting wind energy on a wider scale.
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Figure 2.1: An inside view in a nacelle of a Siemens geared wind turbine.

At the global scale, the investments in wind energy have been growing steadily
and the total cumulative wind production capacity is now 487 GW at the end
of 2016 [2]. The global numbers are however quite different compared to the
case of Denmark, as wind only accounts for approximately 4% of the global
electricity supply. The cumulative capacity is summarized for each world region
in figure 2.3. On the country level, China alone accounts for 169 GW of installed
capacity, followed by the US (74 GW), Germany (45 GW), India (25 GW) and
Spain (23 GW) measured in cumulative capacity. Is is noteworthy that wind
energy is being deployed across all geographical regions, not only in developed
countries.
Most wind energy has been deployed onshore, and offshore wind has historically
been restricted to Northern Europe dominated by the UK (5.2 GW), Germany
(4.1 GW), China (1.6 GW), Denmark (1.3 GW) and the Netherlands (1.1 GW).
As of 2016 the total global off-shore capacity is 14.4 GW. The first offshore wind
farm has recently been commissioned in the US, and the expansion of offshore
wind is expected to grow in the next years globally.

To forecast the future deployment of wind energy, the Global Wind Energy
Council operates with a number of different scenarios [2]. The Modest Scenario
builds on the assumption that the agreements made at COP21 will be followed
through. Under this scenario the global wind capacity is expected to grow
to 1676 GW in 2030 and to 3984 GW in 2050. The most ambitious scenario
(Advanced) projects a total installation of 5806 GW in 2050, while the most
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Figure 2.2: Siemens 6 MW offshore turbines in operation. This is a direct-drive
design where the drive train consists only of a single rotor bearing and a low-speed
synchronous generator. Notice the heli-hoist platform mounted on each turbine which
allows crew transfer by helicopter.

conservative scenario (NPS) projects 2870 GW in 2050. Under these scenarios,
wind is expected to account for respectively 25%, 36% and 18% of the global
electricity demand.

2.3 Cost reduction potentials

The cost of energy from a given source is often defined in terms of the Levelized
Cost of Energy, LCOE, which factors in all projected costs related to the con-
struction and operation of this particular energy source during its lifetime per
produced unit of energy. These type of metrics are required in order to compare
the cost of energy between different energy sources. All development in the last
decades in the wind industry should be viewed as an ongoing effort to reduce
the LCOE. This entails both the changes in the design of the turbines and their
supporting structures, new production facilities, and innovations within logistic
solutions and wind farm maintenance strategies. The motivation from the in-
dustry is to rely less on political decision processes and more on market powers
offering energy at a price equal to or lower than competing energy sources. The
large scale penetration of wind power is highly dependent on how the price point
will move in the future (and also the price point of competing technologies of
course). The most recent work on such estimates can be found in [3]. Based
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Figure 2.3: Cumulative wind power capacity by region as of 2016. China is the
worlds biggest wind energy market with an installed capacity of 169 GW. Numbers
are based on [2].

on a large expert elicitation study, the LCOE for onshore, offshore and floating
offshore wind are projected throughout 2050. As of 2014, onshore wind was by
far the lowest cost option with an LCOE of approx. 60 EUR/MWh compared
with approx. 125 EUR/MWh for offshore wind. The prices are however ex-
pected to drop significantly as observed in figure 2.4 which show the projected
LCOE for onshore wind, fixed offshore wind and floating offshore wind. Float-
ing foundation offshore technology is not currently competitive, but the cost of
floating solutions is expected to drop rapidly and converge to the price of fixed
foundation offshore technology in 2050. In 2050, the price of offshore wind is
expected to drop to approx. 80 EUR/MWh, but the price of offshore wind is
still expected to be twice as expensive compared to onshore wind.

Five key factors have also been identified in the study across the different tech-
nological platforms that drive the costs down. These are

CAPEX is short for CAPital EXpenditure, and represents the upfront capital
costs that are required to purchase, install and ready the equipment for
energy production.

Capacity factor is a measure of the ratio between the average output power
of the turbine, and the rated power of the turbine. Capacity factors typ-
ically range from 0.30-0.45, and capacity factors are typically higher for
offshore wind farms due to the more steady wind conditions. Some design
variations that aim to increase the capacity factor is higher turbine towers
and larger rotors which are suitable for low wind conditions.
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Figure 2.4: Estimates of trends in Levelized Cost of Energy (LCOE) for the three
main technological platforms. Error bars indicate lower and upper quartiles of expert
responses. The figure has been reused with permission from [3].

Financing includes the costs related to the financing of the project.

OPEX is short for OPerational EXpenditures, and includes costs related to
the operation and maintenance of wind farms throughout their lifetime.

Project life is related to the expected life of a given project in which energy
can be produced. Most wind farm projects sold today have projected
lifetimes of 25 years.

When looking at the relative importance of these factors across the platforms in
figure 2.5, some interesting insights can be extracted. For onshore wind we see
that the key driver is improvements in capacity factor. More energy is simply
expected to be generated from each turbine. For offshore wind, reductions in
the capital expenditure is of more importance. Here, larger turbine designs with
higher power ratings are a major factor in this development, with a projected
average offshore turbine capacity of 11 MW in the year 2030. Interestingly,
financial cost reductions seem to play a major role for lowering offshore wind
LCOE. This indicates that investors will evaluate the risk (and interest rates)
of offshore projects to be lower in the future as the maturity of this technology
increases. The same effect does not apply for onshore wind, which seem to have
bottomed out already now with respect to the perceived risk. Reductions in
OPEX, which have the most direct link to the research presented in this thesis,
is expected to account for 11% of the onshore relative cost reductions and 6%
for offshore technology platforms.

Given the newest record breaking results from offshore tenders in Denmark, the
question is if the median scenario considered in the above LCOE predictions



2.4 Data-driven operation and maintenance 11

already is too pessimistic. The winning bids on the projects Vesterhav Syd &
Nord (nearshore) and Kriegers Flak (offshore) reached an all-time-low price of
approx. 56 EUR/MWh including the costs of grid connections [4]. Also, the
newest data from the UK offshore projects [5] show that the average price has
already dropped below 100 EUR/MWh, four years ahead of the previously set
UK government targets.

Figure 2.5: Breakdown of relative cost reduction potentials into key factors, split on
the three major technology platforms. Numbers are based on [3].

2.4 Data-driven operation and maintenance

Modern wind farms are connected to a global data infrastructure which enable
both remote control and remote diagnostics on the turbines. The often remote
and intermittently inaccessible locations of wind turbines have pushed this de-
velopment forward as discussed in the introduction. As also shown in the next
chapters, a huge amount of operational data is being collected from each tur-
bine, and some turbines also have advanced sensor systems installed specifically
tailored to provide early fault detection on critical subcomponents.

One benefit of such an infrastructure is the potential for OPEX-reductions,
mainly in terms of increased production from the turbines and maintenance-
related cost reductions. For example, if the failure of a component can be
predicted months ahead, the planning of the repair or replacement is greatly
improved as spare parts, equipment and personnel resources can be ordered in
due time, and the downtime of the turbine is kept at an minimum. It must
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be remembered that repairs on wind turbines may require significant resources
which are not readily available, for example in the case of rotor bearing or gear
box replacements which require large cranes to be deployed. Adverse weather
conditions may also prevent repairs for extended periods of time, and it may
be advantageous to react to a an fault warning early to avoid long periods of
downtime following a critical failure in a severe weather window. Finally, if
faults are corrected at an early stage, secondary damage to equipment can be
avoided. Variations of these points are often used as arguments favoring the
use of predictive maintenance programs, but an often overlooked point is that
such programs can provide valuable insight to the entire product engineering
and improvement cycle. If faults are detected at an early stage, potential design
problems or quality problems can more easily be identified which in the long-
term may provide significant value which extends beyond the basic OPEX-
related benefits.

The terms fault and failure have been used rather loosely, and perhaps it is
worthwhile at this point to settle for a more terse definition of these terms. In
this work, the definition from [6] is generally followed. To summarize, a fault is
a condition of a machine that occurs when one of its components or assemblies
degrades or exhibits abnormal behavior. A fault can in turn lead to a failure
which is a termination of the ability of an item to perform a required function.
Failure is an event as distinguished from fault, which is a state. A complete
failure of the main capability of a machine is a catastrophic failure.



Chapter 3

Statistical learning

The next sections will provide the theoretical foundation on which the diagnostic
learning algorithms are based on. As implied in the chapter title, this foundation
is deduced from probabilistic theory and statistics, which provides a unified
approach to formulating, training and evaluating such algorithms.

3.1 Learning paradigms

To further frame the approach taken in this work, we will first go through the
three fundamental learning paradigms that exists within the field of machine
learning:

Unsupervised learning: Given observations x, unsupervised learning defines
the process of finding structure in this data, or in probabilistic terms,
estimating the probability density p(x). The broad family of density esti-
mation methods therefore fall under this category, including cluster anal-
ysis, principal component analysis (PCA) and related methods. A subset
of these models are generative in the sense that new data points can be
drawn from the model. A goal of generative modeling is to fit models such
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that drawn data points will be statistically similar to the data the model
was fitted on.

Supervised learning: In a supervised setting each input x is matched to a
target t, and the goal is to learn the mapping from input to target. In
probabilistic terms, we seek a model of the conditional distribution p (t|x).
With continuous target variables supervised learning is also known as re-
gression. In case of discrete target variables (class labels), supervised
learning is also known as classification. The major leaps taken in ma-
chine intelligence in the last decade has primarily been in the supervised
domain, which requires an ample supply of ground truth target values to
be trained effectively. In some scenarios, such values may be expensive or
simply impossible to obtain which makes a supervised learning approach
difficult.

Reinforcement learning: Given an agent, an environment in which the agent
can perform actions and a reward function depending on the state of this
environment, the goal of reinforcement learning is to find a behavior, also
known as a policy, of this agent that will maximize the long-term reward.
This could for example be an optimal control problem, where the agent
is a control system acting on a physical system. Given the exploratory
nature of this learning problem, one could argue that this is similar in na-
ture to unsupervised learning, but the difference here is that the learning
hinges entirely on a specified reward function. It also differs from super-
vised learning, since no optimal actions are presented to the agent during
training.

Hybrids of these paradigms also exist. Semi-supervised learning is an attempt
to bridge the strengths of the unsupervised and supervised learning paradigms
to facilitate efficient learning on data where unlabeled data exist in abundance,
but where labeled data are more scarce. Some learning systems also employ
multi-step learning procedures, where different paradigms are employed sequen-
tially, e.g. unsupervised learning followed by a discriminative supervised step
or supervised learning followed by reinforcement learning [7]

As will be shown, the approach taken in chapter 4 is based on supervised learn-
ing using regression models, followed by an unsupervised fault detection step.
In chapter 5 we will strictly use supervised learning in the discrete case (clas-
sification) where the models are trained using known input-target pairs. Rein-
forcement learning is mentioned here for the sake of completeness, but will not
be discussed further.
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3.2 Loss functions, maximum likelihood

The models considered here are all fitted using maximum likelihood param-
eter estimation. Formally, with observations X = [x1,x2, . . .xN ] and t =
[t1, t2, . . . tN ], we seek

argmax
w

p (t|X,w) (3.1)

in the supervised setting where p (t|X,w) is a parameterization of the condi-
tional likelihood with parameter vector w. The learning problem is now cast
as an optimization problem. It is customary to perform this optimization in
the log-domain, as this prevents numerical underflow when working with small
probabilities and has the property that multiplication of probabilities is trans-
formed into sums. Also, a negative sign is typically prepended to the likelihood
to transform the maximization problem into a minimization problem. We can
now formulate the negative log-likelihood cost function, or error function, as a
function of model parameters w:

E (w) = − log p (t|X,w) (3.2)

= − log

N∑

n=1

p (tn|xn,w) , (3.3)

using the basic assumption that the data points are independent and identically
distributed (i.i.d.). The negative log-likelihood cost function forms the basis of
all model training procedures in the following chapters.

Before diving deeper into actual model architectures and training algorithms,
it is worthwhile to discuss commonalities across different architectures for tasks
such as regression and classification in terms of the output parameterization and
their related cost functions. In the case of regression, a common assumption is
that the target values are corrupted by i.i.d noise terms, tn = g(xn) + ε, where
g(x) is the true mapping we wish to approximate and ε ∼ N (0, σ2) is the noise
with variance σ2. Under the Gaussian noise assumption, the problem reduces
to a least-squares problem since

E (w) ∝
N∑

n=1

(tn − y (xn,w))
2
, (3.4)

where y (x,w) is the model parameterization of g(x). The cost in 3.4 is used
directly in paper A for many of the regression models. For some model classes
however, the noise variance is also assumed to depend on the input, and one
has to revert to the full likelihood cost given in 3.3.

For two-class classification problems (denoted class A and B respectively), the
target values, or ground truth labels in other words, are encoded as integers t ∈
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{0, 1} where t = 0 indicates a class A affiliation, whereas a t = 1 indicates a class
B affiliation. With y(xn,w) as the parameterization of the class B probability
(and 1 − y(xn,w) as the class A probability) the negative log-likelihood cost
equals the cross-entropy cost function defined by

E (w) = −
N∑

n=1

(tn log y(xn,w) + (1− tn) log (1− y(xn,w))) . (3.5)

Data points with an incorrectly assigned low class probability are observed to be
penalized heavily under this cost function. Examples of such two-class discrim-
inative models can be found in paper B and C. In paper C the discriminative
models are extended to scenarios where multiple discriminative tasks have to be
solved by the models simultaneously (fault/no-fault on multiple physical com-
ponents). Here, data from task-separate data sets are combined and presented
to the the model as (xn, tn, k)-tuples, where k ∈ {1, 2, . . .K} indicates which
task each data point belong to. The output of the models is similarly extended
to K outputs with the jth output denoted yj . A masked cross-entropy cost
function can now be defined as

E (w) = −
N∑

n=1

K∑

j=1

δjkn
(
tn log yj(xn,w) + (1− tn) log

(
1− yj(xn,w)

))
, (3.6)

where δjkn denotes a Kronecker delta.

3.3 Gradient-based learning

A number of distinct challenges present themselves when tackling the minimiza-
tion problem governed by the various cost functions defined in section 3.2. First,
analytical solutions only exist for the most simple class of models, and one must
quickly resort to numerical optimization procedures. Second, convexity of the
cost function can rarely be guaranteed and one cannot be certain that a found
minimum is a global minimum. Third, in many cases both the number of model
parameters and the number of data samples are very high, which has a direct
influence on the choice of optimization strategy.

For all considered models in this work, the cost function is differentiable with
respect to the model parameters which enables the use of gradient based opti-
mization procedures. First-order gradient descent algorithms scale well to both
complex model architectures and large data sets, and have been utilized heavily
throughout this work. An overview of these methods is therefore presented here.
In its simplest form, the parameter update steps in stochastic gradient descent
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(SGD) are

wτ+1 = wτ − η∇wẼ(wτ ) , (3.7)

where η is the learning rate which controls the rate of descent on the cost surface,
and ∇w is the vector differential operator w.r.t. parameters w. Stochasticity
is introduced by operating on an estimate Ẽ(wτ ) of the true cost E(wτ ). In
one extreme, this estimate is simply based on individual data points. A full it-
eration of the dataset therefore provides N (noisy) updates in parameter space.
In the other extreme, the estimate is based on the entire dataset and the pro-
cedure equals full batch gradient descent. In practice, the estimate is based on
smaller minibatches drawn from the dataset, which provides a balance between
the number of update steps per epoch and the variance of the estimated gra-
dient. Here, an epoch is defined as a full iteration through the data set, and
the samples are drawn randomly without substitution. Also, evaluation on a
batch lend itself to fast parallelization on modern processors, which will speed
up learning. The noise of the gradient estimate may intuitively be seen as a
hindrance to efficient learning, but in complex models some noise is actually
beneficial as it aides in escaping local minima and saddle points on the cost
surface. SGD introduces some additional hyper-parameters into the learning
problem, including the learning rate η and the batch size B.

In many situations the hyper parameters introduced here are adjusted during
training. For example, the learning rate is often reduced as the learning pro-
gresses using either a gradual or stepwise reduction. Such schedules can in some
cases improve learning. The gradient descent algorithm can also be extended.
One popular extension to the basic SGD algorithm is stochastic gradient descent
with momentum [8]:

vτ+1 = vτγ − η∇wẼ(wτ ) (3.8)
wτ+1 = wτ + vτ+1 (3.9)

The gradient updates are here appended to the velocity term v, which retains it
momentum via the parameter γ ∈ [0, 1]. The velocity then provides the update
to the parameters w. Adaptive learning rate schemes such as ADAM [9] and
AdaGrad [10] can also provide more efficient learning, particularly in deeper
architectures. These methods are utilized in papers B and C respectively.

3.4 Training, validation, evaluation

Care must be taken when evaluating the performance of a given model, partic-
ularly when using likelihood scores as an evaluation criteria for models fitted
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using maximum likelihood. The fundamental problem is the finite size of the
data set. By fitting a model on a finite number of samples from a given process,
the model may be able to describe the observed samples very well while failing
to describe the underlying process which we are trying to capture. The result is
that the model is not able to explain new data points drawn from the process,
since it has essentially just memorized the observed data during training. This
phenomenon is also known as overfitting. Overfitting is a concern when the
number of data points is small and/or the model contains a large number of free
parameters. An example is given in figure 3.1, where an overly complex model
will adapt to the noise in the process, leading to poor generalization properties
in the regions between the training data points.

To control overfitting, the data is often split in separate training, validation and
test data sets. The training data set contains the samples observed by the model
during training, while the validation set is used to observe how well the model
generalizes to unobserved data points. Overfitting can be monitored by observ-
ing the likelihood scores of the training and validation set. A higher likelihood
on the training set compared to the validation likelihood is a clear indication
of overfitting. Within the training/validation framework, the model hyper pa-
rameters are adjusted until a desired performance on the validation is achieved.
The error measure on the validation set can however be overly optimistic with
respect to the model performance following a number of optimization steps of
the model hyper parameters. The final performance is therefore measured using
a test set. Alternatively, cross validation techniques can be employed, where
model performance is averaged across different data splits. This is particularly
useful when the data set is small and a high proportion of the samples are
required for training.

3.5 Performance metrics for diagnostic systems

The test likelihood score is a relevant metric for how well the distribution of
the model agrees with the distribution of the data. But for diagnostic purposes,
other metrics could also be of interest. In a medical context for example, a doctor
reviewing blood sample tests from a patient may be asking questions like "How
sure can I be that this test will find an illness?" or "If the test is positive, how
sure can I be that the patient is actually sick?". The context is of course critical
when evaluating such tests. If the test, if we stay within the domain of medical
metaphors, is used to diagnose a possibly lethal disease the implications of not
identifying a sick patient (a false negative) may be unacceptable. Similarly, the
implications of misidentifying a healthy person as being sick (a false positive)
may be unacceptable if the treatment entails a large risk for the continued well
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Figure 3.1: Highly flexible models or small sample sizes can lead to overfitting, as
observed in this regression example where a neural network model (red) has been fitted
to a set of data points (blue dots) drawn from a distribution (blue curve) which we
seek to estimate. The shaded regions denote the noise standard deviations.

being of the patient. An overall accuracy metric is also problematic in the case of
heavily skewed class distributions. Just by outputting negatives any diagnostic
test can reach an accuracy of 99.999% if tested on the general population, if the
purpose is to detect a rare disease that only appears in 1 out of 100,000 people.

The overall point here is that the same concerns appear in a large scale moni-
toring system for wind turbines. The financial or safety cost of not identifying
some faults in due time may be extremely high. False positives may also bear
financial costs, for example a shutdown of the turbine followed by downtime and
loss of produced energy before the fault is handled and analyzed by a human
operator (perhaps manageable), or the dispatchment of a full service crew to an
offshore turbine (perhaps unacceptable). Also, the class fault distributions are
highly skewed, and negative samples are (hopefully) much more abundant than
positive samples.

This motivates to search for performance metrics that extend beyond the basic
likelihood and accuracy scores to provide answers to these analytical challenges.
Two related metrics will be presented here for this purpose, namely the Receiver-
Operating-Characteristic (ROC) and the Area-Under-Curve score (AUC):

Receiver-Operating-Characteristic (ROC): The Receiver Operating Char-
acteristic (the name is derived from its roots from radar detection systems)
evaluates a given classifier in terms of its true positive and false positive



20 Statistical learning

rates as functions of a decision threshold. The true positive rate is the
ratio of true positives TP to the total number of positives P , tpr = TP

P ,
whereas the false positive rate is the ratio between the number of false
positives and the total number of negatives N , fpr = FP

N . The plot of
fpr vs. tpr is known as a ROC curve, and provides a valuable tool for
determining suitable operating points for classifiers.

Area-Under-Curve The Area-Under-Curve, or AUC, is the area under the
ROC curve which is a value between 0 and 1. The AUC provides an
overall measure of the performance of a classifier, and can be interpreted
as the probability that a classifier will rank a positive sample higher than
a negative sample. An important feature of the AUC, and the ROC as
well, is that the metric is invariant to class unbalance.

Figure 3.2 is used to illustrate these concepts further, as the ROC and AUC
metrics have been used as principal comparison measures between diagnostic
models in all papers. The figure is based on a two-class classification problem,
with a positive indicating a fault state and a negative indicating a no-fault state.
The two left figures visualize the distribution p(x,C) for two different classifiers,
where x is a continuous variable representing some input data transformation of
the given classifier, and C is the class membership, with the red curve showing
the distribution for positives, and the blue curve showing the distribution for
negative samples. The value x could generally be viewed as a scalar transfor-
mation of some complex input space, and the distributions shown here would
typically be viewed as the activation distribution in the last layer of a network
model. The concept of a score is central in this context. Here we will use the
value in x-space directly, but typically the score would be a an estimate of the
posterior class probability p(C|x) using an increasing function in x, e.g. an
sigmoid, and the arguments still hold.

In our example case, the class distribution is somewhat skewed, with a 70%/30%
distribution of negative/positive samples. By observing the distributions quali-
tatively, classifier B is observed to separate the two classes better compared to
classifier A. We would therefore expect classifier B to outperform classifier A in
this classification task.

In a detection setting, a detection threshold α must be set where an observation
is categorized as a positive if x > α. The choice of threshold is up to the
system designer, and the ROC can be used to interpret the performance of the
classifier based on this threshold setting. For example, the detection threshold
which maximizes the overall accuracy is depicted by the green vertical line where
p(Fault|x) = p(No fault|x). This threshold value maps to a point in ROC-space,
which is marked by a green cross on the individual classifier curves in the right
most figure. Also, a mapping for threshold values under and above the maximum
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Figure 3.2: From decision thresholds to ROCs. The curves display some degree of
randomness since they are based on a finite set of random samples.

accuracy threshold have been plotted for both classifiers, and their mappings in
ROC-space can likewise be observed. As seen, a very sensitive classifier with a
low detection threshold will ensure a high true positive rate. But, this will come
at a cost since the false positive rate will also increase. Conversely, a classifier
with low sensitivity will lower the false positive rate at the cost of a lower true
positive rate. A classifier with a low false positive rate is said to very specific,
since most detections will indicate an actual fault. One can however not be
certain that all faults are detected.

By shifting the detection threshold continuously across the x-dimension, one
obtains the ROC-curves for each of the classifiers. As mentioned, each point on
the curve corresponds to an α-value. The curve for classifier B is observed to be
closer to the upper left corner in all cases, meaning that a higher fpr or lower
fpr always can be achieved by choosing classifier B over A. This is however not a
general principle, and one often observes that different classifiers show different
performance rankings in different regions of ROC-space. The AUC is employed
here to characterize the performance of the classifier in overall terms as already
mentioned. The area under curve B (AUC = 0.99) is observed to be higher than
the area under curve A (AUC = 0.85). For comparison, a perfect classifier which
is able to separate positives and negatives completely has a value of AUC = 1.
A completely random classifier on the other hand, has a value of AUC = 0.5
with a diagonal line in ROC-space as also visualized in figure 3.2.

As a final note, the ROC and AUC metrics are made time dependent in the
presented research. To view this in light of our simple example, one could view
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the two classifiers as instantiations of the same classifier at different points in
time. One at an early stage (classifier A) where the fault signal is still weak,
and one at a later stage (classifier B) where the fault signal has increased and
the classifier is more accurately able to separate fault from no-fault states.

3.6 Feed forward networks

With the basic concepts of model training and evaluation out of the way, the
actual learning architectures can now be discussed in more detail. All models
considered here belongs to the highly flexible class of deterministic feed-forward
networks. These networks are deterministic since they provide a determinis-
tic mapping from inputs to outputs with no internal/external stochasticity in-
volved1. The models are feed-forward since information flows from input to
output by a directed acyclic graph. This also means that these models are
stateless, and only rely on the current input to provide an output. To not
digress further, the basic architecture of a feed forward network is given below:

h1 = f1

(
W T

1 x
)

h2 = f2

(
W T

2 h0

)

... (3.10)

hL−1 = fL−1

(
W T

L−1hL−2

)

y = fL

(
W T

LhL−1

)
,

where x is the input and y equals the output of the model as a vector in the
general case. Each layer is constructed from a linear operation and an activation
function f applied element wise. The weight matrix W defines the connections
from layer to layer. The parameters of choice for each layer is then the shape
of the weight matrix W and the activation function f which provides non-
linearity if needed. The learnable parameters are the weights contained within
W1,W2, . . .WL, where an implicit bias term has is included by a constant input
added to each layer in the above formulation. An overall architectural hyper
parameter is of course the number of layers, L, which will be discussed again
shortly.

The choice of final output transformation is determined by the learning problem.
For regression problems, an identity function is typically applied providing a

1The training of these models can however be highly stochastic as already discussed in
section 3.3
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final linear transformation of the output

y = W T
LhL−1 (3.11)

In order to parameterize both the mean and variance of a gaussian target vari-
able, one may choose two output units as is the case for the heteroschedastic
models considered in paper A. One unit is here kept linear, while an exponential
transformation is applied to the second unit to ensure that σ2 > 0.

For classification problems, the output is often used to parameterize a posterior
class distribution. This is achieved by using a sigmoidal output unit given by

y =
1

1 + exp
(
−W T

LhL−1

) (3.12)

which essentially squashes the output of each component of y.

It will now be shown that familiar classes of models can be retrieved using the
architecture described in eq. 3.10 using certain choice of parameters. First, by
setting y = h1 and using an identity output function, a linear regression model
is obtained as

y = W T
Lx. (3.13)

By restricting the output to a scalar y in 3.13, and applying a sigmoidal output
transformation for classification purposes, one obtains

y = p (Fault|x) =
1

1 + exp
(
−wT

Lx
) , (3.14)

which is also known as a logistic regression model. Both of these models are
amenable to optimization. In the linear regression case, an analytical solution
exist if the usual squared cost function 3.4 is utilized. For logistic regression,
the cross-entropy cost function 3.5 is guaranteed to be convex, and a minimum
can be found efficiently using second-order methods2.

If the models are now extended with additional non-linear layers we obtain
the highly flexible model class of feed-forward neural networks. If we restrict
ourselves to networks with only two layers, the mapping is parameterized as

y = f2

(
W T

2 f1

(
W T

1 x
))

, (3.15)

where the choice of output activation function f2 again is problem specific.
Non-linearity is injected by the activation function in the hidden layer, f1.

2For large data sets however, it may be necessary to revert to stochastic first-order opti-
mization methods for both model classes.
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The classical approach has been to apply squashing functions such as tanh in
the hidden layer, and this has also been the choice for all two-layer neural
network models in papers A, B and C. Compared to a linear regression model,
a neural network is able to capture non-linearities in the data as for example
visualized in figure 3.1. Similarly, the logistic regression model is only able to fit
a linear decision boundary in the space of x, whereas a neural network is able
to accommodate non-linear decision boundaries if needed3.

The flexibility of neural network models come at a cost. A basic hyper parameter
is the number of hidden units, M . If the input dimensionality is denoted D, the
size of W 1 will scale as D ×M . Increased model capacity therefore comes at a
cost of computational complexity, which is hardly a surprise. A bigger challenge
is that the optimization properties of the linear models do generally not apply
in the non-linear case. Convexity of the cost function can therefore no longer
be guaranteed, and local minima and saddle points in parameter space makes
learning more difficult.

3.7 Deep architectures

Although we still remain in the domain of feed-forward networks, the topic of
deep learning deserves to be highlighted in its own section as deep learning
has proven to be one of the major, if not the biggest, leap forward in the last
decade within the field of machine learning. Deep learning has its roots in
classical neural networks which we have already covered. The difference is that
the number of layers in the architectures has increased significantly, i.e. the
networks have become deeper compared to the shallow architectures discussed
in section 3.6. The primary motivations for exploring deeper networks are

Biological, since certain biological systems of interest are observed to have
similarities with deep feed forward neural networks, e.g. the visual cortex
[11],

Theoretical, since deep networks can map certain functions more compactly
compared to shallow networks [11], and finally

Empirical, because deep learning has been shown to work in complex process-
ing domains, where existing methods have failed in reaching human like
performance [12, 13, 14, 7].

3If the data has linear structure, the neural network should also ideally adapt to this linear
structure
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The recent success of deep learning can be credited to a number of factors, but a
primary driver is raw computing power, typically provided by modern Graphics
Processing Units (GPUs), that has made it feasible to train complex models
within a reasonable time frame. Another driver is the large data sets which are
now collected everywhere, since these architectures are data hungry. This thesis
is also a testament to this development.

A type of architecture known as deep convolutional neural networks (CNNs)
has been found to be particularly useful for vision related learning tasks [15]
as these networks naturally exploit spatial structures in the data. As will be
shown in later chapters, some of the data collected from wind turbines also have
spatial characteristics, and CNNs are shown to provide excellent fault detection
performance for a number of different drive train faults. As convolutional layers
are the backbone of the architectures showcased in papers B and C, the basic
concepts are covered in some detail for readers not familiar with vision-related
machine learning systems.
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Convolution Non-linearity PoolingInput

Figure 3.3: The basic building blocks in convolutional neural networks. The convo-
lution is shown with a 3× 3 kernel, using strides of 1 pixel in each direction. For the
pooling operation, a 2× 2 receptivity field is employed with strides of 2 pixels in each
direction.

The building blocks of convolutional neural networks are illustrated in figure
3.3. The input layer is a 2D feature map with a number of distinct channels,
in this case three. Each value here is denoted as a pixel. An example of such
an input could be an image with three RGB-channels. A kernel spanning only
small rectangular area in the spatial dimensions and spanning the full depth
of the input provides a linear mapping to a single scalar value. By sliding
the kernel along the width and height one obtains a new spatial feature map,
processed by this specific kernel. If more kernels are utilized, one obtains several
new feature maps one for each kernel. This step is denoted convolution in the
diagram. Here, the kernel size is 3 × 3 and a single mapping for one kernel is
illustrated in the figure. The number of pixels the kernel is moved between each
processing step is known as the stride of the kernel which have been set to 1
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pixel here. The number of distinct kernels is in this case four signified by the
four output layers. Zero-padding has been implied at the borders of the input
map to preserve the spatial dimensions of the output following the convolution.
The kernels can be regarded as spatial filters, which the network can utilize to
extract features in the input image. Following the convolution, a non-linearity
is applied element-wise which is shown in the non-linearity step. The size of
the map is here preserved. The non-linearity could be a squashing function as
typically employed for classical neural networks, but a popular approach is to use
a rectified linear unit [16] ReLu(x) = max(0, x) in deeper networks, as this type
of non-linearity can mitigate vanishing gradient problems and speed up learning
of the lower level layers. In the final step, a pooling layer is used to down-sample
the feature map. Here, the operation is again defined by a receptive field in the
spatial dimensions on which the down-sampling is performed, typically via a
max-operator. This layer reduces the number of features and the complexity of
the network, and provides some invariance to translations in the input. Here,
the size of the max-pooling operation is observed to be 2× 2, with a stride of 2
providing a down-sampling factor of 2 in both height and width dimensions.

When comparing this network structure with the classical feed-forward archi-
tectures described in the previous section, it is perhaps realized that CNNs can
be described as a classical neural network with only a local connectivity between
the layers with shared weights across the layer units. As a result, the number
of free parameters is reduced significantly compared to a fully connected neural
network, and the number of weights only scales as k2nCn−1Cn + Cn where n
denotes the layer index, k denotes the size of a uniformly sized kernel and Cn
denotes the number of channels for a given layer. The primary hyper-parameters
of CNNs are of course the size of the kernels for each layer, the number of kernels,
the strides and choices of activation function and pooling operator.

In an actual deep network, the convolutional layers are typically followed by
one or more fully connected layers to provide the last classification processing.
Examples of this can be found in both paper B and C. It must also be noted
that each convolution operation is not always followed by a pooling operation
and stacks of several subsequent convolutions are often employed as for example
in [17].



Chapter 4

Predictive modeling and
unsupervised fault detection

With our brief review of both wind turbine technology and statistical learning
concepts in the preceding chapter, the stage has now been set to investigate how
data-driven methods can be utilized for wind turbine fault detection tasks. In
this journey, methods based on modeling of wind farm SCADA-data1 will first
be explored based on the research presented in paper A. The basic concept is to
extract more detailed knowledge of the state of an industrial system or process
by applying a further modeling layer to data streams collected for supervisory
control purposes. This idea is not new and early efforts to use the data in a
fault detection context includes [18] for general industrial purposes and [19] for
wind farm specific purposes.

This chapter will only discuss the research motivations and overall data char-
acteristics and modeling concepts. For details, we refer to paper A and the
provided references as the topic of SCADA-data modeling is a mature research
field to the wide availability of industrial operational data. The data consists of
sensor values samples equidistantly in time, and readers familiar with basic time
series modeling should quickly be able to pick up on the methods presented in
the following sections.

1Short for Supervisory Control And Data Acquisition
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4.1 Problem domain and methodology

For wind turbines, the modeling scope can range from be the overall turbine
performance, e.g. in terms of power curve modeling down to detailed analysis
of the health state of specific subcomponents such as the rotor bearing which is
the subject here. The methods presented are however quite general in nature
and should be applicable to a wide range of domains without much alteration.
Research into wind turbine bearing temperature-based data modeling already
exist [20], also for rotor bearings [21, 22]. The motivation behind the work
presented here is to extend the existing research with 1) an exploration of richer
data models that capture the longer range linear and non-linear dynamics within
the operational data, and 2) a detailed analysis of model performance when
applied to a both a sizable turbine fleet and a sizable amount of actual turbine
faults. The last item is particularly important, as existing work on SCADA-
based fault detection in wind turbines has only included very few faults, hereby
making it difficult to establish more general properties of the presented models
in an actual monitoring setting.

The use case for accurate fault detection for the rotor bearing(s) has already
been motivated in chapter 2. The faults included in this study are spalling
damages to the bearing raceways. As micro-fractures in the raceway surface
converge, material is released from the surface creating a crater in the surface.
Once this failure mechanism has initiated, the process will typically accelerate
until large parts of the bearing raceways are damaged [23]. Progressed damage
will lead to increased friction, which in turn will generate heat in the bearing.
Temperature sensors are therefore often employed as part of the monitoring
system in wind turbines [24] in order to detect bearing overheating a result of
mechanical faults, or insufficient lubrication. As will be shown in chapter 5,
vibration-based monitoring is the method of choice for detection of small lo-
calized damage in drive train bearings, but temperature-based monitoring can
provide valuable diagnostic input as a complement to vibration-based monitor-
ing as demonstrated in the following chapters.

The basic challenge with wind turbine diagnostic applications is the inherently
stochastic state of the wind turbine and its environment, an issue which also
rears its head when working with temperature data. Consider the temperature
trend from a rotor bearing temperature sensor depicted in 4.1, spanning sev-
eral years. This trend has been obtained from a rotor bearing which eventually
failed due to overheating at the end of the depicted time interval. Some striking
features of this trend are 1) the large seasonal variation in the mean and 2) the
high variance around the mean which depends both on the day/night temper-
ature cycle and the operating state of the turbine. From a human operators’
perspective, the temperature variation makes it difficult to evaluate when the
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bearing temperature is within an acceptable range. Similarly, the limitations of
a simple temperature-threshold warning system become immediately obvious,
and one would necessarily expect such a system to provide a late warning in
order to limit the number of false positives given the signal variance for the
individual turbine as well across wind farms in different geographical regions.
Clearly, a monitoring system could benefit from a more adaptive approach.

The approach taken in the following is a two-step procedure:

1. No-fault state modeling: Based on certain basic assumptions, a data-
driven model is established for each individual turbine representing a fault-
free state.

2. Outlier detection: New data points are now evaluated in terms of how
likely they are under the established no-fault state model. Outliers are
interpreted as potential faults.

Each of these steps will now be discussed from a slightly more general perspective
compared to the discussion in paper A.
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Figure 4.1: Rotor bearing temperature

4.2 No-fault state modeling

Consider a number of sensor readings denoted by the vector x. The readings
are sampled in time, but this dependence will be ignored initially. In some cases
it is possible to simplify the problem by exploiting prior knowledge of the of the



30 Predictive modeling and unsupervised fault detection

underlying physical system to establish an functional relation. If x is split into
input u denoted as exogenous variables and output t, we then seek a model of
the type

t = µ(u) + ε (4.1)

in the simplest case with i.i.d. noise terms ε. One could attempt to formulate the
mapping µ(u) from first principles, but even for simple systems this may prove
to be difficult. If enough data samples have been collected from the system, a
data-driven approach can instead be adopted where flexible models are fitted
to the data collected from the system. From a statistical learning perspective,
equation 4.1 is recognized as a regression problem.

The bearing temperature models provides a good example of this practice.
Based on a simple thermal flow analysis of the drive train, a number of op-
erational values are chosen which are indicative of the overall thermal state of
the system. Given these values as input u we now seek a predictive model for
the bearing temperature t, and this model is fitted using the data collected dur-
ing a fault-free period. If the temperature start to deviate from the predicted
temperature, this might indicate an impeding bearing failure. One could also
consider the model formulation to be biased towards a specific fault state based
on knowledge about the physical properties of the underlying system.

There is some finer points to the conditional modeling aspect as also discussed
in paper A when using the conditional models for outlier detection. One must
generally require that given the transition to a number of fault states of interest,
the support of the input density p(u) does not change since the conditional
distribution p(t|u) is not strictly defined outside this region. For example, given
a number of mild assumptions, the support stationarity can expected to hold
for the exogenous variables used for the rotor bearing temperature models. If
past values of the bearing temperature is included as input as in the case of
the the auto-regressive (AR) models in paper A the support stationarity cannot
be expected to hold, and the use of the model prediction in a outlier detection
context become highly questionable. This has also been demonstrated in the
article, where highly accurate AR predictive models can be demonstrated, but
where the fault detection capability is restricted compared to conditional models
that operate on exogenous inputs only. If the support stationarity cannot be
established for a given system, a more prudent approach would perhaps be to
model p(x) directly instead. This approach is however not without difficulties, as
density estimation is a difficult task for high-dimensional data and interpretation
of outliers may also prove difficult when employed later for fault detection.

At the end of this section is is worthwhile to discuss the overall merits, and
pitfalls, of no-fault state modeling. A major benefit of the presented methods is
that no actual fault data are required which makes the methods valuable in any
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domain where faults are a rare occurrence and/or the nature of these faults are
generally unknown. This could for example be in small turbine monitoring setup
with only a few turbines, or a structural health monitoring system installed
on a bridge. The downside of this methodology is that the systems are not
adapted to specific faults, which can make them sensitive to noise and other
state changes in the system which are not fault-related. Of course, one must
also posses knowledge of when the system is actually fault-free. In the presented
paper, it is simply assumed that the rotor bearing is fault free in the first
year of operation, and the models are then fitted to this data period. In more
complex cases, this clear no-fault state distinction is not possible, and one may
use unsupervised methods to separate the different states of the system. Finally,
the no-fault state methodology enables specific diagnostic measures that may
prove highly valuable in a diagnostic and prognostic setting. In the case of the
rotor bearing temperature modeling, this measure is the temperature residual
which is straightforward to interpret as the residual stemming from the fault
mechanism itself.

4.3 Modeling of sequential data

Until now, the sequential nature of the data has largely been ignored. Ideally,
one would like to include both short-and long-term dynamics in the predictive
model. A straight-forward way to include this in any model architecture is by
expanding the input space to a data window spanning L time steps. By denoting
the index in time as subscript n, the predictive model now takes the form

p
(
tn
∣∣ uTn−L+1,u

T
n−L+2 . . .u

T
n

)
, (4.2)

which is also known as a sliding window approach. This methodology has been
used extensively throughout this work. The window width L then determines
the maximum time scale from which the models are able to capture the signal
dynamics. This author advocates the general use of rich models and long window
lengths in contrast to the methods in most existing wind turbine literature which
rarely employ more than one time step in the predictive step. This advice comes
with the caveat that the data set size should be able to support such rich models
possibly combined with one form of regularization to avoid overfitting.

The advantage of using the sliding-window approach is that the feed-forward
nature of the network models employed in this work is kept intact. One could
also consider sequential models such as recurrent neural networks. The sliding
window methods were found to provide an excellent performance across the dif-
ferent data sets in this thesis, but recurrent neural network in the form of Long
Short-Term Memory (LSTM) architectures [25] were tested on the temperature
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data set to investigate if further predictive performance could be gained. This
was found not to be the case. As also argued in paper A based on [26], recurrent
architectures are not expected to perform well in a problem domain with fixed
range dynamics, a case much better suited for sliding window approaches. Read-
ers working similar data sets are therefore advised to first test models based on
sliding windows, and to only explore more complex architectures if these initial
efforts fail.

4.4 Fault detection and evaluation strategy

For probabilistic models, a suitable metric for evaluating a new data point
un, tn, would simply be the likelihood p(tn|un) or p(tn,un) depending on the
modeling approach. An outlier detection system could then be specified via a
likelihood warning threshold. This approach was tested in paper A, but the
likelihood measure was not found to be robust for long-term monitoring due to
instationarities in the underlying turbine systems such as wear and tear. The
simple temperature residual rn = tn−µ(un) was found to be a better choice for
outlier detection. This rudimentary detection strategy is easily extendable, and
the temperature residual lends itself to further processing in more advanced de-
tection schemes. The residual can here be interpreted as a distance feature from
which the variation due to changing operational conditions are stripped away.
Further processing of the residuals has been taken up in [27] where a Bayesian
state prediction scheme is applied to the output of the bearing temperature
models presented here.

The remainder of this chapter is now spent on the basic concepts of the fault
detection procedure. With slight variations, the core parts of this procedure will
be used throughout most of the work in this thesis. The reader is first reminded
of the basic concepts of Receiver-Operating-Characteristics and Area-Under-
Curve metrics illustrated in chapter 3. The underlying scores for the purpose of
temperature-based fault detection are simply the residuals as discussed earlier.
By observing figure 4.2 showing the development of a temperature residual for
a faulty rotor bearing, the mean of the residual is observed to increase almost
monotonically before the bearing fails at the rightmost point in time of the plot.
The end-of-life for the bearings are defined as the point in time when the critical
temperature of the bearing is reached and the turbine is shut down automatically
for safety reasons. The time of failure is also used as a reference point for each
turbine, and the residual is now measured in terms of ∆t, which is the time
until bearing failure. This definition aligns the residuals across turbines, and
the classifier performance is now measured as a function of ∆t. As the residuals
increases towards the point of failure, the ability of the detection system to
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separate fault states from no-fault states is expected to also increase.

The evaluation procedure is as follows: For a given value of ∆t, illustrated
in the figure as vertical blue line, residuals are collected across the population
of turbines with recorded bearing faults. Similarly, residuals are collected from
turbines without bearing faults. Operating points on the ROC-curve can now be
generated based on the collected residuals by adjusting the detection threshold.
For a sensitive system (green horizontal line), the residuals for the negatives and
positive samples will largely overlap and the number of false positive is expected
to be high. For a less sensitive system (red horizontal line) the number of false
positives are expected to drop, but a detection of a fault is not guaranteed as
is the case for the turbine shown here. Remember, the graph here only show
the residual for one turbine but the performance is evaluated across the entire
population of faulty turbines aligned in ∆t and the negatives included from
fault-free turbines. The value of ∆t is now adjusted, and a new ROC-curve,
and AUC-value, can be generated. As a result, time-dependent performance
metrics can be generated for each predictive model architecture.
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Figure 4.2: Rotor bearing temperature residual plotted for a bearing with a confirmed
fault. The residual is observed to increase gradually over several months before the
bearing fails.
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4.5 Summary

A two-step procedure for data-driven fault detection based on SCADA-like data
was outlined in this chapter. The first step entails a predictive model for a spe-
cific subsystem based on general flexible models that are fitted to data collected
from the system. Once deployed, the residual between the model and the actual
sensor readings can be used as a fault indicator. The reader is now urged to
review paper A to get a clearer picture of the modeling details and the potential
of this methodology when applied to turbine drive train sensor data. Here, the
results show that the modeling outlined here is able to push the warning lead
time ahead 45 days on average, compared to the hard-threshold warning system.

This section ends the journey into temperature-based fault detection models,
and the following section will explore how vibration-based detection models can
be utilized for not only rotor bearing faults, but also gear box bearing faults.
The results from the temperature models will however be revisited in 5.3 when
the results from the various methods will be combined for direct comparison.



Chapter 5

Supervised fault detection

From a loosely defined fault model, it was demonstrated in the previous chapter
how valuable diagnostic information could be gained by framing the problem as
an outlier detection problem by fitting predictive models to simple data streams
from assumed no-fault periods. We will now consider a second class of data
streams, namely vibration data collected from a number of sensors mounted on
the primary components of the turbine drive train. Such sensors are typically
installed with the specific task of early fault detection in mind, and vibration
based monitoring will in general provide earlier warnings of mechanical faults
in the drive train compared to e.g. purely temperature-based methods [28].

It is trivial to extend the approach of no-fault state modeling to vibration sig-
nals, and this approach form the basis of most practical implementations of
vibration-based monitoring systems, particularly in wind turbines. Vibration
monitoring systems can potentially provide extremely rich signals and a num-
ber of preprocessing steps are typically employed to reduce the data to a limited
number of scalar values indicative of different failure modes. The alarm thresh-
olds are either fixed a priori or adapted during a run-in period. In the adaptive
case, the data model is often limited to fitting and evaluation by simple para-
metric distributions on each scalar stream. This methodology present a number
of closely related challenges:

1. The system relies heavily on feature engineering which may not capture
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the full complexity and noise of the signals relevant for condition moni-
toring purposes. This leads to reduced sensitivity and high false positive
rates for the system.

2. To mitigate the drawbacks mentioned above, the warnings from these
systems are often further handled by human experts in order to separate
true positives from false positives. This leads to poor scalability and
reaction times, and a constantly updated view of the health state of the
mechanical components is generally not possible.

3. No structured approach exist for sensors and system data fusion.

By first recognizing that human experts are able to detect faults early and accu-
rately from analysis of the data collected in the Siemens large scale monitoring
platform which form the basis of this thesis, one might speculate if a learning
system could be devised which learns from the actions from these experts to pro-
vide a fully automated virtual expert-like system. This is the primary research
question which will be investigated in this chapter.

The chapter starts with a primer on vibration-based condition monitoring to
give readers who are unfamiliar with this field an understanding of the basic
techniques employed for fault detection. The machine learning approach to he
problem domain is then described in section 5.2, based on the research papers
found in papers B and C.

5.1 A primer on vibration-based turbine diagnos-
tics

In this section the basic methods of vibration-based monitoring is discussed
with an emphasis on wind turbine monitoring applications, particularly bearing
diagnostics. From both a practical and theoretical perspective this topic is very
rich, and the brief overview given here is by no means intended as full tutorial
in applied vibration-based condition monitoring. The intention is to give the
reader a basic understanding of why this technology is the method-of-choice for
rotating machinery monitoring applications and to provide a description of the
analysis involved in such applications, aspects which have mostly been left out
in the presented research articles for the sake of brevity. For more details on
the general subject of vibration measurement and analysis, readers are referred
to [29]. For details on vibration-based condition monitoring, [30] provides a
comprehensive review of the field including many of the signal modeling details
which is only briefly touched upon here.
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The vibration pattern in a wind turbine is complex. At the lowest frequencies
below a few Herz, the vibrations are dominated by forcing components from the
rotor-wind interaction and the basic response from the overall turbine structure.
In the case of geared turbine designs, the medium frequency range extending
up to 3 Khz is largely dominated by vibrations from the gear box when we
restrict our attention to the sensors mounted near the drive train components.
In the case of direct drive designs, this frequency range is dominated by gener-
ator and bearing dynamics. For the higher frequency range the signals become
highly complex as local structural dynamics mix with excitation from high to
intermediate speed bearings, the generator and power electronics.

The vibration signals discussed here will be in units of acceleration. Industrial
accelerometers of the piezoelectric type are cost-effective, robust and provide an
adequate frequency response and sensitivity for the applications discussed here,
and are therefore the primary choice for wind turbine drive train monitoring.

5.1.1 Gear stage fault detection

First, we will consider the dynamic forcing from the gear box. The overall gear
ratio is determined by the teeth ratios throughout the different gear stages.
On typical wind turbine gear box designs the first stage is planetary, possibly
followed by a second planetary stage1. After the planetary stage(s), one or two
simple helical stages provide the final speed-up of the output shaft.

The gear mesh interactions during operation will produce distinct vibration
frequencies. For a simple gear, the fundamental gear mesh frequency is simply
determined by

fg = frNg, (5.1)

where fr is the rotational frequency of the gear shaft and Ng is the number of
gear teeth. The gear signal consists of this fundamental gear mesh frequency
and its higher harmonics. The amplitude of these coefficients will depend non-
trivially on the gear geometry, loading and wear and tear. In a gear box with
multiple stages, the overall signal can be expected to be a combination of var-
ious harmonic families, one for each stage. This is exemplified in figure 5.1
showing an acceleration amplitude spectrum obtained from a gear box sensor.
Multiple harmonics are observed from a gear stage with a lower fundamental
mesh frequency combined with a single peak which is the fundamental frequency
of a secondary gear stage. Some simple gear fault signal models can easily be
derived. For a gear wheel, a fault state would include gear tooth surface degra-
dation or material fractures. Consider the case where a single tooth on a gear

1see https://www.youtube.com/watch?v=tfT7Vrv71J0 for an animation of planetary gears
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Figure 5.1: Spectrum of acceleration signal measured on a gear box. Discrete har-
monics of the gear mesh frequency can be observed from different gear stages.

wheel develop a fracture. This changes the stiffness of the tooth, and the mesh-
ing interaction then changes every time this particular tooth is in interaction
with the opposing wheel. The effect is that the forcing function is modulated
by a signal with a fundamental frequency of fr, the rotational frequency of the
gear shaft. As the modulation is a multiplication in the time domain, it is
quickly realized that the fault will appear as fr-spaced sidebands to the mesh
frequencies, as the signals are convolved in the frequency domain.

The above analysis on the gear box highlights why basic frequency analysis is
such a fundamental tool for monitoring rotating equipment. In the frequency
domain, the signals from different gear stages can be easily separated and iden-
tified, given that we know the mechanical configuration of the system. For
example, if increasing sidebands are observed around a given frequency peak,
the location of this peak will tell us in which stage a fault may be present, and
the separation between the sidebands will identify the specific wheel. Moreover,
the signals propagate more or less easily throughout the gear box structure, and
using just a few sensors mounted on the gear box casing one is able to identify
faults on the tens of different gear wheels and bearings within the gear box.

The example of gear wheel fractures is more than just an illustrative example
of basic vibration analysis. The loss of a tooth is here defined as a gear failure
since continued operation may result in serious damage to the entire drive train,
particularly if the failure happens in the high-torque section of the gear box.
Gear wheel failures are actually one of the primary failure modes targeted by
vibration based monitoring systems in wind turbines. Such faults can progress
from a small defect to a full surface-to-surface crack in hours depending on the
location of the defect. In other cases, the fault may develop for weeks before
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they result in gear failure.

Gear wheel faults will not be given much attention in the remainder of this
work, as the work strictly considers bearing fault detection. Some of the basic
principles for gear wheel fault detection does however transfer to bearing fault
detection also as shown in the next section.

5.1.2 Bearing fault detection

Tens of different bearings are located throughout a geared wind turbine drive
train, including the large rotor bearing(s), the different gear stages and the
generator. Mechanical faults in drive train bearings are the second major target
of advanced vibration monitoring systems in wind turbines. Compared to gear
wheel faults, bearing faults generally progress at a slower rate and the turbine
can continue operation for an extended period of time before a replacement is
needed.

Most wind turbine bearings are of the rolling element type. This includes ball
bearings, and various designs of cylindrical, tapered and spherical roller bear-
ings. The typical faults encountered in wind applications include fractures,
spalling and pitting of the raceway surfaces. A diagram of a simple rolling ele-
ment bearing can be observed in figure 5.2a including the inner and outer rings
and the rolling elements. Typically one of the rings is held stationary, while the
other rotates (in this case the inner ring is rotating). Also, a small inner ring
surface defect has been illustrated where material is released from the raceway
surface. An example of actual raceway damage is depicted in 5.2b. The bearing
inner raceway displays surface fractures in the axial direction and small spalling
areas have begun to appear at several points near the fracture lines. As was
the case for gears, bearing faults manifest themselves with distinct frequency
domain characteristics. Consider the case of a localized defect on the inner ring
raceway as depicted in figure 5.2b. A small impact would be expected each time
a rolling element passes this defect. The impacts are repeated at the frequency
in which the rolling elements are passing the defect. This frequency is known as
the Ball Pass Frequency of the Inner race (BPFI, or RPFI for roller bearings).
Similarly, distinct frequencies can be derived for outer raceway faults (BPFO,
or RSFO for rollers) and rolling element faults (BSF, or RSF for rollers). The
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(a) Rolling element bearing. (b) Inner raceway damage.

Figure 5.2: Diagram of rolling element bearing and actual bearing damage.

frequencies are given by the following geometric relations [30]:
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where Nr is the number of rolling elements, D is the pitch diameter, d is the
rolling element diameter and φ is the contact angle between raceways and the
rolling element. Each bearing therefore has a unique frequency fingerprint which
can be calculated if the basic properties of the bearings are known. The appear-
ance of a specific frequency peak can then be attributed to not only a singular
bearing, but also to the individual parts of this bearing such as the inner ring,
outer ring or rollers. It must be noted that the relations are based on the impor-
tant assumption of no-slip conditions between rollers and raceways which rarely
holds in practice. As opposed to the deterministic gear signals, the bearing sig-
nal is somewhat random and the fault frequencies may deviate from the values
calculated from 5.2-5.4.

For small localized faults, the dynamic forcing is often impulse-like which pro-
vides a wide band excitation of the bearing housing and surrounding structures.
For early fault detection, the signal may be masked by other sources such as gear
noise. Here, a useful processing step known as envelope analysis [30] may help
to increase the bearing fault signal-to-noise ratio. The overall processing steps
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in envelope analysis have been visualized in figure 5.3. As shown in the leftmost
figure, the low to mid frequency domain is often dominated by gear meshing
harmonics and stochastic gear noise. But, due to the wide band nature of the
bearing fault signal, structural resonances located in the higher frequency do-
main is excited by the fault impulses. By carefully choosing a suitable band pass
filter near these resonances, one can obtain a time signal resembling the lower
figure. By demodulating the signal which extracts the lower frequency infor-
mation in the amplitude signal followed by a frequency domain transformation,
the harmonics of the bearing fault frequency can be retrieved as illustrated in
the rightmost figure. An elegant way to extract the envelope is by forming the
analytic signal ya(t) from the band passed signal yb(t) and the Hilbert transform
H [30]:

ya(t) = yb(t) + j

(
1

πt
∗ yb(t)

)
(5.5)

= yb(t) + jH (yb(t)) (5.6)

where ∗ denotes convolution. Now the low frequency modulation signal, high-
lighted in green in figure 5.3, can be extracted as the modulus of the analytic
signal

a(t) = |ya(t)|. (5.7)

Envelope analysis requires a suitable choice of bandpass filter from which the
fault signal is extracted. This choice could be made on the basis of structural
testing or simulations, or adaptive methods could be utilized which seek to
maximize the impulsiveness of the filtered signal. In practice, a number of fixed
filters are employed which may be adjusted as actual fault data start to be
collected from the fleet.

Additional factors can influence the signals from bearing faults. For example, if
the bearing is loaded radially and a fault develops on the rotating inner raceway,
the damaged area will enter and leave the vertical load zone with a frequency
that equal the rotational frequency fr. This will in turn modulate the excitation
signal from the damage region, and fr-spaced sidebands to the inner raceway
harmonics will appear in the frequency domain. An example of this can be
observed in figure 5.4 where the development of an envelope spectrum over time
is depicted for an inner raceway bearing fault on a roller bearing. The RPFI has
been marked with red, and multiple sidebands can be observed on either side of
this frequency peak. Also, harmonics of the fundamental rotational frequency
appear in the low frequency region of the envelope spectrum.

The highly specific frequency features discussed until now, are of course not the
only assessment tool for bearing diagnostics. Simple diagnostic indicators such
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Figure 5.3: Envelope analysis can amplify weak bearing impulse-like signals by de-
modulating the excitation signals of higher order structural resonances. Hereby the
low-frequency bearing signal (green) is recovered, and the usual frequency analysis
tool box can be employed for further signal and fault identification.

as overall vibration energy, perhaps in certain frequency bands, are an inte-
grated part of practical monitoring systems. Single measures of impulsiveness,
the signal kurtosis for example, is also a popular choice for bearing monitoring
applications. It must also be noted that the above analysis is based on an ideal-
ized setting suitable for early fault detection. Early is here defined as detection
of the initial fault state where the defect is highly localized. In more progressed
damage scenarios, for example where most of the raceway show signs of surface
spalling, the excitation signal can be dominated by random noise components
and the specific fault-indicative frequency features may not be visible at all.

5.1.3 Dynamic sampling

The signal characteristics discussed in the previous sections all scale with one
common factor, namely the rotation speed. For machines operating in a station-
ary regime this does not pose any challenges from an analysis point of view, but
a modern wind turbine is quite different as it operates in a highly non-stationary
environment and the speed fluctuates with the wind conditions. This have a di-
rect impact on the vibration signals which are collected throughout the turbine.
For example, if a frequency spectrum is averaged over a 1-minute period, the
rotational speed may fluctuate significantly within the recording window. As a
result, the speed-dependent peaks are smeared in the spectrum.

An effective method for mitigating this problem is dynamic sampling2 Using

2in practice, this is often implemented as dynamic resampling of a fixed high sample-rate
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Figure 5.4: Envelope spectra recorded from a gear box with a faulty roller bearing.
The individual spectra are plotted along the horizontal axis, the vertical axis denotes
time. The most recent measurement is observed at the very top. A peak identified
as an inner raceway fault frequency grows in amplitude, and modulation with the
rotational frequency shows up as sidebands due to load zone modulation. Harmonics
of the rotational frequency can also be observed in the envelope spectrum. The time
span of this plot is several months showing the slow progressive nature of typical
bearing damage.

an accurate reading of the instantaneous speed of the drive train, the sampling
frequency is adjusted dynamically with the rotational speed. The effect is that
in the dynamically sampled time domain, the signals look as if the turbine was
operating at a fixed speed. This is analogue to the concept of order analysis.
Dynamical sampling has actually been enabled when calculating the gear box
spectrum shown in 5.1. A spectrum from the same sensor is displayed in figure
5.5 with dynamical sampling disabled. The peaks in the high frequency region
are now completely indiscernible due to smearing. Frequency smearing there-
fore poses a significant challenge when attempting to characterize the signals in
terms of the fault fingerprints which we discussed earlier. For early and accurate
fault detection in wind turbine drive train, speed-dependent sampling methods
are a key component in the signal processing pipeline. The instantaneous speed
is typically estimated using a tacho-probe which outputs one or more pulses
for every rotation of a drive train shaft. Such measurements also provides the
means for separating the deterministic part of the signal from the stochastic
part. Time-synchronous averaging is such a technique which by averaging seg-
ments spanning a full rotation whereby the estimate of the deterministic part is
gradually improved [30].

recording.
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Figure 5.5: An example of frequency smearing caused by variations in the turbine
speed. This figure should be compared with figure 5.1 where speed-dependent sampling
has been enabled.

5.1.4 Data recording, processing and evaluation

With the basic vibration monitoring and recording concepts now in place, the
more practical details of vibration-based monitoring will be discussed specifically
in terms of how data are collected and evaluated. The description is based on the
vibration-based monitoring architecture which has been deployed at Siemens for
more than a decade. The monitored fleet size now exceeds 10,000 turbines which
is the worlds largest monitoring platform for advanced wind turbine vibration
diagnostic services.

A diagram of a data flow in this platform is illustrated in figure 5.6. The Gram
& Juhl M-system installed in all Siemens wind turbines is a state-of-the-art
data acquisition and processing system tailored for vibration-based monitoring
applications. The system provides 41 kHz sampling rate synchronously on 24
channels and has built-in support for speed-dependent dynamic sampling. In
the turbines from which data has been gathered for this thesis, the system is
connected to six accelerometers distributed across the drivetrain as illustrated
in figure 5.6. One sensor is mounted on the rotor bearing housing, three sensors
are located on the gear box, and two sensors are mounted on the generator front
and rear.

The system does not record and process data continuously. Instead the signals
are processed in segments, with each segment spanning two minutes. From this
recording a number of complex features are generated, for example frequency
spectra and envelope spectra tailored to diagnostics of specific physical com-
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Figure 5.6: Vibration data flow in the Siemens monitoring platform. Data is pro-
cessed in non-overlapping segments from which a number of frequency and time domain
features are extracted. Alarm threshold are then defined for some of these features
which may trigger a warning in the system. Only a subset of the data points are stored
as illustrated in the lower right corner.

ponents. More simple diagnostic indicators can also be extracted, like overall
vibration levels and values of the specific frequency indicators which have been
described earlier. This cycle is then repeated, segment by segment. A number
of warning thresholds may have been implemented at this stage to detect ab-
normalities in the data. If a potential problem is detected, the system may have
the possibility to shut down the turbine in case of critical faults. This option is
typically used for gear wheel faults. The fault indicators will generally depend
on the operating conditions of the turbine which must be taken into account
by the detection system. As the measurements are very sensitive in nature, the
readings differ significantly even between neighboring turbines. Here, the detec-
tion system is made adaptive by adjusting the warning thresholds during in the
initial operation of each turbine. This establishes a no-fault state fingerprint of
the individual turbine.

Not all data is saved following the processing and evaluation stage. This is
indicated in the lower part of the figure where only the blue segments are flagged
for storage and data transport. As frequency domain data are heavily utilized
in these setups, such data are often stored at a higher rate compared to e.g.
raw time recordings. If warnings have been triggered, the measurements may
be flagged for storage in all cases as denoted by the red segments in the diagram
to make sure that abnormal data always is available for further analysis.

Data and alarm events will relayed to a local server at the wind farm, from where
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they are further relayed to a central diagnostic center. Each case will then be
handled by trained experts that evaluate the data and makes a notification in
case a problem is detected. The monitoring infrastructure can therefore be
viewed as a massively distributed outlier detection system, from which events
are collected and evaluated by human operators.

5.2 Learning systems for automated vibration-
based fault detection

With the basic concepts of vibration-based monitoring of wind turbines taken
care of, the path towards a more automated fault-detection strategy can now
be explored. From the initial description of the problem domain, readers may
ask themselves if this problem is not easily solved given how simple frequency
analysis already provides some highly distinct fault characteristics across the
fault types of interest. The simplicity conveyed before is however deceiving
as already hinted at the beginning of this chapter. The influence of the non-
stationary operating conditions of the wind turbine has already been discussed
at length in this and preceding chapters. Surely dynamic sampling may ame-
liorate the effect of frequency smearing, but effects from changing load regimes,
wind turbulence and advanced turbine control will have a influence on the vi-
bration signals both during fault-free states and with-fault states which is hard,
if not impossible, to predict with any certainty from physics-based models. Var-
ious noise phenomena, both physical in terms of vibration transmitted from
components distributed within the turbine nacelle and electrical in terms of
interference and even sensor and cable faults, can also affect the signals used
for diagnostic purposes. Further complexity arises from the fact that multiple
faults can be present at the same time, and some faults may mask other faults
while other interact from a signal perspective. A basic assumption in the fault
signal models in section 5.1 is also that the exact mechanical configuration of
the drive train must be known. This information is not always known, and
considerable variations in the configuration (e.g. bearing configurations) can be
expected across turbines and across time, as components are replaced during
maintenance.

To summarize, the practice of drive train vibration-based monitoring is a highly
empirical discipline despite the deceivingly simple frequency-characteristics of
the important failure modes, and classical systems ultimately relies on the long
time experience of the human operators. This is also encouraging with respect to
the research direction presented here, as it suggests that a data-driven approach
presents a more sensible way forward compared to the classical approach of
heavy feature engineering.
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Figure 5.7: A Siemens monitoring room from which thousands of turbines are con-
trolled and monitored globally.
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5.2.1 Supervised learning

The efforts to pursue a supervised learning regime for vibration-based diagnostic
applications in wind turbines are documented in detail in papers B and C and
the reader is left to the actual papers for most of the implementation details.
The purpose of the paragraphs below is only to highlight the main contributions
in each of those papers.

In paper B, entitled "Scalable systems for early fault detection in wind turbines:
A data driven approach", the ground work for a suitable learning framework for
expert-driven vibration-based supervised learning is established, together with
some key findings in terms of deep model architectures for vibration-based fault
detection. The scope of this paper is only a single type of fault, namely rotor
bearing spalling faults which was also covered in paper A from a temperature-
based diagnostic perspective. For the supervised approach, the fault state was
reduced to a fault/no-fault indicator, whereby the progressive severity of the
faults is ignored. As for the ground truth target values, a number distinct
choices had to be made for the learning framework. First, the actual state of a
bearing at certain point in time is not known and the damage is only confirmed
by visual means during an inspection by a technician. The best estimate of
the fault initiation is the change-point estimate determined from inspection of
historical vibration data by a human diagnostic expert. The end of the fault
date is then set to the date of repair or component replacement which can be
extracted from the service records. These two end-points then designate the
with-fault period in time. An important point here is that the diagnosis on
which the models are trained is made by a particularly knowledgeable expert
since the person has 1) prior knowledge of the presence and type of fault and 2)
access to the entire historical data both before and after the fault onset, making
the output of the expert non-causal. All diagnostic models are conversely tested
in a completely on-line manner. The reference point in time for ROC and AUC-
evaluations is in this case set to the fault initiation determined by the expert.
All performance metrics are then measured relative to the human detection.

From the preceding section, an example of a frequency-time feature map has
already been displayed in 5.4. Such frequency-time maps is particularly useful
for turbine diagnostics, as the development in time is an important diagnostic
indicator. A suitable choice as input to the diagnostic architectures was therefore
sliding windows in time, with each window containing a time × frequency map.
From the discussion related to convolutional neural networks earlier, it becomes
clear that the architecture could benefit from convolutional processing steps
since the data had significant spatial structure in the time × frequency domain.
This also turned out to be the case, since a deep convolutional architecture was
shown to provide excellent detection performance across the test turbines, in
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Figure 5.8: Deep convolutional neural network fault probability output as a function
of time for a turbine with two distinct faults, one rotor bearing fault and one helical
stage bearing fault. The vertical lines denotes years in time. The shaded regions
display the individual fault windows specified by a human expert.

some cases months earlier than the human non-causal expert.

The overall key finding from paper B was that one is able to train deep convo-
lutional neural networks on the basis of complex vibration patterns in a fully
supervised fashion using an amount of training cases that is feasible within ex-
isting turbine monitoring platforms. This finding led to paper C, titled "Deep
learning for automated drive train fault detection", in which the work is ex-
tended to multi-sensor, multi-fault scenarios using an extended deep convolu-
tional neural network model. Here, faults on planetary stage and helical stage
bearings are included in the analysis to investigate the broader applicability of
deep convolutional neural networks in drive train diagnostics. The results are
very encouraging as the deep networks are able to accurately detect faults across
the drive train at a very early stage without showing sensitivity to noise and
other phenomena that might interfere with the detection. An example of the
model output from paper C is observed in figure 5.8 to highlight the quality of
the model outputs on a turbine with multiple faults recorded on the rotor and
helical stage bearing.

5.3 Model fusion

To illustrate how the supervised and unsupervised modeling paradigms demon-
strated so far complement each other, combined outputs from temperature-
based and vibration-based diagnostic models will now be merged for rotor bear-
ing diagnostics. Examples of three rotor bearing faults are displayed in figure
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5.9 with an overlay of the temperature residual evaluated by the heteroschedas-
tic neural network model from paper A, and the rotor bearing fault probability
output from the single-task deep network from paper C. Starting from figure
5.9a, the deep network is observed to trigger on a fault signal at an early stage.
After an operational period of about 6 months, the temperature residual also
starts to increase over a period of 3 months before the bearing reaches a critical
temperature. A similar picture can be observed in figures 5.9b and 5.9c, but with
smaller lead times between the vibration-based model and temperature-based
model. The fault progression is obviously different between these three cases,
with the last plot depicted in 5.9c showing a fast temperature rise spanning a
little more than a month.

From an operational and maintenance perspective, these plots are highly inter-
esting. The supervised models are able to provide some very early warnings
of an impeding failure and preparations for a replacement in terms of spare
parts, tools and cranes can be undertaken at an early stage possibly taking into
account other planned service works in the area and long term weather fore-
casts. The temperature residuals then provide important feedback in terms of
the fault progression. As soon as the residual begins to rise, the bearing can
be expected to be in a progressed fault state and the replacement plans may
have to be accelerated. The planning can possibly supported by estimates on
the time to failure based on residual projections. To conclude, a combination of
various state-of-the-art data modeling practices can provide valuable actionable
insights for a wind farm O&M organization.

5.4 Summary

To provide a foundation for the analysis of data-driven methods for vibration-
based fault detection, a primer on the basic principles of vibration-based moni-
toring was first given. From here, a learning framework was outlined from which
the supervised models could be trained on followed by a discussion of suitable
network architectures for complex vibration data processing. The reader is here
strongly advised to review paper C, as this work provides the most compre-
hensive view of the effectiveness of the proposed deep learning architectures.
Finally the chapter was ended by comparing and combining the outputs from
both the supervised models and the unsupervised temperature models, which is
a new contribution compared to the work in the attached papers.
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Figure 5.9: The combination of the temperature-based models and the vibration-
based models displayed for three different cases of rotor bearing faults. Early fault
detection is obtained via the vibration-based model, while the temperature-based mod-
els provide details on the fault severity during fault progression
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Chapter 6

Conclusion and outlook

In this thesis data-driven modeling have been applied to two important data
streams collected from wind turbines with the aim to extract further knowl-
edge about the state of of the turbine to facilitate more efficient operation and
maintenance on both a wind turbine and wind farm level. Despite the over-
all data-driven commonalities, different modeling paradigms have been used for
each data stream. For the SCADA data streams non-linear regression techniques
and unsupervised fault detection was combined to demonstrate

1. Accurate data-driven predictive models for rotor bearing temperature read-
ings with long-term stability in predictive accuracy.

2. An extensive study on the performance of the predictive models for fault
detection based on the model temperature residual. Faults were shown
to be detected with high accuracy 45 days before a critical rotor bearing
failure.

The last item is particularly interesting since it showcases how existing data
sources which may not be engineered for fault detection can be improved con-
siderably by applying more advanced data modeling techniques.

The work on operational wind turbine data streams serves as an extension to
existing research by providing more complex model architectures and a more
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structured approach to model evaluation in a diagnostic context using a large
number of actual turbine faults. The work presented in paper B & C based on
vibration data modeling however departs considerably from existing research on
this topic. Specifically, the key findings here are

1. Deep learning architectures are found to learn complex diagnostic process-
ing tasks from multi-sensor signals collected from a large scale monitoring
platform based on fully supervised learning from the outputs of human
experts. Deep learning architectures significantly outperforms shallow ar-
chitectures in this domain, and rivals the performance of human non-causal
experts with prior knowledge of the fault state when tested on-line.

2. The architectures are able to operate on a minimum of feature engineering.
Input features have only been selected on a high level, and the data driven
methods provide highly accurate and early detection with no knowledge
of the detailed mechanical configuration of the individual drive trains.

These results are quite remarkable given that interpretation of vibration data is
one of the most challenging tasks related to remote diagnostics on wind turbines.
The methods have here demonstrated production-ready capabilities for turbine
monitoring platforms.

The merits of the different modeling approaches have further been highlighted
by combining the outputs from the temperature residuals and the deep net-
works. Early automatized fault detection is enabled by the proposed models
which also have the added benefit of providing a probabilistic output which is
straightforward to process in added decision and planning layers. The tempera-
ture residuals are not suited for early fault detection, but instead they provide a
continuous measure of the fault progression. The combination of these different
modeling approaches provide a powerful diagnostic tool.

6.1 Outlook

Considering only the immediate methodological foundation of this thesis, ample
opportunities exist for broadening the scope in terms of:

Generalized bearing diagnostics: The combined processing of temperature
and vibration data presents itself as a general tool for bearing diagnostics,
and only a subset of the rolling element bearings in a geared turbine drive
train have been considered so far. Given the wide coverage of the drive
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train with both temperature and vibration sensors, it is feasible to target
other bearing locations also.

Detailed bearing diagnostics: Based on the supervised learning approach,
opportunities also exists for providing even more detailed fault analysis,
e.g. in terms of inner, outer and rolling element faults.

Gear wheel faults: There is not many qualitative differences between gear
wheel faults and bearing faults from a high-level signal feature perspective,
with the major difference being in terms of the time scales involved. It
would be an interesting extension to apply the supervised vibration based
models to gear wheel faults also.

In a broader perspective, some interesting research directions also start to
emerge from the presented work. These include:

Data-driven prognostics: In the plots in figure 5.9, one observes a gap in
time between the early fault detection from the supervised methods, and
the fault severity estimation from the temperature residual. Ideally, one
would like to reduce this gap and obtain not only a fault severity estimation
from the immediate onset of the fault, but also an accurate prediction on
the remaining useful lifetime of the component. Unsupervised and semi-
supervised methods possibly provide a way forward in developing capable
data-driven systems for such tasks.

End-to-end learning: The vibration-based models have all been based on in-
puts tailored for human interpretation. By adopting a true end-to-end
learning approach using raw time series input, the fault detection capabil-
ities of a data-driven system may be improved. The challenge is of course
the high sample rate signals which are employed for vibration-based diag-
nostics, and from a more practical perspective, the bias of current vibration
data platforms towards human-based analysis.

Finally, it is also worth to consider the presented work from a system-level
perspective. What have been demonstrated here is a focused effort to employ
a data-driven methodology to an admittedly small corner of the overall wind
energy system, namely diagnostic applications for wind turbines. The impact
of moving towards algorithmic complex reasoning with probabilistic outputs as
shown here is however significant. Imagine how the outputs of such diagnostic
systems can now be directly fed to the turbine control system which then is able
to adjust the operation of the turbine accordingly. The control system itself may
be a reinforcement learning system that feeds on intricate sensor systems within
the turbine and radar systems that provide detailed volumetric mapping of the
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air flow, to optimize the power production and long term turbine reliability.
Similarly, the data can flow to maintenance decision support systems that will
plan ahead in terms of available tools, equipment and other resources, possibly
including predictions on not only the weather but also the expected electricity
demand and prices in the decision process. In this vision, machine intelligence
is foreseen to take a prominent role in the future renewable energy system.
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We demonstrate how flexible non-linear models can provide accurate and robust predictions on turbine component tem-
perature sensor data using data-driven principles and only a minimum of system modeling. The merits of different model
architectures are evaluated using data from a large set of turbines operating under diverse conditions. We then go on to test
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1. INTRODUCTION

Significant efforts are invested by the wind industry to reduce the costs related to the operation and maintenance of wind
farms in the quest to reduce the overall cost of wind energy. Proactive maintenance/predictive turbine maintenance program
is one of the tools employed to realize these cost reductions. A pivotal element in these programs is the ability of wind
farm operators and service providers to extract accurate information about turbine faults and operational state from the
data streams collected from modern wind turbines. The potential benefit of advanced remote diagnostic capabilities is
increasing dramatically for wind farms off-shore and, in the near future, far-shore. We will not reiterate overall methods
and technologies related to wind turbine condition monitoring here, but instead refer to overviews given in the literature.1, 2

The overall motivation of this study is to investigate how further diagnostic insight can be gained from existing data
sources. The work is based on no-fault state models, where we seek accurate predictive models for turbine sensor readings
during a no-fault state. This concept is not new, and early demonstrations of how such modeling can be used for fault
detection in wind turbines can be found in the literature.3, 4 The predictive models have intrinsic value as they can provide
the foundation for many tasks related to further analysis of wind turbine faults and operation. A model for a given physical
system could be established using first principles. For systems of even moderate complexity, such an approach may however
prove unfeasible. If enough sensor data from the system have been collected, one could dispense with the physical model
and use flexible, general models, which are trained on collected data. As the cost of data and computing power now
decreases, data-driven methods for turbine monitoring has gained significant interest from both industry and the research
community.5–9 Such a data-driven approach will also be used in the remainder of this work. We will restrict ourselves to
the task of predicting the temperature of the rotor bearing assembly. Then, using data from a large number of actual bearing
failures in both on-shore and off-shore wind turbines, it is investigated to what degree the output from such predictive
models can be utilized in a fault detection scheme. Examples of work on rotor-bearing temperature modeling can be found
in the literature.10, 11 Our novel contributions are model formulations with more complex input and output spaces and more
actual failures to quantify the diagnostic performance of these models. The work presented is structured as follows:

Copyright © 2016 John Wiley & Sons, Ltd.
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1. The predictive performance of various learning architectures in a long-term setting is evaluated across a number of
different turbines. Focus is on long-term stability of the predictions.

2. A structured methodology for evaluating the diagnostic performance is established. Models are trained on no-fault
data, and 22 actual main bearing failures are used for testing the diagnostic ability of the trained models.

The main body of research in this area, and also the work presented here, is unsupervised in the sense that the models are
fitted to no-fault state data, and fault detection is then framed as an outlier detection problem. The clear advantage of this
approach is that no fault data required. If enough fault data are available, data-driven fault detection algorithms could also
be trained in a supervised sense, hereby learning to discriminate directly between fault and no-fault states. The remainder of
the paper is organized as follows. Section 2 describes the data, Section 3 the models, Section 4 the temperature prediction
results and Section 5 the rotor bearing fault detection results. We conclude in Section 6 and discusses future research
directions in Section 7.

2. DATA SET

To evaluate the models both in terms of their predictive accuracy and their usability in a fault detection application, sensor
data were collected from 22 turbines with confirmed rotor bearing mechanical faults. To test the no-fault state predictive
performance of the models, an additional set of 45 turbines was selected from the same set of wind farms with the require-
ment that no faults had been reported on the rotor bearing during the life span of these turbines. No other criteria were used
for the selection. The best performing models from the no-fault predictive task were then tested in a fault detection context
using the with-fault data set.

The set represents a diverse collection of turbines operating in different environmental conditions, including both
on-shore and off-shore turbines, to ensure that conclusions drawn from this study are general in nature and not specific to
any particular set of wind farm conditions.

2.1. Sensor inputs

The overall choice of inputs for the predictive models to be considered will be based on simple thermal energy flow
considerations for the bearing assembly. The main heat source to be considered is the gear box. Heat will flow from
the gear box through the main shaft and the bearing assembly before being dissipated through the hub to the external
environment. Heat transfer will likewise occur between the bearing and the internal nacelle environment. Also, a conversion
of mechanical to thermal energy will take place in the bearing because of various loss mechanisms. Based on these simple
considerations, sensor readings can be selected that enable a predictive model of the bearing temperature to capture the
thermal dynamics of the system. The choices of inputs, and their motivation, are given in the following:

Active power output: The active power output serves as an overall indicator of the operational state of the turbine and
will also serve as a more stable proxy for the wind speed compared with, e.g., a wind vane measurement.

Generator speed: The frictional losses in the bearing assembly and the rest of the drive train will be dependent on the
rotational speed.

Gear box oil temperature: The oil temperature provides an estimate of the mean gear box temperature.
Ambient temperature: The heat dissipation to the external environment will scale with the ambient temperature and wind

speed.
Nacelle temperature: Heat transfer between the bearing assembly and internal environment will scale with the internal

nacelle temperature.

To reiterate, the goal is not to derive a physical model of the functional dependencies between the bearing temperature and
these variables. Instead, we learn these dependencies from historic data collected during turbine operation.

2.2. Data processing

The raw data used in this study are mean sensor readings sampled in 10 min intervals. Testing was performed on the raw
data directly, but as the bearing temperature only varies slowly during normal operation because of the large thermal mass
of the system, a lower time resolution proved to be sufficient for both the prediction and detection tasks. A 1 h re-sampling
of all data was found to provide the best compromise between computational speed and accuracy. This also allows models
to capture dynamics of a longer time scale while keeping the model complexity bounded.

All channels were also normalized according to the following scheme before further processing:

Temperature readings: All temperature readings are normalized as Oui D ui�mi
si

, where mi, si for the individual chan-
nels are population wide mean and standard deviations inferred from a data set collected from 400 turbines. A

Wind Energ. (2016) © 2016 John Wiley & Sons, Ltd.
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population-based normalization was chosen out of convenience as it provides a fixed transformation across all data sets,
and testing showed that using per-turbine normalization did not improve convergence of the models.

Power output and generator speed: These parameters are operating within deterministic envelopes defined by the tur-
bine controller, and a Gaussian-based normalization is not suitable for these parameters. Instead, we assume these
channels to be uniformly distributed and normalize as Ouj D uj�mj

sj
, where mj D 1

2

�
max.uj/Cmin.uj/

�
and sj D

1
2

�
max.uj/ �min.uj/

�
, where j is the channel index.

3. ROTOR-BEARING PREDICTIVE MODELING

The predictive task is solved using a sliding window approach. The vector of input sensor readings is denoted by un,
and the simultaneous bearing temperatures is denoted by tn, where n is the index in time. We will consider two basic
classes of models, namely, models using strictly exogenous inputs and models also including auto-regressive terms. From
a probabilistic perspective, we seek to model

Exogenous only: p
�
tnjuT

n�LC1,uT
n�LC2 : : :u

T
n

�
(1)

Exogenous and auto-regressive: p
�
tnjuT

n�LC1,uT
n�LC2 : : :u

T
n , tTn�LC1, tTn�LC2 : : : t

T
n�1

�
(2)

By using the entire window as input, the model is able to capture longer-term dynamics of the system relevant for the
predictive task. The optimal value of length L will depend on the properties of the physical system. Here, L is treated as
any other hyper parameter to be optimized using a validation set.

In general, the formulation in equation (2) can be expected to provide more accurate predictions compared with
equation (1) as the past target values provide valuable input when predicting the current target value. However, in a diag-
nostic setting, the former model may prove more relevant as, under mild assumptions, a mechanical fault in the rotor
bearing will not influence the parameters listed in 2.1. The residual between the purely exogenous regressive model and
the measured temperature is therefore a direct measure of the temperature residual caused by the failure mechanism.

In the auto-regressive case, a change to a fault-state will also change the input distribution. The residual will then be a
measure of how well the model extrapolates to this new input domain, or in other words, how well the no-fault state model
is able to describe the thermal dynamics of the system during fault state conditions and a monotonic relationship between
the fault temperature residual and the model residual can not be guaranteed. From a diagnostic perspective, an accurate
model of type (1) is therefore desirable. We investigate this hypothesis empirically by testing both types of models in fault
detection.

3.1. Linear models

To establish a baseline for the predictive performance, we first consider a linear model of the type

p .tnjxn/ D N
�

tnjwTxn, �2
�

(3)

where N .�/ denotes the normal (Gaussian) probability distribution,w is the DC1 dimensional weight vector to be inferred
from data, xn is the input data window in vectorized form (with a zeroth input variable added to account for the bias term)
and �2 is the noise variance. The regularized maximum likelihood solution to w is given by

w D ��I CXTX
��1

XT t (4)

controlled by the weight decay parameter �, with an input data matrix X of size N � DC 1.
We furthermore consider a heteroschedastic model where the log noise variance is parameterized using a linear function

of the input. A model that is able to learn the noise distribution may prove valuable in a fault detection context as it conveys
information about the uncertainty of the model predictions. The likelihood for individual data points is then

p .tnjxn/ D N
�

tnj�.xn,w/, �2.xn,w/
�

(5)

with �.xn,w/ D wT
�xn and �2.xn,w/ D exp.wT

�xn/. This leads to the following regularized maximum likelihood error
function:

E.w/ D 1

2

NX
nD1

.tn � �.xn,w//2

�2.xn,w/
C 1

2

NX
nD1

log �2.xn,w/C 1

2

X
j

�jw
2
j (6)
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where �j is a weight decay parameter defined, in the general case, individually for each weight. This error function is
minimized using numerical techniques as described in Section 3.3. The hyper parameter of the linear models is the weight
decay �, which is optimized using a validation set and weight initialization for models that are solved iteratively.

3.2. Non-linear models

If the system on which we apply the model exhibits non-linear dynamics, the linear model in equation (3) may prove to be
too restrictive to predict the bearing temperature accurately. We will therefore also consider the non-linear two-layer neural
network model12 :

a.x,w/ D wT
2f .W

T
1 x/ (7)

where W1 is weight matrix for the first layer, f is the hidden layer non-linearity (activation function) applied element wise
andw2 is the weight vector for the second layer. Like for the linear model, we add one constant dimension to both the input
and hidden layer in order to include bias terms. For the homoschedastic model, we have the likelihood

p .tnjxn/ D N
�

tnj�.xn,w/, �2
�

(8)

with the mean function �.xn,w/ D a.xn,w/. With a constant noise term, the regularized maximum likelihood solution is
obtained by minimizing the error function

E.w/ D 1

2�2

NX
nD1

.tn � �.xn,w//2 C N

2
log �2 C 1

2

X
j

�jw
2
j (9)

These non-linear models fall under the general category of NARMAX models.13

We will also consider a heteroschedastic model as we did in the linear case. We extend the neural network to have
two output units: a� D wT

2�f .W
T

1 x/ and a�2 D wT
2�2f .W

T
1 x/ and set: �.xn,w/ D a� and �2.xn,w/ D exp a�2 .

The heteroschedastic error function in equation (6) also applies in the non-linear case. The hyper parameters of the
neural-network-based models are the number of hidden units, weight decay parameters, choice of activation functions and
weight initialization.

3.3. Optimization

In all but the simplest case of the linear model with a constant noise variance, the error function can not be minimized
analytically, and one must resort to numerical optimization algorithms to obtain a solution in parameter space for a possibly
local error minimum. We strictly used a momentum-based stochastic gradient descent procedure14 for training the models:

v�C1 D v�� � �rw QE.w� / (10)

w�C1 D w� C v�C1 (11)

where � is the momentum parameter, � is the learning rate and QE.w� / is the estimate of the true gradient of the error in
function evaluated on a sub-set (mini-batch) drawn randomly from the training set. The velocity is initialized to v0 D 0.
Weights are initialized randomly using a uniform distribution U.�˛,˛/. The training algorithm hyper parameters are also
tuned using validation data.

4. TEMPERATURE PREDICTION

In this section, we present the results for the predictive modeling of the rotor-bearing temperature. First, we discuss the
overall test design and the error measures of interest, and then we benchmark the different models on the temperature
prediction on the non-fault test condition.

4.1. Predictive scoring

The choice of predictive error measures when comparing model performance must be adapted to the task at hand. Here,
we focus on measuring long-term deviations, so once trained on no-fault state data, the models must provide accurate
predictions days, weeks and even years ahead in time. The experiment is therefore designed as follows:

Wind Energ. (2016) © 2016 John Wiley & Sons, Ltd.
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Training and validation: For all tests, the models are fitted to assumed no-fault state data from the first year of operation
for each turbine. As explained in Section 4.2, the models are fitted to each turbine individually. To ensure that a full
seasonal variation is captured within the training period, the actual year 1 data window is extended to 14 months. Also,
the first month of data has been removed from the data set to avoid pollution from commissioning tests that may not
be indicative of normal turbine operation. From the training data window, 20 random 72 h segments are held out as
validation data.

Primary error measures: As for the validation set, another 20 random segments are held out from the training period to
test the final performance of the models. By this design, we ensure that the models are trained, validated and evaluated
on data that share the input and turbine state distributions. The error measures on this test set are therefore used as the
primary measures of the predictive performance of the models.

Long-term error measures: To measure the long-term robustness of the predictive performance, additional test sets are
extracted from the following two years of operation, denoted by year 2 and year 3, respectively. As for the primary test
set, error measures are reported on each of these sets.

Two score metrics will be used on the various test sets, namely, the root mean square error (RMSE) and the average negative
log-likelihood evaluated on the combined test data from all turbines:

RMSE D
 

1

N

NX
nD1

.�.xn,wn/ � tn/
2

!1=2

(12)

L D � 1

N

NX
nD1

log p .tnjxn,wn/ (13)

Here, the individual model weights have in all cases been inferred from the training set from year 1, with weights being
shared for data points from the same turbine. The primary error measures for the year 1 test set are denoted by RMSEY1!Y1

and LY1!Y1 signifying that model parameters are inferred from year 1 and evaluated on year 1 data. Similarly, long-term
measures are denoted with subscripts Y1 ! Y2 and Y1 ! Y3.

4.2. Temperature prediction results

For an overview of the various hyper parameters selected for each model architecture, we refer to the upper part of Table I.
The window length was adjusted to L D 24 for all models investigated in this study. To gain a qualitative understanding
of the predictive performance of the models, predictions for a single turbine have been visualized in Figure 1, covering
the first 3 years of production. The residuals have also been visualized, split between models with and without AR terms.
A notable feature of the bearing temperature data is the seasonal dependency clearly observed in the 3 year plots, which
all models capture accurately, so the differences between the predictions from the individual models are most clearly
observed in the detailed view and in the residual plots. As expected, the models with AR-inputs generally provide more

Table I. Overview of hyper parameters and performance metrics for each model architecture. The best predictive scores for each
input class have been highlighted in bold.

Exogenous Exogenous + AR

Linear.�/ Linear.�,�/ ANN.�/ ANN.�,�/ Linear.�/ Linear.�,�/ ANN.�/ ANN.�,�/

No. hidden units — — 256 256 — — 256 256
Weight decay, �lin 1.0 10�6 10�4 10�3 1.0 10�4 10�6 10�4

Weight decay, �hid — — 10�4 10�1 — — 10�5 10�2

Learning rate, � — 10�4 10�3 10�4 — 2 � 10�5 10�3 10�4

Initialization, ˛ — 10�3 10�2 10�3 — 10�5 10�3 10�3

Momentum, � — 0.9 0.9 0.9 — 0.9 0.9 0.9

RMSEY1
1.36 1.67 1.13 1.15 0.31 0.33 0.32 0.36

RMSEY1!Y2
1.42 1.43 1.32 1.22 0.31 0.33 0.32 0.34

RMSEY1!Y3
1.89 1.90 1.86 1.78 0.32 0.33 0.35 0.39

LY1
1.59 1.56 1.38 1.35 0.22 0.39 0.25 0.30

LY1!Y2
1.79 2.02 1.71 2.28 0.25 0.38 0.29 0.35

LY1!Y3
2.43 3.49 3.02 5.32 0.29 0.44 0.37 0.61

Wind Energ. (2016) © 2016 John Wiley & Sons, Ltd.
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Figure 1. Example of predictions covering first three years of operation for a single turbine. Residuals have been plotted for the two
input classes separately. A zoom-in of the time segment bounded by dotted lines can be observed in the right-hand side plots to

provide a more detailed view of the model predictions. Gaps in plots are due to missing data.

accurate predictions. When comparing linear with non-linear models, the accuracy is comparable for AR models, but in the
purely exogenous case, non-linear models seem to outperform the linear models. In the detailed view, the linear models are
observed to overshoot near-temperature peaks, a trait that is not observable to the same degree for the non-linear models.
Overall, the models provide accurate predictions also in the long term, and also in the purely exogenous case. To investigate
if these observations for a single turbine applies generally, the performance metrics measured across the entire data set have
been summarized in the lower part of Table I. Focusing on the exogenous case, we see that for the primary metrics defined
for year 1 in the non-linear models provides the best fit with an RMSE as low as 1.13ıC for the model ANN.�/. The RMSE
for ANN.�, �/ is slightly higher at 1.15ıC, but the ability of this model to adapt to the noise distribution provides the best
score measured on the likelihood measure LY1 D 1.35. The results shift as we move to the long-term measures. In general,
the .�, �/ models do not provide robust likelihood models in the long term, or in other words, the more accurately the
noise distribution can be learned from the given training period, the more any shifts in the data distributions due to system
or external changes will penalize the prediction score. This is highlighted by the fact that ANN.�, �/, which provided the
best fit in year 1, provides the worst likelihood score in year 3. An interesting observation, however, is that ANN.�, �/ still
provides the best long-term fit measured in RMSE, both for years 2 and 3.

Moving on to the AR-models, we see that the predictive error is lower by a good margin, with the simple linear model
Linear.�/ providing the best fits measured both in terms of RMSE and likelihood for year 1. This also holds for the
long-term measures, and it can be concluded that the auto-regressive predictive problem is near linear in nature.

To complete the analysis of the predictive models, examples of the input-dependent noise terms are visualized in
Figure 2. The noise distribution clearly has seasonal variations for both linear and non-linear models in this case, with a
more pronounced variance shift for the exogenous models. In such a case, the added flexibility of the adaptive noise term
allow the models to allocate more modeling capacity for the low-noise regions and penalize deviations in high-noise regions
to a lesser degree during training. By extrapolating from the single turbine example in Figure 2, one could expect that an
input-dependent noise term is more advantageous in the exogenous case, which the overall results in Table I confirms.

5. FAULT DETECTION

Next, we evaluate the models in terms of their fault detection capability. As in the predictive task, we will first discuss
the test design and relevant test metrics in a detection setting, followed by the results obtained when tested on collected
fault data.
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Figure 2. Illustration of the noise-adaptive capabilities of linear and non-linear models in a 3-year period for a single turbine. When
comparing with the bearing temperature trend, the models are observed to be less certain in their predictions during colder periods.

Table II. AUC scores for the models evaluated at increasing values of the lead time �t. Best scores for each input class have
been highlighted in bold.

Exogenous Exogenous + AR

�t Linear.�/ Linear.�,�/ ANN.�/ ANN.�,�/ Linear.�/ Linear.�,�/ ANN.�/ ANN.�,�/

0 days 0.995 0.995 0.996 0.996 0.996 0.996 0.995 0.967
1 days 0.992 0.992 0.993 0.994 0.992 0.993 0.991 0.963
2 days 0.987 0.987 0.989 0.990 0.986 0.989 0.986 0.948
3 days 0.984 0.985 0.986 0.987 0.981 0.975 0.981 0.946
5 days 0.973 0.975 0.979 0.981 0.971 0.964 0.958 0.953
10 days 0.956 0.960 0.960 0.957 0.947 0.930 0.938 0.915
15 days 0.947 0.947 0.950 0.951 0.936 0.895 0.926 0.957
20 days 0.932 0.932 0.938 0.943 0.932 0.874 0.920 0.882
30 days 0.859 0.861 0.877 0.869 0.864 0.804 0.861 0.884
60 days 0.781 0.784 0.791 0.780 0.768 0.720 0.758 0.760
90 days 0.701 0.693 0.666 0.668 0.661 0.613 0.638 0.687

5.1. Detection scoring

The detection scheme implemented for this work is structured as follows:

No-fault state modeling: The no-fault state assumption for the first 14 months of operation from Section 4, minus the first
month of operation, is also replicated here.* The entire data set from this run-in period is then used to train the models
on each turbine individually.

Detection approach: Once the no-fault state models have been established, the fault detection is formulated as an outlier
detection problem. An obvious residual, or distance measure, to be used for this purpose would be a likelihood measure
as full conditional probabilities are available for all models (explicitly or implicitly). However, the likelihood did not
prove to be a robust long-term measure for the no-fault turbines, and the initial tests on the with-fault turbines also
revealed that this measure did not provide any advantages in a fault detection setting. In the following, we will therefore
strictly use rn D tn��.xn,wn/ as a distance measure. Two filtering operation are also applied before computing the final
residual. First, any data points where the active power output of the turbine is below 1000 kW are excluded from the data
set. This is motivated by the fact that the temperature residual observed from a fault is caused by frictional losses in the
bearing, which only occur during turbine operation. Periods with little or no production will therefore not provide much
signal and is therefore excluded to improve the signal-to-noise ratio. Second, we average the filtered residuals using a
5 day sliding window approach	.

*One could argue that an adaptation period of such length would not be admissible for a critical fault detection system, but from the
extensive experience of the authors from large-scale turbine monitoring, this run-in period is more than acceptable for a rotor bearing
application. In any case, engineering solutions exist for mitigating these issues, and the approach taken here should still provide a relevant
and valid baseline for further work in this area.
�A large window size will improve the estimate of the residuals and will also set a lower bound on the reaction time of the detection
system. Conversely, smaller windows will provide more noisy estimates but with improved reaction times.
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Detection timing: As the fault progresses, the fault signal-to-noise ratio is assumed to increase. All detection performance
measures will therefore be a function of time. To align the fault data from many turbines and provide a principled
approach for evaluating this time dependency, one must decide on a reference time. This reference time is for all turbines
defined as the moment when the temperature reaches a critical level as defined in the built-in hard-threshold warning
system. All measures will then be evaluated as a function of time relative to this reference point, with the relative distance
in time denoted �t, equaling the time to a turbine stop.

Data set: For each relative time distance �t, a data set is compiled in the following way: (i) For each with-fault turbine,
collect distance measure at given time stamp and add this data point as a ‘positive’. (ii) Collect distance measures from
four non-fault turbines from the same wind farm at the same absolute time stamp and add these data point to the data set
as ‘negatives’. The last step ensures that with-fault samples are balanced with a number of no-fault samples from turbines
operating under similar conditions during this specific point in time. This step is taken to obtain smoother estimates of
the time dependent metrics by reducing the biases induced from the limited fault data set size.

Figure 3. Temperature residuals for five different bearing faults covering the last 18 months before bearing failure with a split between
exogenous (left plots) and exogenous + AR (right plots) input classes.
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In the aforementioned description, a number of additional hyper parameters were introduced. An exhaustive study on how
choices for these parameters influence the results have not been performed, but it was found that the overall conclusions
drawn from this study were relatively insensitive to specific choices of these parameters.

The detection performance of the models are visualized using receiver operating characteristics (ROC)15 defined by
operating points by the classifier in .fpr, tpr/-space, where fpr D FP

N is the false positive rate and tpr D TP
P is the true

positive rate defined from the number of actual positives P, the number of classifier true positives TP, the number of actual
negatives N and the number of classifier false positives FP. Such plots are a vital tool in a large-scale monitoring setup,
as they convey the trade-off between detection rate (tpr) and the number of false positives (fpr), and provides a structured
approach for comparing different classifiers.

The ROC curves are also condensed into a single performance metric, the area-under-curve (AUC), defined as the area
under a given ROC curve. A classifier that separates positives from negatives perfectly scores AUC D 1. A completely
random classifier will score AUC D 0.5. The AUC can be interpreted as the probability that a classifier will rank a positive
sample higher than a negative sample. To summarize, these metrics quantify how well the models rank fault-data and
no-fault data based on the distance measures rn.

5.2. Fault detection results

First, the temperature residuals have been plotted for four different turbines with bearing faults in Figure 3. Again, the plots
have been split between the two different input classes. The results are promising in the sense that increasing residuals can
be observed months before the bearings reach critical temperatures, with the exception of the fault observed in the second
turbine that develops at a faster rate. The first plots in Figure 3 highlights some differences between the two different
input classes. Here, the main differences between the exogenous models are observed during the no-fault state, while the
responses during the fault state are very similar. The AR models on the other hand show similar responses during the
no-fault period, but the responses during the fault state diverges as we are in an extrapolation regime. Also, the response of
the AR models is delayed compared with the exogenous models. It must also be noted that the residuals during a fault state
differ significantly for the two input classes. Exogenous models, if accurate enough, will provide an estimate of the actual
residual caused by the failure mechanism, but the same principle will not apply to the AR models, which generally output
lower residuals compared with the exogenous models.

The overall detection performance of the models is not only affected by the response during a fault-state but just as much
by the response during no-fault states. The ROCs compiled for the entire data set have been visualized in Figure 4 for each
individual model architecture. Each plot contains curves evaluated at different values of �t as described in Section 5.1.
As the fault signal increases for decreasing values of �t, the curves are generally pushed towards the upper left corner

Figure 4. ROC curves for the various model architectures.
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Figure 5. AUC score as a function of �t for both input classes with error bars denoting 95% credibility intervals.

of the graph as expected. These curves have been condensed into AUC values evaluated in 1 day intervals in Figure 5 to
summarize the overall classifier performance as a function of �t. A sensitivity analysis has been performed by assuming
normal distributed residuals within each 5 day evaluation window from which 5000 samples were drawn from the posterior
of the individual interval means using a non-informative prior. The curves in Figure 5 are sample-based means, and the
error bars indicate the sample-based 95% credibility interval. To quantify the overall performance in more detail, the AUC
values are compared across model architectures in Table II. In the exogenous case, a significant performance gain can be
observed for the non-linear models in the high-AUC region (AUC > 0.8), with the ANN.�, �/ model leading the scores
throughout most of this interval. In the AR case, the results overlap between the models, as also confirmed by the spurious
rankings in Table II. The exogenous models provide overall the most stable results, and essentially approximates the upper
bound on the accuracy obtained from the AR models.

When observing the ROC curves, isolated for each input class, the overall structure is very similar across models. From
an operational point of view, the main differences between the highest and lowest AUC scoring models can be observed in
the low-fpr and high-tpr regions. In these regions, high-AUC models can provide a substantially lower false positive rate
for a given true positive rate at a given lead time �t.

6. CONCLUSION

The main conclusions from this study are as follows:

� Based on very simple thermal considerations, data-driven flexible models were demonstrated to provide highly accu-
rate predictions of the rotor-bearing temperature in wind turbines operating in a wide range of different conditions.
The learned mappings proved to be robust years ahead once they had been fitted to a no-fault data period. This
property is important if such models are employed for fault detection.

� The properties of model architectures with and without auto-regressive terms were investigated. Non-linearities
present in the exogenous problem setting resulted in superior predictive performance by neural network-based mod-
els over linear models, with an overall root mean square predictive error as low as 1.13ıC. As AR terms are included,
the predictive task is simplified, and linear models provide the best overall predictive performance with an error
of 0.31ıC.

� Non-linear models with the added capability of an adaptive noise distribution did not provide robust long-term like-
lihood estimates. But, an adaptive noise distribution proved to be an effective regularizer as it allowed the models to
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put less emphasis on prediction errors in high-noise regions during training, which resulted in more robust predictions
in the distribution mean when evaluating years ahead. These models provided the best overall predictive results in the
exogenous case.

� The potential for such models to be used in a fault detection system was quantified in detail using ROC and AUC
metrics. The best performing models provided accurate detection (AUC D 0.8) approx. 45 days before reaching a
critical bearing temperature.

� The benefits of strictly exogenous models over AR models was clearly demonstrated as (i) the objectives of the
predictive task and the and the detection task are closely linked in the exogenous case, and the best predictive models
were shown to also provide the best overall detection, which is an important point if only no-fault data are available;
(ii) they provided a more robust detection system; and (iii) the residual from such models is interpretable as the
residual from the fault mechanism itself.

Vibration-based systems can provide much earlier warnings of rotor bearing faults, as recently demonstrated in the
literature16 using a detection system using fully supervised learning. From a cost perspective, data enrichment strategies
of the type presented in this study are of interest as they can provide somewhat early warnings at a fraction of the cost of
advanced monitoring systems such as vibration-based systems. However, we believe that the question of how the outputs
from various diagnostic system are used together is of greater interest. Even though a fault has already been confirmed
using, e.g., vibration monitoring, additional modeling on temperatures give valuable insight into the failure progression
and enables more accurate remaining useful life predictions. In all cases, this study provides industry practitioners with the
performance data required to compare temperature-based modeling with other approaches to rotor-bearing monitoring.

7. FURTHER WORK

The work could be expanded in many different directions. With regard to the overall modeling choices, the ambition was to
demonstrate how one could achieve high predictive accuracy using very basic engineering principles combined with data
and flexible modeling techniques, but we did not perform an exhaustive analysis of how more complex input/output spaces
could improve the results. Such an analysis could be based on more complex physical models and/or automatised feature
selection. The inability of the models to provide robust long-term output distributions also warrants further investigation.

With regard to the model architectures, obvious alternative candidates would be support vector machines or Gaussian
processes, but we do not expect the methods to improve the results in any significant way. Within the neural network
framework, we did some initial testing with deeper networks, but these efforts did improve the overall results. As the data
are sequential in nature, another obvious extension would be to use sequential models. Testing of long short-term recurrent
neural network architectures17 was also performed, but again, the results did not improve, which perhaps is not a surprise
since sliding window-based feed-forward network already perform so well in the given problem setting.18

As for the detection itself, we only investigated a simple ranking based on the residuals, but much more complex methods
could be tested, and the residual could also be used as additional input to a fully supervised fault detection scheme. The
work has focused on the detection of critical faults, but the outputs of the models may also provide additional insight into
the non-critical states of various turbine components. This also leads to the question of how the overall adaptation of the
models to the turbines is optimized. Here, we used a fixed training window, but more elaborate online training methods
could also be devised.

Finally, the fact that each turbine is part of a larger population is ignored in the current models, and applying hierarchical
modeling techniques could also be an interesting extension to the presented analysis.
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Abstract

In order to leverage the complex data streams
from modern wind turbines fully in large scale
monitoring platforms, further automatization is
required. This paper addresses this issue first
by establishing a learning framework on which
algorithms can learn from the diagnostic process
performed by an experienced human expert, and
second, establishing a structured methodology
for evaluating the diagnostic performance of such
algorithms. Building on this work and vibration
data from 80 actual main bearing failures, deep
networks are demonstrated to outperform shallow
counterparts and rival human expert performance
for this complex diagnostic task. The robustness
of these methods make them suitable candidates
for implementation in large scale monitoring plat-
forms, and the study will provide a solid stepping
stone for further research into data driven turbine
diagnostics.

Keywords: Condition monitoring, data mining,
machine learning

1 Introduction

The world has changed dramatically for wind
farm operators and service pro-viders in the last
decade. Organizations whose turbine portfolios
was counted in 10-100s ten years ago are now
managing large scale operation and service
programs for fleet sizes well above one thousand
turbines. A big challenge such organizations now

face is the question of how the massive amount
of operational data that are generated by large
fleets are effectively managed and how value is
gained from the data. A particular hard challenge
is the handling of data streams collected from
advanced condition monitoring systems. These
data are highly complex and typically require
expert knowledge to interpret correctly resulting in
poor scalability when moving to large Operation
and Maintenance (O&M) platforms.

In this paper we present a purely data driven
fault detection method that has the potential to
vastly improve the scalability of fleet wide condi-
tion monitoring systems as much of the complex
diagnostic process can be put in algorithmic form.
A feasibility study has been performed on data
from 80 actual main bearing failures on both on-
an offshore turbines.

2 Data driven fault detection

Recent reviews of condition monitoring applica-
tions in wind turbines can be found in [1] and [2].
The diagnostic task we focus on in this work is
the detection of mechanical faults in the main
bearing of geared turbines, typically spalling of
raceways and/or rollers. From a diagnostic point
of view, faults on main bearings are of particular
interest because such faults can have a catas-
trophic impact on the operation of the turbine and
significant resources and equipment are required
to exchange a faulty bearing. For these reasons,
significant cost savings can be gained by provi-



ding as early warnings of an impending bearing
failure as possible. Vibration based diagnostics
[3] is a mature technology for monitoring turbine
drive trains including main bearings, and here
we will restrict ourselves to vibration-based fault
detection.
Two fundamentally different approaches exist
for developing fault detection systems. One
is a model-based approach typically using first
principles. The second, is a data driven approach
where the configuration of the diagnostic system
is inferred from data. Data driven approaches for
turbine diagnostics are typically unsupervised in
the sense that models are fitted to no-fault condi-
tions whereafter faults are identified as deviations
from this model of normality [4] [5] [6] [7] [8] [9]
[10] [11]. When moving to large scale monitoring
platforms, a sufficient number of actual failure
data is now available to approach the diagnostic
problem using fully supervised classification,
where models are trained to distinguish between
the fault/no-fault state in the dichotomous case.
One of the benefits of such an approach is for
example that a probability of failure can be directly
inferred from the output of the diagnostic models.
The latter approach is adopted here.

3 Learning framework

3.1 Methodology
In order to frame the learning process we start by
recognizing that state-of-the-art large scale vibra-
tion monitoring systems are based on a suite of
automated outlier detection algorithms to generate
warnings of potential faults, but the end diagnosis
still heavily relies on human interaction as experts
sift through the available data to provide early fault
detection. Inspired by the diagnostic process per-
formed by these analysts we will therefore explore
whether the task can be fully or partly automated
using deep and shallow learning architectures.
By observing how an experienced vibration analy-
sis expert solves the task of detecting faults on a
main bearing, a number of key elements was iden-
tified in this process, namely 1) feature selection, 2)
time frame selection and 3) comparison with past
observed faults. We will address these elements

as follows:

Features A subset of two measurements was se-
lected for this study, namely low-frequency ac-
celeration autospectra (10-62 Hz) and low to
mid-frequency acceleration autospectra (10-
1000 Hz) from a single sensor mounted on
the bearing housing. It is important to stress
that we only perform feature selection on this
high level. No attempts will be made to reduce
these data to low dimensional diagnostic fea-
tures using hand-crafted failure signal models
or unsupervised methods. The aim is to have
the models infer features of diagnostic rele-
vance automatically from the high level feature
set.

Time frame Based on input from the expert, a
time window spanning back six months for
both measurements was selected as input.

Comparison Full vibration data records were col-
lected from turbines with known main bearing
faults. The model was then trained to detect
faults using data from these turbines as back-
ground knowledge.

In order to separate the fault from no-fault con-
ditions on the selected turbines, the expert was
tasked with specifying the change point from fault
to no-fault condition using whatever data source
he or she had available. This will be named as
the Expert Retrospective Changepoint (ERC), as
it is inferred from the full time record until present
time. In an online setting, the time of detection
will generally be later compared to the ERC as
more data will have to be observed before an
accurate detection can be made. By combining
the information regarding the replacement of the
faulty main bearing from sevice records with the
specified ERC from the expert, time windows of
faulty states could be obtained for each turbine.

Data windows used for model training and
evaluation was now extracted using the following
scheme where EXC denotes the component
exchange date and U is the uniform probability
distribution:

For each turbine: Sample a random time shift
∆T from U(−90 days,min(+90 days,EXC −
ERC). Shift 180-day window centered at ERC



by ∆T and add data in window to fault data.
Repeat 10 times.

For each turbine: For period from first opera-
tion until ERC minus 2 years, extract non-
overlapping 180-day windows and add data in
windows to no-fault data. Repeat for period
following component exchange.

The reasoning behind this scheme is 1) that the
ERC itself can be viewed as a stochastic variable,
and the data on which the models are trained
should include this variability and 2) we seek
models which robustly can recognize faults in both
the early stages as well as the later stages of
failure development.

To provide the data for model training and
evaluation, failure records were obtained from
the large scale monitoring platform operated
by Siemens Diagnostic Center. This data set
contains not only operational data and service
records, but also detailed vibration data from more
than 11,000 turbines collected during the last 12
years. From here, historic data from 80 turbines
was collected in total. All turbines was from the
same product family of geared turbines and all
turbines had confirmed main bearing faults. These
were the only criteria for turbine selection. The
turbines selected are placed both on- and offshore
and are spread across geographical regions. For
model training and evaluation purposes, the set of
turbines is now split into three subsets:

1. A training set of 40 turbines was selected ran-
domly for model training.

2. A validation set of 15 turbines was selected
randomly to tune the performance of the mod-
els on unobserved data.

3. A test set of 25 turbines was selected ran-
domly for a final evaluation of the best per-
forming models selected from the validation
stage.

3.2 Data processing
To reduce the dimensionality of the inputs, each
channel was first downsampled by a factor of 2 in
the frequency domain. The available vibration data

was not sampled equidistantly in time, so the data
was further processed using linear interpolation on
an uniform time grid with 100 samples in the time
dimension. Following these steps the inputs com-
prised of two spectral images of size 100×198 and
100 × 1342 for the low- and mid-frequency chan-
nels respectively, with a total input dimensionality
of D = 154000.
The initial preprocessing is followed by local con-
trast normalisation for each input image [12]. For
each pixel xi,j the adjusted value is given by

x̂i,j =
vi,j

σi,j
, (1)

vi,j = xi,j −
∑

p,q

wp,qxi+p,j+q, (2)

σ2
i,j =

∑

p,q

wp,qv
2
i+p,j+q. (3)

Here, the weights wp,q are defined by an isotropic
Gaussian kernel parameterized by scale parame-
ters γf and γt for the frequency and time axes re-
spectively. The time scale γt is shared across the
two input channels, while the frequency scale γf is
adjusted individually for each channel. The optimal
values of these parameters are determined using
cross validation for each model.
The local normalisation forces the models to learn
richer pattern representations indicative of fault or
no-fault states instead of relying on simple signal
amplitudes.

4 Models

4.1 Logistic regression

The first model to be considered is a logistic regres-
sion model [13], where the posterior fault probabil-
ity is parameterized as

p (Fault|x) = σ
(
wTx

)
, (4)

where σ is the sigmoid function, w is the parame-
ters of the model and x is the input data vector with
an implicit bias term included. To prevent overfit-
ting the weights are constrained using L2 regulari-
sation. WithN training samples of input and output
pairs (xn, yn), the error function to be minimized is



Figure 1: Schematic of the deep convolutional network investigated in this work. Convolutional layers
are marked in blue, max-pooling layers are marked in red and fully connected layers are marked in
green. Only four kernels are shown for each convolutional layer, details of the architecture are found in
table 1.

then

E(w) = −
N∑

n=1

ln (p (yn|xn)) + λ
D+1∑

j=1

w2
j , (5)

where λ is a regularization parameter to be opti-
mized via cross validation. The above error func-
tion is convex in the logistic case and can be min-
imized efficiently via iterative optimization proce-
dures.

4.2 Deep network
As recent work on deep learning structures [14]
has provided state-of-the-art results on complex
image recognition tasks, a deep convolutional fault
recognition model was implemented to investigate
if a deeper architecture could provide increased
diagnostic performance in the given learning
setting. As in the case of the logistic regression
we seek a parameterization of the posterior fault
probability p (Fault|x) = f (w,x), but the function
f is here constructed from a hierarchical structure
of a number of nonlinear processing layers.
The model architecture employed here is depicted
in figure 1. The overall architecture consists of
two individual recognition networks covering each
input channel. The input to these subnetworks
is first processed by four convolutional and max-
pooling operations followed by a 1024-unit fully
connected layer. The individual networks are
combined using a third fully connected layer,
followed by a single sigmoidal output unit. For
further details of the architecture we refer to table 1.

In order to train the network we strictly used
stochastic gradient descent (SGD) with mini-
batches. The regularised cross entropy error
function from (5) is used for training again, how-
ever with λ = 0 and averaging across errors in
each mini-batch. To prevent overfitting of the
network, dropout [15] is instead applied to all fully
connected layers, with dropout probability p = 0.5.
The update steps in the descent procedure are as
follows:

wτ+1 = wτ − η(τ)∇wE(wτ ), (6)

where the learning rate η is both parameter depen-
dent and training time τ dependent in the general
case. Here, the learning rate is adapted using Ada-
Grad [16], and the batch size was set to 8 in all
cases. Before training, all parameters were initial-
ized according to the heuristics given in [17].

5 Results

From the training and validation stage the best per-
forming models were tested on the test set of tur-
bines. The results are listed in table 2. Both mod-
els provide high accuracies on the test set, but the
deep network significantly outperforms the logis-
tic model with an error rate of only 5.5%. To fur-
ther understand the differences between the out-
put of the two models, the posterior fault probabili-
ties are plotted for a selection of four turbines from
the test set in figure 2 as a function of time. These
plots illustrate that both models provide a strong
signal separation from the no-fault to the no-fault



Model layer Low frequency channel Mid-frequency channel

Convolutional layer 16 kernels, size 32 × 4 16 kernels, size 32 × 4

Max-pooling layer 4 × 2 pooling 3 × 2 pooling
Convolutional layer 32 kernels, size 16 × 4 32 kernels, size 16 × 4

Max-pooling layer 4 × 2 pooling 3 × 2 pooling
Fully connected layer 1024 units 1024 units

Fully connected layer 512 units
Output 1 unit

Table 1: Deep network details. All kernel and pooling operations are reported in frequency × time
domain. Rectified linear units were employed for all layers exept the output unit which is sigmoidal. The
network contains 67 million parameters in total.

state and back again when the bearing is replaced.
Some differences between the outputs can how-
ever be observed:

1. The deep network outputs low fault probabili-
ties throughout the no-fault periods. The out-
put from the logistic model is more noisy, a
most clearly observed in figure 2b where vari-
ation correlated with year cycles are present
during the no-fault periods.

2. The deep network is more confident of its fail-
ure prediction at an earlier stage compared to
the logistic model. An impressive result is ob-
served in figure 2d where the network seem-
ingly in an online setting predicts an impending
failure more than a year in advance compared
to the human expert.

From these more qualitative observations on a
subset of turbines we now wish to evaluate the
overall diagnostic performance on the entire test
set in terms of Receiver Operating Characteristics
(ROC) [18]. ROCs specify the classifier perfor-
mance in terms of the True Positive Rate (TPR)
and False Positive Rate (FPR), and a desirable

Model Test error rate

Logistic regression 9.9%
Deep network 5.5%

Table 2: Results on test set specified in terms of
error rate

property of any classifier is of course a high TPR
coupled with a low FPR. We are however also
interested in the performance of the classifiers as
a function of time relative to the damage. Before
the analysis can be completed across different
failure cases, a common reference point in time is
therefore required for each turbine. As in the case
of the training procedure the ERC is chosen as
this reference point, and all performance metrics
will now be reported relative to the ERC.

The resulting plots can be observed in figure
3 for both models. The plots have been generated
by a moving average approach relative to the ERC
where the output from the models has been aver-
aged in 10 day windows. These outputs are then
compared to similar averages from the models
obtained during no-fault periods. Each line in the
plots defines the classifier performance in terms
of this relative distance to the ERC, and points
on the individual lines indicate operating points
measured in terms of TPR and FPR defined by an
implicit model sensitivity, or p-value, selected for
that classifier. A high p-value will result in robust
predictions with a low FPR, but a lower TPR can
also be expected, as also be observed from the
plots.
The qualitative observations from the individual
turbine plots are also reflected in the comparison
across all test turbines. In general, the deep net-
work will detect a higher rate of the actual failures
with a lower rate of false positives compared to
the logistic model, measured at a specific point in
time relative to the ERC. Particularly in the region



(a) (b)

(c) (d)

Figure 2: Examples of the model fault predictions near the fault onset time for four of the turbines in the
test set. The ERC and the component exchange date has been marked with red vertical lines. A clear
indication of a fault can be observed in all cases, as well as the return to a no-fault condition when the
component is exchanged.

from +60 to +90 days the deep network is able to
predict all failures at a very low false positive rate
compared to the logistic model.

The overall classifier performance as a func-
tion of required detection lead time can be
condensed to a single value, namely the Area-
Under-Curve (AUC) which is the area below the
given ROC-curve. The AUC-values are plotted
in figure 4 and show that the deep model scores
higher throughout the entire relative time range.
From approx. +90 days the deep network is close
to a perfect classifier (AUC=1) whereas similar
performance is first obtained using the logistic
model at approx. +150 days.



(a) (b)

Figure 3: Receiver Operating Characteristics for logistic regression (left) and deep network (right). The
curves are generated by measuring the average output of the models over a 10 day window measured
relative to the ERC for the turbines in the test set.

Figure 4: Comparison of overall classification performance of the two models using AUC-scores. Each
score-value is calculated from a detection lead time specific ROC-curve as shown in figures 3a and 3b.
The deep model is observed to outperform the shallow logistic model for the entire relative time range.



6 Conclusion

This study provides thorough insight into potential
strategies for automating the complex diagnostic
process involved in early fault detection in wind tur-
bines. The key findings are as follows:

1. A learning framework has been proposed that
enables algorithms to learn from the diagnos-
tic process performed by experienced human
experts.

2. The ability to train both shallow and deep ar-
chitectures to detect faults on main bearings
with a completely data driven approach was
demonstrated using the above learning frame-
work on 80 actual main bearing faults.

3. A structured methodology was etablished
for evaluating diagnostic model performance
across a turbine fleet using Receiver Operat-
ing Charateristics and AUC metrics.

4. With the ability of deep networks to extract
high level abstract features from complex data
streams, the performance of these models
outperformed shallow architectures. In some
cases the network was able to detect faults
more than a year before a human expert al-
though the network has strictly been tested in
an online setting whereas the expert has the
entire data history available for the diagnostic
task.

The results provide a clear path towards a greater
automatization of complex diagnostic tasks rel-
evant for wind turbines as well as other type of
machinery. The methods presented are very
general in nature and can easily be adopted to
other tasks.
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ABSTRACT

A novel data driven deep learning system is presented for large scale wind turbine drive train applications. The system
is demonstrated to learn successfully from the actions of human diagnostic experts, and provide early and robust fault
detection on both rotor bearing, planetary and helical stage gear box bearings from analysis of complex multi-sensor
vibration patterns. Based on data from 251 actual wind turbine bearing failures, we are able to accurately quantify the
fleet wide diagnostic performance of the diagnostic models, and deep architectures are shown to outperform the human
analyst as well as shallow learning architectures. The results demonstrate that when applied in a large scale monitoring
system, machine intelligence is now able to handle some of the most challenging diagnostic tasks related to wind turbines.
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1. INTRODUCTION

Accurate and early detection of faults in wind turbine components play an important role in modern wind farm maintenance
programs. This is particularly true for off-shore wind farms, where limited turbine accessibility and overall cost and
complexity of turbine maintenance are some of the key cost drivers behind developing advanced diagnostic systems. In
this work we focus on the detection of faults in the drive train in geared wind turbines as these faults are typically random
in nature with a potentially severe negative impact on the continued operation of the turbine and with a high risk of further
damage to other components.

The application of machine learning techniques in a wind turbine fault detection context is not new, but have typically
been restricted to low-dimensional SCADA-based data streams and unsupervised learning paradigms where no explicit
fault data is included [1, 2, 3, 4]. Similarly, such models have also been applied to vibration data, but is typically preceded
by a low-dimensional feature selection [5, 6, 7] based on a classical signal processing approach, where relevant diagnostic
features are extracted based on theoretical and semi-empirical fault signal models [8].

The work presented here departs from these approaches. First, our focus is on large scale deployments with thousands
of turbines where enough fault data is available to make fully supervised learning feasible. Supervised means that the
diagnostic system is trained directly to separate fault-states from no-fault states. Second, we base this learning on the
actions of non-causal human diagnostic experts. Third, we lessen the requirements for detailed feature engineering and
instead feed the learning algorithms with a full high-dimensional multi-sensor data stream. The question we wish to
answer is therefore if machine learning architectures embedded in a large scale monitoring system can learn from its

Copyright c© 0000 John Wiley & Sons, Ltd. 1
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human operators and potentially provide a fully automatized scalable diagnostic solution for complex fault scenarios. The
main contributions of the presented work are:

1. A novel deep learning architecture is trained in a fully supervised sense to provide robust fault detection in complex
multiple-fault, multiple-sensor scenarios.

2. Using a large data set of actual fault data we are able to accurately quantify the diagnostic performance of various
model architectures. To the knowledge of the authors, this study represents the largest ever conducted on the
performance of machine intelligence when applied to complex fault detection in wind turbine drive trains.

The paper is structured as follows: the data set is presented in section 2, the formulation of the learning problem in section
3, the model architectures in section 4, fault detection results in section 5, visualization of the trained convolutional network
in section 6, findings are concluded in section 7 and potential extensions to the work are discussed in section 8.

2. DATA SET

In this section we discuss the selection of drive train faults we want to detect, the sensor input and the expert output we
want our model to predict.

2.1. Drive train faults

The drive train in a modern sized geared wind turbine is a complex mechanical system with a multitude of different
failure modes. To facilitate a structured and detailed analysis of the performance of the various diagnostic models, we
will restrict our attention to only a few, but important failure modes of the drive train. As a first restriction, we will only
consider bearing faults. Bearing failures are a common cause of turbine downtime and a key component of any wind turbine
condition monitoring system is the ability to detect bearing failures early and accurately. As a second restriction, we will
only consider bearing faults at three specific locations, namely rotor stage bearings, planetary stage bearings and helical
stage bearings. This choice has been made to demonstrate the fault detection capability of the models across different
rotational speed regimes in the drive train.

From the service records from a large scale monitoring platform containing data many thousands of turbines, a number of
turbines were selected to provide the data set on which the models were trained, evaluated and tested on. Only turbines
from a specific turbine family were selected to ensure that the overall mechanical configuration was similar across the
turbines. The set is from a mechanical point of view however not entirely homogeneous. Most importantly the set consists
of two major subgroups each with a different gear box configuration. Mechanical variation also exists within each of these
groups, as the subcomponents (bearings etc.) can vary from gear box to gear box. This also highlights the difficulties
with existing monitoring solutions, as the mechanical configuration must be specified in detail in order to detect faults at
a very early stage. The individual fault classes are also highly heterogeneous as the faults can be classified into further
fault subcategories, for example bearing inner ring spalling, outer ring spalling and combinations hereof. To simplify the
analysis, we did not pursue a further breakdown into subcategories. This introduces additional variation of the input data
with respect to the fault detection task. The methods presented do however still provide a key functionality for a practical
implementation, namely the overall location of the identified fault within the drive train.

In total, data from 251 confirmed bearing faults were included in this study divided on 85 rotor bearing faults, 63 planetary
stage bearing faults and 103 helical stage bearing faults. The faults have been collected from both on- and off-shore
turbines. From the fault data set, five random training, validation and test splits are generated on the turbine level. For each
random split, 25% of the turbines are held out for testing, 10% for validation and the final 65% are used for model training.
The models are then trained and evaluated across all splits.

2.2. Sensor data

The sensor data used for fault detection are based on vibration signals measured by an online vibration monitoring system
installed in every turbine. Data from four accelerometers are utilized in this study; a sensor mounted on the rotor bearing
housing (sensor 1), a sensor mounted on the gearbox housing near the planetary stage (sensor 2) and two sensors mounted
near the helical stage (sensor 3 and 4). The data collected are point measurements evaluated on small time intervals of less
than 2 minutes of duration. Two primary types of data are extracted:
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Acceleration autospectra are extracted from sensor 1, 2 and 3. The upper frequency range of the spectra is scaled from
63 Hz at sensor 1, to 125 Hz at sensor 2 to 300 Hz at sensor 3, reflecting the increase in rotational speed, and
frequency range of interest, from the rotor stage towards the high-speed output of the gear box.

Envelope acceleration autospectra are extracted for sensors 2, 3 and 4. Such measurements often provide an increased
signal-to-noise ratio for bearing diagnostics on gear boxes [8]. The upper frequency of the envelope spectra is 500
Hz in all cases.

In total, six different measurements are collected across the four different sensors. To avoid frequency smearing, all
recordings have been synchronized with the rotational speed of the turbine and normalized to the nominal rotational speed
to provide a stable frequency pattern despite speed variation within and across the individual recording time windows.

For each measurement, a sliding window approach is used where data windows spanning a given time interval is extracted
as explained in section 3. As a result, each data point xn is a collection of six time× frequency feature maps with each map
containing 50 samples in time. The combined sensor input is extremely complex with a data dimensionality of 210,000.

As found in [9], a final local normalization [10] of the data windows is required in order for the models to provide robust
predictions. Here, we strictly employ normalization in the frequency-dimension. For each pixel xi,j the adjusted value x̂i,j
is given by

x̂i,j =
vi,j
σi,j

, (1)

vi,j = xi,j −
∑

k

wkxi,j+k, (2)

σ2
i,j =

∑

k

wkv
2
i,j+k. (3)

The weights wk are defined by an Gaussian kernel parameterized by a scale parameter κ measured in feature map
pixels adjusted individually for the groups of vibration and envelope spectra. The optimal values of these parameters
was determined using validation data and was set to κ = 100 pixels for the vibration spectra and γ = 40 pixels for
envelope spectra, with a kernel truncated at ±4κ. Without this normalization strategy the models were found to base
their predictive strategy mostly on amplitude levels and not complex frequency pattern recognition, which in turn leads to
inferior predictive performance for unobserved data points.

It must finally be emphasized that the input selection should not be considered to be a complete set for detailed drive
train diagnostics, nor has the selection itself been optimized towards better diagnostic performance across the different
architectures. Instead, a high-level feature selection has been made solely based on observations from the diagnostic
process performed by human experts.

2.3. Expert output

To provide a learning target for the discriminative models, an experienced human expert has performed a detailed analysis
of the data for each of the included faults. Here, the expert sets a point in time where the first signs of a fault is visible
in the data streams. This point in time is denoted the Expert Retrospective Changepoint (ERC). From a fault detection
perspective, this setup is quite favorable as the expert has prior knowledge of the fault history of the turbine, and has access
to the entire data time history when designating the ERC, which makes the human detection non-causal. The time of repair
or replacement of the component in each case has also been extracted from the turbine service records. This point in time
is denoted EXC. How these data are used in the training procedure is described in detail in section 3.

3. TRAINING

Given the full historic sensor data tracks and expert outputs for each turbine, the data must now be structured in order to
facilitate learning for the considered model architectures. This process will be described in detail here.

The learning framework is a multi-task extension of the framework described in [9]. First, we will consider input to the
models x. As already outlined in the preceding sections we will not restrict ourselves to instantaneous data points. Instead,
a full data window spanning a predefined time interval is fed into the diagnostic models which allows the models to adapt
to not only the current input pattern but also the development of these patterns over time. This choice of input architecture
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is founded in how the human experts actually perform the analysis of the data. The data window has been set to a duration
of L = 6 months, again based on the input from human experts. No further optimization of this hyperparameter was
attempted.

As the next step, we will consider the target values yn to which the models must learn to map the inputs xn to. An example
of the event history for a turbine is illustrated in figure 1 with a fault recorded for both the rotor and helical stage. For each
component, the fault signal has been plotted against time (no fault = 0, fault = 1). In the fault period between the detection
date ERC and the exchange date EXC, it is straightforward to set the target as y = 1. For the target values before the ERC,
we simply discard the data for a period of 2 years back in time. The motivation for this strategy is as follows: The ground
truth, being the actual state of the component, is generally unknown and the component may actually be in a fault state
leading up to the ERC. To avoid a possibly wrong target value in this period of uncertainty we simply discard these data
points such that model configurations that gives a high fault probability in this period is not punished during training. An
important point here also is that by using the ERC as a fault-onset threshold, we are by design forcing the models to learn
to detect faults earlier than the human experts as the ERC is determined non-causally with a prior knowledge of the fault
history.

From the time tracks for each turbine, pairs of xn, yn-values are now sampled randomly with a fixed sample count for each
turbine, where xn is a data window containing 50 equidistant data points from the last 6 months. The diagnostic models
are then trained on the combined data sets across all turbines.

time

Rotor stage

Planetary stage

Helical stage

2 year exclusion period

ER
C

ERC
EXC

2 year exclusion period

Figure 1. Fault signals for rotor stage, planetary stage and helical stage components for a single turbine. A fault on the helical stage
has been recorded for this turbine as illustrated by the interval enclosed by the ERC, EXC-dates. For components with recorded faults,

a 2-year interval leading up to the fault detection is excluded from the data set.

4. MODEL ARCHITECTURES

We consider three different model: logistic regression, fully connected and convolutional neural networks.

4.1. Logistic regression

To establish a baseline for the predictive performance we first consider a logistic regression model [11], where the posterior
fault probability is parameterized as

p (Fault|x) = σ
(
wTx

)
(4)

where σ is the logistic function σ(z) = 1/(1 + exp z), w is the parameters of the model and x is the input data vector
with an implicit bias term included. We encode the No fault/Fault label with y ∈ {0, 1}. With N training samples of input
and output pairs (xn, yn), the regularized negative log-likelihood cost function takes the form

E(w) = −
N∑

n=1

ln p (yn|xn) +

D+1∑

j=1

λjw
2
j (5)

= −
N∑

n=1

(yn ln (ŷn) + (1− yn) ln (1− ŷn)) +

D+1∑

j=1

λjw
2
j , (6)
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where ŷn = p (Fault|xn) are the posterior fault probability estimated by the model and λj is a per-weight decay
regularization parameter to be optimized using validation data. The optimal choice of the weights w cannot be solved
analytically for any of the models considered here, so one must reside to numerical optimization techniques. We strictly
employ first-order variants of stochastic gradient descent for this optimization, as these methods scale well with respect
to both data size and model complexity. For the logistic regression model specifically, the weights are adjusted using
stochastic gradient descent with a momentum term [12]:

vτ+1 = vτγ − η∇wẼ(wτ ) (7)

wτ+1 = wτ + vτ+1 , (8)

where γ is the momentum parameter, η is the learning rate and Ẽ(wτ ) is the estimate of the true gradient of the cost
function evaluated on a subset (mini-batch) drawn randomly from the training set. The velocity is initialized to v0 = 0.
Weights are initialized according to the scheme outlined in [13]. The training algorithm hyperparameters are tuned using
validation data.

4.2. Fully connected neural network

To explore a more expressive non-linear model, the second model is a fully connected two-layer neural network
parameterized by

p (Fault|x) = σ
(
wT

2 f(W T
1 x)

)
, (9)

where W 1 is the weight matrix for the first layer, f is the hidden layer non-linearity (activation function) applied element-
wise, w2 is the weight vector for the second layer and σ is the sigmoid function. Like for the logistic regression model we
add one constant dimension to both the input and hidden layer in order to include bias terms. The hidden units are non-linear
feature extractors that allow the neural network to adapt to complex data distributions compared to the logistic regression
model which only adapts a linear decision boundary. The number of hidden units for the fully connected networks has
been fixed to M = 60 in all cases with a tanh activation function. This number has been chosen to approximately match
the number of free parameters between the fully connected neural network (FC NNs) and the deep convolutional neural
networks (Deep CNNs) explored in the next section. The neural network models’ cost function is not, contrary to logistic
regression, guaranteed to be convex. This makes good heuristics for initialization and regularization more important for
successful training.

4.3. Deep convolutional neural networks

The architectures considered so far are all permutation invariant in the sense that the models perform equally well on
arbitrary permutations of the input data as no assumptions are made regarding the spatial structure of the data. The
vibration patterns fed into the models are however highly structured in both frequency and time dimensions, and we
now seek a model architecture that is able to capture and utilize these spatial structures in the diagnostic process. So spatial
in the following is to be understood as frequency×time.

The three key architectural elements of our extended neural network models are listed below:

Convolutions: Convolutional layers are network layers with local spatial connectivity and weight sharing, or in other
words, a bank of non-linear local spatial filters applied across the spatial dimensions of the input. The weight
sharing greatly reduces the number of free parameters and makes convolutional layers less amenable to overfitting.
The primary hyperparameters of convolutional layers are the kernel size (width×height), the kernel strides and the
number of kernels.

Pooling: Each convolutional layer is followed by a max-pooling operation that provides spatial downsampling of features
and robustness towards small spatial deformations of the input. The primary hyperparameters of the pooling layers
are the window size (width×height) and strides.

Network depth: The major achievements in the last years within the domains of image recognition [14], text translation
[15], speech recognition [16] and reinforcement learning [17] have all been driven by advancements in the field of
deep learning. As the name implies, the major difference between classical shallow learning architectures and deep
learning architectures is the network depth, or number of layers. The success of deep architectures compared to
shallow counterparts is rooted in their ability to extract exceedingly higher level, abstract features of the data which
in turn enables the models to generalize well and provide accurate inference on new observations [18].
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These points, combined with the promising results in [9], motivated us to investigate if deep convolutional neural networks
can provide an overall robust diagnostic model framework for fault detection in wind turbine drive trains based on complex
input signals from multiple sensors. For a more detailed description of convolutional neural network architectures we also
refer to [10, 14].

The architecture found to provide the best overall results is illustrated in figure 2. The model consists of four different
processing pipelines, one for each of the spectrum input windows, and one combined pipeline for the envelope spectrum
windows. A kernel size of [4× 8] with strides of (1, 1) is used throughout the network. Pooling window sizes have
been restricted to [1× 2] (first layer) and [2× 2], with non-overlapping strides. Compared to the model used strictly
for rotor bearing faults in [9], we use smaller kernels but more layers. Different weight sharing strategies were first
tested, from full weight sharing between all kernels across all pipelines, to partial sharing across the first N layers, and
finally no sharing at all. The last strategy provided the best results, meaning that kernels are adapted individually on each
pipeline with the exception of the envelope spectra which were concatenated before the first convolution. These individual
measurements are from different sensors, but are processed exactly the same way in the data acquisition unit. Due to this
high similarity, depth-wise kernels in the first layer improved the feature extraction. The other input pipelines are much
more heterogeneous with different frequency ranges and resolutions, which is the reason for the share-nothing setup here.
Following the convolutional layers, outputs are fed to a 128-node fully connected layer per pipeline, and then merged by
a 1024-node fully connected layer followed by a final logistic output. Rectified linear units [19] are used as activation
functions throughout the entire network.

As for the fully connected neural network and logistic model, we train the deep networks using the cost function specified
in equation 6 but with changes to the regularization and optimization procedures. The final architecture has more than 13
million trainable parameters, and proper regularization must be considered in order to avoid overfitting. Regularization
was performed by employing dropout [20] in both input, convolutional and fully connected layers during training. Weight
decay was disabled (λj = 0). We found that an adaptive learning rate scheme [21] provided the fastest training of all deep
models.
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Figure 2. Deep network topology showing the processing flow from inputs (left) to outputs (right). The architecture is split in four
processing pipelines, one for each of the spectral feature maps and one for the combined envelope spectral feature map. The second

and third pipeline have only been outlined as the structure is the same across the first pipelines.

4.4. Transfer learning

By solving a number of distinct but related predictive tasks simultaneously, the performance of learning algorithms can
in some cases be improved compared to single-task training [22]. This concept is also known as transfer learning. In
the transfer learning set-up the model can possibly utilize internal representations helpful for one task to improve the
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predictions for a different related task. We therefore test this hypothesis on all neural network architectures, as these
contain internal (hidden) representations that may benefit from multi-task learning. The motivation in our specific problem
domain is that relevant features may be shared both across both fault types (rotor, planetary and helical stage) and turbine
classes (A and B). In total, we have six different predictive tasks.

To support multi-task training, the models and training procedures are changed as follows: Given K different tasks, the
output layer of the models is extended to K logistic outputs. With a training set of tuples (xn, yn, kn) where the index
kn ∈ {1, 2, . . .K} denotes which task data point n belongs to, we use a masked cost function

E(w) = −
N∑

n=1

K∑

j=1

δjkn (yn ln (ŷn) + (1− yn) ln (1− ŷn)) + Ereg(w) (10)

where Ereg(w) denotes an arbitrary regularization cost. All parameters apart from those connected the last hidden layer
to the specific logistic functions are shared across the different tasks. Using the masked cost function, the training of the
multi-task models follow the same procedures outlined for the single-task models in the preceding sections.

5. FAULT DETECTION

We measure the fault detection performance in several ways. Below we give the results for the overall test performance
and for several time-dependent measures.

5.1. Overall test metrics

In order to evaluate the diagnostic performance of the various model architectures, we will first consider the negative
log-likelihood score for each of the models evaluated on the hold-out test sets. These metrics provide a basic measure of
how well the model output distributions match the actual distributions of the target data. We will also evaluate the models
in terms of the Area-Under-Curve score (AUC) which is a widely used metric for evaluating diagnostic classification
algorithms [23]. The AUC is derived from the Receiver-Operating-Characteristic (ROC) of the classifier which is the curve
in (fpr, tpr)-space, where fpr is the false positive rate and tpr is the true positive rate. The AUC-score can be interpreted
as the probability that a given classifier will rank a positive sample higher than a negative sample, and is independent on
the balance of the data set (number of positives vs. number of negatives). A perfect classifier has a score of AUC = 1.0,
while a random classifier has a score of AUC = 0.5. AUC and ROCs are critical tools for evaluating diagnostic algorithms
in large scale settings, as they enable direct comparison between different algorithms and highlight the trade-offs made
between model sensitivity (the true positive rate) and the number of false positives. These metrics will be explored in more
detail in the following sections. The test log-likelihood is straightforward to evaluate using equation 6. The score for each
individual data point on which the AUC is calculated is simply the posterior fault probability ŷ. All tasks are evaluated
individually, with separate log-likelihood scores and AUC-values.

The results are listed in table I given as mean values and standard deviations measured across the five random test set splits.
Focusing on the likelihood scores, a significant margin is observed between the shallow and deep architectures, with lower
errors for the deep architectures across all turbine classes and fault types. The largest margin is observed for helical faults
on turbine class A, where the deep networks outperform the shallow models with a factor of ten. Within the family of deep
architectures the performance between single- and multitask-models are comparable. The same applies for the shallow
type family, with no significant difference across these models.

The superior log-likelihood scores of the deep networks is also observed to translate to better performance in AUC-scores,
with deep networks achieving the best scores for all tasks considered. Again, no particular performance gap between single
task and multi-task models can be observed. The AUC-scores are generally high, with average scores not below 0.93 for
all models, and not below 0.97 for the deep architectures alone.

5.2. Time dependent detection metrics

The test metrics reported in section 5.1 are based on data with the same distribution as the training data, namely data points
sampled uniformly in time for the individual turbine fault tracks. These results therefore provide an overall measure of how
accurately the fault tracks spanning the entire life time of the turbines are predicted. To gain a more detailed understanding
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Negative log-likelihood Area-Under-Curve

Rotor stage Planetary stage Helical stage Rotor stage Planetary stage Helical stage

A

Logistic, single-task 0.16±0.04 0.21±0.10 0.22±0.11 0.960±0.017 0.947±0.047 0.926±0.058

FC NN, single-task 0.19±0.03 0.21±0.10 0.19±0.05 0.958±0.016 0.938±0.066 0.931±0.055

FC NN, multi-task 0.17±0.03 0.20±0.08 0.20±0.05 0.961±0.012 0.941±0.037 0.940±0.051

Deep CNN, single-task 0.11±0.04 0.10±0.08 0.02±0.01 0.987±0.010 0.971±0.029 0.998±0.002

Deep CNN, multi-task 0.12±0.08 0.10±0.06 0.02±0.01 0.988±0.011 0.973±0.033 0.994±0.005

B

Logistic, single-task 0.17±0.09 0.13±0.08 0.23±0.05 0.937±0.026 0.909±0.083 0.965±0.015

FC NN, single-task 0.15±0.06 0.12±0.05 0.28±0.04 0.936±0.031 0.906±0.075 0.957±0.014

FC NN, multi-task 0.15±0.05 0.11±0.05 0.25±0.05 0.935±0.028 0.924±0.072 0.960±0.014

Deep CNN, single-task 0.03±0.02 0.03±0.02 0.11±0.06 0.993±0.005 0.992±0.008 0.995±0.003

Deep CNN, multi-task 0.06±0.04 0.04±0.04 0.08±0.04 0.974±0.016 0.974±0.046 0.996±0.003

Table I. Overview of performance metrics for each model architecture. The best predictive scores for each input class have been
highlighted in bold.

of how well the models perform in an online fault detection setting, the dependency of time is now included in the analysis.
The methodology is based the work in [9], but we will reiterate the basic procedure here for the sake of completeness.

First, a common point of reference must be selected in order to move from an analysis of fault state predictions for
individual turbines, to an analysis of the model performance in a fleet-wide sense. The ground truth, being the actual fault
state of each component, is generally unknown. The best estimate we can obtain of the fault onset is the ERC. This point
in time is therefore selected as the common point of reference when comparing predictions across turbines. As a result,
model performance will now be measured in terms of ∆t = t− ERC. For negative values of ∆t we are at a point in time
before the retrospective detection by an human expert, for positive values we are at a point in time after human detection.
Using this structured approach, ∆t-dependent metrics are now compiled in the following way:

1. For each test set turbine, model predictions are calculated for all three components for entire turbine life span.
Model fault probabilities are smoothed using a 5-day rolling average.

2. For each turbine, for each model, for each turbine class, for each component, for each ∆t, the model output at
t = ERC + ∆t is added to data set as a with-fault model score if a fault has been registered for this component.

3. For each turbine, for each model, for each turbine class, for each component, model outputs uniformly sampled
during no-fault states (without the 2-year exclusion period) are added to data set as a no-fault model scores.

4. From the compiled data set, ROC and AUC metrics can now be calculated for individual models and components,
as a function of ∆t.

The above procedure is then repeated for all five random data set splits to provide uncertainty estimates of the calculated
metrics. The key points to grasp from this evaluation procedure are 1) The models are now partly evaluated on out-of-
bounds data points, namely in the exclusion zone (∆t < 0), and 2) all models are tested in a fully on-line manner compared
to the human estimates which are based on retrospective evaluation with full knowledge of fault history and access to future
data points. If accurate online fault predictions can be obtained just near non-causal human detection ∆t = 0, the results
will then indeed be promising.

5.2.1. Area-Under-Curve

The overall detection performance, specified by the AUC metrics, have been visualized in figure 3. Here, the mean value
of the AUC has been plotted as a function of ∆t together with min, max values as non-parametric uncertainty estimates.
Results have been shown for each individual turbine class and component, and also as an average across the two turbine
classes in the rightmost figures. We will comment on these results for each component individually. For rotor stage faults,
the separation in results between shallow and deep architectures from table I is also reflected here, particularly for turbine
class B. Deep models are observed to maintain an very accurate detection (AUC = 0.9) at ∆t ≈ 0 days. The response from
the shallow models at this point is delayed approx. 50 days, and only achieves near-perfect classification (AUC = 1.0) at
a much later point in time.
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Figure 3. AUC-scores for various models evaluated by turbine class and component classes plotted as mean values across test splits.
Non-parametric uncertainty estimates given by min, max values are shown as shaded regions for each curve. Aggregates scores for

both turbine classes have been summarized in the right column.

For planetary stage faults, the results show even greater differences between turbine classes. For turbine class A, the deep
models have a small lead in performance, but the results are not markedly different across the investigated models, with
∆t ≈ 0 days for AUC = 0.9. For turbine class B, the picture is different, where the performance gap between deep and
shallow models is much more prominent. Here, the deep models show near-perfect detection accuracy at ∆t ≈ 10 days.

Finally, the superior detection performance of the deep architectures is highlighted for the helical stage faults, where the
deep models show near-perfect detection from ∆t = 0 days and forward in time, while the shallow models does not
provide AUC-values higher than 0.95 even at the latest stages of fault development.

An interesting observation is that the shallow models provide higher AUC-values for large negative values of ∆t. We
contribute these effects to a form of underfitting of the shallow models with respect to the actual fault detection task where
the models adapt to overall qualities of the turbine signals that carries some statistical weight in terms predicting a future
fault on a turbine. This weight could for example be inferred from a learned fault risk clustering of the turbines or a learned
representation of the turbine wear and tear which again is correlated to some degree with the fault onset for the specific
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fault categories. Further testing using no-fault data strictly from the same turbines on which the fault data were collected,
lowered the early phase AUC-values significantly in most cases for the shallow models, while the deep models were
unaffected. These results largely support the clustering hypothesis, but some mixture of both effects cannot be ruled out.
A deeper analysis is required to quantify and understand these results further, but this analysis is left as a future extension
to the presented work.

5.2.2. Receiver Operating Characteristics

The AUC-metrics stand as the overall indicator of classifier performance, but further insight can be gained from analyzing
the Receiver Operating Characteristics on which the AUC values have been calculated. From before, a significant gap
was observed between the shallow model families and the deep model families. Visualizations of ROCs for each of these
families can be observed in figure 4, restricted to the logistic model and the Deep CNN multi-task model. Each curve in
these figures represent a given point in time relative to human detection (∆t), and for each curve an AUC-value can be
calculated. The curves are based on the combined set of random test splits, providing an average representation of the
ROCs.

In the very early phase, ∆t = −120 days, the logistic model (upper row) provides better-than-random performance across
all turbine classes and components. For the deep model, the performance is much closer to random performance, signifying
that no signal can be found. For increasing values of ∆t, the difference between and shallow model is clearly observed.
Approaching ∆t = 0 days most curves for the deep models approach the upper left corner, indicating almost perfect
classification performance. At the same value of ∆t the shallow models provide lower AUC-values, meaning much higher
false positive rates for a fixed true positive rate, or much lower true positive rates for a fixed false positive rate when
compared to a deep model.
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Figure 4. A comparison of Receiver Operating Characteristics for the logistic (top row) and deep multi-task model (bottom row). Each
curve is calculated for a discrete point in time relative to the ERC, under which the area is mapped to an AUC-value in figure 3. The

curves shown here are averages, calculated across all random test splits data points.

5.2.3. Time tracks

As a final analysis we will investigate the detailed model output time tracks for selected test turbine faults, one for each
turbine and fault class. The outputs have been visualized in figure 5. These plots clearly illustrate the superior performance
of the deep models reflected in ROC and AUC metrics. Two features are noticeable: 1) In the no-fault regions, the deep
architectures consistently output low fault probabilities except for the upper left turbine where some fluctuations can be
observed following the component exchange. The outputs of the shallow models are more noisy. As we approach the ERC,
the outputs of the deep models display rapid increases with almost switching-like behavior. In some cases, the models
picks out a clear fault signature months before the human analyst. The shallow models do not exhibit a similar behavior.
The responses are delayed and less attenuated compared to the deep models. In some cases (turbine class B, rotor bearing)
the shallow models struggle to pick up on the fault signature at all.

Figure 6 shows the output of one of the best performing models (Deep CNN multi-task) for a single turbine. This turbine
has two different faults reported (rotor bearing and helical stage bearing). The model is observed to be able to clearly
differentiate between the different fault classes without cross-talk.
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A better understanding of how the test metrics are calculated can also be gained by iterating the visualized results in reverse
order. Starting from the time tracks in figure 5, one can choose a fixed point in detection time ∆t. The detection threshold,
or p-value, can now be be moved up (for reduced sensitivity) or down (for increased sensitivity) and each threshold setting
sets a point on the corresponding ∆t ROC-curve in figure 4. The value of the detection threshold is a choice of the system
designer and the ROC-curve is a visualization of this choice effects the diagnostic system in terms of true and false positive
rates. Each ROC-curve is then integrated to provide an overall AUC value, as shown in figure 3.
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Figure 5. Time tracks displaying the actual predictions from the individual models on a number of faults. Examples are given for all
turbine and fault classes. The fault interval specified by a human analyst has been highlighted by the blue regions in each plot. The

vertical grid lines denotes years in time.
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Figure 6. Multiple faults have been observed on some turbines as shown in this figure using the outputs from the deep multi-task
model. The model is able to clearly separate the different fault regions.

6. DEEP NETWORK VISUALIZATIONS

From the various test metrics it was shown that the deep architectures are able to generalize extremely well in the given
learning framework. Neural network models are often seen as black-box models, but the architecture employed here allows
us to peak inside the network to gain a further understanding of what the deep models actually learn from the data. One
way to visualize the high-level abstract features that the models extract from the input data is shown in figure 7. Here,
we map the activations of the units in the top-most convolutional layer in the first pipeline in the deep architecture. These
activations represent a low-dimensional, high-order spatial feature map from which the network base its final output via
the fully connected layers. In the same figures we also provide the original normalized high-dimensional inputs and the
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fault probability output from the network. Two different states have been visualized as a rotor stage fault progresses. The
first figure shows the state of the activations before the fault occurs, while the second figure shows the activations well into
the fault state.

A number of interesting findings can be extracted from the activation maps. First, many of the kernels show high activity
in the right edge regions, representing the region with the most recent inputs. This is hardly surprising; to detect faults at
an early stage, and to accurately reflect when the fault disappears again, the model must allocate much of its capacity on
the most recent data points. Overall, the activation maps display some highly interesting features, resembling harmonic
families in the frequency dimension, with varying attenuation across time. Again, it is hardly surprising that such frequency
harmonics are important features for diagnosing faults in bearings (or any rotating machinery), but it is an impressive feat
that the model successfully can learn to extract these features from a complex input signal in a purely data-driven fashion.
A noteworthy observation is also that the changes in the input signals are almost invisible by visual inspection. The ability
of the model to extract relevant diagnostic information from such weak signals shows why the deep architectures are able
to adapt to the given diagnostic task so well.

Figure 7. Deep network activations in the last convolutional layer in the first processing pipeline for a rotor stage bearing fault with
the top most figure showing the state before fault initiation, and the bottom figures showing the state after fault initiation. The left plots
show the fault probability output of the model as a function of time. The time length of the input data window is highlighted in blue.
The middle plots show the normalized input vectors for each channel/pipeline as (time, frequency)-plots. Similarly the 64 activation

maps are shown in the right-most grid.

7. CONCLUSION

In this work we investigated how machine intelligence could be applied to the problem domain of large scale wind turbine
monitoring with a focus on complex diagnostic tasks based on vibration pattern analysis. The main conclusions from the
work are as follows:

1. We were able to successfully train a range of discriminative models to mimic the outputs of human non-causal
diagnostic experts in a fully supervised sense using only a high-level feature selection.
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2. A novel deep learning architecture was demonstrated to provide extremely robust fault detection capabilities
for three different bearing fault classes. Measured on both the static and time-dependent test metrics, the deep
architectures consistently outperformed more shallow architectures with a wide margin.

3. The best performing models demonstrated accurate detection (AUC > 0.9) for all fault classes at the time of human
non-causal detection. In many cases, the models could detect a fault signal weeks and even months before the human
non-causal expert.

4. Given the current setup, the models did not benefit from multi-task learning. The performance did however not
suffer from multi-task learning, meaning that a single model has the the capacity to detect multiple faults.

The broader, and more practical, perspectives of these results are interesting. The detection by a non-causal expert with
prior fault knowledge should be viewed as an absolute best case performance if a system based on final human analysis is
tested in an online scenario. The performance will in general be worse, and depends in a complex way of the architecture of
the underlying monitoring platform. With the results demonstrated here, we have shown that the scalability issues with such
platforms can be sidestepped using advanced machine intelligence. Hereby, a continuously up-to-date accurate evaluation
of component health is feasible, a knowledge which in turn can be turned into direct operational value. An added benefit
is that the models also provide a probabilistic output, which easily lends itself to further processing in decision support
systems. It must finally be noted that the methods presented in this work are very general in nature, and it should be
straightforward to adapt these to other fault detection scenarios.

8. FURTHER WORK

Ample opportunities exist for extending the work presented in this paper. For the fault detection scope, one could extend
the analysis with a further breakdown of failure modes and different stages of failure progression. As for the choice of
failure modes, other critical drive train faults such as gear wheel damage could also be included.

From a methodological perspective, the supervised training is strongly linked to the human expert evaluations and the
inherent limitations in these evaluations. To fully utilize all available data, one could pursue a semi-supervised learning
paradigm, where unsupervised learning is leveraged by the expert evaluations. One could then dispense with the exclusion
period (or period of uncertainty) and instead let the model adapt to the data in these regions also. Although feature selection
was performed here only at a relatively high level, the models could also adapt to the raw data itself being the high-sample
rate vibration signals, with the aim of achieving a full end-to-end training of the diagnostic system.

Finally, the higher-than-random AUC-values observed for large negative values of ∆t for the shallow models in also
deserves further attention as already noted in section 5.2.1.
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