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Dynamic and approximate pattern matching in
2D

Raphaël Clifford1, Allyx Fontaine1, Tatiana Starikovskaya1, and Hjalte Wedel
Vildhøj2

1 Dept. of Computer Science, University of Bristol, UK
2 Technical University of Denmark, DTU Compute, Denmark

Abstract. We consider dynamic and online variants of 2D pattern match-
ing between an m×m pattern and an n× n text. All the algorithms we
give are randomised and give correct outputs with at least constant prob-
ability.

– For dynamic 2D exact matching where updates change individual
symbols in the text, we show updates can be performed in O(log2 n)
time and queries in O(log2 m) time.

– We then consider a model where an update is a new 2D pattern
and a query is a location in the text. For this setting we show that
Hamming distance queries can be answered in O(logm + H) time,
where H is the relevant Hamming distance.

– Extending this work to allow approximation, we give an efficient
algorithm which returns a (1 + ε) approximation of the Hamming
distance at a given location in O(ε−2 log2 m log log n) time.

Finally, we consider a different setting inspired by previous work on lo-
cality sensitive hashing (LSH). Given a threshold k and after building
the 2D text index and receiving a 2D query pattern, we must output a
location where the Hamming distance is at most (1+ε)k as long as there
exists a location where the Hamming distance is at most k.

– For our LSH inspired 2D indexing problem, the text can be prepro-
cessed in O(n2(4/3+1/(1+ε)) log3 n) time into a data structure of size
O(n2(1+1/(1+ε))) with query time O(n2(1/(1+ε))m2).

1 Introduction

Two dimensional pattern matching has been a topic of study and great inter-
est for many years. The original motivation comes from image processing and
recognition where one is attempting to find possibly approximate occurrences
of a 2D-pattern inside a larger 2D-text. For exact matching offline, linear time
solutions are known [12, 11, 15] and the indexing problem is solved efficiently
with the help of 2D-suffix trees [16]. A number of other variants have also been
studied including 2D-compressed pattern matching, matching with rotations,
pattern matching with non-rectangular patterns as well as others [2, 4, 9, 3, 5, 14,
6, 7].



We will consider a number of variants of 2D-pattern matching which have to
date received little attention. These can broadly be described under the head-
ings of online and dynamic pattern matching. Our focus will be both on exact
matching as well as exact and approximate Hamming distance computation. We
will also tackle a problem formulation inspired by the locality sensitive hashing
work of Andoni and Indyk [10]. Here we are given a pattern as a query and we
must report a location in the text where the Hamming distance is not too large
as long as one exists. We will now formalise the problems we tackle. All the
algorithms we develop will be randomised giving correct answers with at least
constant probability. For each problem our input text will be a square matrix T
(the text) of size n× n and the pattern P will be of size m×m.

To start we consider a dynamic version of the classic 2D-pattern matching
problem. The problem can be seen as a generalisation of the 1D problem consid-
ered in [8], where updates are only allowed in the text and the pattern remains
static. Our solution relies heavily on Karp-Rabin fingerprinting [18]. The main
technical hurdle we overcome is the difficulty in combining fingerprints of adja-
cent rectangular matrices. We circumvent this problem by only ever combining
the fingerprints of two matrices if they are placed horizontally next to each other.

Problem 1 (Dynamic text static pattern matching in 2D). Given a text T and a
pattern P, build a dynamic index that supports an update (σ, (i, j)) which sets
T [i, j] ← σ and query (i, j) which returns True if there is an exact match at
location (i, j) in the text and False otherwise.

Our solution to Problem 1 will in fact support the arrival of entire new
patterns efficiently as well. For our next two problems we consider online pattern
matching problems where the only update is the arrival of a new pattern and a
query will return the exact or approximate Hamming distance at some position
in the text. Our aim is to perform all three steps, preprocessing, updates and
queries as quickly as possible. We denote by Ham(P,T)(i, j) the Hamming
distance between the 2D-pattern P and the m×m submatrix of T with top left
corner (i, j).

Problem 2 (Online Exact Hamming Distance in 2D). Given a text T, build a
dynamic index that supports updates with a pattern P and queries which return
the value Ham(P,T)(i, j).

Our solution uses as a preliminary step linearisation of the input by encoding
carefully selected substrings of the 2D-text with their Karp-Rabin fingerprints.
This will allow us to search efficiently first for mismatches within columns and
then rows using dynamic lower common ancestor queries in suitably constructed
suffix trees.

To provide faster solutions we then extend this online Hamming distance
problem to allow a (1 + ε) approximation. We show that we can find the ap-
proximate value considerably faster than the exact value. To achieve this we use
the technique known as sketching [1]. This technique was originally developed
for 1D strings but can be transferred to our case by storing sketches of selected
substrings of the text T.



Problem 3 (Online Approximate Hamming distance in 2D). Given a binary text
T, construct a dynamic index that supports updates with a binary pattern P
and queries which return a (1 + ε) approximation of the Hamming distance
Ham(P,T)(i, j).

Finally we turn to a closely related indexing problem. Here we may preprocess
the 2D-text and we receive a 2D-pattern as a query along with a threshold k
and a constant ε. We must output a location in the text where the Hamming
distance is no more than (1 + ε)k as long as there exists a location where the
Hamming distance is no more than k.

Problem 4 (Submatrix Near Neighbour Problem). We are initially given a text T,
an integer k and a constant ε > 0. Construct an index that supports the following
query. Given a pattern P, output a position (i, j) such that Ham(T,P)(i, j) ≤
(1 + ε) · k if there exists a submatrix of T with Hamming distance at most k
from P. Otherwise if there is not, the query may either report a location with
true Hamming distance up to (1 + ε)k or no location at all.

In the 1D case Andoni and Indyk [10] solved the same problem we study by
developing an index on suffixes of a 1D string. To construct their index Andoni
and Indyk [10] heavily relied on relationships between suffixes of a 1D string.
These relationships do not exist in the 2D case and so we have introduced new
techniques and ideas to construct the index. These are our main contribution
for Problem 4.

Definitions and notation

We will use two kinds of partitioning of the text and pattern which we term belts
and canonical submatrices. Let S be an s× t matrix. A belt of height h ≤ s for
the matrix S is a submatrix of S with size h× t. A canonical submatrix of S is a
submatrix of S with size 2i × 2j where i ≤ log s and j ≤ log t are both integers.
We will also write T[i, i+ x− 1; j, j + y− 1] to denote the x× y submatrix of T
with top left corner at some position (i, j) in the text. We assume throughout
that all logarithms are taken base two and for convenience of presentation that
both m and n are an exact power of two.

2 Dynamic Text Static Pattern Matching in 2D

As our first contribution we describe a dynamic randomised index that supports
efficient exact pattern matching queries as well as updates to T and hence solves
Problem 1.

Theorem 1. The text T can be preprocessed in O(n2 log n) time into a data
structure of size O(n2) so that after processing the pattern P in O(m2 logm)
time, we can support single character updates in O(log2 n) time and query if P
occurs at a position (i, j) of T w.h.p. in O(log2m) time.



The main idea of our dynamic index is to compute the Karp-Rabin finger-
prints of submatrices of T of power of two size in order to be able to compute
the fingerprint of the m×m submatrix with the top left corner at the position
(i, j) of T efficiently. A straightforward partitioning will not suffice however due
to the difficulty in computing fingerprints of the concatenation of rectangular
matrices.

We start by giving the definition of Karp-Rabin fingerprints for matrices.

Definition 1. Let S be an s× t matrix for some s, t ≤ n. Let p ≥ n4 be a prime
and r be a random integer in Fp. We define the Karp-Rabin fingerprint ϕ for S
as:

ϕ(S) =

s∑
i=1

t∑
j=1

S[i, j]ri+(j−1)s (mod p)

Lemma 1. The Karp-Rabin fingerprints of any two s× t matrices S, S′, where
s, t ≤ n, have the following properties:

1. If S = S′, then ϕ(S) = ϕ(S′);
2. If S 6= S′, then the probability ϕ(S) = ϕ(S′) is at most 1/n2.

Proof. The first claim of the lemma is trivial. To prove the second claim notice
that since ϕ(S)−ϕ(S′) is a non-trivial polynomial of degree s · t, the number of
its roots ∈ Fp is at most s · t. The probability we choose a root randomly from
Fp is at most O(s · t/n4). The result holds since s · t ≤ n2. ut

Moreover, from the definition of Karp-Rabin fingerprints we immediately
obtain the following observation. We say that two submatrices are adjacent on
the vertical side if they are placed horizontally next to each other. That is S =
T[i : i+ s− 1, j : j + t− 1] and S′ = T[i : i+ s− 1, j + t : j + t+ t′ − 1]

Lemma 2. Let S, S′ be two submatrices of T adjacent on the vertical side. We
can compute the Karp-Rabin fingerprint of S′′ = T[i : i+ s− 1, j : j + t+ t′ − 1]
as

ϕ(S′′) = ϕ(S) + rst · ϕ(S′) (mod p)

Proof. The proof follows immediately from the definition. ut

We now present our dynamic index. For each i = 0, 1, . . . , log n we divide T
into n/2i non-overlapping belts of height 2i. For each j = 0, 1, . . . , log n we then
partition each belt into n/2j canonical submatrices of width 2j . For each of the
canonical submatrices we store its Karp-Rabin fingerprint in a lookup table.
It follows from the fingerprint definition that an individual fingerprint can be
updated in constant time if a letter at a particular position in the text is changed.
When we change one letter in T, we need to update only O(log2 n) fingerprints,
which can be therefore be done in O(log2 n) time in total. The partitioning into
belts and canonical submatrices is illustrated in Figure 1.
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Fig. 1. (a) A matrix S of size s×t. (b) Partition of S into non-overlapping belts of height
2i. In gray is represented one such belt. (c) Partition of S into canonical submatrices
of height 2i and width 2j . In gray is represented one such canonical submatrix.

When a pattern arrives, we process it in the following way. For each i =
0, 1, . . . , logm we compute and store the Karp-Rabin fingerprints of all m−2i+1
belts of height 2i. For a fixed value of i we compute the 2D-fingerprints of all
m − 2i + 1 belts of height 2i in two steps. The first step is computing the 2D-
fingerprints of all submatrices of size 2i × 1, which we do column by column.
For each column j, we first compute the fingerprint ϕ1 of the string P[1 : 2i, j],
and then for each ` ≥ 1 we compute the fingerprint ϕ`+1 of P[` + 1 : ` +
2i, j] from the fingerprint ϕ`−1 of P[` : ` + 2i − 1, j] in constant time. As there
are m columns of length m each, this step requires O(m2) time. The second
step consists in computing for each belt its 2D-fingerprint from its columns’
fingerprints as described in Lemma 2 in time O(m).

Suppose now that we are asked if T[i, i+m−1; j, j+m−1] matches pattern P.
We can divide T[i : i+m− 1, j : j+m− 1] into O(logm) non-overlapping belts
with heights that are powers of two. Each belt can then be divided vertically
intoO(logm) canonical submatrices for which we already know their Karp-Rabin
fingerprints. With the help of Lemma 2 we compute Karp-Rabin fingerprints of
the belts in O(log2m) time and compare them to those of the pattern.

Construction of the index. We now explain how we construct the text index.
We iteratively compute Karp-Rabin fingerprints of canonical matrices of height
2i, i = 0, 1, . . . , log n. When the height is fixed, we iteratively compute Karp-
Rabin fingerprints of canonical matrices of width 2j , for j = 0, 1, . . . , log n.

For each i we start by computing Karp-Rabin fingerprints of all 2i×1 subma-
trices in O(n2) time in a straightforward manner. When Karp-Rabin fingerprints
of 2i × 2j submatrices are computed, we can compute Karp-Rabin fingerprints
of 2i × 2j+1 submatrices in O(n2/2j) time using Lemma 2. In total, to compute
the fingerprints of all submatrices of height 2i, we need O(n2) time. In total, we
will need O(n2 log n) time for all submatrices.



3 Online exact 2D Hamming distance

In this section we consider Problem 2. We are given an n× n text T which we
process first. Updates come in the form of new m ×m patterns P and a query
asks us to return the Hamming distance between P and the text at location
(i, j).

Theorem 2. The text T can be preprocessed in O(n2 log n) time into a data
structure of size O(n2 log n) so that we can support updates with a new pattern
P in O(m2) time and process Hamming distance queries to return up to H
mismatches between P and T at a position (i, j) in O(logm+H) time.

The index for online exact Hamming distance in 2D

For each i = 1, 2, . . . , log n we consider n − 2i + 1 belts of height 2i. We define
a linearisation of a belt as a string of length n, where the j-th supercharacter is
the Karp-Rabin fingerprint of the j-th column of the belt.

Lemma 3. The linearisations for all belts of height 2i for a fixed i can be com-
puted in O(n2) time.

Proof. It suffices to note that for a fixed j the Karp-Rabin fingerprints of j-th
columns of all n− 2i belts can be computed in O(n) time [18]. ut

The main idea will be to first find columns within the pattern that mismatch
and then to look within those columns to find individual mismatches. In order to
do this efficiently, we compute all linearisations for all belts in O(n2 log n) time
and then build a suffix tree for them. We also augment the suffix tree with an
efficient dynamic lower common ancestor (LCA) data structure [13]. The suffix
tree and the data structure can be built in O(n2 log n) time. We then build a
suffix tree for all columns of T and augment it with the dynamic LCA data
structure as well.

When the pattern arrives, we partition it into O(logm) non-overlapping belts
of power of two heights. We linearise the belts in the way described above and
add the linearisations to the generalised suffix tree for the text belts. We also
add columns of the pattern to the generalised suffix tree for the columns. This
takes time O(m2), see [17]. Finally, we update the LCA data structures. In total,
this takes O(m2) time.

We then work with each of the pattern belts independently. We will use the
technique known as kangaroo jumping [17, Chapter 9.4]. To find the first H
mismatches between the pattern belt of height 2i and the text, we find the leaf
in the suffix tree for the text belt of height 2i containing the pattern belt and
the leaf for the pattern belt and use an LCA query to find the first column
of the pattern belt that does not match the corresponding column of the text
belt. We then use the generalised suffix tree for the columns and kangaroo jump
using LCA queries to report all mismatches in the column in constant time per
mismatch. We then go back to the suffix tree for the belts and proceed. When
a new pattern update arrives we need first to delete the previous pattern which
was added to the two trees.



4 Online approximate Hamming distance in 2D

In this section we consider Problem 3. Assume that we are given an n × n
matrix T and a constant ε > 0. We assume that we are also given an m ×m
pattern matrix P and that we can process it before answering queries. We will
give a text index for T that will support the following queries: Given a position
(i, j) return a (1 + ε)-approximation of the Hamming distance between P and
T[i : i+m− 1, j : j +m− 1].

Theorem 3. The text T can be preprocessed in O(ε−2n2 log3 n log log n) time
into a data structure of size O(ε−2n2 log2 n log log n). After processing a new
pattern P in O(ε−2m2 log log n) time, we can compute a (1 + ε)-approximation
of the Hamming distance for any position (i, j) in T in O(ε−2 log2m log log n)
time. The answer is correct with constant probability.

The index for online approximate Hamming distance in 2D

Consider all O(n2 log2 n) canonical submatrices of T of sizes 2i × 2j for i =
1, 2, . . . , log n and j = 1, 2, . . . , log n. Let C be a constant to be defined later. For
each canonical submatrix we create and store γ = C log log n vectors (sketches)
of length 1/ε2 as follows.

For each pair (i, j) and for each k = 1, 2, . . . , γ we create and store 1/ε2 sign

matrices Si,j,k` of size 2i×2j . Each entry of a sign matrix is an i.u.d. ±1 random
variable. We now define the k-th sketch of a 2i × 2j matrix M as:

(〈M,Si,j,k1 〉, 〈M,Si,j,k2 〉, . . . , 〈M,Si,j,k1/ε2〉)

where 〈M,Si,j,k` 〉 = tr(MT , Si,j,k` ) is also known as the Hilbert-Schmidt inner

product of matrices M and Si,j,k` . This sketching technique is a simple variant
of the second moment sketches of Alon et al. [1].

Suppose we have two 2i × 2j matrices A and B. For each k we approximate
the Hamming distance between A and B using the sketches obtained with the
help of the sign matrices Si,j,k1 , Si,j,k2 , . . . , Si,j,k1/ε2 . In particular, the Hamming

distance approximation we derive from the k-th sketches is hk = ε2‖〈Si,j,k1 , (A−
B)〉, . . . , 〈Si,j,k1/ε2 , (A−B)〉‖22. It follows from standard techniques that:

Lemma 4. We can choose a constant C so that the median of the Hamming
distance approximations over all γ = C log log n sketches for the matrices A and
B will belong to the interval [H, (1 + ε)H] with probability at least 1 − 1

2 log2 n
,

where H is the Hamming distance between A and B.

We process the queries in the following way. For each arriving pattern, we
partition P into O(log2m) non-overlapping submatrices of sizes 2i × 2j . Next,
we compute sketches of all submatrices in the partition with the help of sign
matrices, which takes O(ε−2m2 log log n) time, but we only need to do this once.
When a query arrives, that is when we receive a position (i, j), we consider the



same partitioning of T[i : i+m− 1, j : j +m− 1]. For each corresponding pair
of submatrices in the partitioning of P and T[i : i + m − 1, j : j + m − 1] we
compute the (1 + ε)-approximations of Hamming distances with the help of the
sketches. By Lemma 4 and the union bound, the sum of these values will be a
(1+ε)-approximation between P and T[i : i+m−1, j : j+m−1] with constant
probability. Processing a query takes O(ε−2 log2m log log n) time.

4.1 Construction of the index

We finally explain how to compute the sketches of the canonical matrices. To
compute the sketches for one canonical matrix of size 2i × 2j we need only
perform a sequence of 2D convolutions. In total, computing the sketches of all
canonical submatrices of size 2i × 2j takes O(ε−2n2 log n log log n) time. There-
fore, computing all sketches of all canonical submatrices over all sizes takes
O(ε−2n2 log3 n log log n) time.

5 Submatrix near neighbour problem

In this section we consider Problem 4. Assume that we are given an n×n matrix
T, an integer k, and a constant ε > 0. We will give a text index for T which will
support the following queries: Given an m×m pattern matrix P such that there
is a k-mismatch occurrence of P in T, return an occurrence where the Hamming
distance is at most (1 + ε) · k. Let N = n2 and M = m2. We will show that

Theorem 4. T can be preprocessed in O(N4/3+1/(1+ε) log3N) time into a data
structure of size O(N1+1/(1+ε)) with query time O(N1/(1+ε)M). If T contains a
k-mismatch occurrence of P, then the data structure w.h.p. retrieves a (1+ε) ·k-
mismatch occurrence of P in T.

The index for submatrix nearest neighbour search

We will start by recalling the notion of the L-encoding of a matrix.

Definition 2 ([16]). The L-encoding of an n×n matrix T is a string s1s2 . . . sn
of length n2, where si = T [i : i, 1 : i− 1]T [1 : i, i : i]. (See Fig. 2)

Note that if P occurs in the top left corner of T with k mismatches, then the
L-encoding of T starts with a k-mismatch occurrence of the L-encoding of P.
A suffix of T is the L-encoding of a square submatrix with bottom right hand
corner in the last row or in the last column of T. Let S1, S2, . . . , SN be the
suffixes of T. A k-mismatch occurrence of P in T guarantees that at least one
of the L-encodings S1, S2, . . . , SN starts with a k-mismatch occurrence of the
L-encoding of P, and vice versa. We will make use of data structure by Andoni
and Indyk which we call sketch forest. The following corollary follows directly
from the work of [10, Section 2].
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Fig. 2. A submatrix S of the text matrix T. (a) The L-encoding of the submatrix
S is s1,1s2,1s1,2s2,2s3,1s3,2s1,3s2,3s3,3 . . . s5,5. L3:4 is the L-shape formed by the 3-rd
and the 4-th rows and the 3-rd and the 4-th columns (shown in bold). (b) Let g be
a projection onto a set of ` = 9 positions {1, 2, 6, 8, 10, 17, 18, 19, 20} (highlighted in
gray), i.e. g(S) = s1,1s2,1s3,2s2,3s4,1s5,1s5,2s5,3s5,4. The blocks will be {1, 2}, {6, 8, 10},
{17, 18, 19}, {20}. The corresponding partitioning of S into L-shapes and rectangles is
shown on the figure by bold lines.

Corollary 1. A sketch forest on a set of strings S = {S1, S2, . . . , SN} occupies
O(N1+1/(1+ε)) space. If at least one of the strings starts with a k-mismatch of
the L-encoding of P, then the data structure will identify in O(N1/(1+ε)M) time
a subset of O(N1/(1+ε)) suffixes of T that w.h.p. contains at least one suffix
starting with a (1 + ε) · k-mismatch occurrence of the L-encoding of P.

After having identified the subset of O(N1/(1+ε)) suffixes of T, we check for
each of them if it starts with a (1 + ε) ·k-mismatch occurrence of the L-encoding
of P in a straightforward manner, comparing the letters of the suffix and the
L-encoding of P one by one. In total, this takes O(N1/(1+ε)M) more time.

The work of Andoni and Indyk heavily relied for its efficiency on the fact
that different suffixes of a single string are suffixes of each other. However, in
our linearisation of the text T this is no longer true. This requires us to devise
a new method to construct the sketch forest efficiently which we now describe.

5.1 Construction

In this section we explain how we build the sketch forest. We start by describing
its main elements.

Let p1 = 1 − k/N , and p2 = 1 − (1 + ε) · k/N . The intuition behind these
values is as follows: If S1, S2 are two strings of length N , then p1 is a lower bound
for the probability of two letters S1[i], S2[i] to be equal if the Hamming distance
between S1 and S2 is at most k. On the other hand, p2 is an upper bound for
the probability of two letters S1[i], S2[i] to be equal if the Hamming distance
between S1 and S2 is at least (1 + ε) · k.

Let H be a set of projections of a string along a fixed coordinate, i.e. the
j-th projection maps a string onto its j-th letter. A sketch forest is defined by



a family of Nρ = O(N1/(1+ε)) random functions gi ∈ H`, where ρ = log p1
log p2

and

` = logN
log 1/p2

. The choice of ρ and ` guarantees low error probability and space

complexity. Each of the functions gi can be considered as a projection along a
randomly chosen set of coordinates of size ` ≤ N . The sketch forest contains
exactly one trie for each projection function in the family. A trie Tgi contains
sketches gi(S1), gi(S2), . . . , gi(SN ) of all strings in the set.

Fix a projection function g ∈ {g1, g2, . . . , gNρ}. We will show that the trie Tg
can be built in O(N4/3 log2N) time. As an immediate corollary, all tries in the
sketch forest can be built in O(N4/3+1/(1+ε) log2N) time.

We start building the trie Tg by sorting the strings g(S1), g(S2), . . . , g(SN )
lexicographically and computing the longest common prefixes of all adjacent
strings in that order. Below we show that this can be done in O(N4/3 log2N)
time. After having sorted the strings we build Tg in O(N) time by using this
longest common prefix information.

We now explain how we sort g(S1), g(S2), . . . , g(SN ). Our algorithm will fol-
low the lines of that of [10], but because S1, S2, . . . , SN are suffixes of a 2D string
and not a 1D string as in [10], we will have to introduce some new techniques.

String sorting in O(N4/3 log2 N) time. We will give two methods for sort-
ing strings g(S1), g(S2), . . . , g(SN ). Sort A will run in O(N

√
` log2N) time and

Sort B will run in O(N log2N/`) time. We will use Sort A if ` ≤ N2/3 and Sort
B if ` > N2/3.

Both Sort A and Sort B need to make at most N logN string comparisons.
Note that in fact all we need to compare two strings is to find the first mismatch
between them. For Sort A, we will show that after O(N

√
` log2N)-time prepro-

cessing it is possible to find the first mismatch between any two strings in O(
√
`)

time. As a result, the total running time of sort A is O(N
√
` log2N). For Sort

B, we will show that the first mismatch between any two strings can be found
in O(N logN/`) time, which will give O(N2 log2N/`) time in total.

Sort A. Let g be a projection function onto positions p1 < p2 < . . . < p`. We
will divide this set into O(

√
`) blocks of consecutive positions of length at most√

` each. The method will consist of two steps. We will start by finding the
first block containing a mismatch. After having found the block, we will iterate
over all positions in it to find the desired mismatch. The second step can be
implemented in a straightforward manner and requires O(

√
`) time.

We will now explain how we implement the first step. Let us start by ex-
plaining how we divide the sequence p1 < p2 < . . . < p` into blocks. Remember
that these are positions in the L-encoding of an n × n matrix. Let Li:j be the
L-shape formed by the i-th to j-th rows and the i-th to j-th columns (see Fig. 2
for an example).

We start by greedily dividing the matrix into L-shapes, where each L-shape
either contains at most

√
` sampled positions (type I L-shapes) or is of form Li:i

(type II L-shapes). We first find the largest i1 such that L1:i1 contains at most
√
`

sampled positions. We then try to find the largest i2 such that Li1+1:i2 contains



at most
√
` sampled positions. If such i2 does not exist, we let i2 = i1 + 1,

and continue in the same fashion. We further divide each type-II L-shape into
the smallest number of horizontal and vertical rectangles containing at most

√
`

sampled positions each. The corner element forms a separate 1× 1 rectangle.
This partitioning of the matrix into L-shapes and rectangles defines a parti-

tioning of p1 < p2 < . . . < p` into O(
√
`) blocks, containing at most

√
` of the

sampled positions each. Note that positions in each block are consecutive, that is
they form a single range of the sequence p1 < p2 < . . . < p`. Each block defines
a projection of a matrix onto at most

√
` positions, and we will now define and

compute a hash function of these projections.
For a rectangular block, we define the hash function to be the Karp-Rabin

fingerprint of the projection. We can compute the values of this hash function
for all suffixes S1, S2, . . . , SN in O(N logN) time as a convolution of rows or
columns of T with a suitable vector.

Example 1. Consider Fig. 2. The hash function for the block {17, 18, 19} is the
Karp-Rabin fingerprint of s5,1s5,2s5,3.

For an L-shaped block we define the hash function differently. First, we di-
vide the L-shape into two halves, a horizontal one and a vertical one. The hash
function will be defined as a pair of fingerprints. The first fingerprint will be
defined to be the Karp-Rabin fingerprint of a permutation of the projection on
the sampled positions in the horizontal half obtained by reading the positions
by columns, and the second fingerprint as the Karp-Rabin fingerprint of a per-
mutation of the projection on the sampled positions in the vertical half obtained
by reading the positions by columns.

Example 2. Consider Fig. 2. The L-shape L3:4 is divided into two halves by a
dashed line. The hash function of the horizontal half is the Karp-Rabin fin-
gerprint of s4,1s3,2. The hash function of the vertical half is the Karp-Rabin
fingerprint of s2,3.

The Karp-Rabin fingerprints of the horizontal and vertical parts for a fixed
L-shape and all suffixes S1, S2, . . . , SN can be computed in O(N logN) time as
a sequence of 2D convolutions. In total, computing the hash functions for all
L-shaped blocks takes O(N

√
` logN) time.

Sort B. Similarly to Section 3, we consider n−2i belts of T of height 2i for each
i = 1, 2, . . . , log n. We then linearise them, build a suffix tree and augment it
with the LCA data structure. The tree can be constructed in O(N logN) time
and occupies O(N logN) space. With the help of the suffix tree and kangaroo
jumps we can report up to t mismatches between any two 2i × j submatrices
S1, S2 of T in O(t) time.

We also build a generalised suffix tree for all columns and rows of T, which
occupies O(N) space and augment it with the LCA data structure as well.

As it was shown in [10], w.h.p. the first mismatch between g(Si) and g(Sj)
is contained in the first 3N logN/` mismatches between Si and Sj . We will use



binary search and the suffix trees for the belts to extract these mismatches. When
a mismatch is extracted, we check if it belongs to {p1, p2, . . . , p`} in constant time
and stop if it does.

We start by finding the smallest t such that there are at least 3N logN/`
mismatches between the t × t top left submatrices of Si and Sj . We do so by
binary search on t. For each value of t we divide the t × t top left submatrices
into a logarithmic number of even smaller submatrices of size power of two by
t. For any pair of such submatrices of Si and Sj we can use the suffix trees for
the belts and for the columns to list the mismatches between them in constant
time per mismatch using the kangaroo method. We stop when we have found
3N logN/` mismatches, so we never spend more than O(3N logN/`) time.

We guarantee that there are at least 3N logN/` mismatches between the t×t
submatrices of Si and Sj . Unfortunately, there can be much more mismatches if
the L-shapes Lt:t of these submatrices contain many mismatches. However, using
the suffix trees for columns and for rows, we can list the mismatches between
these two L-shapes in order in constant time per mismatch.
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