

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 20, 2024

Compressed and Practical Data Structures for Strings

Christiansen, Anders Roy

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Christiansen, A. R. (2018). Compressed and Practical Data Structures for Strings. DTU Compute. DTU Compute
PHD-2017 Vol. 464

https://orbit.dtu.dk/en/publications/0f9d1596-8d30-4b8f-8e4a-7d4d3af62e15

Compressed and Practical

Data Structures for Strings

Anders Roy Christiansen

Kongens Lyngby 2017

PHD-2017-464

Technical University of Denmark

Department of Applied Mathematics and Computer Science

Richard Petersens Plads, building 324,

2800 Kongens Lyngby, Denmark

Phone +45 4525 3031

compute@compute.dtu.dk

www.compute.dtu.dk

PHD-2017-464

ISSN: 0909-3192

Abstract

In this dissertation, I will cover a number of di�erent topics related to strings
in compressed and practical settings. I will �rst present some fundamental
techniques from the area, and then cover 6 di�erent topics within the area. A
short introduction to each of these topics is given in the following.

Finger Search in Grammar-Compressed Strings. Grammar-based com-
pression, where one replaces a long string by a small context-free grammar that
generates the string, is a simple and powerful paradigm that captures many
popular compression schemes. Given a grammar, the random access problem is
to compactly represent the grammar while supporting random access, that is,
given a position in the original uncompressed string report the character at that
position. We study the random access problem with the �nger search property,
that is, the time for a random access query should depend on the distance be-
tween a speci�ed index f , called the �nger, and the query index i. We consider
both a static variant, where we �rst place a �nger and subsequently access in-
dices near the �nger e�ciently, and a dynamic variant where also moving the
�nger such that the time depends on the distance moved is supported.

Let n be the size of the grammar, and let N be the size of the string. For the
static variant we give a linear space representation that supports placing the �n-
ger in O(logN) time and subsequently accessing in O(logD) time, where D is
the distance between the �nger and the accessed index. For the dynamic variant
we give a linear space representation that supports placing the �nger in O(logN)
time and accessing and moving the �nger in O(logD + log logN) time. Com-
pared to the best linear space solution to random access, we improve a O(logN)
query bound to O(logD) for the static variant and to O(logD + log logN) for

ii Abstract

the dynamic variant, while maintaining linear space. As an application of our
results we obtain an improved solution to the longest common extension prob-
lem in grammar compressed strings. To obtain our results, we introduce several
new techniques of independent interest, including a novel van Emde Boas style
decomposition of grammars.

Compressed Indexing with Signature Grammars. The compressed in-
dexing problem is to preprocess a string S of length n into a compressed repre-
sentation that supports pattern matching queries. That is, given a string P of
length m report all occurrences of P in S.

We present a data structure that supports pattern matching queries in O(m+
occ(lg lg n+lgε z)) time using O(z lg(n/z)) space where z is the size of the LZ77
parse of S and ε > 0, when the alphabet is small or the compression ratio is
at least polynomial. We also present two data structures for the general case;
one where the space is increased by O(z lg lg z), and one where the query time
changes from worst-case to expected.

In all cases, the results improve the previously best known solutions. Notably,
this is the �rst data structure that decides if P occurs in S in O(m) time using
O(z lg(n/z)) space.

Our results are mainly obtained by a novel combination of a randomized gram-
mar construction algorithm with well known techniques relating pattern match-
ing to 2D-range reporting.

Dynamic Relative Compression, Dynamic Partial Sums, and Sub-
string Concatenation. Given a static reference string R and a source string
S, a relative compression of S with respect to R is an encoding of S as a se-
quence of references to substrings of R. Relative compression schemes are a
classic model of compression and have recently proved very successful for com-
pressing highly-repetitive massive data sets such as genomes and web-data. We
initiate the study of relative compression in a dynamic setting where the com-
pressed source string S is subject to edit operations. The goal is to maintain
the compressed representation compactly, while supporting edits and allowing
e�cient random access to the (uncompressed) source string. We present new
data structures that achieve optimal time for updates and queries while using
space linear in the size of the optimal relative compression, for nearly all com-
binations of parameters. We also present solutions for restricted and extended
sets of updates. To achieve these results, we revisit the dynamic partial sums
problem and the substring concatenation problem. We present new optimal or

iii

near optimal bounds for these problems. Plugging in our new results we also im-
mediately obtain new bounds for the string indexing for patterns with wildcards
problem and the dynamic text and static pattern matching problem.

Succinct Partial Sums and Fenwick Trees. We consider the well-studied
partial sums problem in succinct space where one is to maintain an array of n
k-bit integers subject to updates such that partial sums queries can be e�ciently
answered. We present two succinct versions of the Fenwick Tree � which is known
for its simplicity and practicality. Our results hold in the encoding model where
one is allowed to reuse the space from the input data. Our main result is the �rst
that only requires nk + o(n) bits of space while still supporting sum/update in

O(logb n) / O(b logb n) time where 2 ≤ b ≤ logO(1) n. The second result shows
how optimal time for sum/update can be achieved while only slightly increasing
the space usage to nk + o(nk) bits. Beyond Fenwick Trees, the results are
primarily based on bit-packing and sampling � making them very practical �
and they also allow for simple optimal parallelization.

Fast Dynamic Arrays. We present a highly optimized implementation of
tiered vectors, a data structure for maintaining a sequence of n elements sup-
porting access in time O(1) and insertion and deletion in time O(nε) for ε > 0
while using o(n) extra space. We consider several di�erent implementation opti-
mizations in C++ and compare their performance to that of vector and multiset
from the standard library on sequences with up to 108 elements. Our fastest
implementation uses much less space than multiset while providing speedups of
40× for access operations compared to multiset and speedups of 10.000× com-
pared to vector for insertion and deletion operations while being competitive
with both data structures for all other operations.

Parallel Lookups in String Indexes. Here we consider the indexing prob-
lem on in the parallel random access machine model. Recently, the �rst PRAM
algorithms were presented for looking up a pattern in a su�x tree. We improve
the bounds, achieving optimal results for all parameters but the preprocessing.
Given a text T of length n we create a data structure of size O(n) that answers
pattern matching queries for a pattern P of length m in O(logm) time and
O(m) work.

iv

Danish Abstract

I denne afhandling vil jeg undersøge en række forskellige emner omkring kom-
primering af strenge og strenge anvendt i praksis. Jeg vil først præsentere nogle
fundamentale teknikker fra området og så beskrive 6 forskellige emner inden for
området. En kort introduktion til hvert af de emner er givet nedenfor.

Fingersøgning i grammatik komprimerede strenge. Grammatik baseret
komprimering, hvor en lang streng erstattes af en lille kontekst-fri grammatik,
der genererer strengen, er et simpelt og stærkt værktøj, der omfatter mange
populære komprimeringsteknikker. Givet en gramatik, er opslagsproblemet at
lave en kompakt repræsentation af grammatikken, der tillader opslag på vilkår-
lige positioner, hvilket betyder at man skal kunne fortælle hvilket bogstav, der
står på en givet position i den originale ukomprimerede streng. Vi undersøger
opslagsproblemet med �ngersøgnings egenskaben, hvilket betyder at tiden det
tager at lave et opslag skal afhænge af afstanden mellem �ngerpositionen f og
opslagspositionen i. Vi ser både på en statisk variant, hvor man først placerer
sin �nger, og derefter laver opslag nær �ngeren e�ektivt, og en dynamisk vari-
ant hvor det også er muligt at �ytte �ngeren således at tiden det tager at �ytte
�ngeren afhænger af hvor langt den bliver �yttet.

Lad n være størrelsen på grammatikken, og lad N være længden af strengen. I
det statiske tilfælde præsenterer vi en lineær plads repræsentation, der under-
støtter at sætte �ngeren i O(logN) tid og derefter opslag i O(logD) tid, hvor D
er afstanden imellem �ngeren og opslaget. I det dynamiske tilfælde præsenterer
vi en lineær plads repræsentation, der understøtter at sætte �ngeren i O(logN)
tid og både opslag og �ytning af �ngeren i O(logD+ log logN) tid. Sammenlig-
net med den bedste lineærplads løsning til vilkårlige opslag forbedrer vi O(logN)

vi Danish Abstract

opslags tid til O(logD) i det statiske tilfælde og til O(logD + log logN) i det
dynamiske tilfælde, imens vi fortsat kun bruger lineær plads. Som en anven-
delse af vores resultater viser vi en forbedret løsning til det længste-fælles-
udvidelsesproblem i grammatik komprimerede strenge. For at opnå vores resul-
tater introducerer vi adskillelige nye teknikker af uafhængig interesse, inklusiv
en ny van Emde Boas lignende dekomposition af grammatikker.

Komprimeret indeksering med signaturgrammatikker. Komprimeret
indeksering er at præbehandle en streng S af længde n til en komprimeret
repræsentation, der understøtter mønstergenkendelsesforespørgelser.

Vi præsenterer en datastruktur, der understøtter mønstergenkendelse i O(m +
occ(lg lg n+lgε z)) tid og bruger O(z lg(n/z)) plads, hvor z er størrelsen af LZ77-
parsen af S og ε > 0 er en konstant, når alfabetet er småt eller komprimeringen
som minimum er polynomisk. Vi præsenterer også to datastrukturer for det
generelle tilfælde; en hvor pladsforbruget er forøget med O(z lg lg z), og en hvor
forespørgelsestiden ændres fra at være i værste tilfælde til at være i forventning.

I alle tilfælde, forbedrer vores resultater de tidligere bedst kendte løsninger.
Specielt er dette den første datastruktur, der kan afgøre om P optræder i S i
O(m) tid ved brug af O(z lg(n/z)) plads.

Vores resultater er primært opnået ved en ny kombination af en tilfældig gram-
matik konstruktion og velkendte teknikker, der forbinder mønstergenkendelse
med 2D-område rapportering.

Dynamisk relativ komprimering, dynamiske delsummer, og delstrengs
sammensætning. Givet en statisk referencestreng R og en kildestreng S er
en relativ komprimering af S i forhold til R en indkodning af S som en sekvens
af referencer til delstrenge af R. Relativ komprimering er en klassisk metode
til komprimering og har fornyligt bevist sit værd til komprimering af data med
mange repetitioner, som f.eks. gener og web-data. Vi starter undersøgelsen af
relativ komprimering i en dynamisk sammenhæng hvor den komprimerede kilde-
streng S bliver opdateret/ændret løbende. Målet er at holde den komprimerede
repræsentation kompakt samtidigt med e�ektivt at understøtte ændringer og
vilkårlige opslag i den ukomprimerede kildestreng. Vi præsenterer nye data-
strukturer, der opnår optimal tid for opdateringer og forespørgelser, og samti-
digt kun bruger lineær plads i forhold til den optimale relative komprimering for
næsten alle kombinationer af parametre. Vi præsenterer også løsninger for pro-
blemet, hvor mængden af tilladte opdateringsoperationer er ændret. For at opnå
disse resultater, undersøger vi det dynamiske delsumsproblem og delstrengssam-

vii

mensætningsproblemet. Vi viser nye optimale eller næsten optimale grænser for
disse problemer. Ved brug af vores nye resultater opnår vi også bedre grænser
for strengindekseringsproblemet for mønstre med jokertegn og mønstergenken-
delsesproblemet hvor teksten er dynamisk men mønsteret er statisk.

Koncise delsummer og Fenwick træer. Vi undersøger det velstuderede
delsumsproblem i nær optimal plads, hvor man skal vedligeholde en tabel med
n k-bit heltal, der bliver opdateret løbende, således at der e�ektivt kan svares
på delsumsforespørgelser. Vi præsenterer to koncise versioner af Fenwick træet
� som er kendt for dets simplicitet og anvendelighed. Vores resultater er givet i
indkodningsmodellen hvor det er muligt at genbruge pladsen fra input dataen.
Vores primære resultat er det første, der kun kræver nk+o(n) bits plads og stadig

understøtter sum/opdatering iO(logb n) /O(b logb n) tid hvor 2 ≤ b ≤ logO(1) n.
Det andet resultat viser hvordan man kan opnå optimal tid for sum/opdatering
ved kun at øge pladsforbruget minimalt til nk + o(nk) bits. Udover Fenwick
træer, er resultaterne primært baseret på bit-pakning og prøvetagning � hvilket
gør dem meget anvendelige og muliggør simpel parallelisering.

Hurtige dynamiske tabeller. Vi præsenterer en meget optimeret imple-
mentation af lagdelte vektorer, en datastruktur til at vedligeholde en sekvens af
n elementer, der tillader opslag i O(1) tid og indsættelse/sletning i O(nε) når
ε > 0 er en konstant, og bruger o(n) ekstra plads. Vi ser på �ere forskellige im-
plementationsoptimeringer i C++ og sammenligner deres ydeevne med vector
og multiset fra C++'s standard bibliotek på sekvenser med optil 108 elementer.
Vores hurtigste implementation bruger væsentligt mindre plads end multiset,
giver hastighedsforbedringer på en faktor 40 for opslag ift. multiset, og op til
10000 gange hurtigere indsætning/sletning ift. vector, og samtidigt er ydeevnen
sammenlignelig med begge datastrukturer for alle andre operationer.

Parallelle opslag i strengindeks. Her ser vi på indekseringsproblemet på
den parallelle vilkårligt-opslagsmaskine (PRAM). Fornyligt blev de første PRAM
algoritmer til opslag efter et mønster i et su�kstræ præsenteret. Vi forbedrer
grænserne, og opnår optimale resultater for alle parametre udover præbehand-
lingstiden. Givet en tekst T af længde n, konstruerer vi en datastruktur af
størrelse O(n), der kan svare på mønstergenkendelsesopslag efter et mønster P
af længde m i O(logm) tid og O(m) arbejde.

viii

Preface

This dissertation is the result of research I have been doing while being a part of
the project called Compressed Computation on Highly-Repetitive Data partially
funded by the Danish Research Council (DFF � 4005-00267). It was prepared at
the Department of Applied Mathematics and Computer Science at the Technical
University of Denmark. The 3 years of PhD studies started on October 1, 2014
and ended on November 30, 2017, during this period I had one month leave
of absence where I worked on teaching materials for DTU. My supervisors are
Associate Professor Philip Bille and Associate Professor Inge Li Gørtz.

Acknowledgements First of all, I will like to thank my two supervisors Inge
and Philip, who have provided great advice and intellectual challenges during
my studies, and always been available when needed. A big thank to Martín
Farach-Colton who hosted me during my memorable external research stay in
New York City. It was great to experience the city and another way to work and
live as a researcher. Thanks to all my colleagues � especially to my o�ce mates
Mikko, Nicola, Frederik, Patrick, Hjalte, and Søren with whom I have had a
great time and (too) many good discussions about all and nothing. Thanks to
all the people in the community I have met at conferences and social events.
Thanks to my friends, family, and Jose�ne for their support. Finally, thanks to
my mascot who has given me renewed energy whenever going to the mail/printer
room in the past years.

Anders Roy Christiansen

November 30, 2017
Lyngby

x

Contents

Abstract i

Danish Abstract v

Preface ix

1 Introduction 1
1.1 Overview . 2
1.2 Preliminaries . 4
1.3 The Lempel-Ziv Family and Friends 5
1.4 Context-Free Grammars and SLPs 6
1.5 Heavy Paths . 12
1.6 On Chapter 2: Finger Search in Grammar-Compressed Strings . 14
1.7 On Chapter 3: Compressed Indexing with Signature Grammars . 16
1.8 On Chapter 4: Dynamic Relative Compression, Dynamic Partial

Sums, and Substring Concatenation 17
1.9 On Chapter 5: Succint Partial Sums and Fenwick Trees 19
1.10 On Chapter 6: Fast Dynamic Arrays 20
1.11 On Chapter 7: Parallel Lookups in String Indexes 22

2 Finger Search in Grammar-Compressed Strings 25
2.1 Introduction . 26

2.1.1 Related Work . 27
2.1.2 Our results . 28
2.1.3 Technical Overview . 29
2.1.4 Longest Common Extensions 30

2.2 Preliminaries . 31
2.3 Fringe Access . 32

2.3.1 van Emde Boas Decomposition for Grammars 33

xii CONTENTS

2.3.2 Data Structure . 35
2.3.3 Improving the Query Time for Small Indices 37

2.4 Static Finger Search . 39
2.5 Dynamic Finger Search . 41

2.5.1 Left Heavy Path Decomposition of a Path 41
2.5.2 Data Structure . 42
2.5.3 Moving/Access to the Left of the Finger 44

2.6 Finger Search with Fingerprints and Longest Common Extensions 45
2.6.1 Fast Fingerprints on the Fringe 45
2.6.2 Finger Search with Fingerprints 46
2.6.3 Longest Common Extensions 46

3 Compressed Indexing with Signature Grammars 49
3.1 Introduction . 50

3.1.1 Our Results . 50
3.1.2 Technical Overview . 52

3.2 Preliminaries . 53
3.3 Signature Grammars . 54

3.3.1 Signature Grammar Construction 55
3.3.2 Properties of the Signature Grammar 56

3.4 Long Patterns . 58
3.4.1 Data Structure . 58
3.4.2 Searching . 59
3.4.3 Correctness . 60
3.4.4 Complexity . 61

3.5 Short Patterns . 61
3.6 Semi-Short Patterns . 62

3.6.1 Data Structure . 63
3.6.2 Searching . 63
3.6.3 Analysis . 64

3.7 Randomized Solution . 64

4 Dynamic Relative Compression, Dynamic Partial Sums, and
Substring Concatenation 67
4.1 Introduction . 68

4.1.1 Dynamic Relative Compression 69
4.1.2 Dynamic Partial Sums . 70
4.1.3 Substring Concatenation 72
4.1.4 Extensions . 73

4.2 Dynamic Relative Compression 74
4.2.1 Data Structure . 75
4.2.2 Answering Queries . 76

4.3 Dynamic Partial Sums . 77
4.3.1 Dynamic Partial Sums for Small Sequences 77

CONTENTS xiii

4.3.2 Dynamic Partial Sums for Large Sequences 82
4.4 Substring Concatenation . 83
4.5 Extensions . 85

4.5.1 Dynamic Relative Compression with Access and Replace . 85
4.5.2 Dynamic Relative Compression with Split and Concatenate 86

4.6 Conclusion . 87

5 Succinct Partial Sums and Fenwick Trees 89
5.1 Introduction . 90
5.2 Data structure . 91

5.2.1 Layered b-ary structure 91
5.2.2 Sampling . 93

5.3 Optimal-time sum and update . 94

6 Fast Dynamic Arrays 97
6.1 Introduction . 97
6.2 Preliminaries . 99
6.3 Tiered Vectors . 99
6.4 Improved Tiered Vectors . 103

6.4.1 Implicit Tiered Vectors 103
6.4.2 Lazy Tiered Vectors . 104

6.5 Implementation . 104
6.5.1 C++ Templates . 105

6.6 Experiments . 107
6.6.1 Comparison to C++ STL Data Structures 108
6.6.2 Tiered Vector Variants . 109
6.6.3 Width Experiments . 111
6.6.4 Height Experiments . 112
6.6.5 Con�guration Experiments 112

6.7 Conclusion . 114

7 Parallel Lookups in String Indexes 115
7.1 Introduction . 115
7.2 Preliminaries . 117
7.3 Simple Fingerprint-Based Pattern Lookup 118
7.4 Better Fingerprint-Based Pattern Lookup 119
7.5 Parallel Su�x Array Pattern Lookup 121

Bibliography 123

xiv CONTENTS

Chapter 1

Introduction

The amount of digital data we store worldwide increases at an incredible pace.
In order to use all this data for something meaningful, we need methods to han-
dle it e�ciently. Fortunately, hardware improvements over the past decades has
enabled us to handle much more data than previously possible. Unfortunately,
it is very di�cult for hardware improvements to keep up with the current growth
in data. Designing clever and e�cient ways to handle all this data in software
instead of relying on hardware improvements is therefore of utmost importance.
This is where the topic of algorithms and data structures comes to the rescue.
A key component in handling all this data is compression. All data with regu-
larities can be compressed to use less space than the original data. One recent
source of this growth in data is DNA sequencing where researchers try to under-
stand the human genome. DNA sequences are long and thus takes up a lot of
space, but the DNA of two people from the same population is approximately
99% similar, ie. only few di�erences in the DNA make individuals who they
are. This means DNA is highly compressible due to the many repetitions in
the DNA sequences, and therefore one among other good applications for the
methods we develop in this dissertation.

Data compression has been studied in many di�erent settings for a long time.
For example a well-known area where data compression has played a signi�cant
role is video transmission. It is estimated that more than half of all tra�c on
the Internet is currently due to video streaming. Without video compression

2 Introduction

this tra�c would explode. For most video transmission it is acceptable that
the received video is not 100% identical to the original video as long as the
di�erences are (almost) invisible for the human eye, ie. we accept some loss
of information. In this dissertation, however, we focus on lossless compression
where information is not allowed to be lost. Most people also encounter this kind
of compression on a daily basis � for instance almost all websites are transfered
from the server to the client in compressed form to speedup the loading time. In
fact, the compression technique most commonly used to do this, gzip, is based
on one of the most fundamental compression schemes which we will encounter
in this study, namely the LZ77 compression scheme. This compression scheme
is also a key component of zip-�les. The compression schemes we will study in
this dissertation are all based on exploiting repetitions in the data.

Earlier on - and still to a large extent - when working with compressed data, the
strategy was to simply compress it at some point and then when the original
data was needed decompress all of the data again - even if only small amounts
of the data was needed. In this dissertation we will instead consider compressed
representations of the data that allows us to use the data without decompressing
it �rst, we call such representations of data compressed data structures.

One of the topics in this dissertation is text indexing. A text index data structure
is to a computer what the (word) index in the back of a book is to a human.
That is, it is an (additional) representation of the original data that helps us
quickly answer certain questions. In the case, it allows us to quickly answer
where some given word occurs. This is a fundamental and well studied problem
within the �eld of data structures that already have many variants and solutions.
In this dissertation, we will consider this fundamental problem in a compressed
setting. Thus we design compressed data structures that allow us to answer
where a given word/pattern occurs in a text/string.

1.1 Overview

During my PhD studies I have co-authored the following papers:

Finger Search in Grammar-Compressed Strings. Philip Bille, Anders
Roy Christiansen, Patrick Hagge Cording and Inge Li Gørtz. Accepted for pub-
lication in Theory of Computing Systems. An extended abstract appeared in the
proceedings of the 36th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science.

Compressed Indexing with Signature Grammars. Anders Roy Chris-

1.1 Overview 3

tiansen and Mikko Berggren Ettienne. Submitted to the 13th Latin American
Theoretical INformatics Symposium.

* Dynamic Relative Compression, Dynamic Partial Sums, and Sub-
string Concatenation. Philip Bille, Anders Roy Christiansen, Patrick Hagge
Cording, Inge Li Gørtz, Frederik Rye Skjoldjensen, Hjalte Wedel Vildhøj and
Søren Vind. In Algorithmica 2017.

Succinct Partial Sums and Fenwick Trees. Philip Bille, Anders Roy Chris-
tiansen, Nicola Prezza and Frederik Rye Skjoldjensen. In the proceedings of the
24th International Symposium on String Processing and Information Retrieval.

Fast Dynamic Arrays. Philip Bille, Anders Roy Christiansen, Mikko Berggren
Ettienne and Inge Li Gørtz. In the proceedings of the 25th Annual European
Symposium on Algorithms.

Parallel Lookups in String Indexes. Anders Roy Christiansen and Martín
Farach-Colton. In the proceedings of the 23rd International Symposium on
String Processing and Information Retrieval.

Except from the paper "Dynamic Relative Compression, Dynamic Partial Sums,
and Substring Concatenation", I have contributed to the entire process from the
initial ideas to the �nal and published version � se details about my contributions
to this last paper in section 1.8.

The �rst three of the papers in the above list are about compressed data struc-
tures and the second three are about data structures related to strings and are
in some sense practical � thus the title of this dissertation. Five of the above
papers are theoretical whereas the paper Fast Dynamic Arrays is mainly exper-
imental. Five of the papers have already been peer-reviewed and published, but
Compressed Indexing with Signature Grammars is in submission.

In the rest of this �rst chapter, I will give a short introduction to some of
the fundamental compression schemes and techniques that I have been working
with throughout my studies. Even though only half of my papers are based
on compressed data structures, this is the topic I feel I have spent the most
time on during my studies. Afterwards in section 1.6-1.11 I will give a short
introduction to each of the 6 following chapters. In each of these introductions, I
will shortly present a selection of the problem, solutions, main techniques, future
directions and a background story on when/why I worked on that problem on
my path to handing in this dissertation. The remaining chapters are (with very
few exceptions) verbatim copies of the published papers listed above.

4 Introduction

1.2 Preliminaries

Models of Computation With a single exception all papers presented in this
dissertation are based on the RAM-model [69]. In Chapter 7 (Parallel Lookups
in String Indexes) we consider the strongly related but parallel PRAM-model
[77]. As the name suggests, the core di�erence is that parallel processing is
possible in the PRAM model. In the PRAM model, we have multiple proces-
sors that can execute di�erent code at the same time. It is normally assumed
that an unlimited number of processors are available. This is a reasonable as-
sumption due to Brent's theorem [20] that shows how time/work is in�uenced
if only a given number of processors are available. All processors can access the
same memory space, but this might cause con�icts if multiple processors try
to read/write the same memory cell at the same time. Therefore, the PRAM
is divided into three subcategories Exclusive-Read-Exclusive-Write (EREW),
Concurrent-Read-Exclusive-Write (CREW), and Concurrent-Read-Concurrent-
Write (CRCW). Where the former is most restricted and the latter least re-
stricted. On a EREW PRAM one must guarantee that no two processors will
try to access the same memory cell at the same time. On a CREW PRAM two
(or more) processors may read but not write the same memory cell at the same
time. On a CRCW PRAM processors may both read and write the same mem-
ory cells at the same time. As writing to the same memory cell may cause the
outcome to be ambiguous there exist di�erent con�ict resolution techniques � we
will not go into the details of these as they are not relevant for this dissertation.

Normally we analyze algorithms in the RAM model by the number of operations
performed � which we call the time used (as all operations are assumed to take
the same time) � and the amount of space used. In the PRAM model we
measure three parameters; time, work and space. Here, time is the number of
operations performed on the processor that �nishes the latest. The work is the
total number of operations performed on all processors. The space usage is the
same as normal.

Finally, in Chapter 6 we do experiments on a real modern processor where we
see the unit cost assumption for operations in the RAM-model does not fully
resemble the real world. In that chapter, we also consider the memory caches
of modern processors to fully optimize our implementation.

Notation Since each chapter is an (almost) verbatim copy of a paper, there are
small di�erences in the notation used throughout this dissertation, but mostly it
will be the same. The notation used in each chapter, will be introduced therein.
I will keep the notation to a minimum in this introduction, but do however need
the following:

1.3 The Lempel-Ziv Family and Friends 5

Let T be a string of characters from an alphabet Σ of length |T | = N . Let T [i]
be the character on position i in T where 1 ≤ i ≤ N . Let T [i, j] denote the
substring of T from position i to position j (both positions included). Let a run
of a character α be a maximal substring of T that only consists of the character
α. Let G be a context-free grammar that produces T and has size n. Let z be
the size of the LZ77-parse of a string. Let P be a pattern string of length m.

1.3 The Lempel-Ziv Family and Friends

In this section I will introduce a number of di�erent compression schemes for
highly repetitive data. The main idea of schemes in the Lempel-Ziv family is
to avoid storing the same substring multiple times by instead referring to an
earlier occurrence of the substring in the text. The LZ77 [139] scheme is the
most powerful compression-wise in this family, and hence it is one of the most
popular measures used for space analysis of compressed data structures.

LZ77 The LZ77-parse of a string T is a sequence of z phrases. A phrase
is de�ned by a source position si, a length li and a character αi. A phrase
expands to the string T [si, si + li − 1]αi (if li = 0 then it simply expands to
αi). The concatenation of the expansion of all z phrases is T . The ith phrase
starts on position ui in T where u1 = 1 and ui = ui−1 + li−1 + 1. The substring
T [si, si + li − 1] is called the source of the ith phrase. The source of a phrase
must appear to the left of the phrase itself, ie. si + li < ui.

Text: abaabaacabaabaac

LZ77-parse: (0, 0, a)(0, 0, b)(1, 1, a)(2, 3, c)(1, 8,−)

The LZ77-parse is obtained by reading T from left-to-right while constructing
one new phrase at a time. The ith phrase is constructed by �nding the largest
li ≥ 0 such that T [ui, ui + li − 1] occurs in T [1, ui − 1] at some position si and
then αi = T [ui + li]. This construction yields the smallest number of phrases
that ful�ll the above requirements.

There exists a so called self-referential version of the LZ77-parse that allows a
phrase to overlap with its source, here the constraint si + li < ui is relaxed to
si < ui which still guarantees the phrases expand to a well-de�ned string.

6 Introduction

Variants There have been proposed many variants of the LZ77 compression
scheme that put further restrictions on the parse. Typically in order to reduce
the time it takes to compute the parse, or to make it easier to do computations
on the compressed data, at the cost of a (possibly) slightly worse compression
ratio.

Bidirectional Parse A more powerful compression scheme is the so called
bidirectional parse. Again, it is almost the same as LZ77, but without the
restriction that the source of a phrase must appear before the phrase itself.
When removing this restriction, it is possible to construct a parse with circular
references which results in a parse that does not expand to a single well-de�ned
string. The only restriction on the phrases in a bidirectional parse is that the
expansion of all phrases must produce a single unique string. Unfortunately, it
is NP-hard to construct the smallest possible bidirectional parse of a string.

Relative Compression In relative compression, one is given a reference text
R besides the text T that should be compressed. Both the compressor and
decompresser are assumed to know R. A relative compression of T is basically
the same as the bidirectional parse of T with two changes; all sources are now
arbitrary substrings of R (instead of substrings of T) and the character αi is
normally omitted from a phrase since it is not needed as it is assumed R contains
at least one occurrence of each character in the alphabet.

Reference: abac

Text: abaabaacabaabaac

RC-parse: (1, 3)(1, 3)(3, 2)(1, 3)(1, 3)(3, 2)

As an application of relative compression consider for instance the human DNA.
As already stated, the DNA of two di�erent humans are almost identical. Thus
it makes sense to store one copy of the human DNA, and then compress all
others DNA relative to that.

1.4 Context-Free Grammars and SLPs

In this dissertation we restrict our focus to context-free grammars. A gram-
mar consists of productions and terminals. A production maps to a sequence

1.4 Context-Free Grammars and SLPs 7

of productions and/or terminals. A terminal is simply a symbol from the
alphabet. An example of a grammar is; a, b and c are the terminals and
A → ab,B → Aa,C → ac,D → BC,E → BD,F → EE are the produc-
tions (note we often use capital letters for productions and non-capital letters
for terminals). A production is said to produce/generate the unique string ob-
tained by repeatedly replacing all productions on the right-side with the string
they produce. In our example F produces abaabaacabaabaac (F → EE →
BDBD → AaAaCAaAaC → abaabaacabaabaac). In a grammar one produc-
tion is chosen as the start production, in the example it is F . A grammar is said
to generate/produce the string that the start production generates. The size of
a grammar is the total number of productions/terminals on the right-hand side
of all productions, in the example the size is 12.

Parse Trees and DAGs One can view a grammar G as a (parse-)tree. All
nodes in this tree correspond to either a production or a terminal in G. The
root of the tree corresponds to the start production. Nodes corresponding to
productions have a child for each production/terminal on the production's right-
side. Nodes corresponding to terminals have no children. Thus all internal nodes
correspond to productions and all leaves correspond to terminals. A grammar
is said to be balanced if its parse tree is balanced.

A directed acyclic graph, DAG, can be constructed from the parse tree of a
grammar by replacing all identical subtrees in the tree by a single such subtree
that has an ingoing-edge from all the places it occurs in the parse tree. The size
of this DAG (the number of edges) is exactly the same as the size of the grammar.
In the DAG there is a one-to-one correspondence between productions/terminals
and internal nodes/leaves. Thus this DAG can be considered as the compressed
parse tree.

a b a a a c a a a c

A

a b

A

a b

A

a b

A

B B B B

C C

D D

E E

F F

D

B C

A

a b c

E

The parse tree of the above grammar to the left. The corresponding DAG to
the right.

In all of the following we will view grammars in all these ways interchangeably.

8 Introduction

Run-Length Grammars In run-length grammars an additional type of pro-
ductions is introduced. A production of the form P → Rn produces the
string that is the string R produces repeated n times. Ie. a run of charac-
ters/productions can now be produced by a single production. The size of such
a production is said to be O(1) (since we can easily store a reference to R and
the integer n in O(1) words). A run-length grammar can be turned in to a nor-
mal grammar with at most logarithmic blowup since a run-length production
can be replaced by a logarithmic number of productions that produces the run.

SLPs A straight line program, SLP, is basically a restricted grammar where
productions are only allowed to either have two productions or one terminal on
the right-side. All grammars can be translated to an SLP of roughly the same
size thus we often consider this restricted variant for simplicity.

The Smallest Grammar When grammars are used for compressing a string
T , we are interested in �nding the smallest possible grammar that produces T .
Unfortunately, the problem of �nding the smallest such grammar is known to
be NP-hard, so it is not feasible to construct the smallest possible grammar in
practice. Instead we are happy with (good) approximations hereof.

In the following, we will sketch the ideas behind a number of di�erent grammar
construction algorithms that we �nd relevant.

Simple Pairing Given a string T of length N (assume for simplicity N is a
power of two), look at pairs of neighboring symbols T [1, 2], T [3, 4], For each
distinct pair of symbols introduce a new production that produces these two
symbols, and replace all pairs with the corresponding production in T . Repeat
this until T only consists of a single production, let this production be the root
of the grammar.

Text Productions

abaabaacabaabaac A→ ab,B → aa,C → ba,D → ac

ABCDABCD E → AB,F → CD

EFEF G→ EF

GG H → GG

H

1.4 Context-Free Grammars and SLPs 9

This process produces a balanced SLP since it takes O(log n) rounds before T
is reduced to a single symbol, and the height of the SLP only increases by one
in each iteration. In fact, this gives a parse tree that is a complete binary tree
where the leaves correspond to the characters of T .

RePair All pairs of symbols T [1, 2], T [2, 3], T [3, 4], . . . are considered and the
most frequent is selected. A production is created for this pair of symbols and
then all occurrences of these pairs are replaced by that production in T . Like
before, this is repeated until T consists of a single production that becomes the
root.

Text Productions

abaabaacabaabaac A→ ab

AaAaacAaAaac B → Aa

BBacBBac C → ac

BBCBBC D → BC

BDBD E → BD

EE F → EE

F

This generates a possibly unbalanced SLP that might have be as high as Θ(
√
N).

The creators of this algorithm showed how this construction can be done in linear
time [94]. This is not trivial as one has to e�ciently �nd and replace the most
frequent pair in the text in each iteration (the trivial way to do this takes O(N2)
time).

Signature Grammars First �nd all runs of a character α in T and re-
place these by a run-length production. After doing this, no two neighboring
characters are the same. Now create a random permutation of the charac-
ters present in T , let φ(α) be the index of α in this permutation. Look at
the sequence φ(T [1]), φ(T [2]), φ(T [3]), . . . , φ(T [N]). Let m1,m2, . . . denote the
positions of the local minimas in this sequence. Consider all the substrings
T [m0 + 1,m1], T [m1,m2], T [m2 + 1,m3], For each distinct substring in this
set, create a production in the grammar that generates that substring, and

10 Introduction

replace all occurrences of this substring with this new production. As in the
previous algorithms, repeat these two steps until only one production is left in
T and let this be the root of T .

Text Productions

abaabaacabaabaac A→ a2

abAbAcabAbAc B → bA,C → ca

aBBCBBc D → B2

aDCDc E → aD,F → CD

aEF G→ aEF

G

The random permutation of the symbols used above is BcCbAaDEF. The local
minima are underlined.

First of all, this process produces a context-free run-length grammar and not
an SLP. By iterating this process a constant number of times in expectation,
we obtain a grammar that has size O(z lg(N/z)) (where z is the size of the
LZ77-parse of T) and where each production has size at most O(lgN). This is
not trivial to see, but will be covered in Chapter 3. The length of T is at least
halved in each iteration of this process, thus the height of the resulting grammar
is O(lgN).

Alternative Constructions There exists a dozen of other ways to construct
SLPs/grammars. One such way is to construct the LZ77-parse and then con-
struct an SLP based on this. This was the �rst way to obtain the O(z lg(N/z))
size bound for a SLP [117]. Another approach is called locally consistent parsing
where the idea is to ensure identical substrings are mostly generated by the same
productions. This is also the idea used for our proposed signature grammars.

Incremental Construction If the string we want to compress is too big to
�t in memory then it would be bene�cial if we could incrementally construct
the grammar by reading T from left-to-right character-by-character once. The
RePair algorithm relies on global information about the entire string since it
needs the frequency of all pairs in the entire string. This makes it unsuitable
for incremental construction. On the other hand simple pairing and signature

1.4 Context-Free Grammars and SLPs 11

grammars only use local information to construct the grammar, so they are good
candidates for incremental construction. It is indeed possible to make both of
these algorithms incremental in a simple way.

Consider the simple pairing algorithm. Let Bi be bu�er strings that are ini-
tially empty for 1 ≤ i ≤ logN + 1. Read the characters from T one-by-one by
appending them to B1. When a bu�er string Bi has length two, see if there
exists a production that generates Bi, otherwise create a new production that
does, and then clear Bi and append the production to Bi+1. In the end the
root production will be in BlogN+1. The same idea can be applied for signa-
ture grammars, except new productions should be created when a bu�er either
contains a run of characters or a local minima with respect to the φ-function.

This means we can construct these grammars in (poly)logarithmic working space
in addition to the size of the grammar. This construction technique is also very
fast in practice.

Comparison of the Construction Algorithms There are a number of
interesting parameters when it comes to picking the best way to construct a
grammar. One is the complexity of constructing the grammar. Even though
all of the above grammars can be constructed in linear time in N , RePair is
signi�cantly slower to compute in practice. On the other hand, RePair is known
to be one of the algorithms that produces the smallest grammars in practice.
Intuitively, it makes sense that RePair produces small grammars as it repeatedly
picks the production that can be reused the most times. Unfortunately, we do
not have practical data for signature grammars, but intuitively it should also
produce relatively small grammars as two identical substrings of length l will be
generated by productions with at most O(log l) di�erences. And in this case, we
also have a guarantee it is at most a factor O(log(N/z)) larger than the smallest
possible grammar since z is a lower-bound for the smallest grammar. Simple
pairing is mainly included above as a simple introduction, as it may produce
really bad grammars. Consider for instance the string abcdefgabcdefg, it will
generate a grammar where no productions are used more than once, because the
�rst occurrence of ab is paired as ab but the second occurrence of ab is paired
as ga and bc, and similarly for the other pairs. Finally, simple pairing and the
signature construction algorithm produce balanced grammars whereas RePair
can produce unbalanced grammars (though, in practice they are in many cases
not).

12 Introduction

1.5 Heavy Paths

In this section, we will sketch what a heavy path decomposition is and how it can
be used to perform random access in an SLP. This decomposition has been used
to obtain O(logN) random access time in (unbalanced) SLPs in O(n) space
[18]. The idea behind this kind of decomposition of a SLP is a key component
in Chapter 2 where we introduce new slightly di�erent decompositions.

In the following, we aim to give the idea behind a simpli�ed version of random
access that takes O(logN log logN) instead of O(logN) time. But before that,
we will introduce a simple solution that takes O(h) time where h is the height
of the SLP. The idea is simply to traverse the grammar from the root to the
correct leaf/terminal. The only thing needed besides the productions in the
SLP is the size of the string each production produces. This takes O(n) space.
Initially, let v be the root of the SLP, and let i be the position in T to access. If
i ≤ |left(v)| then set v = left(v) otherwise set v = right(v) and i = i− |left(v)|
(where |left(v)| is the size of the string v's left child produces, and similarly for
|right(v)|). When v is a terminal, report the character of v.

This algorithm is �ne for balanced SLPs, but if there are long root-to-leaf paths
then access on these will be slow. Thus, we need some way to e�ciently traverse
long root-to-leaf paths without looking on all nodes on the path. This is what
the heavy path decomposition can help us with.

a b a a a c a a a c

A

a b

A

a b

A

a b

A

B B B B

C C

D D

E E

F

b

A

B

D

E

F

c

C

a

To the left the parse-tree of the grammar with the heavy edges marked by
solid lines. To the right the corresponding heavy path forest.

De�ne the heavy child of a node to be the child producing the longest string (in
our example we pick the right child in case of a tie). De�ne an edge to be heavy
if it ends in a heavy child. Consider all the heavy edges in the parse tree. These
form a decomposition of the tree into a disjoint set of paths (see illustration
above). We call a path in this set a heavy path. A key property of a heavy
path decomposition is that any root-to-leaf path in the original tree intersects

1.5 Heavy Paths 13

at most logN distinct heavy paths. Now the idea is to �nd an e�cient way to
traverse a heavy path. Also note all heavy paths end in a leaf of the tree.

b

A

B

D

E

F

8

3

2

1

1

The heavy path starting in the root with subtrees hanging to the left and
right. The sequence of sizes of subtrees hanging to the left is here 8, 3, 1.

Assume we have traversed the parse tree until some node v (initially v is the
root), and we want to access the character at position i in the text v produces.
We know there is a heavy path going from v and down to some leaf u in the
subtree of v. Let iu be the index of the character u corresponds to in the text v
produces. If i < iu then the leaf we are trying to navigate to must be somewhere
to the left of the heavy path. If i = iu then u is the leaf we want to navigate
to, thus we are done. Finally, the case i > iu is symmetric to the �rst case,
namely the leaf we want to navigate must be to the right of the heavy path. Let
us now focus on the �rst case. Consider the heavy paths, a number of subtrees
hang to the left of this path. We need to decide which of these subtrees contain
the leaf we are looking for. Let s1, s2, . . . , sj be the size of the subtrees hanging
to the left. We want to navigate the kth subtree hanging to the left such that∑k−1
l=1 sl < i ≤

∑k
l=1 sl. Furthermore, we want to access the i −

∑k−1
l=1 leaf in

this subtree. By repeated using this procedure to navigate a heavy path starting
from the root, we end up in the leaf we are looking for.

Finding the correct subtree among the subtrees that hang to the left of the heavy
path is basically the predecessor problem. We could use a predecessor data
structure to answer this question for each of the heavy paths. Such structures
can answer predecessor queries inO(log logN) time. Since we have to go through
at most logN heavy paths on our way from the root to a leaf, the overall time
is O(logN log logN).

In the above, we did not consider the space usage of the solution. Instead of
explicitly storing a predecessor data structure for each of these heavy paths,

14 Introduction

we can do a reduction to the weighted ancestor problem in trees. The �rst
observation to do this is that if we only look a the heavy edges in the DAG,
they form a forest of trees rooted in the terminals/leaves, ie. they are up-side-
down compared to the parse tree. All the predecessor data structures can then
be replaced by a weighted ancestor data structure on this forest. We will not
give the details of this reduction here, but simply conclude that this weighted
ancestor data structure uses O(n) space and still answers queries in O(log logN)
time.

1.6 On Chapter 2: Finger Search in Grammar-

Compressed Strings

In this chapter, we study a variation of one of the most fundamental problems
on compressed data, namely the random access problem. In the compressed
random access problem one is to construct a compressed data structure given
a string T of length N that can answer access queries, which is to return the
character of a given position i in T e�ciently � independent on where i is. In
the �nger search problem, one �rst puts his/her virtual �nger at some position
f in the text, and must then answer access queries e�ciently as a function of
the distance between the �nger and the access query, ie. |f − i|. That is, access
queries close to the �nger should be answered faster than queries far from the
�nger.

We study this problem for SLPs. We are the �rst to study this problem in
this context, but obviously solutions to the random access problem are also
(ine�cient) solutions to the �nger search problem. As already discussed, the
random access problem has been solved for arbitrary SLPs in O(n) space and
O(logN) time where n is the size of the SLP [18] thus our �nger access should
be better than O(logN) time in order to be relevant. On the other hand, a
solution to the �nger access problem is also a solution to the random access
problem, so a solution better than O(logN) when the �nger and access position
are far apart would imply an improvement of the random access problem.

Our contributions Our main result is a solution where the �nger can be
placed in O(logN) time and access queries can be answered in O(log |f − i|)
time using O(n) space. We call this the static version of the problem. We also
present a dynamic version where the �nger itself can be moved e�ciently. In this
setting, we can move the �nger from fold to fnew in O(log |fold−fnew|+log logN)
time and access now takes O(log |f − i|+ log logN) time. The complexities for

1.6 On Chapter 2: Finger Search in Grammar-Compressed Strings 15

placing the �nger and space usage is the same.

As an application of the �nger search solution, we show how to use it to perform
longest common extension queries. In this problem, you are given two positions
i and j in T and want to know the largest ` such that T [i, i+ `− 1] = T [j, j +
` − 1]. At the time of publication, the best known solution in O(n) space ran
in O(logN log `) time which we improved to O(logN + log2 `) time � ie. an
improvement for small values of `. Others have improved on this problem since
we got our results, but in slightly di�erent settings where the space usage is not
directly dependent on the size of the input SLP. For instance in [127] the author
gave an O(logN) time solution using O(z log(N/z)) space where z is the size of
the LZ77-parse of T .

What are the challenges of this problem? First of all, the solution should
work on arbitrary SLPs and not only on balanced SLPs. We have already seen
the random access problem is signi�cantly simpler to solve in the balanced case
thus it is likely also to be the case for this problem. Normally, access queries
are solved by traversing a root-to-leaf path in the SLP. If we want to access
two positions close to each other, one might think we do not have traverse the
entire root-to-leaf path twice. This is indeed often the case, but there exists
neighboring positions in T that does not share any edges on their root-to-leaf
paths. As we want to provide a worst-case bound, we have to handle this case
in some other way.

The main technique used for this result is new heavy path like decompositions of
the SLP. I will not go into details about this here, as I have already introduced
the concept of heavy paths.

A Å This was the �rst problem I worked on when I started my PhD studies.
This was a good path into the world of SLPs (and context-free grammars in
general) as it required me to read and understand the details of the solutions
to the random access problem. Many of these techniques are widely applicable
when working with (unbalanced) SLPs. Originally, when we researched this
problem, we also came up with a solution that provided constant time access
in the SLP at the cost of space dependent on N , ie. independent on how
well T compresses. Using this we could also answer LCE queries in constant
time. Unfortunately for us, it turned out others had recently found a (slightly
di�erent) solution obtaining similar results.

16 Introduction

1.7 On Chapter 3: Compressed Indexing with

Signature Grammars

In this chapter, we study another fundamental string problem on compressed
text. Given a string T of length n construct a compressed data structure that
can e�ciently answer if and where a pattern P of length m occurs in T . This
problem has many well-known solutions in the uncompressed case for instance
su�x trees solve the problem in optimal O(|P |) time using O(n) space. Also
in the compressed case there exist many solutions to this problem based on
di�erent kind of compression techniques. In this chapter, we restrict our focus
to solutions where the space usage is bounded by the size z of the LZ77-parse
of T . In O(z lg(n/z)) space Gagie et al. [55, 56] showed how to solve queries in
O(m lgm+ occ lg lg n) time. Bille et al. [16] gave a number of trade-o�s to this
problem where one solution obtained optimal O(m) search time (disregarding
the reporting time per occurrence) but using O(z lg(n/z) lg lg z).

Our contributions In this chapter, we show how to obtain better trade-o�s
for this problem. Like the previous results, the trade-o�s depend on the size
of the alphabet and the compressibility of T . For small alphabets or su�-
ciently compressible texts we obtain O(m+ occ(lg lg n+ lgε z)) query time and
O(z lg(n/z)) space which improves the previously best known solutions. Most
interestingly, the search time O(m) is optimal when disregarding the time re-
quired for reporting subsequent occurrences.

The main component of our solutions is the signature grammar construction
previously described. It ensures multiple occurrences of the same substring
in T are produced by almost the same set of productions. We combine this
component with an already known technique for pattern matching in compressed
texts, namely a reduction to 2D range reporting.

Future directions There are two "obvious" things that would be nice to
improve � we already tried hard to do that so I do not currently have any good
ideas on how though. First of all, it would be nice to have the O(m+occ(lg lg n+
lgε z)) time for all alphabet sizes/compressions. Secondly, it would be nice to
reduce the time per occurrence � ideally all the way to O(1) time per occurrence.
Both of these bounds have in fact been shown in a di�erent compression scheme
for highly repetitive texts; namely compression based on the Burrows�Wheeler
transform [59] (not that this guarantees it is possible with our space bounds).

I also think it would be interesting to do an implementation of the basic ideas

1.8 On Chapter 4: Dynamic Relative Compression, Dynamic Partial Sums,

and Substring Concatenation 17

in this paper. First of all to determine if the suggested grammar construction
algorithm is competitive to other grammar construction algorithms. And if this
is the case, it would be interesting to add pattern matching on top of it � most
likely with some simpli�cations of the techniques/data structures used in the
chapter.

0 3 The ideas this chapter is based on actually came while working on
another problem. We were trying to solve the (uncompressed) dynamic sub-
string concatenation problem where one is given a text T and the indices of
two substrings T [i, j] and T [i′, j′] of T and must answer if the concatenation
T [i, j]T [i′, j′] occurs anywhere in T . Furthermore, in this dynamic version, the
text T is subject to character replacements. During this, we ran in to a paper
by Mehlhorn et al. [101] that introduced us to the idea of signatures. We then
realized that several papers using similar techniques existed that solved dynamic
pattern matching, compressed pattern matching, and similar. Thus we decided
to explore how these ideas could be combined with the techniques from [16] that
my co-author had recently been working on.

This problem was the last I worked on during my PhD. For this reason, the
paper this chapter is based on has not yet been peer reviewed (as the only
paper presented in this dissertation). It is under submission for LATIN17 as of
writing this, but noti�cation is unfortunately �rst shortly after my deadline.

1.8 On Chapter 4: Dynamic Relative Compres-

sion, Dynamic Partial Sums, and Substring

Concatenation

Before I introduce the contents of this chapter, I should emphasize that I was
not a co-author of the �rst versions of this paper, and thus did not participate in
obtaining many of the results this chapter is based on. I was �rst involved after
a journal reviewer pointed out a possible mistake in the substring concatenation
part of the paper. My main contribution was to help �nd a solution to this
problem that fortunately turned out to make the original claims of the paper
correct. I have chosen to include this chapter in this dissertation despite this
since it �ts the topic, I have spent quite sometime working on the substring
concatenation problem, and I have been co-supervising students implementing
some of the basic ideas from this paper so I know it well.

Here we study the problem of e�ciently maintaining a relative compression of a

18 Introduction

dynamic text. Given a static reference text R of length r and a dynamic text T
of length N , we compress T by referring to a sequence of n substrings of R which
concatenation spells out T as described earlier in the introduction. To do this,
we also look at the problems dynamic partial sums and substring concatenation.
Since next chapter is on partial sums and substring concatenation was just
introduced in the last section, we will skip them here. However, we should note
the dynamic partial sums described in this chapter supports more operations
than in the next chapter.

Our contributions We present two di�erent solutions to the substring con-
catenation problem that result in two di�erent bounds for the overall compres-
sion problem. These bounds are either O(n+r) space and O(logn

log logn +log log r)

time per operation (access/update), or O(n + r logε r) space and O(logn
log logn)

time per operation where ε > 0 is a constant. The �rst provides optimal space
but only near optimal time (given this compression scheme), and the second
provides optimal time but not space.

To solve the substring concatenation problem we use a slightly modi�ed version
of a 1D range emptiness data structure by Belazzougui et al. [10] that is based
on a weak pre�x search data structure by Goswami et al. [65]. A combination
of this and a heavy path decomposition of the su�x tree of the text gives the
second of the two above bounds. Let us take a further look at the �rst of these
data structures. Given a set A of integers in the range [0, r] it can report the
index of the �rst integer in A within a given subrange of [0, r] (the index of
the integer if the set was sorted). However, if no such integer exists it may
report an arbitrary index. In other words, it may report false-positives. It was
this problem with false-positives that was not addressed in the �rst versions of
this paper. As this data structure uses |A| logε r bits of space for any constant
ε > 0, it is clear from the information theoretic lower-bound that it must return
false-positives. If this was not the case, then A could be reconstructed from this
data structure which contradicts it takes up to |A| log r bits to represent this
set. The solution to this problem was to do a veri�cation step after querying
this data structure.

S T During my external stay, I worked quite some time on the substring
concatenation problem (independently of this chapter). We had a hope that the
techniques from a recent paper [62] that solves the weighted ancestor problem in
su�x trees in constant time could be used to solve the substring concatenation
problem in O(1) time as well. Many ideas came across, but in the end none
of them turned out to work. I still believe (or hope maybe?) it is possible
somehow, and hopefully somebody will show that sometime or a lower bound.

1.9 On Chapter 5: Succint Partial Sums and Fenwick Trees 19

However, after all, this was probably the main reason I was able to help solving
the issue in this paper.

1.9 On Chapter 5: Succint Partial Sums and Fen-

wick Trees

We study a problem that is not directly related to strings, namely the partial
sums problem. In this problem, one is given an array A of n integers and must
then be able to handle update, sum and search queries. That is, update the
integer at some position in A to something else, return the sum of a pre�x of
the numbers in A, �nd the smallest j such that the sum of the integers A[1, j]
is at least some given number. Even though this problem is not directly related
to strings, it is being used in many data structures for strings (for instance
Chapter 4). We study the succinct version of the problem where the space used
is supposed to be very close to the theoretical minimum needed to store the
data. If A consists of k-bit integers this is nk bits.

Our contributions We present two modi�ed versions of the original Fenwick
tree that use less space and also have better bounds for some of the operations.
The �rst version is the �rst data structure to use only nk + o(k) bits of space
while supporting sum, update, and search in O(logb n), O(logb n), and O(log n)

time respectively where 2 ≤ b ≤ logO(1) n. The second version uses slightly
more space, namely nk + o(nk) bits of space, but then it supports faster sum
and update queries.

Most of the bounds we obtain in this chapter have in fact been found by others
earlier, however the data structures that achieve them are relatively complicated.
The idea behind this result was to build on top of the simple Fenwick tree
in order to get a relatively simple and practical solution that obtain bounds
comparable to those already achieved.

Future directions As we have claimed that the results obtained in this chap-
ter are very practical, it would be very nice to actually present an implementa-
tion of it to support this claim.

0 11 I �rst encountered Fenwick trees long before my PhD studies started,
since these are very popular in programming competitions because they are

20 Introduction

extremely simple to implement. This paper started after a discussion involving
Fenwick trees and their space usage. As the original Fenwick tree is simply
implemented as an array of integers of size n, it is easy to think it does not use
more space than the n input integers. However, in the Fenwick tree array each
entry corresponds to the sum of many input integers, thus these numbers may
require more bits to represent than the input numbers. In fact, if the input are
k-bit integers, then the Fenwick tree array must be able to store (k + lg n)-bit
integers. This discussion then made us think about how to optimize the space
usage of Fenwick trees which in the end resulted in the results presented in this
chapter.

1.10 On Chapter 6: Fast Dynamic Arrays

This chapter is the �rst and only experimental in this dissertation. In this
chapter, we study the problem of maintaining a dynamic sequence of elements
� this could for instance be a string of characters. We are concerned with the
operations; access, insertion, deletion and update. Which respectively reports
the character on a given position, inserts a new character at an arbitrary position
in the string (and thereby moving all subsequent characters one position), deletes
a character on an arbitrary position and change a character on a given position
to something else.

A dozen more or less practical solutions exist to this problem, most notably
all kinds of balanced trees solve all the operations in O(lg n) time. There even
exist solutions that match the lower bound of Ω(lg n/ lg lg n). This lower bound
applies when all operations must be equally fast. In the extreme case, where
access is required to run in constant time, a simple solution is to use an array
(growing/shrinking using the doubling strategy) and then move all characters in
this array when a character is either inserted or deleted. Access and update op-
erations are easily done in O(1) time this way, but insertion/deletion take O(n)
time when elements must be shifted to make room for the new element/�ll out
the deleted position. We introduce the data structure tiered vector that solves
the dynamic array problem. It was invented by Goodrich and Kloss in [64]. It
allows access and updates in O(1) time and insertion/deletion in O(nε) for any
constant ε > 0. A few groups have implemented this data structure includ-
ing Goodrich and Kloss and performed experiments on these implementations.
However, all these implementations have been signi�cantly restricted such that
they only work for ε = 1/2 giving O(

√
n) insertion/deletion. The special case

when ε = 1/2 gives a very nice and simple data structure, but we expected it
not to perform well on big but still practical data sets.

1.10 On Chapter 6: Fast Dynamic Arrays 21

Our contributions We give the �rst implementation of the tiered vector
data structure that works for an arbitrarily small constant ε > 0. We compare
di�erent versions of the implementation to obtain the best possible and then
afterwards to some built-in data structures in C++. We get that for sequences
of 108 elements, the best practical value for ε is 1/4, ie. it pays of to not only
implement the simpler structure for ε = 1/2.

We describe di�erent memory layouts that reduce the number of memory probes
needed by the operations compared to the original tiered vector. Among this,
we consider memory layouts that utilizes that cache-lines are bigger than single
words and layouts that utilizes the cache hierarchy in modern processors. All
considerations that are normally ignored when we work in the RAM-model
where we assume unit cost operations.

Besides these more general optimizations, we also spent much time on optimiz-
ing the code to minimize the number of instructions needed per operation. This
is slightly di�cult to achieve when the implementation should still be parame-
terized in ε. To do this, we used C++ templates in a slightly unusual way to
do what we call template recursion. The idea here is that the ε parameter can
be speci�ed at compile-time, and then everything regarding this parameter can
be optimized away by the compiler already at compile-time, so the �nal code is
as optimized as if the code was not parameterized.

We show that this implementation of tiered vectors is at least competitive on
all operations compared with the built-in vector and multiset implementations
and even signi�cantly faster in many cases.

Future directions Our implementation is not made with the focus of being
production ready. I think our results are so promising, it would make sense to
do a production ready version of the code. Ie. one that supports the normal
C++ container interfaces, can dynamically grow/shrink, etc.

A Z I have always enjoyed implementation and I also like to see stu� that
works well in practice. Thus, when looking for a problem to work on this time
the focus was not as much on the topic as on �nding something interesting that
would make sense to implement. It was interesting to get a practical feeling with
some of the di�erences between real modern processors and the RAMmodel. For
instance that the practical running time often depended more on what memory
was accessed than the number of operations.

Even though we work in theoretical computer science, I personally think it is

22 Introduction

a good thing to implement and experiment with the stu� we are working on
occasionally, so our work/focus does not diverge too far away from what is
actually meaningful in practice.

1.11 On Chapter 7: Parallel Lookups in String

Indexes

In this chapter we look at the same fundamental string problem as in Chapter 3,
namely searching for a pattern P of lengthm in a text T of length n. However in
this chapter, we study the problem in a uncompressed version but in the parallel
random access machine model (the PRAM model). We study the variant where
one is to construct a data structure based on T and must then be able to answer
pattern matching queries for a pattern P e�ciently.

This problem was only studied recently even though many other similar string
problems were already well-studied in the PRAM model back in the end of the
last century. This problem was �rst studied in [79] where they show an index
that supports queries in O(m) work and O(logm) time on a CREW PRAM
but in O(n2) space. These bounds are work-time-optimal due to a lower bound
given in [31], but the space usage is unnecessarily big. They also show an
index of size O(n log n) that answers in optimal O(logm) time but O(m logm)
work. In [46] they improve this latter result. In n+ o(n) space they can answer
queries in O(log logm log log n+ logm) time and O(m+ min(m, log n)(logm+
log logm log log n)) work on a CREW PRAM.

Our contributions We show how to solve this problem inO(m) work, O(logm)
time and O(n) space on a EREW PRAM. Ie. our solution is optimal on all these
parameters in this model. The only non-optimal part is the preprocessing that
is O(log n log∗ n) time and O(n) work w.h.p., ie. the preprocessing work/time
is non-deterministic which could possibly be improved. Afterwards, we show a
simpler way to solve this problem by parallelizing the normal way to search for
a pattern in a su�x array that gives rise to O(log n) time and O(m + log n)
work queries which is however worse. In particular for short patterns.

Our �rst solution is primarily based on hashing and the structure of the su�x
tree of T . It is only composed of simple data structures that works well in
practice and is in this sense practical. The second solution is even simpler in
this sense, and does only require the su�x and lcp arrays thus it is practical
also space-wise. However, there are discussions on how well the PRAM model

1.11 On Chapter 7: Parallel Lookups in String Indexes 23

resembles real practical parallel systems. Another reason for not using it in
practice is the use cases for this problem. Often the patterns we search for are
relatively short, and thus the linear running time of the sequential solution is
su�cient. Thus the primary reason for parallelizing this problem would be to
handle many pattern lookups simultaneously, but this can easily be achieved by
running the sequential algorithm in parallel for each pattern.

MSc PhD These results were made while I was on my external stay in the
US where Martín Farach-Colton hosted me. The main motivation for studying
this problem was Martin short before my arrival had been presented some of the
earlier results mentioned above, and believed we could improve on those. This
was the �rst time I worked in the PRAM model, so I �rst had to understand the
details of this model. It was interesting to learn how changing the model opened
the possibility to use techniques that are not applicable in the RAM model (in
which I normally work). Especially some of the tricks that are possible on the
CRCW PRAM were a bit challenging to my normal assumptions about what is
possible (unfortunately many of these tricks are probably not that practical).

24 Introduction

Chapter 2

Finger Search in

Grammar-Compressed

Strings

Philip Bille† Anders Roy Christiansen† Patrick Hagge Cording †

Inge Li Gørtz †

† The Technical University of Denmark

Abstract

Grammar-based compression, where one replaces a long string by a
small context-free grammar that generates the string, is a simple and pow-
erful paradigm that captures many popular compression schemes. Given
a grammar, the random access problem is to compactly represent the
grammar while supporting random access, that is, given a position in the
original uncompressed string report the character at that position. In
this paper we study the random access problem with the �nger search
property, that is, the time for a random access query should depend on
the distance between a speci�ed index f , called the �nger, and the query
index i. We consider both a static variant, where we �rst place a �nger
and subsequently access indices near the �nger e�ciently, and a dynamic
variant where also moving the �nger such that the time depends on the
distance moved is supported.

Let n be the size the grammar, and let N be the size of the string.
For the static variant we give a linear space representation that supports
placing the �nger in O(logN) time and subsequently accessing in O(logD)

26 Finger Search in Grammar-Compressed Strings

time, where D is the distance between the �nger and the accessed index.
For the dynamic variant we give a linear space representation that sup-
ports placing the �nger in O(logN) time and accessing and moving the
�nger in O(logD+log logN) time. Compared to the best linear space so-
lution to random access, we improve a O(logN) query bound to O(logD)
for the static variant and to O(logD + log logN) for the dynamic vari-
ant, while maintaining linear space. As an application of our results we
obtain an improved solution to the longest common extension problem in
grammar compressed strings. To obtain our results, we introduce several
new techniques of independent interest, including a novel van Emde Boas
style decomposition of grammars.

2.1 Introduction

Grammar-based compression, where one replaces a long string by a small context-
free grammar that generates the string, is a simple and powerful paradigm that
captures many popular compression schemes including the Lempel-Ziv fam-
ily [134,139,140], Sequitur [106], Run-Length Encoding, Re-Pair [94], and many
more [5�7, 54, 66, 88, 89, 121, 136]. All of these are or can be transformed into
equivalent grammar-based compression schemes with little expansion [25,116].

Given a grammar S representing a string S, the random access problem is to
compactly represent S while supporting fast access queries, that is, given an
index i in S to report S[i]. The random access problem is one of the most basic
primitives for computation on grammar compressed strings, and solutions to the
problem are a key component in a wide range of algorithms and data structures
for grammar compressed strings [12,14,15,18,55�57,76,126,128].

In this paper we study the random access problem with the �nger search prop-
erty, that is, the time for a random access query should depend on the distance
between a speci�ed index f , called the �nger, and the query index i. We con-
sider two variants of the problem. The �rst variant is static �nger search, where
we can place a �nger with a setfinger operation and subsequently access posi-
tions near the �nger e�ciently. The �nger can only be moved by a new setfinger
operation, and the time for setfinger is independent of the distance to the pre-
vious position of the �nger. The second variant is dynamic �nger search, where
we also support a movefinger operation that updates the �nger such that the
update time depends on the distance the �nger is moved.

Our main result is e�cient solutions to both �nger search problems. To state
the bounds, let n be the size the grammar S, and let N be the size of the string
S. For the static �nger search problem, we give an O(n) space representation

2.1 Introduction 27

that supports setfinger in O(logN) time and access in O(logD) time, where D is
the distance between the �nger and the accessed index. For the dynamic �nger
search problem, we give an O(n) space representation that supports setfinger
in O(logN) time and movefinger and access in O(logD + log logN) time. The
best linear space solution for the random access problem uses O(logN) time
for access. Hence, compared to our result we improve the O(logN) bound to
O(logD) for the static version and to O(logD + log logN) for the dynamic
version, while maintaining linear space. These are the �rst non-trivial bounds
for the �nger search problems.

As an application of our results we also give a new solution to the longest
common extension problem on grammar compressed strings [15, 76, 107]. Here,
the goal is to compactly represent S while supporting fast lce queries, that is,
given a pair of indices i, j to compute the length of the longest common pre�x of
S[i,N] and S[j,N]. We give an O(n) space representation that answers queries
in O(logN + log2 `), where ` is the length of the longest common pre�x. The
best O(n) space solution for this problem uses O(logN log `) time, and hence
our new bound is always at least as good and better whenever ` = o(Nε).

2.1.1 Related Work

We brie�y review the related work on the random access problem and �nger
search.

Random Access in Grammar Compressed Strings First note that naively
we can store S explicitly using O(N) space and report any character in constant
time. Alternatively, we can compute and store the sizes of the strings derived
by each grammar symbol in S and use this to simulate a top-down search on
the grammars derivation tree in constant time per node. This leads to an O(n)
space representation using O(h) time, where h is the height of the grammar [63].
Improved succinct space representation of this solution are also known [27]. Bille
et al. [18] gave a solution using O(n) and O(logN) time, thus achieving a query
time independent of the height of the grammar. Verbin and Yu [132] gave a

near matching lower bound by showing that any solution using O(n logO(1)N)
space must use Ω(log1−εN) time. Hence, we cannot hope to obtain signi�cantly
faster query times within O(n) space. Finally, Belazzougui et al. [12] very re-
cently showed that with superlinear space slightly faster query times are possi-
ble. Speci�cally, they gave a solution using O(nτ logτ N/n) space and O(logτ N)
time, where τ is a trade-o� parameter. For τ = logεN this is O(n logεN) space
and O(logN/ log logN) time. Practical solutions to this problem have been
considered in [9, 58,104].

28 Finger Search in Grammar-Compressed Strings

The above solutions all generalize to support decompression of an arbitrary
substring of length D in time O(taccess +D), where taccess is the time for access
(and even faster for small alphabets [12]). We can extend this to a simple
solution to �nger search (static and dynamic). The key idea is to implement
setfinger as a random access and access and movefinger by decompressing or
traversing, respectively, the part of the grammar in-between the two positions.
This leads to a solution that uses O(taccess) time for setfinger and O(D) time for
access and movefinger.

Another closely related problem is the bookmarking problem, where a set of
positions, called bookmarks, are given at preprocessing time and the goal is to
support fast substring decompression from any bookmark in constant or near-
constant time per decompressed character [32,55]. In other words, bookmarking
allows us to decompress a substring of length D in time O(D) if the substring
crosses a bookmark. Hence, with bookmarking we can improve the O(taccess +
D) time solution for substring decompression to O(D) whenever we know the
positions of the substrings we want to decompress at preprocessing time. A
key component in the current solutions to bookmarking is to trade-o� the Ω(D)
time we need to pay to decompress and output the substring. Our goal is to
support access without decompressing in o(D) time and hence this idea does
not immediately apply to �nger search.

Finger Search Finger search is a classic and well-studied concept in data
structures, see e.g., [13,19,22,36,47,68,90,100,113,120,122] and the survey [21].
In this setting, the goal is to maintain a dynamic dictionary data structure such
that searches have the �nger search property. Classic textbook examples of
e�cient �nger search dictionaries include splay trees, skip lists, and level linked
trees. Given a comparison based dictionary with n elements, we can support
optimal searching in O(log n) time and �nger searching in O(log d) time, where
d is the rank distance between the �nger and the query [21]. Note the similarity
to our compressed results that reduce an O(logN) bound to O(logD).

2.1.2 Our results

We now formally state our results. Let S be a string of length N compressed
into a grammar S of length n. Our goal is to support the following operations
on S.

access(i): return the character S[i]

setfinger(f): set the �nger at position f in S.

2.1 Introduction 29

movefinger(f): move the �nger to position f in S.

The static �nger problem is to support access and setfinger, and the dynamic
�nger search problem is to support all three operations. We obtain the following
bounds for the �nger search problems.

Theorem 2.1 Let S be a grammar of size n representing a string S of length
N . Let f be the current position of the �nger, and let D = |f − i| for some i.
Using O(n) space we can support either:

(i) setfinger(f) in O(logN) time and access(i) in O(logD) time.

(ii) setfinger(f) in O(logN) time, movefinger(i) and access(i) both in O(logD+
log logN) time.

Compared to the previous best linear space solution, we improve the O(logN)
bound to O(logD) for the static variant and to O(logD+ log logN) for the dy-
namic variant, while maintaining linear space. These are the �rst non-trivial so-
lutions to the �nger search problems. Moreover, the logarithmic bound in terms
of D may be viewed as a natural grammar compressed analogue of the classic
uncompressed �nger search solutions. We note that Theorem 2.1 is straight-
forward to generalize to multiple �ngers. Each additional �nger can be set in
O(logN) time, uses O(logN) additional space, and given any �nger f , we can
support access(i) in O(logDf) time, where Df = |f − i|.

2.1.3 Technical Overview

To obtain Theorem 2.1 we introduce several new techniques of independent
interest. First, we consider a variant of the random access problem, which we
call the fringe access problem. Here, the goal is to support fast access close to
the beginning or end (the fringe) of a substring derived by a grammar symbol.
We present an O(n) space representation that supports fringe access from any
grammar symbol v in time O(logDv +log logN), where Dv is the distance from
the fringe in the string S(v) derived by v to the queried position. The key
challenge is designing a data structure for e�cient navigation in unbalanced
grammars.

The main component in our solution to this problem is a new recursive de-
composition. The decomposition resembles the classic van Emde Boas data
structure [129], in the sense that we recursively partition the grammar into a

30 Finger Search in Grammar-Compressed Strings

hierarchy of depth O(log logN) consisting of subgrammars generating strings
of lengths N1/2, N1/4, N1/8, We then show how to implement fringe access
via predecessor queries on special paths produced by the decomposition. We
cannot a�ord to explicitly store a predecessor data structure for each special
path, however, using a technique due to Bille et al. [18], we can represent all
the special paths compactly in a tree and instead implement the predecessor
queries as weighted ancestor queries on the tree. This leads to an O(n) space

solution with O(logDv + (log logN)2) query time. Whenever Dv ≥ 2(log logN)2

this matches our desired bound of O(logDv + log logN). To handle the case

when Dv ≤ 2(log logN)2 we use an additional decomposition of the grammar
and further reduce the problem to weighted ancestor queries on trees of small
weighted height. Finally, we give an e�cient solution to weighted ancestor for
this specialized case that leads to our �nal result for fringe access.

Next, we use our fringe access result to obtain our solution to the static �nger
search problem. The key idea is to decompose the grammar into heavy paths as
done by Bille et al. [18], which has the property that any root-to-leaf path in the
directed acyclic graph representing the grammar consists of at most O(logN)
heavy paths. We then use this to compactly represent the �nger as a sequence
of the heavy paths. To implement access, we binary search the heavy paths
in the �nger to �nd an exit point on the �nger, which we then use to �nd an
appropriate node to apply our solution to fringe access on. Together with a few
additional tricks this gives us Theorem 2.1(i).

Unfortunately, the above approach for the static �nger search problem does
not extend to the dynamic setting. The key issue is that even a tiny local
change in the position of the �nger can change Θ(logN) heavy paths in the
representation of the �nger, hence requiring at least Ω(logN) work to implement
movefinger. To avoid this we give a new compact representation of the �nger
based on both heavy path and the special paths obtained from our van Emde
Boas decomposition used in our fringe access data structure. We show how
to e�ciently maintain this representation during local changes of the �nger,
ultimately leading to Theorem 2.1(ii).

2.1.4 Longest Common Extensions

As application of Theorem 2.1, we give an improved solution to longest common
extension problem in grammar compressed strings. The �rst solution to this
problem is due to Bille et al. [15]. They showed how to extend random access
queries to compute Karp-Rabin �ngerprints. Combined with an exponential
search this leads to a linear space solution to the longest common extension
problem using O(logN log `) time, where ` is the length of the longest common

2.2 Preliminaries 31

extension. We note that we can plug in any of the above mentioned random
access solution. More recently, Nishimoto et al. [107] used a completely di�er-
ent approach to get O(logN + log ` log∗N) query time while using superlinear
O(n logN log∗N) space. We obtain:

Theorem 2.2 Let S be a grammar of size n representing a string S of length
N . We can solve the longest common extension problem in O(logN + log2 `)
time and O(n) space where ` is the length of the longest common extension.

Note that we need to verify the Karp-Rabin �ngerprints during preprocessing in
order to obtain a worst-case query time. Using the result from Bille et al. [18]
this gives a randomized expected preprocessing time of O(N logN).

Theorem 2.2 improves the O(logN log `) solution to O(logN + log2 `). The
new bound is always at least as good and asymptotically better whenever ` =
o(N ε) where ε is a constant. The new result follows by extending Theorem 2.1
to compute Karp-Rabin �ngerprints and use these to perform the exponential
search from [15].

2.2 Preliminaries

Strings and Trees Let S = S[1, |S|] be a string of length |S|. Denote by
S[i] the character in S at index i and let S[i, j] be the substring of S of length
j − i+ 1 from index i ≥ 1 to |S| ≥ j ≥ i, both indices included.

Given a rooted tree T , we denote by T (v) the subtree rooted in a node v and the
left and right child of a node v by left(v) and right(v) if the tree is binary. The
nearest common ancestor nca(v, u) of two nodes v and u is the deepest node
that is an ancestor of both v and u. A weighted tree has weights on its edges.
A weighted ancestor query for node v and weight d returns the highest node w
such that the sum of weights on the path from the root to w is at least d.

Grammars and Straight Line Programs Grammar-based compression re-
places a long string by a small context-free grammar (CFG). We assume without
loss of generality that the grammars are in fact straight-line programs (SLPs).
The lefthand side of a grammar rule in an SLP has exactly one variable, and
the forighthand side has either exactly two variables or one terminal symbol. In
addition, SLPs are unambigous and acyclic. We view SLPs as a directed acyclic
graph (DAG) where each rule correspond to a node with outgoing ordered edges

32 Finger Search in Grammar-Compressed Strings

to its variables. Let S be an SLP. As with trees, we denote the left and right
child of an internal node v by left(v) and right(v). The unique string S(v) of
length Nv is produced by a depth-�rst left-to-right traversal of v in S and consist
of the characters on the leafs in the order they are visited. The corresponding
parse tree for v is denoted T (v). We will use the following results, that provides
e�cient random access from any node v in S.

Lemma 2.3 ([18]) Let S be a string of length N compressed into a SLP S of
size n. Given a node v ∈ S, we can support random access in S(v) in O(logNv)
time, and at the same time reporting the sequence of heavy paths and their entry-
and exit points in the corresponding depth-�rst traversal of S(v). The number
of heavy paths visited is O(logNv).

Karp-Rabin Fingerprints For a prime p, 2nc+4 < p ≤ 4nc+4 and x ∈ [p]
the Karp-Rabin �ngerprint [83], denoted φ(S[i, j]), of the substring S[i, j] is
de�ned as φ(S[i, j]) =

∑
i≤k≤j S[k]xk−i mod p. The key property is that for

a random choice of x, two substrings of S match i� their �ngerprints match
(whp.), thus allowing us to compare substrings in constant time. We use the
following well-known properties of �ngerprints.

Lemma 2.4 The Karp-Rabin �ngerprints have the following properties:

1) Given φ(S[i, j]), the �ngerprint φ(S[i, j ± a]) for some integer a, can be
computed in O(a) time.

2) Given �ngerprints φ(S[1, i]) and φ(S[1, j]), the �ngerprint φ(S[i, j]) can
be computed in O(1) time.

3) Given �ngerprints φ(S1) and φ(S2), the �ngerprint φ(S1 · S2) = φ(S1) ⊕
φ(S2) can be computed in O(1) time.

2.3 Fringe Access

In this section we consider the fringe access problem. Here the goal is to com-
pactly represent the SLP, such that for any node v, we can e�ciently access
locations in the string S(v) close to the start or the end of the substring. The
fringe access problem is the key component in our �nger search data structures.
A straightforward solution to the fringe access problem is to apply a solution to
the random access problem. For instance if we apply the random access solution
from Bille et al. [18] stated in Lemma 2.3 we immediately obtain a linear space

2.3 Fringe Access 33

solution with O(logNv) access time, i.e., the access time is independent of the
distance to the start or the end of the string. This is an immediate consequence
of the central grammar decomposition technique of [18], and does not extend
to solve fringe access e�ciently. Our main contribution in this section is a new
approach that bypasses this obstacle. We show the following result.

Lemma 2.5 Let S be an SLP of size n representing a string of length N .
Using O(n) space, we can support access to position i of any node v, in time
O(log(min(i,Nv − i)) + log logN).

The key idea in this result is a van Emde Boas style decomposition of S com-
bined with a predecessor data structure on selected paths in the decomposition.
To achieve linear space we reduce the predecessor queries on these paths to
a weighted ancestor query. We �rst give a data structure with query time
O((log logN)2 + log(min(i,Nv − i))). We then show how to reduce the query
time to O(log logN+log(min(i,Nv− i))) by reducing the query time for small i.
To do so we introduce an additional decomposition and give a new data struc-
ture that supports fast weighted ancestor queries on trees of small weighted
height.

For simplicity and without loss of generality we assume that the access point i is
closest to the start of S(v), i.e., the goal is to obtain O(log(i) + log logN) time.
By symmetry we can obtain the corresponding result for access points close to
the end of S(v).

2.3.1 van Emde Boas Decomposition for Grammars

We �rst de�ne the vEB decomposition on the parse tree T and then extend it
to the SLP S. In the decomposition we use the ART decompostion by Alstrup
et al. [2].

ART Decomposition The ART decomposition introduced by Alstrup et
al. [2] decomposes a tree into a single top tree and a number of bottom trees.
Each bottom tree is a subtree rooted in a node of minimal depth such that the
subtree contains no more than x leaves and the top tree is all nodes not in a
bottom tree. The decomposition has the following key property.

Lemma 2.6 ([2]) The ART decomposition with parameter x for a rooted tree
T with N leaves produces a top tree with at most N

x+1 leaves.

34 Finger Search in Grammar-Compressed Strings

3 2 2 3 1 4 3 3 1

l1 l2
bv

v

Bottom trees

Top tree

Nv = 22
sv = 5

le
ft
m
o
st
 t
o
p
 p
at
h

Figure 2.1: Example of the ART-decomposition and a leftmost top path. In
the top, the nodes forming the top tree are drawn. In the bottom,
triangles representing the bottom trees with a number that is the
size of the bottom tree. v's leftmost top path is shown as well,
and the two trees hanging to the left of this path l1 and l2.

We are now ready to de�ne the van Emde Boas (vEB) decomposition.

The van Emde Boas Decomposition We de�ne the van Emde Boas De-
composition of a tree T as follows. The van Emde Boas (vEB) decomposition of
T is obtained by recursively applying an ART decomposition: Let v = root(T)
and x =

√
N . If N = O(1), stop. Otherwise, construct an ART decomposition

of T (v) with parameter x. For each bottom tree T (u) recursively construct a
vEB decomposition with v = u and x =

√
x.

De�ne the level of a node v in T as level(v) = blog logN − log logNvc (this
corresponds to the depth of the recursion when v is included in its top tree).

Note that except for the nodes on the lowest level�which are not in any top
tree�all nodes belong to exactly one top tree. For any node v ∈ T not in the
last level, let Ttop(v) be the top tree v belongs to. The leftmost top path of v is
the path from v to the leftmost leaf of Ttop(v). See Figure 2.1.

Intuitively, the vEB decomposition of T de�nes a nested hierarchy of subtrees
that decrease by at least the square root of the size at each step.

The van Emde Boas Decomposition of Grammars Our de�nition of the
vEB decomposition of trees can be extended to SLPs as follows. Since the vEB
decomposition is based only on the length of the string Nv generated by each
node v, the de�nition of the vEB decomposition is also well-de�ned on SLPs.
As in the tree, all nodes belong to at most one top DAG. We can therefore reuse
the terminology from the de�nition for trees on SLPs as well.

2.3 Fringe Access 35

To compute the vEB decomposition �rst determine the level of each node and
then remove all edges between nodes on di�erent levels. This can be done in
O(n) time.

2.3.2 Data Structure

We �rst present a data structure that achieves O((log logN)2 + log(i)) time. In
the next section we then show how to improve the running time to the desired
O(log log(N) + log(i)) bound.
Our data structure contains the following information for each node v ∈ S. Let
l1, l2, . . . , lk be the nodes hanging to the left of v's leftmost top path (excluding
nodes hanging from the bottom node).

• The length Nv of S(v).

• The sum of the sizes of nodes hanging to the left of v's leftmost top path
sv = |l1|+ |l2|+ . . .+ |lk|.

• A pointer bv to the bottom node on v's leftmost top path.

• A predecessor data structure over the sequence 1, |l1| + 1, |l1| + |l2| +

1, . . . ,
∑k−1
i=1 |li|+ 1. We will later show how to represent this data struc-

ture.

In addition we also build the data structure from Lemma 2.3 that given any
node v supports random access to S(v) in O(logNv) time using O(n) space.

To perform an access query we proceed as follows. Suppose that we have reached
some node v and we want to compute S(v)[i]. We consider the following �ve
cases (when multiple cases apply take the �rst):

1. If Nv = O(1). Decompress S(v) and return the i'th character.

2. If i ≤ sv. Find the predecessor p of i in v's predecessor structure and let
u be the corresponding node. Recursively �nd S(u)[i− p].

3. If i ≤ sv +Nleft(bv). Recursively �nd S(left(bv))[i− sv].

4. If i ≤ sv +Nbv . Recursively �nd S(right(bv))[i− sv −Nleft(bv)].

5. In all other cases, perform a random access for i in S(v) using Lemma 2.3.

36 Finger Search in Grammar-Compressed Strings

To see correctness, �rst note that case (1) and (5) are correct by de�nition.
Case (2) is correct since when i ≤ sv we know the i'th leaf must be in one of
the trees hanging to the left of the leftmost top path, and the predecessor query
ensures we recurse into the correct one of these bottom trees. In case (3) and
(4) we check if the i'th leaf is either in the left or right subtree of bv and if it is,
we recurse into the correct one of these.

Compact Predecessor Data Structures We now describe how to represent
the predecessor data structure. Simply storing a predecessor structure in every
single node would use O(n2) space. We can reduce the space to O(n) using
ideas similar to the construction of the "heavy path su�x forest" in [18].

Let L denote the leftmost top path forest. The nodes of L are the nodes of S.
A node u is the parent of v in L i� u is a child of v in S and u is on v's leftmost
top path. Thus, a leftmost top path v1, . . . , vk in S is a sequence of ancestors
from v1 in L. The weight of an edge (u, v) in L is 0 if u is a left child of v in
S and otherwise Nleft(v). Several leftmost top paths in S can share the same
su�x, but the leftmost top path of a node in S is uniquely de�ned and thus L is
a forest. A leftmost path ends in a leaf in the top DAG, and therefore L consists
of O(n) trees each rooted at a unique leaf of a top dag. A predecessor query

on the sequence 1, |l1|+ 1, |l1|+ |l2|+ 1, . . . ,
∑k−1
i=1 |li|+ 1 now corresponds to a

weighted ancestor query in L. We plug in the weighted ancestor data structure
from Farach-Colton and Muthukrishnan [39], which supports weighted ancestor
queries in a forest in O(log log n+ log logU)) time with O(n) preprocessing and
space, where U is the maximum weight of a root-to-leaf path and n the number
of leaves. We have U = N and hence the time for queries becomes O(log logN).

Space and Preprocessing Time For each node in S we store a constant
number of values, which takes O(n) space. Both the predecessor data structure
and the data structure for supporting random access from Lemma 2.3 take
O(n) space, so the overall space usage is O(n). The vEB decomposition can be
computed in O(n) time. The leftmost top paths and the information saved in
each node can be computed in linear time. The predecessor data structure uses
linear preprocessing time, and thus the total preprocessing time is O(n).

Query Time Consider each case of the recursion. The time for case (1), (3)
and (4) is trivially O(1). Case (2) is O(log logN) since we perform exactly one
predececssor query in the predecessor data structure.

In case (5) we make a random access query in a node of sizeNv. From Lemma 2.3

2.3 Fringe Access 37

we have that the query time is O(logNv). We know level(v) = level(bv) since
they are on the same leftmost top path. From the de�nition of the level it follows
for any pair of nodes u and w with the same level that Nu ≥

√
Nw and thus

Nbv ≥
√
Nv. From the conditions we have i > sv + Nbv ≥ Nbv ≥

√
Nv. Since√

Nv < i ⇔ logNv < 2 log i we have logNv = O(log i) and thus the running
time for case (5) is O(logNv) = O(log i).

Case (1) and (5) terminate the algorithm and can thus not happen more than
once. Case (2), (3) and (4) are repeated at most O(log logN) times since the
level of the node we recurse on increments by at least one in each recursive call,
and the level of a node is at most O(log logN). The overall running time is
therefore O((log logN)2 + log i).

In summary, we have the following result.

Lemma 2.7 Let S be an SLP of size n representing a string of length N .
Using O(n) space, we can support access to position i of any node v, in time
O(log i+ (log logN)2).

2.3.3 Improving the Query Time for Small Indices

The above algorithm obtains the running time O(log i) for i ≥ 2(log logN)2 . We
will now improve the running time to O(log logN + log i) by improving the

running time in the case when i < 2(log logN)2 .

In addition to the data structure from above, we add another copy of the data
structure with a few changes. When answering a query, we �rst check if i ≥
2(log logN)2 . If i ≥ 2(log logN)2 we use the original data structure, otherwise we
use the new copy.

The new copy of the data structure is implemented as follows. In the �rst
level of the ART-decomposition let x = 2(log logN)2 instead of

√
N . For the

rest of the levels use
√
x as before. Furthermore, we split the resulting new

leftmost top path forest L into two disjoint parts: L1 consisting of all nodes
with level 1 and L≥2 consisting of all nodes with level at least 2. For L1 we use
the weighted ancestor data structure by Farach-Colton and Muthukrishnan [39]
as in the previous section using O(log log n + log logN) = O(log logN) time.
However, if we apply this solution for L≥2 we end up with a query time of
O(log log n + log log x), which does not lead to an improved solution. Instead,
we present a new data structure that supports queries in O(log log x) time.

38 Finger Search in Grammar-Compressed Strings

Lemma 2.8 Given a tree T with n leaves where the sum of edge weights on any
root-to-leaf path is at most x and the height is at most x, we can support weighted
ancestor queries in O(log log x) time using O(n) space and preprocessing time.

Proof. Create an ART-decomposition of T with parameter x. For each bottom
tree in the decomposition construct the weighted ancestor structure from [39].
For the top tree, construct a predecessor structure over the accumulated edge
weights for each root-to-leaf path.

To perform a weighted ancestor query on a node in a bottom tree, we �rst
perform a weighted ancestor query using the data structure for the bottom tree.
In case we end up in the root of the bottom tree, we continue with a predecessor
search in the top tree from the leaf corresponding to the bottom tree.

The total space for bottom trees is O(n). Since the top tree has O(n/x) leaves
and height at most x, the total space for all predecessor data structures on
root-to-leaf paths in the top tree is O(n/x · x) = O(n). Hence, the total space
is O(n).

A predecessor query in the top tree takes O(log log x) time. The number of
nodes in each bottom tree is at most x2 since it has at most x leaves and height
x and the maximum weight of a root-to-leaf path is x giving weighted ancestor
queries in O(log log x2 + log log x) = O(log log x) time. Hence, the total query
time is O(log log x). �

We reduce the query time for queries with i < 2(log logN)2 using the new
data structure. The level of any node in the new structure is at most O(1 +

log log 2(log logN)2) = O(log log logN). A weighted ancestor query in L1 takes
time O(log logN). For weighted ancestor queries in L≥2, we know any node

v has height at most 2(log logN)2 and on any root-to-leaf path the sum of the
weights is at most 2(log logN)2 . Hence, by Lemma 2.8 we support queries in
O(log log 2(log logN)2) = O(log log logN) time for nodes in L≥2.

We make at most one weighted ancestor query in L1, the remaining ones are
made in L≥2, and thus the overall running time is O(log logN+(log log logN)2+
log i) = O(log logN + log i).

In summary, this completes the proof of Lemma 2.5.

2.4 Static Finger Search 39

h3

h2=hs

h1

f i

r1
r2 r3

u

v(hs)

a i ‐ f ‐ a

right(u)

Figure 2.2: Illustration of the data structure for a �nger pointing at f and an
access query at location i. h1, h2, h3 are the heavy paths visited
when �nding the �nger. u corresponds to NCA(vf , vi) in the parse
tree and hs is the heavy path on which u lies, which we use to �nd
u. a is a value calculated during the access query.

2.4 Static Finger Search

We now show how to apply our solution to the fringe access to a obtain a simple
data structure for the static �nger search problem. This solution will be the
starting point for solving the dynamic case in the next section, and we will use
it as a key component in our result for longest common extension problem.

Similar to the fringe search problem we assume without loss of generality that
the access point i is to the right of the �nger.

Data Structure We store the random access data structure from [18] used
in Lemma 2.3 and the fringe search data structures from above. Also from [18]
we store the data structure that for any heavy path h starting in a node v and
an index i of a leaf in T (v) gives the exit-node from h when searching for i in
O(log logN) time and uses O(n) space.

To represent a �nger the key idea is store a compact data structure for the
corresponding root-to-leaf path in the grammar that allows us to navigate it
e�ciently. Speci�cally, let f be the position of the current �nger and let p =
v1 . . . vk denote the path in S from the root to vf (v1 = root and vk = vf).
Decompose p into the O(logN) heavy paths it intersects, and call these hj =
v1 . . . vi1 , hj−1 = vi1+1 . . . vi2 , · · · , h1 = vij−1+1 . . . vk. Let v(hi) be the topmost
node on hi (v(hj) = v1, v(hj−1) = vi1 , . . .). Let lj be the index of f in S(v(hj))
and rj = Nv(hj) − lj . For the �nger we store:

40 Finger Search in Grammar-Compressed Strings

1. The sequence r1, r2, . . . , rj (note r1 ≤ r2 ≤ · · · ≤ rj).

2. The sequence v(h1), v(h2), . . . , v(hj).

3. The string FT = S[f + 1, f + logN].

Analysis The random access and fringe search data structures both require
O(n) space. Each of the 3 bullets above require O(logN) space and thus the
�nger takes up O(logN) space. The total space usage is O(n).

Set�nger We implement setfinger(f) as follows. First, we apply Lemma 2.3
to make random access to position f . This gives us the sequence of visited heavy
paths which exactly corresponds to hj , hj−1, . . . , h1 including the corresponding
li values from which we can calculate the ri values. So we update the ri sequence
accordingly. Finally, decompress and save the string FT = S[f + 1, f + logN].

The random access to position f takes O(logN) time. In addition to this we
perform a constant number of operations for each heavy path hi, which in total
takes O(logN) time. Decompressing a string of logN characters can be done
in O(logN) time (using [18]). In total, we use O(logN) time.

Access To perform access(i) (i > f), there are two cases. If D = i−f ≤ logN
we simply return the stored character FT [D] in constant time. Otherwise, we
compute the node u = nca(vf , vi) in the parse tree T as follows. First �nd the
index s of the successor to D in the ri sequence using binary search. Now we
know that u is on the heavy path hs. Find the exit-nodes from hs when searching
for respectively i and f using the data structure from [18] - the topmost of these
two is u. See Fig. 2.2. Finally, we compute a as the index of f in T (left(u))
from the right and use the data structure for fringe search from Lemma 2.5 to
compute S(right(u))[i− f − a].

For D ≤ logN , the operation takes constant time. For D > logN , the binary
search over a sequence of O(logN) elements takes O(log logN) time, �nding the
exit-nodes takesO(log logN) time, and the fringe search takesO(log(i−f−a)) =
O(logD) time. Hence, in total O(log logN + logD) = O(logD) time.

This completes the proof of Theorem 2.1(i).

2.5 Dynamic Finger Search 41

2.5 Dynamic Finger Search

In this section we show how to extend the solution from Section 2.4 to handle
dynamic �nger search. The target is to support the movefinger operation that
will move the current �nger, where the time it takes is dependent on how far the
�nger is moved. Obviously, it should be faster than simply using the setfinger
operation. The key di�erence from the static �nger is a new decomposition of a
root-to-leaf path into paths. The new decomposition is based on a combination
of heavy paths and leftmost top paths, which we will show �rst. Then we show
how to change the data structure to use this decomposition, and how to modify
the operations accordingly. Finally, we consider how to generalize the solution to
work when movefinger/access might both be to the left and right of the current
�nger, which for this solution is not trivially just by symmetry.

Before we start, let us see why the data structure for the static �nger can-
not directly be used for dynamic �nger. Suppose we have a �nger pointing
at f described by Θ(logN) heavy paths. It might be the case that after a
movefinger(f + 1) operation, it is Θ(logN) completely di�erent heavy paths
that describes the �nger. In this case we must do Θ(logN) work to keep our
�nger data structure updated. This can for instance happen when the current
�nger is pointing at the right-most leaf in the left subtree of the root.

Furthermore, in the solution to the static problem, we store the substring S[f +
1, f+logN] decompressed in our data structure. If we perform a movefinger(f+
logN) operation nothing of this substring can be reused. To decompress logN
characters takes Ω(logN) time, thus we cannot do this in the movefinger oper-
ation and still get something faster than Θ(logN).

2.5.1 Left Heavy Path Decomposition of a Path

Let p = v1 . . . vk be a root-to-leaf path in S. A subpath pi = va . . . vb of p is a
maximal heavy subpath if va . . . vb is part of a heavy path and vb+1 is not on the
same heavy path. Similarly, a subpath pi = va . . . vb of p is a maximal leftmost
top subpath if va . . . vb is part of a leftmost top path and level(vb) 6= level(vb+1).

A left heavy path decomposition is a decomposition of a root-to-leaf path p into
an arbitrary sequence p1 . . . pj of maximal heavy subpaths, maximal leftmost
top subpaths and (non-maximal) leftmost top subpaths immediately followed
by maximal heavy subpaths.

De�ne v(pi) as the topmost node on the subpath pi. Let lj be the index of the

42 Finger Search in Grammar-Compressed Strings

�nger f in S(v(pj)) and rj = Nv(pj) − lj . Let t(pi) be the type of pi; either
heavy subpath (HP) or leftmost top subpath (LTP).

A left heavy path decomposition of a root-to-leaf path p is not unique. The
heavy path decomposition of p is always a valid left heavy path decomposition
as well. The visited heavy paths and leftmost top paths during fringe search are
always maximal and thus is always a valid left heavy path decomposition.

Lemma 2.9 The number of paths in a left heavy path decomposition is O(logN).

Proof. There are at most O(logN) heavy paths that intersects with a root-
to-leaf path (Lemma 2.3). Each of these can at most be used once because of
the maximality. So there can at most be O(logN) maximal heavy paths. Each
time there is a maximal leftmost top path, the level of the following node on
p increases. This can happen at most O(log logN) times. Each non-maximal
leftmost top path is followed by a maximal heavy path, and since there are
only O(logN) of these, this can happen at most O(logN) times. Therefore the
sequence of paths has length O(logN + log logN + logN) = O(logN).

2.5.2 Data Structure

We use the data structures from [18] as in the static variant and the fringe access
data structure with an extension. In the fringe access data structure there is
a predecessor data structure for all the nodes hanging to the left of a leftmost
top path. To support access and movefinger we need to �nd a node hanging to
the left or right of a leftmost top path. We can do this by storing an identical
predecessor structure for the accumulated sizes of the nodes hanging to the right
of each leftmost top path. Again, the space usage for this predecessor structure
can be reduced to O(n) by turning it into a weighted ancestor problem.

To represent a �nger the idea is again to have a compact data structure repre-
senting the root-to-leaf path corresponding to the �nger. This time we will base
it on a left heavy path decomposition instead of a heavy path decomposition.
Let f be the current position of the �nger. For the root-to-leaf path to vf we
maintain a left heavy path decomposition, and store the following for a �nger:

1. The sequence r1, r2, . . . , rj (r1 ≤ r2 ≤ · · · ≤ rj) on a stack with the last
element on top.

2. The sequence v(p1), v(p2), . . . , v(pj) on a stack with the last element on
top.

2.5 Dynamic Finger Search 43

3. The sequence t(p1), t(p2), . . . , t(pj) on a stack with the last element on
top.

Analysis The fringe access data structure takes up O(n) space. For each path
in the left heavy path decomposition we use constant space. Using Lemma 2.9
we have the space usage of this is O(logN) = O(n).

Set�nger Use fringe access (Lemma 2.5) to access position f . This gives us a
sequence of leftmost top paths and heavy paths visited during the fringe access
which is a valid left heavy path decomposition. Calculate ri for each of these
and store the three sequences of ri, v(pi) and t(pi) on stacks.

The fringe access takes O(log f + log logN) time. The number of subpaths
visited during the fringe access cannot be more than O(log f + log logN) and
we only perform constant extra work for each of these.

Access To implement access(i) for i > f we have to �nd u = nca(vi, vf) in the
T . Find the index s of the successor to D = i− f in r1, r2, . . . , rj using binary
search. We know nca(vi, vf) lies on ps, and vi is in a subtree that hangs of ps.
The exit-nodes from ps to vf and vi are now found - the topmost of these two
is nca(vi, vf). If t(ps) = HP then we can use the same data structure as in the
static case, otherwise we perform the predecessor query on the extra predecessor
data structure for the nodes hanging of the leftmost top path. Finally, we
compute a as the index of f in S(left(u)) from the right and use the data
structure for fringe access from Lemma 2.5 to compute S(right(u))[i− f − a].

The binary search on r1, r2, . . . , rj takes O(log logN) time. Finding the exit-
nodes from ps takes O(log logN) in either case. Finally the fringe access takes
O(log(i− f − a) + log logN) = O(logD+ log logN). Overall it takes O(logD+
log logN).

Note the extra O(log logN) time usage because we have not decompressed the
�rst logN characters following the �nger.

Move�nger To move the �nger we combine the access and setfinger opera-
tions. Find the index s of the successor to D = i − f in r1, r2, . . . , rj using
binary search. Now we know u = nca(vi, vf) must lie on ps. Find u in the same
way as when performing access. From all of the stacks pop all elements above
index s. Compute a as the index of f in S(left(u)) from the right. The �nger

44 Finger Search in Grammar-Compressed Strings

should be moved to index i − f − a in right(u). First look at the heavy path
right(u) lies on and �nd the proper exit-node w using the data structure from
[18]. Then continue with fringe searh from the proper child of w. This gives
a heavy path followed by a sequence of maximal leftmost top paths and heavy
paths needed to reach vi from right(u), push the rj , v(pj), and t(pj) values for
these on top of the respective stacks.

We now verify the sequence of paths we maintain is still a valid left heavy path
decomposition. Since fringe search gives a sequence of paths that is a valid left
heavy path decomposition, the only problem might be ps is no longer maximal.
If ps is a heavy path it will still be maximal, but if ps is a leftmost top path
then level(u) and level(right(u)) might be equal. But this possibly non-maximal
leftmost top path is always followed by a heavy path. Thus the overall sequence
of paths remains a left heavy path decomposition.

The successor query in r1, r2, . . . , rj takes O(log logN) time. Finding u on pi
takes O(log logN) time, and so does �nding the exit-node on the following heavy
path. Popping a number of elements from the top of the stacks can be done
in O(1) time. Finally the fringe access takes O(log(i − f − a) + log logN) =
O(logD+ log log n) including pushing the right elements on the stacks. Overall
the running time is therefore O(logD + log log n).

2.5.3 Moving/Access to the Left of the Finger

In the above we have assumed i > f , we will now show how this assumption
can be removed. It is easy to see we can mirror all data structures and we will
have a solution that works for i < f instead. Unfortunately, we cannot just use
a copy of each independently, since one of them only supports moving the �nger
to the left and the other only supports moving to the right. We would like to
support moving the �nger left and right arbitrarily. This was not a problem
with the static �nger since we could just make setfinger in both the mirrored
and non-mirrored data structures in O(logN) time.

Instead we extend our �nger data structure. First we extend the left heavy
path decomposition to a left right heavy path decomposition by adding another
type of paths to it, namely rightmost top paths (the mirrorred version of left-
most top paths). Thus a left right heavy path decomposition is a decomposition
of a root-to-leaf path p into an arbitrary sequence p1 . . . pj of maximal heavy
subpaths, maximal leftmost/rightmost top subpaths and (non-maximal) left-
most/rightmost top subpaths immediately followed by maximal heavy subpaths.
Now t(pi) = HP |LTP |RTP . Furthermore, we save the sequence l1, l2, . . . , lj (lj
being the left index of f in T (v(pi))) on a stack like the r1, r2, . . . , rj values, etc.

2.6 Finger Search with Fingerprints and Longest Common Extensions 45

When we do access and movefinger where i < f , the subpath ps where nca(vf , vi)
lies can be found by binary search on the lj values instead of the rj values.
Note the lj values are sorted on the stack, just like the rj values. The following
heavy path lookup/fringe access should now be performed on left(u) instead of
right(u). The remaining operations can just be performed in the same way as
before.

2.6 Finger Search with Fingerprints and Longest

Common Extensions

We show how to extend our �nger search data structure from Theorem 2.1(i)
to support computing �ngerprints and then apply the result to compute longest
common extensions. First, we will show how to return a �ngerprint for S(v)[1, i]
when performing access on the fringe of v.

2.6.1 Fast Fingerprints on the Fringe

To do this, we need to store some additional data for each node v ∈ S. We store
the �ngerprint φ(S(v)) and the concatenation of the �ngerprints of the nodes
hanging to the left of the leftmost top path pv = φ(S(l1)) ⊕ φ(S(l2)) ⊕ . . . ⊕
φ(S(lk)). We also need the following lemma:

Lemma 2.10 ([15]) Let S be a string of length N compressed into a SLP S
of size n. Given a node v ∈ S, we can �nd the �ngerprint φ(S(v)[1, i]) where
1 ≤ i ≤ Nv in O(logNv) time.

Suppose we are in a node v and we want to calculate the �ngerprint φ(S(v)[1, i]).
We perform an access query as before, but also maintain a �ngerprint p, initially
p = φ(ε), computed thus far. We follow the same �ve cases as before, but add
the following to update p:

1. From the decompressed S(v), calculate the �ngerprint for S(v)[1, i], now
update p = p⊕ φ(S(v)[1, i]).

2. p = p⊕ (φ(pv)	s φ(pu)).

3. p = p⊕ φ(pv).

4. p = p⊕ φ(pv)⊕ φ(S(left(bv))).

46 Finger Search in Grammar-Compressed Strings

5. Use Lemma 2.10 to �nd the �ngerprint for S(v)[1, i] and then update with
p = p⊕ φ(S(v)[1, i]).

These extra operations do not change the running time of the algorithm, so we
can now �nd the �ngerprint φ(S(v)[1, i]) in time O(log logN + log(min(i,Nv −
i))).

2.6.2 Finger Search with Fingerprints

Next we show how to do �nger search while computing �ngerprints between the
�nger f and the access point i.

When we perform setfinger(f) we use the algorithm from [15] to compute �n-
gerprints during the search of S from the root to f . This allows us to subse-
quently compute for any heavy path hj on the root to position f the �ngerprint
p(hj) of the concatenation of the strings generated by the subtrees hanging to
the left of hj . In addition, we explicitly compute and store the �ngerprints
φ(S[1, f + 1]), φ(S[1, f + 2]), . . . , φ(S[1, f + logN + 1]). In total, this takes
O(logN) time.

Suppose that we have now performed a setfinger(f) operation. To implement
access(i), i > f , there are two cases. If D = i − f ≤ logN we return the
appropriate precomputed �ngerprint. Otherwise, we compute the node u =
nca(vf , vi) in the parse tree T as before. Let h be the heavy path containing u.
Using the data structure from [15] we compute the �ngerprint pl of the nodes
hanging to the left of h above u in constant time. The �ngerprint is now obtained
as φ(S[1, i]) = phj ⊕ pl⊕φ(S(right(u))[1, (i− f)− a]), where the latter is found
using fringe access with �ngerprints in right(u). None of these additions change
the asymptotic complexities of Theorem 2.1(i). Note that with the �ngerprint
construction in [15] we can guarantee that all �ngerprints are collision-free.

2.6.3 Longest Common Extensions

Using the �ngerprints it is now straightforward to implement lce queries as
in [15]. Given a lce(i, j) query, �rst set �ngers at positions i and j. This
allows us to get �ngerprints of the form φ(S[i, i+ a]) or φ(S[j, j+ a]) e�ciently.
Then, we �nd the largest value ` such that φ(S[i, i+ `]) = φ(S[j, j + `]) using a
standard exponential search. Setting the two �nger uses O(logN) time and by
Theorem 2.1(i) the at most O(log `) searches in the exponential search take at

2.6 Finger Search with Fingerprints and Longest Common Extensions 47

most O(log `) time. Hence, in total we use O(logN + log2 `) time, as desired.
This completes the proof of Theorem 2.2.

48 Finger Search in Grammar-Compressed Strings

Chapter 3

Compressed Indexing with

Signature Grammars

Anders Roy Christiansen † Mikko Berggren Ettienne †

† The Technical University of Denmark

Abstract

The compressed indexing problem is to preprocess a string S of length n
into a compressed representation that supports pattern matching queries.
That is, given a string P of length m report all occurrences of P in S.

We present a data structure that supports pattern matching queries
in O(m + occ(lg lgn + lgε z)) time using O(z lg(n/z)) space where z is
the size of the LZ77 parse of S and ε > 0, when the alphabet is small
or the compression ratio is at least polynomial. We also present two
data structures for the general case; one where the space is increased by
O(z lg lg z), and one where the query time changes from worst-case to
expected.

In all cases, the results improve the previously best known solutions.
Notably, this is the �rst data structure that decides if P occurs in S in
O(m) time using O(z lg(n/z)) space.

Our results are mainly obtained by a novel combination of a random-
ized grammar construction algorithm with well known techniques relating
pattern matching to 2D-range reporting.

50 Compressed Indexing with Signature Grammars

3.1 Introduction

Given a string S and a pattern P , the core problem of pattern matching is to
report all locations where P occurs in S. Pattern matching problems can be
divided into two: the algorithmic problem where the text and the pattern are
given at the same time, and the data structure problem where one is allowed to
preprocess the text (pattern) before a query pattern (text) is given. Many prob-
lems within both these categories are well-studied in the history of stringology,
and optimal solutions to many variants have been found.

In the last decades, researchers have shown an increasing interest in the com-
pressed version of this problem, where the space used by the index is related
to the size of some compressed representation of S instead of the length of S.
This could be measures such as the size of the LZ77-parse of S, the smallest
grammar representing S, the number of runs in the BWT of S, etc. see e.g.
[16, 55, 56, 59, 82, 102, 108]. This problem is highly relevant as the amount of
highly-repetitive data increases rapidly, and thus it is possible to handle greater
amounts of data by compressing it. The increase in such data is due to things
like DNA sequencing, version control repositories, etc.

In this paper we consider what we call the compressed indexing problem, which
is to preprocess a string S of length n into a compressed representation that
supports fast pattern matching queries. That is, given a string P of length m,
report all occ occurrences of substrings in S that match P .

Table 3.1 gives an overview of the results on this problem.

3.1.1 Our Results

In this paper we improve previous solutions that are bounded by the size of the
LZ77-parse. For constant-sized alphabets we obtain the following result:

Theorem 3.1 Given a string S of length n from a constant-sized alphabet
with an LZ77 parse of length z, we can build a compressed-index supporting
pattern matching queries in O(m+ occ(lg lgn+ lgε z)) time using O(z lg(n/z))
space.

In particular, we are the �rst to obtain optimal search time using onlyO(z lg(n/z))
space. For general alphabets we obtain the following:

3.1 Introduction 51

Table 3.1: Selection of previous results and our new results on compressed
indexing. The variables are the text size n, the LZ77-parse size z,
the pattern length m, occ is the number of occurrences and σ is the
size of the alphabet. (The time complexity marked by † is expected
whereas all others are worst-case)

Index Space Locate time σ

Gagie et al. [56] O(z lg(n/z)) O(m lgm+ occ lg lg n) O(1)

Nishimoto et al. [108] O(z lg n lg∗ n) O(m lg lg n lg lg z +
lg z lgm lg n(lg∗ n)2 +
occ lg n)

nO(1)

Bille et al. [16] O(z(lg(n/z) + lgε z)) O(m+ occ(lgε n+ lg lg n)) nO(1)

Bille et al. [16] O(z lg(n/z) lg lg z) O(m+ occ lg lg n) O(1)

Bille et al. [16] O(z lg(n/z)) O(m(1 + lgε z
lg(n/z)) +

occ(lgε n+ lg lg n))

O(1)

Theorem 1 O(z lg(n/z)) O(m+ occ(lgε z + lg lg n)) O(1)

Theorem 2 (1) O(z(lg(n/z) + lg lg z)) O(m+ occ(lgε z + lg lg n)) nO(1)

Theorem 2 (2) O(z(lg(n/z)) O(m+ occ(lgε z + lg lg n))† nO(1)

52 Compressed Indexing with Signature Grammars

Theorem 3.2 Given a string S of length n from an integer alphabet polyno-
mially bounded by n with an LZ77-parse of length z, we can build a compressed-
index supporting pattern matching queries in:

(1) O(m+ occ(lg lg n+ lgε z)) time using O(z(lg(n/z) + lg lg z)) space.

(2) O(m+ occ(lg lg n+ lgε z)) expected time using O(z lg(n/z)) space.

(3) O(m+ lgε z + occ(lg lg n+ lgε z)) time using O(z lg(n/z)) space.

Note lg lg z = O(lg(n/z)) when either the alphabet size is O(2lg
ε n) or z =

o(n
lgε
′n) where ε and ε′ are arbitrarily small positive constants. Theorem 4.1

follows directly from Theorem 3.2 (1) given these observations. Theorem 3.2 is
a consequence of Lemma 3.11, 3.13, 3.14 and 3.15.

3.1.2 Technical Overview

Our main new contribution is based on a new grammar construction. In [101]
Melhorn et al. presented a way to maintain dynamic sequences subject to equal-
ity testing using a technique called signatures. They presented two signature
construction techniques. One is randomized and leads to complexities that hold
in expectation. The other is based on a deterministic coin-tossing technique of
Cole and Vishkin [30] and leads to worst-case running times but incurs an iter-
ated logarithmic overhead compared to the randomized solution. This technique
has also resembles the string labeling techniques found e.g. in [119]. To the best
of our knowledge, we are the �rst to consider grammar compression based on
the randomized solution from [101]. Despite it being randomized we show how
to obtain worst-case query bounds for text indexing using this technique.

The main idea in this grammar construction is that similar substrings will be
parsed almost identically. This property also holds true for the deterministic
construction technique which has been used to solve dynamic string problems
with and without compression, see e.g. [1, 108]. In [80] Je» devices a di�erent
grammar construction algorithm with similar properties to solve the algorithmic
pattern matching problem on grammar compressed strings which has later been
used for both static and dynamic string problems, see [61,127]

Our primary solution has an lgε z term in the query time which is problematic
for short query patterns. To handle this, we show di�erent solutions for han-
dling short query patterns. These are based on the techniques from LZ77-based
indexing combined with extra data structures to speed up the queries.

3.2 Preliminaries 53

3.2 Preliminaries

We assume a standard unit-cost RAM model with word size Θ(lg n) and that
the input is from an integer alphabet Σ = {1, 2, . . . , nO(1)}. We measure space
complexity in terms of machine words unless explicitly stated otherwise. A
string S of length n = |S| is a sequence of n symbols S[1] . . . S[n] drawn from
an alphabet Σ. The sequence S[i, j] is the substring of S given by S[i] . . . S[j]
and strings can be concatenated, i.e. S = S[1, k]S[k+ 1, n]. The empty string is
denoted ε and S[i, i] = S[i] while S[i, j] = ε if j < i, S[i, j] = S[1, j] if i < 1 and
S[i, n] if j > n. The reverse of S denoted rev(s) is the string S[n]S[n−1] . . . S[1].
A run in a string S is a substring S[i, j] with identical letters, i.e. S[k] = S[k+1]
for k = i, . . . , j−1. Let S[i, j] be a run in S then it is a maximal run if it cannot
be extended, i.e. S[i−1] 6= S[i] and S[j] 6= S[j+1]. If there are no runs in S we
say that S is run-free and it follows that S[i] 6= S[i + 1] for 1 ≤ i < n. Denote
by [u] the set of integers {1, 2, . . . , u}.

Let X ⊆ [u]2 be a set of points in a 2-dimensional grid. The 2D-orthogonal range
reporting problem is to compactly represent Z while supporting range reporting
queries, that is, given a rectangle R = [a1, b1] × [a2, b2] report all points in the
set R ∩X. We use the following:

Lemma 3.3 (Chan et al. [24]) For any set of n points in [u] × [u] and
constant ε > 0, we can solve 2D-orthogonal range reporting with O(n lg n) ex-
pected preprocessing time using:

i O(n) space and (1 + k) ·O(lgε n lg lg u) query time

ii O(n lg lg n) space and (1 + k) ·O(lg lg u) query time

where k is the number of occurrences inside the rectangle.

A Karp-Rabin �ngerprinting function [84] is a randomized hash function for
strings. Given a string S of length n and a �ngerprinting function φ we can
in O(n) time and space compute and store O(n) �ngerprints such that the
�ngerprint of any substring of S can be computed in constant time. Identical
strings have identical �ngerprints. The �ngerprints of two strings S and S′

collide when S 6= S′ and φ(S) = φ(S′). A �ngerprinting function is collision-
free for a set of strings when there are no collisions between the �ngerprints of
any two strings in the set. We can �nd collision-free �ngerprinting function for
a set of strings with total length n in O(n) expected time [112].

54 Compressed Indexing with Signature Grammars

Let D be a lexicographically sorted set of k strings. The weak pre�x search
problem is to compactly represent D while supporting weak pre�x queries, that
is, given a query string P of length m report the rank of the lexicographically
smallest and largest strings in D of which P is a pre�x. If no such strings exist,
the answer can be arbitrary.

Lemma 3.4 (Belazzougui et al. [11], appendix H.3) Given a set
D of k strings with average length l, from an alphabet of size σ, we can build
a data structure using O(k(lg l + lg lg σ)) bits of space supporting weak pre�x
search for a pattern P of length m in O(m lg σ/w + lgm) time where w is the
word size.

We will refer to the data structure of Lemma 3.4 as a z-fast trie following the
notation from [11]. The m term in the time complexity is due to a linear time
preprocessing of the pattern and is not part of the actual search. Therefore it is
simple to do weak pre�x search for any length l substring of P in O(lg l) time
after preprocessing P once in O(m) time.

The LZ77-parse [138] of a string S of length n is a string Z of the form
(s1, l1, α1) . . . (sz, lz, αz) ∈ ([n], [n],Σ)z. We de�ne u1 = 1, ui = ui−1 + li−1 + 1
for i > 1. For Z to be a valid parse, we require l1 = 0, si < ui, S[ui, ui+li−1] =
S[si, si + li − 1], and S[ui + li] = αi for i ∈ [z]. This guarantees Z represents S
and S is uniquely de�ned in terms of Z. The substring S[ui, ui+ li] is called the
ith phrase of the parse and S[si, si + li− 1] is its source. A minimal LZ77-parse
of S can be found greedily in O(n) time and stored in O(z) space [138]. We call
the positions u1 + l1, . . . , uz + lz the borders of S.

3.3 Signature Grammars

We consider a hierarchical representation of strings given by Melhorn et al. [101]
with some slight modi�cations. Let S be a run-free string of length n from an
integer alphabet Σ and let π be a uniformly random permutation of Σ. De�ne
a position S[i] as a local minimum of S if 1 < i < n and π(S[i]) < π(S[i − 1])
and π(S[i]) < π(S[i + 1]). In the block decomposition of S, a block starts at
position 1 and at every local minimum in S and ends just before the next block
begins (the last block ends at position n). The block decomposition of a string
S can be used to construct the signature tree of S denoted sig(S) which is an
ordered labeled tree with several useful properties.

Lemma 3.5 Let S be a run-free string S of length n from an alphabet Σ and
let π be a uniformly random permutation of Σ such that π(c) is the rank of the

3.3 Signature Grammars 55

symbol c ∈ Σ in this permutation. Then the expected length between two local
minima in the sequence π(S[1]), π(S[2]), . . . , π(S[n]) is at most 3 and the longest
gap is O(lg n) in expectation.

Proof. First we show the expected length between two local minima is at most
3. Look at a position 1 ≤ i ≤ n in the sequence π(S[1]), π(S[2]), . . . , π(S[n]).
To determine if π(S[i]) is a local minimum, we only need to consider the two
neighbouring elements π(S[i− 1]) and π(S[i+ 1]) thus let us consider the triple
(π(S[i− 1]), π(S[i]), π(S[i+ 1])). We need to consider the following cases. First
assume S[i − 1] 6= S[i] 6= S[i + 1]. There exist 3! = 6 permutations of a triple
with unique elements and in two of these the minimum element is in the middle.
Since π is a uniformly random permutation of Σ all 6 permutations are equally
likely, and thus there is 1/3 chance that the element at position i is a local
minimum. Now instead assume S[i− 1] = S[i+ 1] 6= S[i] in which case there is
1/2 chance that the middle element is the smallest. Finally, in the case where
i = 1 or i = n there is also 1/2 chance. As S is run-free, these cases cover all
possible cases. Thus there is at least 1/3 chance that any position i is a local
minimum independently of S. Thus the expected number of local minima in
the sequence is therefore at least n/3 and the expected distance between any
two local minima is at most 3.

The expected longest distance between two local minima of O(lg n) was shown
in [101].

3.3.1 Signature Grammar Construction

We now give the construction algorithm for the signature tree sig(S). Consider
an ordered forest F of trees. Initially, F consists of n trees where the ith tree is a
single node with label S[i]. Let the label of a tree t denoted l(t) be the label of its
root node. Let l(F) denote the string that is given by the in-order concatenation
of the labels of the trees in F . The construction of sig(S) proceeds as follows:

1. Let ti, . . . , tj be a maximal subrange of consecutive trees of F with iden-
tical labels, i.e. l(ti) = . . . = l(tj). Replace each such subrange in F by a
new tree having as root a new node v with children ti, . . . , tj and a label
that identi�es the number of children and their label. We call this kind of
node a run node. Now l(F) is run-free.

2. Consider the block decomposition of l(F). Let ti, . . . , tj be consecutive
trees in F such that their labels form a block in l(F). Replace all identical

56 Compressed Indexing with Signature Grammars

blocks ti, . . . , tj by a new tree having as root a new node with children
ti, . . . , tj and a unique label. We call this kind of node a run-free node.

3. Repeat step 1 and 2 until F contains a single tree, we call this tree sig(S).

In each iteration the size of F decreases by at least a factor of two and each
iteration takes O(|F |) time, thus it can be constructed in O(n) time.

Consider the directed acyclic graph (DAG) of the tree sig(S) where all identical
subtrees are merged. Note we can store run nodes in O(1) space since all out-
going edges are pointing to the same node, so we store the number of edges along
with a single edge instead of explicitly storing each of them. For run-free nodes
we use space proportional to their out-degrees. We call this the signature DAG
of S denoted dag(S). There is a one-to-one correspondence between this DAG
and an acyclic run-length grammar producing S where each node corresponds
to a production and each leaf to a terminal.

3.3.2 Properties of the Signature Grammar

We now show some properties of sig(S) and dag(S) that we will need later. Let
str(v) denote the substring of S given by the labels of the leaves of the subtree
of sig(S) induced by the node v in left to right order.

Lemma 3.6 Let v be a node in the signature tree for a string S of length n.
If v has height h then |str(v)| is at least 2h and thus sig(S) (and dag(S)) has
height O(lg n).

Proof. This follows directly from the out-degree of all nodes being at least 2.

Denote by T (i, j) the set of nodes in sig(S) that are ancestors of the ith through
jth leaf of sig(S). These nodes form a sequence of adjacent nodes at every level
of sig(S) and we call them relevant nodes for the substring S[i, j].

Lemma 3.7 T (i, j) and T (i′, j′) have identical nodes except at most the two
�rst and two last nodes on each level whenever S[i, j] = S[i′, j′].

Proof. Trivially, the leaves of T (i, j) and T (i′, j′) are identical if S[i, j] =
S[i′, j′]. Now we show it is true for nodes on level l assuming it is true for nodes
on level l − 1. We only consider the left part of each level as the argument for
the right part is (almost) symmetric. Let v1, v2, v3, . . . be the nodes on level l−1

3.3 Signature Grammars 57

in T (i, j) and u1, u2, u3, . . . the nodes on level l − 1 in T (i′, j′) in left to right
order. From the assumption, we have va, va+1, . . . are identical with ub, ub+1, . . .
for some 1 ≤ a, b ≤ 3. When constructing the lth level of sig(S), these nodes
are divided into blocks. Let va+k be the �rst block that starts after va then
by the block decomposition, the �rst block after ub starts at ub+k. The nodes
v1, . . . , va+k are spanned by at most two blocks and similarly for u1, . . . , ub+k.
These blocks become the �rst one or two nodes on level l in T (i, j) and T (i′, j′)
respectively. The block starting at va+k is identical to the block starting at ub+k
and the same holds for the following blocks. These blocks result in identical
nodes on level l. Thus, if we ignore the at most two �rst (and last) nodes on
level l the remaining nodes are identical.

We call nodes of T (i, j) consistent in respect to T (i, j) if they are guaranteed
to be in any other T (i′, j′) where S[i, j] = S[i′, j′]. We denote the remaining
nodes of T (i, j) as inconsistent. From the above lemma, it follows at most the
left-most and right-most two nodes on each level of T (i, j) can be inconsistent.

Lemma 3.8 The expected size of the signature DAG dag(S) is O(z lg(n/z)).

Proof. We �rst bound the number of unique nodes in sig(S) in terms of the
LZ77-parse of S which has size z. Consider the decomposition of S into the 2z
substrings S[u1, u1 + l1], S[u1 + l1 + 1], . . . , S[uz, uz + lz], S[uz + lz + 1] given
by the phrases and borders of the LZ77-parse of S and the corresponding sets
of relevant nodes R = {T (u1, u1 + l1), T (u1 + l1 + 1, u1 + l1 + 1), . . .}. Clearly,
the union of these sets are all the nodes of sig(S). Since identical nodes are
represented only once in dag(S) we need only count one of their occurrences
in sig(S). We �rst count the nodes at levels lower than lg(n/z). A set T (i, i)
of nodes relevant to a substring of length one has no more than O(lg(n/z))
such nodes. By Lemma 3.7 only O(lg(n/z)) of the relevant nodes for a phrase
are not guaranteed to also appear in the relevant nodes of its source. Thus we
count a total of O(z lg(n/z)) nodes for the O(z) sets of relevant nodes. Consider
the leftmost appearance of a node appearing one or more times in sig(S). By
de�nition, and because every node of sig(S) is in at least one relevant set, it
must already be counted towards one of the sets. Thus there are O(z lg(n/z))
unique vertices in sig(S) at levels lower than lg(n/z). Now for the remaining
at most lg(z) levels, there are no more than O(z) nodes because the out-degree
of every node is at least two. Thus we have proved that there are O(z lg(n/z))
unique nodes in sig(S). By Lemma 3.5 the average block size and thus the
expected out-degree of a node is O(1). It follows that the expected number of
edges and the expected size of dag(S) is O(z lg(n/z)).

Lemma 3.9 A signature grammar of S using O(z lg(n/z)) (worst case) space
can be constructed in O(n) expected time.

58 Compressed Indexing with Signature Grammars

Proof. Construct a signature grammar for S using the signature grammar
construction algorithm. If the average out-degree of the run-free nodes in dag(S)
is more than some constant greater than 3 then try again. In expectation it only
takes a constant number of retries before this is not the case.

Lemma 3.10 Given a node v ∈ dag(S), the child that produces the character
at position i in str(v) can be found in O(1) time.

Proof. First assume v is a run-free node. If we store |str(u)| for each child u
of v in order, the correct child corresponding to position i can simply be found
by iterating over these. However, this may take O(log n) time since this is the
maximum out-degree of a node in dag(S). This can be improved to O(log log n)
by doing a binary search, but instead we use a Fusion Tree from [50] that allows
us to do this in O(1) time since we have at most O(log n) elements. This does
not increase the space usage. If v is a run node then it is easy to calculate the
right child by a single division.

3.4 Long Patterns

In this section we present how to use the signature grammar to construct a
compressed index that we will use for patterns of length Ω(lgε z) for constant
ε > 0. We obtain the following lemma:

Lemma 3.11 Given a string S of length n with an LZ77-parse of length z we
can build a compressed index supporting pattern matching queries in O(m+(1+
occ) lgε z) time using O(z lg(n/z)) space for any constant ε > 0.

3.4.1 Data Structure

Consider a vertex v with children u1, . . . uk in dag(S). Let pre(v, i) denote the
pre�x of str(v) given by concatenating the strings represented by the �rst i
children of v and let suf(v, i) be the su�x of str(v) given by concatenating the
strings represented by the last k − i children of x.

The data structure is composed of two z-fast tries (see Lemma 3.4) T1 and T2
and a 2D-range reporting data structure R.

For every non-leaf node v ∈ dag(S) we store the following. Let k be the number
of children of v if v is a run-free node otherwise let k = 2:

3.4 Long Patterns 59

• The reverse of the strings pre(v, i) for i ∈ [k − 1] in the z-fast trie T1.

• The strings suf(v, i) for i ∈ [k − 1] in the z-fast trie T2.

• The points (a, b) where a is the rank of the reverse of pre(v, i) in T1 and b
is the rank of suf(v, i) in T2 for i ∈ [k− 1] are stored in R. A point stores
the vertex v ∈ dag(S) and the length of pre(v, i) as auxiliary information.

There are O(z lg(n/z)) vertices in dag(S) thus T1 and T2 take no more than
O(z lg(n/z)) words of space using Lemma 3.4. There O(z lg(n/z)) points in
R which takes O(z lg(n/z)) space using Lemma 3.3 (i) thus the total space in
words is O(z lg(n/z)).

3.4.2 Searching

Assume in the following that there are no �ngerprint collisions. Compute all the
pre�x �ngerprints of P φ(P [1]), φ(P [1, 2]), . . . , φ(P [1,m]). Consider the signa-
ture tree sig(P) for P . Let lki denote the k'th left-most vertex on level i in sig(P)
and let j be the last level. Let PL = {|str(l11)|, |str(l11)|+|str(l21)|, |str(l12)|, |str(l12)|+
|str(l22)|, . . . , |str(l1j)|, |str(l1j)|+ |str(l2j)|}. Symmetrically, let rki denote the k'th

right-most vertex on level i in sig(P) and let PR = {m−|str(r11)|,m−|str(r11)|−
|str(r21)|,m−|str(r12)|,m−|str(r12)|− |str(r22)|, . . . ,m−|str(r1j)|,m−|str(r1j)|−
|str(r2j)|}. Let PS = PL ∪ PR.

For p ∈ PS search for the reverse of P [1, p] in T1 and for P [p + 1,m] in T2
using the precomputed �ngerprints. Let [a, b] and [c, d] be the respective ranges
returned by the search. Do a range reporting query for the (possibly empty)
range [a, b]×[c, d] in R. Each point in the range identi�es a node v and a position
i such that P occurs at position i in the string str(v). If v is a run node, there
is furthermore an occurrence of P in str(v) for all positions i+k · |str(child(v))|
where k = 1, . . . , j and j · |str(child(v))|+m ≤ str(v).

To report the actual occurrences of P in S we traverse all ancestors of v in
dag(S); for each occurrence of P in str(v) found, recursively visit each parent
u of v and o�set the location of the occurrence to match the location in str(u)
instead of str(v). When u is the root, report the occurrence. Observe that the
time it takes to traverse the ancestors of v is linear in the number of occurrences
we �nd.

We now describe how to handle �ngerprint collisions. Given a z-fast trie, Gagie
et al. [56] show how to perform k weak pre�x queries and identify all false pos-
itives using O(k lgm+m) extra time by employing bookmarked extraction and

60 Compressed Indexing with Signature Grammars

bookmarked �ngerprinting. Because we only compute �ngerprints and extract
pre�xes (su�xes) of the strings represented by vertices in dag(S) we do not need
bookmarking to do this. We refer the reader to [56] for the details. Thus, we
modify the search algorithm such that all the searches in T1 and T2 are carried
out �rst, then we verify the results before progressing to doing range reporting
queries only for ranges that were not discarded during veri�cation.

3.4.3 Correctness

For any occurrence S[l, r] of P in S there is a node v in sig(S) that stabs S[l, r],
ie. a su�x of pre(v, i) equals a pre�x P [1, j] and a pre�x of suf(v, i) equals the
remaining su�x P [j + 1,m] for some i and j. Since we put all combinations of
pre(v, i), suf(v, i) into T1, T2 and R, we would be guaranteed to �nd all nodes v
that contains P in str(v) if we searched for all possible split-points 1, . . . ,m− 1
of P i.e. P [1, i] and P [i+ 1,m] for i = 1, . . . ,m− 1.

We now argue that we do not need to search for all possible split-points of P
but only need to consider those in the set PS . For a position i, we say the node
v stabs i if the nearest common ancestor of the ith and i + 1th leaf of sig(S)
denoted NCA(li, li+1) is v.

Look at any occurrence S[l, r] of P . Consider TS = T (l, r) and TP = sig(P).
Look at a possible split-point i ∈ [1,m− 1] and the node v that stabs position
i in TP . Let ul and ur be adjacent children of v such that the rightmost leaf
descendant of ul is the ith leaf and the leftmost leaf descendant of ur is the
i+1th leaf. We now look at two cases for v and argue it is irrelevant to consider
position i as split-point for P in these cases:

1. Case v is consistent (in respect to TP). In this case it is guaranteed
that the node that stabs l+i in TS is identical to v. Since v is a descendant
of the root of TP (as the root of TP is inconsistent) str(v) cannot contain
P and thus it is irrelevant to consider i as a split-point.

2. Case v is inconsistent and ul and ur are both consistent (in re-
spect to TP). In this case ul and ur have identical corresponding nodes
u′l and u

′
r in TS . Because ul and ur are children of the same node it follows

that u′l and u
′
r must also both be children of some node v′ that stabs l+ i

in TS (however v and v′ may not be identical since v is inconsistent). Con-
sider the node u′ll to the left of u

′
l (or symmetrically for the right side if v

is an inconsistent node in the right side of TP). If str(v
′) contains P then

u′ll is also a child of v′ (otherwise ul would be inconsistent). So it su�ces

3.5 Short Patterns 61

to check the split-point i− |ul|. Surely i− |ul| stabs an inconsistent node
in TP , so either we consider that position relevant, or the same argument
applies again and a split-point further to the left is eventually considered
relevant.

Thus only split-points where v and at least one of ul or ur are inconsistent are
relevant. These positions are a subset of the position in PS , and thus we try all
relevant split-points.

3.4.4 Complexity

A query on T1 and T2 takes O(lgm) time by Lemma 3.4 while a query on R
takes O(lgε z) time using Lemma 3.3 (i) (excluding reporting). We do O(lgm)
queries as the size of PS is O(lgm). Veri�cation of the O(lgm) strings we
search for takes total time O(lg2m + m) = O(m). Constructing the signa-
ture DAG for P takes O(m) time, thus total time without reporting is O(m +

lgm lgε z) = O(m + lgε
′
z) for any ε′ > ε. This holds because if m ≤ lg2ε z

then lgm lgε z ≤ lg lg2ε z lgε z = O(lgε
′
z), otherwise m > lg2ε z ⇔

√
m > lgε z

and then lgm lgε z = O(lgm
√
m) = O(m). For every query on R we may �nd

multiple points each corresponding to an occurrence of P . It takes O(lgε z) time

to report each point thus the total time becomes O(m+ (1 + occ) lgε
′
z).

3.5 Short Patterns

Our solution for short patterns uses properties of the LZ77-parse of S. A primary
substring of S is a substring that contains one or more borders of S, all other
substrings are called secondary. A primary substring that matches a query
pattern P is a primary occurrence of P while a secondary substring that matches
P is a secondary occurrence of P . In a seminal paper on LZ77 based indexing
[82] Kärkkäinen and Ukkonen use some observations by Farach and Thorup [38]
to show how all secondary occurrences of a query pattern P can be found given
a list of the primary occurrences of P through a reduction to orthogonal range
reporting. Employing the range reporting result given in Lemma 3.3 (ii), all
secondary occurrences can be reported as stated in the following lemma:

Lemma 3.12 (Kärkkäinen and Ukkonen [82]) Given the LZ77-parse
of a string S there exists a data structure that uses O(z lg lg z) space that can
report all secondary occurrences of a pattern P given the list of primary occur-
rences of P in S in O(occ lg lg n) time.

62 Compressed Indexing with Signature Grammars

We now describe a data structure that can report all primary occurrences of a
pattern P of length at most k in O(m+ occ) time using O(zk) space.

Lemma 3.13 Given a string S of length n and a positive integer k ≤ n we
can build a compressed index supporting pattern matching queries for patterns
of length m in O(m + occ lg lg n) time using O(zk + z lg lg z) space that works
for m ≤ k.

Proof. Consider the set C of z substrings of S that are de�ned by S[ui −
k, ui + k− 1] for i ∈ [z], ie. the substrings of length 2k surrounding the borders
of the LZ77-parse. The total length of these strings is Θ(zk). Construct the
generalized su�x tree T over the set of strings C. This takes Θ(zk) words of
space. To ensure no occurrence is reported more than once, if multiple su�xes
in this generalized su�x tree correspond to substrings of S that starts on the
same position in S, only include the longest of these. This happens when the
distance between two borders is less than 2k.

To �nd the primary occurrences of P of length m, simply �nd all occurrences
of P in T . These occurrences are a super set of the primary occurrences of P
in S, since T contains all substrings starting/ending at most k positions from a
border. It is easy to �lter out all occurrences that are not primary, simply by
calculating if they cross a border or not. This takes O(m + occ) time (where
occ includes secondary occurrences). Combined with Lemma 3.12 this gives
Lemma 3.13.

3.6 Semi-Short Patterns

In this section, we show how to handle patterns of length between lg lg z and
lgε z. It is based on the same reduction to 2D-range reporting as used for long
patterns. However, the positions in S that are inserted in the range reporting
structure is now based on the LZ77-parse of S instead. Furthermore we use
Lemma 3.3 (ii) which gives faster range reporting but uses super-linear space,
which is �ne because we instead put fewer points into the structure. We get the
following lemma:

Lemma 3.14 Given a string S of length n we solve the compressed indexing
problem for a pattern P of length m with lg lg z ≤ m ≤ lgε z for any positive
constant ε < 1

2 in O(m+ occ(lg lg n+ lgε z)) time using O(z(lg lg z+ log(n/z)))
space.

3.6 Semi-Short Patterns 63

3.6.1 Data Structure

As in the previous section for short patterns, we only need to worry about
primary occurrences of P in S. Let B be the set of all substrings of length at
most lgε z that cross a border in S. The split positions of such a string are the
o�sets of the leftmost borders in its occurrences. All primary occurrences of P
in S are in this set. The size of this set is |B| = O(z lg2ε z). The data structure
is composed by the following:

• A dictionary H mapping each string in B to its split positions.

• A z-fast trie T1 on the reverse of the strings T [ui, li] for i ∈ [z].

• A z-fast trie T2 on the strings T [ui, n] for i ∈ [z].

• A range reporting data structure R with a point (c, d) for every pair of
strings Ci = T [ui, li], Di = T [ui+1, n] for i ∈ [z] where Dz = ε and c is
the lexicographical rank of the reverse of Ci in the set {C1, . . . , Cz} and
d is the lexicographical rank of Di in the set {D1, . . . Dz}. We store the
border ui along with the point (c, d).

• The data structure described in Lemma 3.12 to report secondary occur-
rences.

• The signature grammar for S.

Each entry in H requires lg lgε z = O(lg lg z) bits to store since a split position
can be at most lgε z. Thus the dictionary can be stored in O(|B| · lg lg z) =
O(z lg2ε z lg lg z) bits which for ε < 1

2 is O(z) words. The tries T1 and T2
take O(z) space while R takes O(z lg lg z) space. The signature grammar takes
O(z log(n/z)). Thus the total space is O(z(lg lg z + log(n/z))).

3.6.2 Searching

Assume a lookup for P in H does not give false-positives. Given a pattern P
compute all pre�x �ngerprints of P . Next do a lookup in H. If there is no
match then P does not occur in S. Otherwise, we do the following for each of
the split-points s stored in H. First split P into a left part Pl = P [0, s − 1]
and a right part Pr = P [s,m]. Then search for the reverse of Pl in T1 and for
Pr in T2 using the corresponding �ngerprints. The search induces a (possibly
empty) range for which we do a range reporting query in R. Each occurrence in

64 Compressed Indexing with Signature Grammars

R corresponds to a primary occurrence of P in S, so report these. Finally use
Lemma 3.12 to report all secondary occurrences.

Unfortunately, we cannot guarantee a lookup for P in H does not give a false
positive. Instead, we pause the reporting step when the �rst possible occurrence
of P has been found. At this point, we verify the substring P matches the found
occurrence in S. We know this occurrence is around an LZ-border in S such
that Pl is to the left of the border and Pr is to the right of the border. Thus we
can e�ciently verify that P actually occurs at this position using the grammar.

3.6.3 Analysis

Computing the pre�x �ngerprints of P takes O(m) time. First, we analyze the
running time in the case P actually exists in S. The lookup in H takes O(1)
time using perfect hashing. For each split-point we do two z-fast trie lookups
in time O(lgm) = O(lg lg z). Since each di�erent split-point corresponds to
at least one unique occurrence, this takes at most O(occ lg lg z) time in total.
Similarly each lookup and occurrence in the 2D-range reporting structure takes
lg lg z time, which is therefore also bounded by O(occ lg lg z) time. Finally, we
veri�ed one of the found occurrence against P in O(m) time. So the total time
is O(m+ occ lg lg z) in this case.

In the case P does not exists, either the lookup in H tells us that, and we
spend O(1) time, or the lookup in H is a false-positive. In the latter case, we
perform exactly two z-fast trie lookups and one range reporting query. These
all take time O(lg lg z). Since m ≥ lg lg z this is O(m) time. Again, we veri�ed
the found occurrence against P in O(m) time. The total time in this case is
therefore O(m).

Note we ensure our �ngerprint function is collision free for all substrings in B
during the preprocessing thus there can only be collisions if P does not occur
in S when m ≤ lgε z.

3.7 Randomized Solution

In this section we present a very simple way to turn the O(m+ (1 + occ) lgε z)
worst-case time of Lemma 3.11 into O(m + occ lgε z) expected time. First ob-
serve, this is already true if the pattern we search for occurs at least once or if
m ≥ lgε z.

3.7 Randomized Solution 65

As in the semi-short patterns section, we consider the set B of substrings of S
of length at most lgε z that crosses a border. Create a dictionary H with z lg3ε z
entries and insert all the strings from B. This means only a lgε z fraction of the
entries are used, and thus if we lookup a string s (where |s| ≤ lgε z) that is not
in H there is only a 1

lgε z chance of getting a false-positive.

Now to answer a query, we �rst check if m ≤ lgε z in which case we look it up
in H. If it does not exist, report that. If it does exist in H or if m > lgε z use
the solution from Lemma 3.11 to answer the query.

In the case P does not exist, we spend either O(m) time if H reports no, or
O(m + lgε z) time if H reports a false-positive. Since there is only 1

lgε z chance

of getting a false positive, the expected time in this case is O(m). In all other
cases, the running time is O(m+ occ lgε z) in worst-case, so the total expected
running time is O(m+ occ lgε z). The space usage of H is O(z lg3ε z) bits since
we only need to store one bit for each entry. This is O(z) words for ε ≤ 1/3. To
sum up, we get the following lemma:

Lemma 3.15 Given a signature grammar for a text S of length n with an
LZ77-parse of length z we can build a compressed index supporting pattern
matching queries in O(m + occ lgε z) expected time using O(z lg(n/z)) space
for any constant 0 < ε ≤ 1/3.

66 Compressed Indexing with Signature Grammars

Chapter 4

Dynamic Relative

Compression, Dynamic

Partial Sums, and Substring

Concatenation

Philip Bille † Anders Roy Christiansen † Patrick Hagge Cording †

Inge Li Gørtz † Frederik Rye Skjoldjensen † Hjalte Wedel Vildhøj †

Søren Vind †

† The Technical University of Denmark

Abstract

Given a static reference string R and a source string S, a relative com-
pression of S with respect to R is an encoding of S as a sequence of refer-
ences to substrings of R. Relative compression schemes are a classic model
of compression and have recently proved very successful for compressing
highly-repetitive massive data sets such as genomes and web-data. We
initiate the study of relative compression in a dynamic setting where the
compressed source string S is subject to edit operations. The goal is to
maintain the compressed representation compactly, while supporting edits
and allowing e�cient random access to the (uncompressed) source string.
We present new data structures that achieve optimal time for updates and
queries while using space linear in the size of the optimal relative compres-
sion, for nearly all combinations of parameters. We also present solutions

68

Dynamic Relative Compression, Dynamic Partial Sums, and Substring

Concatenation

for restricted and extended sets of updates. To achieve these results, we
revisit the dynamic partial sums problem and the substring concatena-
tion problem. We present new optimal or near optimal bounds for these
problems. Plugging in our new results we also immediately obtain new
bounds for the string indexing for patterns with wildcards problem and
the dynamic text and static pattern matching problem.

4.1 Introduction

Given a static reference string R and a source string S, a relative compression of
S with respect to R is an encoding of S as a sequence of references to substrings
of R. Relative compression (or external macro compression) is a classic model
of compression de�ned by Storer and Szymanski [123,124] in 1978 and has since
been used in a wide range of compression scenarios [26,37,73,91,92,96,97]. To
compress massive highly-repetitive data sets, such as biological sequences and
web collections, relative compression has been shown to be very practical [73,
91,92].

Relative compression is often applied to compress multiple similar source strings.
In such settings relative compression is superior to compressing the source
strings individually. For instance, human genomes are 99% similar and hence
relative compression might be used to compress a large collection of sequenced
genomes using, e.g., the human reference genome as the static reference string.
We focus on the case of compressing a single source string, but our results
trivially generalize to compressing multiple source strings.

In this paper we initiate the study of relative compression in a dynamic setting,
where the compressed source string S is subject to edit operations (insertions,
deletions, and replacements of single characters). The goal is to maintain the
compressed representation compactly, while supporting edits and allowing e�-
cient random access to the (uncompressed) source string. E�cient data struc-
tures supporting these operations allow us to avoid costly recompression of mas-
sive data sets after updates.

We provide the �rst non-trivial bounds for this problem. We present new data
structures that achieve optimal time for updates and queries while using space
linear in the size of the optimal relative compression, for nearly all combinations
of parameters. We also present solutions for restricted and extended sets of
updates.

To achieve these results, we revisit the dynamic partial sums problem and the

4.1 Introduction 69

substring concatenation problem. We present new optimal or near optimal
bounds for both of these problems (see detailed discussion below). Further-
more, plugging in our new results immediately leads to new bounds for the
string indexing for patterns with wildcards problem [17,95] and the dynamic text
and static pattern matching problem [4].

4.1.1 Dynamic Relative Compression

Given a reference string R and a source string S, a relative compression of
S with respect to R is a sequence C = (i1, j1), ..., (i|C|, j|C|) such that S =
R[i1, j1] · · ·R[i|C|, j|C|]. We call C a substring cover for S. The substring cover
is optimal if |C| is minimum over all relative compressions of S with respect to R.
The dynamic relative compression problem is to maintain a relative compression
of S under the following operations. Let i be a position in S and α be a character.

access(i): return the character S[i],

replace(i, α): change S[i] to character α,

insert(i, α): insert character α before position i in S,

delete(i): delete the character at position i in S.

Note that operations insert and delete change the length of S by a single char-
acter. In all bounds below, the access(i) operation extends to decompressing an
arbitrary substring of length ` using only O(`) additional time.

Our Results Throughout the paper, let r be the length of the reference string
R, N be the length of the (uncompressed) string S, and n be the size of an op-
timal relative compression of S with regards to R. All of the bounds mentioned
below and presented in this paper hold for a standard unit-cost RAM with w-bit
words with standard arithmetic/logical operations on words and where space is
measured in words. This means that the algorithms can be implemented directly
in standard imperative programming languages such as C [87] or C++ [125].
We assume that an index into S or R can be stored in a single word and hence
w ≥ log(N + r).

Theorem 4.1 Let R and S be a reference and source string of lengths r and
N , respectively, and let n be the length of the optimal substring cover of S by R.
Then, we can solve the dynamic relative compression problem supporting access,
replace, insert, and delete

70

Dynamic Relative Compression, Dynamic Partial Sums, and Substring

Concatenation

(i) in O(n+ r) space and O
(

logn
log logn + log log r

)
time per operation, or

(ii) in O(n+ r logε r) space and O
(

logn
log logn

)
time per operation, for any con-

stant ε > 0.

These are the �rst non-trivial bounds for the problem. Together, the bounds
are optimal for most natural parameter combinations. In particular, any data
structure for a string of length N supporting access, insert, and delete must use
Ω(logN/ log logN) time in the worst-case regardless of the space [51] (this is
called the list representation problem). Since n ≤ N , we can viewO(log n/ log log n)
as a compressed version of the optimal time bound that is alwaysO(logN/ log logN)
and better when S is compressible. Hence, Theorem 4.1(i) provides a linear-
space solution that achieves the compressed time bound except for anO(log log r)
additive term. Note that whenever n ≥ (log r)log log log r, the log n/ log log n term
dominates the query time and we match the compressed time bound. Hence,
Theorem 4.1(i) is only suboptimal in the special case when n is almost ex-
ponentially smaller than r. In this case, we can use Theorem 4.1(ii) which
always provides a solution achieving the compressed time bound at the cost of
increasing the space to O(n+ r logε r). We could easily generalize Theorem 4.1
to compress multiple source strings with respect to the same reference string.
Since every source string can share the same data structure build on R we would
only increase the space bounds with the size of the relative compression of the
new source strings.

We note that dynamic compression under di�erent models of compression has
been studied extensively [41�43, 67, 78, 103, 118]. However, all of these results
require space dependent on the size of the original string and hence cannot take
full advantage of highly-repetitive data.

4.1.2 Dynamic Partial Sums

The partial sums problem is to maintain an array Z[1..s] under the following
operations.

sum(i): return
∑i
j=1 Z[j].

update(i,∆): set Z[i] = Z[i] + ∆ given that Z[i] + ∆ ≥ 0.

search(t): return 1 ≤ i ≤ s such that sum(i − 1) < t ≤ sum(i). To ensure
well-de�ned answers, we require that Z[i] ≥ 0 for all i.

4.1 Introduction 71

The partial sums problem is a classic and well-studied problem [34,40,51,71,74,
75,109,114]. In our context, we consider the problem in the word RAM model,
where each array entry stores a w-bit integer and the element of the array can
be changed by δ-bit integers, i.e., the argument ∆ can be stored in δ bits. To
allow ∆ to take negative values we store a sign bit in addition to the δ bits.
In this setting, P tra³cu and Demaine [109] gave a linear-space data structure
with Θ(log s/ log(w/δ)) time per operation. They also gave a matching lower
bound.

We consider the following generalization supporting dynamic changes to the
array. The dynamic partial sums problem is to additionally support the following
operations.

insert(i,∆): insert a new entry in Z with value ∆ ≥ 0 before Z[i],

delete(i): delete the entry Z[i] of value at most ∆.

merge(i): replace entry Z[i] and Z[i+ 1] with a new entry with value Z[i] +
Z[i+ 1].

divide(i, t): replace entry Z[i] by two new consecutive entries with value t and
Z[i]− t, respectively, where 0 ≤ t ≤ Z[i].

Hon et al. [71] and Navarro and Sadakane [105] presented optimal solutions for
this problem in the case where the entries in Z are at most polylogarithmic in
s (they did not explicitly consider the merge and divide operation).

Our Results We show the following improved result.

Theorem 4.2 Given an array of length s storing w-bit integers and parameter
δ, such that −2δ < ∆ < 2δ, we can solve the dynamic partial sums problem
supporting sum, update, search, insert, delete, merge, and divide in linear space
and O(log s/ log(w/δ)) time per operation.

Note that this bound simultaneously matches the optimal time bound for the
standard partial sums problem and supports storing arbitrary w-bit values in
the entries of the array, i.e., the values we can handle in optimal time are
exponentially larger than in the previous results.

To achieve our bounds we extend the static solution by P tra³cu and De-
maine [109]. Their solution is based on storing a sampled subset of representative

72

Dynamic Relative Compression, Dynamic Partial Sums, and Substring

Concatenation

elements of the array and di�erence encode the remaining elements. They pack
multiple di�erence encoded elements in words and then apply word-level paral-
lelism to speedup the operations. To support insert and delete the main challenge
is to maintain the representative elements that now dynamically move within
the array. We show how to e�ciently do this by combining a new representation
of representative elements with a recent result by P tra³cu and Thorup [111].
Along the way we also slightly simplify the original construction by P tra³cu
and Demaine [109].

4.1.3 Substring Concatenation

Let R be a string of length r. A substring concatenation query on R takes
two pairs of indices (i, j) and (i′, j′) and returns the start position in R of an
occurrence of R[i, j]R[i′, j′], or NO if the string is not a substring of R. The
substring concatenation problem is to preprocess R into a data structure that
supports substring concatenation queries.

Amir et al. [4] gave a solution usingO(r
√

log r) space with query timeO(log log r),
and recently Gawrychowski et al. [62] showed how to solve the problem in
O(r log r) space and O(1) time.

Our Results We give the following improved bounds.

Theorem 4.3 Given a string R of length r, the substring concatenation prob-
lem can be solved in either

(i) O(r logε r) space and O(1) time, for any constant ε > 0, or

(ii) O(r) space and O(log log r) time.

Hence, Theorem 4.3(i) matches the previous O(1) time bound while reducing
the space from O(r log r) to O(r logε r) and Theorem 4.3(ii) achieves linear space
while using O(log log r) time. Plugging in the two solutions into our solution
for dynamic relative compression leads to the two branches of Theorem 4.1.

To achieve the bound in (i), the main idea is a new construction that e�ciently
combines compact data structure for weak pre�x serach [10] with the recent
constant time weighted level ancestor data structure for su�x trees [62]. The
bound in (ii) follows as a simple implication of another recent result for unrooted

4.1 Introduction 73

LCP queries [17] by some of the authors. The substring concatenation prob-
lem is a key component in several solutions to the string indexing for patterns
with wildcards problem [17, 28, 95], where the goal is to preprocess a string T
to support pattern matching queries for patterns with wildcards. Plugging in
Theorem 4.3(i) we immediately obtain the following new bound for the problem.

Corollary 4.4 Let T be a string of length t. For any pattern string P of
length p with k wildcards, we can support pattern matching queries on T using
O(t logε t) space and O(p+ σk) time for any constant ε > 0.

This improves the running time of fastest linear space solution by a factor
log log t at the cost of increasing the space slightly by a factor logε t. See [95]
for detailed overview of the known results.

4.1.4 Extensions

Finally, we present two extensions of the dynamic relative compression problem.

4.1.4.1 Dynamic Relative Compression with Access and Replace

If we restrict the operations to access and replace we obtain the following im-
proved bound.

Theorem 4.5 Let R and S be a reference and source string of lengths r and
N , respectively, and let n be the length of the optimal substring cover of S by R.
Then, we can solve the dynamic relative compression problem supporting access
and replace in O(n+ r) space and O(log logN) expected time.

This version of dynamic relative compression is a key component in the dynamic
text and static pattern matching problem, where the goal is to e�ciently maintain
a set of occurrences of a pattern P in a text T that is dynamically updated by
changing individual characters. Let p and t denote the lengths of P and T ,
respectively. Amir et al. [4] gave a data structure using O(t + p

√
log p) space

which supports updates in O(log log p) time. The computational bottleneck in
the update operation is to update a substring cover of size O(p). Plugging in
the bounds from Theorem 4.5, we immediately obtain the following improved
bound.

74

Dynamic Relative Compression, Dynamic Partial Sums, and Substring

Concatenation

Corollary 4.6 Given a pattern P and text T of lengths p and t, respectively,
we can solve the dynamic text and static pattern matching problem in O(t+ p)
space and O(log log p) expected time per update.

Hence, we match the previous time bound while improving the space to linear.

4.1.4.2 Dynamic Relative Compression with Split and Concatenate

We also consider maintaining a set of compressed strings under split and con-
catenate operations (as in Alstrup et al. [1]). Let R be a reference string and
let S = {S1, . . . , Sk} be a set of strings compressed relative to R. In addition
to access, replace, insert and delete we also de�ne the following operations.

concat(i, j): add string Si · Sj to S and remove Si and Sj .

split(i, j): remove Si from S and add Si[1, j − 1] and Si[j, |Si|].

We obtain the following bounds.

Theorem 4.7 Let R be a reference string of length r, let S = {S1, . . . , Sk}
be a set of source strings of total length N , and let n be the total length of the
optimal substring covers of the strings in S. Then, we can solve the dynamic
relative compression problem supporting access, replace, insert, delete, split, and
concat,

(i) in space O(n+r) and time O(log n) for access and time O(log n+log log r)
for replace, insert, delete, split, and concat, or

(ii) in space O(n+ r logε r) and time O(log n) for all operations.

Hence, compared to the bounds in Theorem 4.1 we only increase the time bounds
by an additional log log n factor.

4.2 Dynamic Relative Compression

In this section we show how Theorems 4.2 and 4.3 lead to Theorem 4.1. The
proofs of Theorems 4.2 and 4.3 appear in Section 4.3 and Section 4.4, respec-
tively.

4.2 Dynamic Relative Compression 75

Let C = ((i1, j1), ..., (i|C|, j|C|)) be the compressed representation of S. From
now on, we refer to C as the cover of S, and call each element (il, jl) in C a
block. Recall that a block (il, jl) refers to a substring R[il, jl] of R. A cover C
is minimal if concatenating any two consecutive blocks (il, jl), (il+1, jl+1) in C
yields a string that does not occur in R, i.e., the string R[il, jl]R[il+1, jl+1] is
not a substring of R. This de�nition of covers comes from Amir et al. [4]. We
need the following lemma.

Lemma 4.8 If Cmin is a minimal cover and C is an arbitrary cover of S, then
|Cmin| ≤ 2|C| − 1.

Proof. In each block b of C there can start at most two blocks in Cmin, because
otherwise two adjacent blocks in Cmin would be entirely contained in the block
b, contradicting the minimality of Cmin. Since the last block of both C and
Cmin end at the last position of S, a contradiction of the minimality is already
obtained when more than one block of Cmin start in the last block of C. Hence,
|Cmin| ≤ 2|C| − 1.

Recall that n is the size of an optimal cover of S with regards to R. The lemma
implies that we can maintain a compression of size at most 2n−1 by maintaining
a minimal cover of S. The remainder of this section describes our data structure
for maintaining and accessing such a cover.

Initially, we can use the su�x tree of R to construct a minimal cover of S in
O(N + r) time by greedily matching the maximal pre�x of the remaining part
of S with any su�x of R. This guarantees that the blocks constitute a minimal
cover of S.

4.2.1 Data Structure

The high level idea for supporting the operations on S is to store the sequence
of block lengths j1 − i1 + 1, . . . , j|C| − i|C| + 1 in a dynamic partial sums data
structure. This allows us, for example, to identify the block that encodes the
kth character in S by performing a search(k) query.

Updates to S are implemented by splitting a block in C. This may break
the minimality property so we use substring concatenation queries on R to
detect if blocks can be merged. We only need a constant number of substring
concatenation queries to restore minimality. To maintain the correct sequence
of block lengths we use update, divide and merge operations on the dynamic
partial sums data structure.

76

Dynamic Relative Compression, Dynamic Partial Sums, and Substring

Concatenation

Our data structure consist of the string R, a substring concatenation data struc-
ture of Theorem 4.3 for R, a minimal cover C for S stored in a doubly linked
list, and the dynamic partial sums data structure of Theorem 4.2 storing the
block lengths of C. We also store auxiliary links between a block in the doubly
linked list and the corresponding block length in the partial sums data structure,
and a list of alphabet symbols in R with the location of an occurrence for each
symbol. By Lemma 4.8 and since C is minimal we have |C| ≤ 2n − 1 = O(n).
Hence, the total space for C and the partial sums data structure is O(n). The
space for R is O(r) and the space for substring concatenation data structure is
either O(r) or O(r logε r) depending on the choice in Theorem 4.3. Hence, in
total we use either O(n+ r) or O(n+ r logε r) space.

4.2.2 Answering Queries

To answer access(i) queries we �rst compute search(i) in the dynamic partial
sums structure to identify the block bl = (il, jl) containing position i in S. The
local index in R[il, jl] of the i

th character in R is ` = i − sum(l − 1), and thus
the answer to the query is the character R[il + `− 1].

We perform replace and delete by �rst identifying bl = (il, jl) and ` as above.
Then we partition bl into three new blocks b1l = (il, il + ` − 2), b2l = (il + ` −
1, il + `− 1), b3l = (il + `, jl) where b

2
l is the single character block for index i in

S that we must change. In replace we change b2l to an index of an occurrence in
R of the new character (which we can �nd from the list of alphabet symbols),
while we remove b2l in delete. The new blocks and their neighbors, that is, bl−1,
b1l , b

2
l , b

3
l , and bl+1 may now be non-minimal. To restore minimality we perform

substring concatenation queries on each consecutive pair of these 5 blocks, and
replace non-minimal blocks with merged minimal blocks. All other blocks are
still minimal, since the strings obtained by concatenating bl′ with bl′+1, for all
l′ < l − 1 and all l′ > l, were not present in R before the change and are
not present afterwards. A similar idea is used by Amir et al. [4]. We perform
update, divide and merge operations to maintain the corresponding lengths in
the dynamic partial sums data structure. The insert operation is similar, but
inserts a new single character block between two parts of bl before restoring
minimality. Observe that using δ = O(1) bits in update is su�cient to maintain
the correct block lengths.

In total, each operation requires a constant number of substring concatenation
queries and dynamic partial sums operations; the latter having time complexity
O(log n/ log(w/δ)) = O(log n/ log log n) as w ≥ log n and δ = O(1). Hence,
the total time for each access, replace, insert, and delete operation is either
O(log n/ log log n + log log r) or O(log n/ log log n) depending on the substring

4.3 Dynamic Partial Sums 77

concatenation data structure used. In summary, this proves Theorem 4.1.

4.3 Dynamic Partial Sums

In this section we prove Theorem 4.2. We support the operations insert(i,∆)
and delete(i) on a sequence of w-bit integer keys by implementing them using
update and a divide or merge operation, respectively. This means that we support
inserting or deleting keys with value at most 2δ.

We �rst solve the problem for small sequences. The general solution uses a
standard reduction, storing Z at the leaves of a B-tree of large outdegree. We
use the solution for small sequences to navigate in the internal nodes of the
B-tree.

Dynamic Integer Sets We need the following recent result due to P tra³cu
and Thorup [111] on maintaining a set of integer keys X under insertions and
deletions. The queries are as follows, where q is an integer. The membership
query memberX(q) returns true if q ∈ X, predecessor predX(q) returns the
largest key x ∈ X where x < q, and successor succX(q) returns the smallest key
x ∈ X where x ≥ q. The rank rankX(q) returns the number of keys in X smaller
than q, and selectX(i) returns the ith smallest key in X.

Lemma 4.9 (P tra³cu and Thorup [111]) There is a data structure
for maintaining a dynamic set of n ≤ wO(1) w-bit integers in O(n) space that
supports insert, delete, membership, predecessor, successor, rank and select in
constant time per operation.

4.3.1 Dynamic Partial Sums for Small Sequences

Let Z be a sequence of at most B ≤ wO(1) integer keys. We will show how
to store Z in linear space such that all dynamic partial sums operations can
be performed in constant time. We let Y be the sequence of pre�x sums of
Z, de�ned such that each key Y [i] is the sum of the �rst i keys in Z, i.e.,

Y [i] =
∑i
j=1 Z[j]. Observe that sum(i) = Y [i] and search(t) is the index of the

successor of t in Y . Our goal is to store and maintain a representation of Y
subject to the dynamic operations update, divide and merge in constant time per
operation.

78

Dynamic Relative Compression, Dynamic Partial Sums, and Substring

Concatenation

4.3.1.1 The Scheme by P tra³cu and Demaine

We �rst review the solution to the static partial sums problem by P tra³cu and
Demaine [109], slightly simpli�ed due to Lemma 4.9. Our dynamic solution
builds on this.

The entire data structure is rebuilt every B operations as follows. We �rst
partition Y greedily into runs. Two adjacent elements in Y are in the same run
if their di�erence is at most B · 2δ, and we call the �rst element of each run a
representative for all elements in the run. We use R to denote the sequence of
representative values in Y and rep(i) to be the index of the representative for
element Y [i] among the elements in R.

We store Y by splitting representatives and other elements into separate data
structures: I and R store the representatives at the time of the last rebuild,
while U stores each element in Y as an o�set to its representative value as well
as updates since the last rebuild. We ensure Y [i] = R[rep(i)] + U [i] for any i
and can thus reconstruct the values of Y .

The representatives are stored as follows. I is the sequence of indices in Y of
the representatives and R is the sequence of representative values in Y . Both
I and R are stored using the data structure of Lemma 4.9. We can then
de�ne rep(i) = rankI(predI(i)) as the index of the representative for i among
all representatives, and use R[rep(i)] = selectR(rep(i)) to get the value of the
representative for i.

We store in U the current di�erence from each element to its representative,
U [i] = Y [i] − R[rep(i)] (i.e. updates between rebuilds are applied to U). The
idea is to pack U into a single word of B elements. Observe that update(i,∆)
adds value ∆ to all elements in Y with index at least i. We can support this
operation in constant time by adding to U a word that encodes ∆ for those
elements. Since each di�erence between adjacent elements in a run is at most
B · 2δ and |Y | = O(B), the maximum value in U after a rebuild is O(B2 · 2δ).
As B updates of size 2δ may be applied before a rebuild, the changed value
at each element due to updates is O(B · 2δ). So each element in U requires
O(logB + δ) bits (including an over�ow and sign bit per element). Thus, U
requires O(B(logB + δ)) bits in total and can be packed in a single word for
B = O(min{w/ logw,w/δ}).

Between rebuilds the stored representatives are potentially outdated because
updates may have changed their values. However, observe that the values of two
consecutive representatives di�er by more than B · 2δ at the time of a rebuild,
so the gap between two representatives cannot be closed by B updates of δ

4.3 Dynamic Partial Sums 79

bits each (before the structure is rebuilt again). Hence, an answer to search(t)
cannot drift much from the values stored by the representatives; it can only be
in a constant number of runs, namely those with a representative value succR(t)
and its two neighboring runs. In a run with representative value v, we �nd the
smallest j (inside the run) such that U [j]+v− t > 0. The smallest j found in all
three runs is the answer to the search(t) query. Thus, by rebuilding periodically,
we only need to check a constant number of runs when answering a search(t)
query.

On this structure, P tra³cu and Demaine [109] show that the operations sum,
search and update can be supported in constant time each as follows:

sum(i): return the sum of R[rep(i)] and U [i]. This takes constant time as U [i]
is a �eld in a word and representatives are stored using Lemma 4.9.

search(t): let r0 = rankR(succR(t)). We must �nd the smallest j such that
U [j] +R[r]− t > 0 for r ∈ {r0 − 1, r0, r0 + 1}, where j is in run r. We do
this for each r using standard word operations in constant time by adding
R[r] − t to all elements in U , masking elements not in the run (outside
indices selectI(r) to selectI(r+1)−1, and counting the number of negative
elements).

update(i,∆): we do this in constant time by copying ∆ to all �elds j ≥ i by a
multiplication and adding the result to U .

To count the number of negative elements or �nd the least signi�cant bit in a
word in constant time, we use the technique by Fredman and Willard [53].

Notice that rebuilding the data structure every B operations takes O(B) time,
resulting in amortized constant time per operation. We de-amortize this to
worst case constant time in the following way: After B/2 operations we make a
copy of U that we call UB/2 and build a new data structure over the next B/2
operations based on the content of UB/2, I and R. This gives us a new data
structure consisting of U ′, I ′ andR′ but U ′ needs to be updated to re�ect the last
B/2 operations performed during the build. We do the update by subtracting
the values stored in UB/2 from the current values stored in U and adding the
di�erences to U ′. We then substitute U , I and R for U ′, I ′ and R′ and rebuild
again during the next B/2 operations. We spend O(B) time building the new
data structure over B/2 operations such that we use O(1) extra time for each
operation and lastly we update U ′ in O(1) time with word-level parallel addition
and subtraction.

80

Dynamic Relative Compression, Dynamic Partial Sums, and Substring

Concatenation

4.3.1.2 E�cient Support for divide and merge

We now show how to maintain the structure described above while support-
ing operations divide(i, t) and merge(i). An example supporting the following
explanation is provided in Figure 4.1.

Observe that the operations are only local: Splitting Z[i] into two parts or
merging Z[i] and Z[i+1] does not in�uence the precomputed values in Y (besides
adding/removing values for the divided/merged elements). We must update I,
R and U to re�ect these local changes accordingly. Because a divide or merge
operation may create new representatives between rebuilds with values that do
not �t in U , we change I, R and U to re�ect these new representatives by
rebuilding the data structure locally. This is done as follows.

Consider the run representatives. Both divide(i, t) and merge(i) may require us
to create a new run, combine two existing runs or remove a run. In any case, we
can �nd a replacement representative for each run a�ected. As the operations
are only local, the replacement is either a divided or merged element, or one
of the neighbors of the replaced representative. Replacing representatives may
cause both indices and values for the stored representatives to change. We use
insertions and deletions on R to update representative values.

Since the new operations change the indices of the elements, these changes
must also be re�ected in I. For example, a merge(i) operation decrements
the indices of all elements with index larger than i compared to the indices
stored at the time of the last rebuild. We should in principle adjust the O(B)
changed indices stored in I. The cost of adjusting the indices accordingly when
using Lemma 4.9 to store I is O(B). Instead, to get our desired constant time
bounds, we represent I using a resizable data structure with the same number
of elements as Y that supports this kind of update. We must support selectI(i),
rankI(q), and predI(q) as well as inserting and deleting elements in constant
time. Because I has few and small elements, we can support the operations in
constant time by representing it using a bitstring B and a structure C which is
the pre�x sum over B as follows.

Let B be a bitstring of length |Y | ≤ B, where B[i] = 1 i� there is a representative
at index i. Then C has |Y | elements, where C[i] is the pre�x sum of B including
element i. Since C requires O(B logB) bits in total we can pack it in a single
word. We answer queries as follows: rankI(q) equals C[q−1], we answer selectI(i)
by subtracting i from all elements in C and return one plus the number of
elements smaller than 0 (as done in U when answering search), and we �nd
predI(q) as the index of the least signi�cant bit in B after having masked all
indices larger than q. Updates are performed as follows. Using mask, shift

4.3 Dynamic Partial Sums 81

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Z 5 1 4 7 1 1 6 5 1 1 2 2 1 3 5 10 5 10 2

Y 5 6 10 17 18 19 25 30 31 32 34 36 37 40 45 55 60 70 72

R {5, 17, 25, 30, 45, 55, 60, 70}

U 0 1 5 0 1 2 0 0 1 2 4 6 7 10 0 0 0 0 2

B 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0

C 1 1 1 2 2 2 3 4 4 4 4 4 4 4 5 6 7 8 8

a) The initial data structure constructed from Z.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Z 5 1 4 7 1 1 6 3 2 1 1 2 2 1 3 5 10 5 10 2

Y 5 6 10 17 18 19 25 28 30 31 32 34 36 37 40 45 55 60 70 72

R {5, 17, 25, 45, 55, 60, 70}

U 0 1 5 0 1 2 0 3 5 6 7 9 11 12 15 0 0 0 0 2

B 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0

C 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 4 5 6 7 7

New index 9 Old index 9

b) The result of divide(8, 3) on the structure of a). Representative
value 30 was removed from R. We shifted and updated U , B and
C to remove the old representative and accommodate for a new ele-
ment with value 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Z 5 1 4 7 1 1 6 3 2 1 1 4 1 3 5 10 5 10 2

Y 5 6 10 17 18 19 25 28 30 31 32 36 37 40 45 55 60 70 72

R {5, 17, 25, 45, 55, 60, 70}

U 0 1 5 0 1 2 0 3 5 6 7 11 12 15 0 0 0 0 2

B 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0

C 1 1 1 2 2 2 3 3 3 3 3 3 3 3 4 5 6 7 7

Index containing the sum of the merged indices.

c) The result of merge(12) on the structure of b).

Figure 4.1: Illustrating operations on the data structure with B · 2δ = 4. a)
shows the data structure immediately after a rebuild, b) shows
the result of performing divide(8, 3) on the structure of a), and c)
shows the result of performing merge(12) on the structure of b).

82

Dynamic Relative Compression, Dynamic Partial Sums, and Substring

Concatenation

and concatenate operations, we can ensure that B and C have the same size as
Y at all times (we extend and shrink them when performing divide and merge
operations). Inserting or deleting a representative is to set a bit in B, and to
keep C up to date, we employ the same word-level parallel update scheme as
used for U .

We �nally need to adjust the relative o�sets of all elements with a changed
representative in U (since they now belong to a representative with a di�erent
value). In particular, if the representative for U [j] changed value from v to v′,
we must subtract v′ − v from U [j]. This can be done for all a�ected elements
belonging to a single representative simultaneously in U by a single addition
with an appropriate bitmask (update a range of U). Note that we know the
range of elements to update from the representative indices. Finally, we may
need to insert or delete an element in U , which can be done easily by mask, shift
and concatenate operations on the word U .

We still need to make sure that each index of U does not over�ow due to update
operations. We do this by checking the value of each index in a round-robin
fashion such that each index is checked once every B operations. We add and
remove representatives based on whether the di�erence between neighboring
indices exceeds or is at most B · 2δ. We do this exactly as when adding or
removing representatives due to divide and merge operations. This leads to
Theorem 4.10.

Theorem 4.10 There is a linear space data structure for dynamic partial
sums supporting each operation search, sum, update, insert, delete, divide, and
merge on a sequence of length O(min{w/ logw,w/δ}) in worst-case constant
time.

4.3.2 Dynamic Partial Sums for Large Sequences

Willard [135] (and implicitly Dietz [35]) showed that a leaf-oriented B-tree with
out-degree B of height h can be maintained in O(h) worst-case time if: 1)
searches, insertions and deletions take O(1) time per node when no splits or
merges occur, and 2) merging or splitting a node of size B requires O(B) time.

We use this as follows, where Z is our integer sequence of length s. Create
a leaf-oriented B-tree of degree B = Θ(min{w/ logw,w/δ}) storing Z in the
leaves, with height h = O(logB n) = O(log n/ log(w/δ)). Each node v uses
Theorem 4.10 to store the O(B) sums of leaves in each of the subtrees of its
children. A sum(i) operation corresponds to traversing the B-tree from root
to leaf i while constructing Y [i]. An update(i,∆) operation corresponds to

4.4 Substring Concatenation 83

traversing the B-tree from root to leaf i while performing local update operations
on the nodes encountered. A search(t) operation corresponds to traversing the
B-tree from root to leaf where each node is navigated by performing a local
search operation. The merge(i) and divide(i, t) corresponds to performing a
local merge or divide in the leaf node containing index i. This concludes the
proof of Theorem 4.2.

4.4 Substring Concatenation

In this section we prove Theorem 4.3. Recall that we must store a string R
subject to substring concatenation queries: given the location of two substrings
x and y of R return the location of an occurrence of xy in R or NO if no such
occurrence exists.

Before we start the proof of Theorem 4.3, we �rst need to introduce a data
structure. Goswami et al. [65] showed how to use the weak pre�x search data
structure from Belazzougui et al. [10] for a 1D range emptiness data structure.
The following data structure follows from these results1:

Lemma 4.11 ([65] and [10]) Given an ordered set A ⊆ [1, r] we can con-
struct a data structure that uses O(|A| logε r) bits of space, for any constant
ε > 0, and supports the following query in constant time. Given a range
[a, b] ⊆ [1, r] report the �rst index of an element within the range [a, b], or if
A ∩ [a, b] = ∅ an arbitrary index (i.e. it may report false-positives).

To prove Theorem 4.3(i) we need the following de�nitions. For a substring x
of R, let S(x) denote the su�xes of R that have x as a pre�x, and let S′(x) =
{i+|x| | i ∈ S(x)}, i.e., S′(x) are the su�xes of R that are immediately preceded
by x. Hence for two substrings x and y, the su�xes that have xy as a pre�x are
exactly S′(x)∩S(y) shifted left by |x|. We can reduce this intersection problem
to a query on the data structure from Lemma 4.11 as follows.

Let rank(i) be the position of su�x R[i..r] in the lexicographic ordering of
all su�xes of R, and let rank(A) be the ordered set {rank(i) | i ∈ A} for
A ⊆ {1, 2, . . . , r}, and let pos(i) be the inverse of rank(i), i.e., it returns the
position in R of the ith su�x in the lexicographical ordering. Then xy is a
substring of R if and only if rank(S′(x))∩ rank(S(y)) 6= ∅. In particular xy then

1The technique is described in the section "Range Emptiness Data Structure" in [65]. Note
since we allow false-positives, we do not need the sorted list of points and thus avoid the n lgU
bits term in the space usage.

84

Dynamic Relative Compression, Dynamic Partial Sums, and Substring

Concatenation

occurs at the positions pos(rank(S′(x))∩rank(S(y))) shifted |x| to the left in R.
Note that rank(S(y)) is a range [a, b] ⊆ [1, r], and we can determine this range in
constant time for any substring y using a constant-time weighted ancestor query
on the su�x tree of R [62]. Consequently, if we have built the data structure
from Lemma 4.11 for rank(S′(x)) we can query for the range [a, b] and thereby
determine the intersection.

Unfortunately, this data structure only gives the index of an element within
the range, and not the element itself2. Thus the position of xy in R cannot be
computed as indicated before. Instead we use the followings properties. The ith

su�x in rank((S(x)) is the ith su�x in rank(S′(x)) with x prepended. The ith

su�x in rank(S(x)) has rank rank(x)+ i where rank(x) is the number of su�xes
of R that are lexicographically smaller than x. Thus if a query on rank(S′(x))
for [a, b] returns the ith element then xy occurs at position pos(rank(x) + i) in
R. Also, this data structure might answer with false-positives, so we have to
verify xy actually occurs at the found position. The found position certainly
starts with x, but is not guaranteed to be followed by y, but this can simply
be veri�ed using a constant time longest common pre�x query to compare the
found position shifted |x| to the right with the known occurrence of y.

To arrive at the space bound of O(r logε r) (words), we employ a heavy path
decomposition [70] on the su�x tree of R, and only build the data structure
from Lemma 4.11 for substrings of R that correspond to the top of a heavy
path. In this way, each su�x will appear in at most log r such data structures,
leading to the claimed O(r logε r) space bound (in words). In addition, we build
an O(r)-space nearest common ancestor data structure [70] for the su�x tree of
R. Constant-time nearest common ancestor queries will allow us to also answer
longest common pre�x queries on R in constant time.

To answer a substring concatenation query with substrings x and y, we �rst
determine how far y follows the heavy path in the su�x tree from the location
where x stops. This can be done in O(1) time by a constant-time longest
common pre�x query between two su�xes of R. We then proceed to the top
of the next heavy path, where we query the data structure with the range
rank(S(y′)) where y′ is the remaining unmatched su�x of y. Finally, we compute
the actual position of xy from the answer and verify it is a real occurrence as
previously described. This completes the query, and the proof of (i).

The second solution (ii) is an implication of a result by Bille et al. [17]. Given
the su�x tree STR of R, an unrooted longest common pre�x query [28] takes
a su�x y and a location ` in STR (either a node or a position on an edge)
and returns the location in STS that is reached after matching y starting from

2Storing the element itself would take up too much space.

4.5 Extensions 85

location `. A substring concatenation query is straightforward to implement
using two unrooted longest common pre�x queries, the �rst one starting at the
root, and the second starting from the location returned by the �rst query. It
follows from Bille et al. [17] that we can build a linear space data structure
that supports unrooted longest common pre�x queries in time O(log log r) thus
completing the proof of (ii).

4.5 Extensions

In this section we show how to solve two other variants of the dynamic relative
compression problem. We �rst prove Theorem 4.5, showing how to improve
the query time if only supporting operations access and replace. We then show
Theorem 4.7, generalising the problem to support multiple strings. These data
structures use the same substring concatenation data structure of Theorem 4.3
as before but replaces the dynamic partial sums data structure.

4.5.1 Dynamic Relative Compression with Access and Re-
place

In this setting we constrain the operations on S to access(i) and replace(i, α).
Then, instead of maintaining a dynamic partial sums data structure over the
lengths of the substrings in C, we only need a dynamic predecessor data struc-
ture over the pre�x sums. The operations are implemented as before, except
that for access(i) we obtain block bj by computing the predecessor of i in the
predecessor data structure, which also immediately gives us access to the local
index in bj . For replace(i, α), a constant number of updates to the predecessor
data structure is needed to re�ect the changes. We use substring concatenation
queries to restore minimality as described in Section 4.2. The pre�x sums of the
subsequent blocks in C are preserved since |bj | = |b1j |+ |b2j |+ |b3j |.

With a linear space implementation of the van Emde Boas data structure [99,
130, 131] we can support the predecessor queries and updates in O(log logN)
expected time. For substring concatenation we apply Theorem 4.3(ii) using O(r)
space and O(log log r) time. Since the length of source string does not change,
we can always assume that r < N , and the total time becomes O(log logN +
log log r) = O(log logN). Note that it is actually possible to get O(log logN)
worst case time for access operations. In summary, this proves Theorem 4.5.

86

Dynamic Relative Compression, Dynamic Partial Sums, and Substring

Concatenation

4.5.2 Dynamic Relative Compression with Split and Con-
catenate

Consider the variant of the dynamic relative compression problem where we want
to maintain a relative compression of a set of strings S1, . . . , Sk. Each string Si
has a cover Ci and all strings are compressed relative to the same string R. In
this setting n =

∑k
i=1 |Ci|. In addition to the operations access, replace, insert,

and delete, we also want to support split and concatenation of strings. Note
that the semantics of the operations change to indicate the string(s) to perform
a given operation on.

We build a leaf-oriented height-balanced binary tree Ti (e.g. an 2-3 tree) over the
blocks Ci[1], . . . , Ci[|Ci|] for each string Si. In each internal node v, we store the
sum of the block sizes represented by its leaves. Since the total number of blocks
is n, the trees use O(n) space. All operations rely on the standard procedures
for searching, inserting, deleting, splitting and joining height-balanced binary
trees. All of these run in O(log n) time for a tree of size n.

The answer to an access(i, j) query is found by doing a top-down search in Ti
using the sums of block sizes to navigate. Since the tree is balanced and the size
of the cover is at most n, this takes O(log n) time. The operations replace(i, j, α),
insert(i, j, α), and delete(i, j) all initially require that we use access(i, j) to locate
the block containing the j-th character of Si. To re�ect possible changes to the
blocks of the cover, we need to modify the corresponding tree to contain more
leaves and restore the balancing property. Since the number of nodes added to
the tree is constant these operations each take O(log n) time. The concat(i, j)
operation requires that we join two trees in the standard way and restore the
balancing property of the resulting tree. For the split(i, j) operation we �rst split
the block that contains position j such that the j-th character is the trailing
character of a block. We then split the tree into two trees separated by the new
block. This takes O(log n) time for a height-balanced tree.

To �nalize the implementation of the operations, we must restore the minimality
property of the a�ected covers as described in Section 4.2. At most a constant
number of blocks are non-minimal as a result of any of the operations. If two
blocks can be combined to one, we delete the leaf that represents the rightmost
block, update the leftmost block to re�ect the change, and restore the property
that the tree is balanced. If the tree subsequently contains an internal node
with only one child, we delete it and restore the balancing. Again, this takes
O(log n) time for balanced trees, which concludes the proof of Theorem 4.7.

4.6 Conclusion 87

4.6 Conclusion

We have shown how to compress a text relatively to a reference string while
supporting access to the text and a range of dynamic operations under some
strong guarantees for the space usage and the query times. There are, however,
room for improvement.

Our solution to DRC is built on data structures for the partial sums problem
and the substring concatenation problem. Our partial sums-solution is optimal,
but in order to get the desired constant query time for substring concatenation,
our data structure uses O(r logε r) space. As opposed to this, our linear space
solution leads to O(log log r) query time. We leave as an open problem if it
is possible to get O(1) time substring concatenation queries using O(r) space,
which will also carry over to a stronger result for the DRC problem.

Moreover, the size of the cover that is maintained by our DRC data structure is
also an interesting parameter. Currently we maintain a 2-approximation of the
optimal cover. It would be interesting to know if a better approximation ratio
can be maintained under the same (or better) time and space bounds that we
give. A �rst step could be to investigate whether some of the ideas by Fischer
et al. [45] could be applied to our problem.

Acknowledgments We thank Pawel Gawrychowski for helpful discussions.

88

Dynamic Relative Compression, Dynamic Partial Sums, and Substring

Concatenation

Chapter 5

Succinct Partial Sums and

Fenwick Trees

Philip Bille † Anders Roy Christiansen † Nicola Prezza †

Frederik Rye Skjoldjensen †

† The Technical University of Denmark

Abstract

We consider the well-studied partial sums problem in succint space
where one is to maintain an array of n k-bit integers subject to updates
such that partial sums queries can be e�ciently answered. We present
two succint versions of the Fenwick Tree � which is known for its sim-
plicity and practicality. Our results hold in the encoding model where
one is allowed to reuse the space from the input data. Our main result is
the �rst that only requires nk + o(n) bits of space while still supporting
sum/update in O(logb n) / O(b logb n) time where 2 ≤ b ≤ logO(1) n. The
second result shows how optimal time for sum/update can be achieved
while only slightly increasing the space usage to nk + o(nk) bits. Be-
yond Fenwick Trees, the results are primarily based on bit-packing and
sampling � making them very practical � and they also allow for simple
optimal parallelization.

90 Succinct Partial Sums and Fenwick Trees

5.1 Introduction

Let A be an array of k-bits integers, with |A| = n. The partial sums problem is
to build a data structure maintaining A under the following operations.

• sum(i): return the value
∑i
t=1A[t].

• search(j): return the smallest i such that sum(i) ≥ j.

• update(i,∆): set A[i]← A[i]+∆, for some ∆ such that 0 ≤ A[i]+∆ < 2k.

• access(i): return A[i].

Note that access(i) can implemented as sum(i)−sum(i − 1) and we therefore
often do not mention it explicitly.

The partial sums problem is one of the most well-studied data structure prob-
lems [34, 40, 51, 52, 72, 110, 114, 137]. In this paper, we consider solutions to
the partial sums problem that are succinct, that is, we are interested in data
structures that use space close to the information-theoretic lower bound of nk
bits. We distinguish between encoding data structures and indexing data struc-
tures. Indexing data structures are required to store the input array A verbatim
along with additional information to support the queries, whereas encoding data
structures have to support operations without consulting the input array.

In the indexing model Raman et al. [115] gave a data structure that supports
sum, update, and search in O(log n/ log log n) time while using nk + o(nk)
bits of space. This was improved and generalized by Hon et al. [72]. Both of

these papers have the constraint ∆ ≤ logO(1) n. The above time complexity is
nearly optimal by a lower bound of Patrascu and Demaine [110] who showed that
sum, search, and update operations take Θ(logw/δ n) time per operation, where
w ≥ log n is the word size and δ is the number of bits needed to represent ∆. In
particular, whenever ∆ = logO(1) n this bound matches the O(log n/ log log n)
bound of Raman et al. [115].

Fenwick [40] presented a simple, elegant, and very practical encoding data struc-
ture. The idea is to replace entries in the input array A with partial sums that
cover A in an implicit complete binary tree structure. The operations are then
implemented by accessing at most log n entries in the array. The Fenwick tree
uses nk+n log n bits and supports all operations in O(log n) time. In this paper
we show two succinct b-ary versions of the Fenwick tree. In the �rst version we
reduce the size of the Fenwick tree while improving the sum and update time.

5.2 Data structure 91

In the second version we obtain optimal times for sum and update without using
more space than the previous best succinct solutions [72,114]. All results in this
paper are in the RAM model.

Our results We show two encoding data structures that gives the following
results.

Theorem 5.1 We can replace A with a succinct Fenwick tree of nk + o(n)
bits supporting sum, update, and search queries in O(logb n), O(b logb n), and

O(log n) time, respectively, for any 2 ≤ b ≤ logO(1) n.

Theorem 5.2 We can replace A with a succinct Fenwick tree of nk + o(nk)
bits supporting sum and update queries in optimal O(logw/δ n) time and search

queries in O(log n) time.

5.2 Data structure

For simplicity, assume that n is a power of 2. The Fenwick tree is an implicit
data structure replacing a word-array A[1, . . . , n] as follows:

Definition 5.3 Fenwick tree of A [40]. If n = 1, then leave A unchanged.
Otherwise, divide A in consecutive non-overlapping blocks of two elements each
and replace the second element A[2i] of each block with A[2i − 1] + A[2i], for
i = 1, . . . , n/2. Then, recurse on the sub-array A[2, 4, . . . , 2i, . . . , n].

To answer sum(i), the idea is to write i in binary as i = 2j1 + 2j2 + · · ·+ 2jk for
some j1 > j2 > · · · > jk. Then there are k ≤ log n entries in the Fenwick tree,
that can be easily computed from i, whose values added together yield sum(i).
In Section 5.2.1 we describe in detail how to perform such accesses. As per the
above de�nition, the Fenwick tree is an array with n indices. If represented
compactly, this array can be stored in nk + n log n bits. In this section we
present a generalization of Fenwick trees taking only succinct space.

5.2.1 Layered b-ary structure

We �rst observe that it is easy to generalize Fenwick trees to be b-ary, for b ≥ 2:
we divide A in blocks of b integers each, replace the �rst b− 1 elements in each

92 Succinct Partial Sums and Fenwick Trees

block with their partial sum, and �ll the remaining n/b entries of A by recursing
on the array A′ of size n/b that stores the sums of each block. This generalization
gives an array of n indices supporting sum, update, and search queries on the
original array in O(logb n), O(b logb n), and O(log n) time, respectively. We now
show how to reduce the space of this array.

Let ` = logb n. We represent our b-ary Fenwick tree Tb(A) using ` + 1 arrays
(layers) T 1

b (A), . . . , T `+1
b (A). For simplicity, we assume that n = be for some e ≥

0 (the general case is then straightforward to derive). To improve readability,
we de�ne our layered structure for the special case b = 2, and then sketch how to
extend it to the general case b ≥ 2. Our layered structure is de�ned as follows.
If n = 1, then T 1

2 (A) = A. Otherwise:

• T `+1
2 (A)[i] = A[(i − 1) · 2 + 1], for all i = 1, . . . , n/2. Note that T `+1

2 (A)
contains n/2 elements.

• Divide A in blocks of 2 elements each, and build an array A′[j] containing
the n/2 sums of each block, i.e. A′[j] = A[(j−1)·2+1]+A[(j−1)·2+2], for
j = 1, . . . , n/2. Then, the next layers are recursively de�ned as T `2 (A) ←
T `2 (A′), . . . , T 1

2 (A)← T 1
2 (A′).

For general b ≥ 2, T `+1
b (A) is an array of n(b−1)b elements that stores the b− 1

partial sums of each block of b consecutive elements in A, while A′ is an array
of size n/b containing the complete sums of each block. In Figure 5.1 we report
an example of our layered structure with b = 3. It follows that elements of
T ib (A), for i > 1, take at most k + (` − i + 2) log b bits each. Note that arrays
T 1
b (A), . . . , T `+1

b (A) can easily be packed contiguously in a word array while
preserving constant-time access to each of them. This saves us O(`) words
that would otherwise be needed to store pointers to the arrays. Let Sb(n, k) be
the space (in bits) taken by our layered structure. This function satis�es the
recurrence

Sb(1, k) = k

Sb(n, k) = n(b−1)
b · (k + log b) + Sb(n/b, k + log b)

Which unfolds to Sb(n, k) =
∑logb n+1
i=1

n(b−1)
bi · (k + i log b) . Using the identities∑∞

i=1 1/bi = 1/(b − 1) and
∑∞
i=1 i/b

i = b/(b − 1)2, one can easily derive that
Sb(n, k) ≤ nk + 2n log b.

We now show how to obtain the time bounds stated in Theorem 5.1. In the next
section, we reduce the space of the structure without a�ecting query times.

5.2 Data structure 93

Answering sum Let the notation (x1x2 . . . xt)b, with 0 ≤ xi < b for i =
1, . . . , t, represent the number

∑t
i=1 b

t−ixi in base b. sum(i) queries on our
structure are a generalization (in base b) of sum(i) queries on standard Fen-
wick trees. Consider the base-b representation x1x2 . . . x`+1 of i, i.e. i =
(x1x2 . . . x`+1)b (note that we have at most ` + 1 digits since we enumerate
indexes starting from 1). Consider now all the positions 1 ≤ i1 < i2 < · · · <
it ≤ ` + 1 such that xj 6= 0, for j = i1, . . . , it. The idea is that each of these

positions j = i1, . . . , it can be used to compute an o�set oj in T jb (A). Then,

sum(i) =
∑
j=i1,...,it

T jb (A)[oj]. The o�set oj relative to the j-th most signi�-
cant (nonzero) digit of i is de�ned as follows. If j = 1, then oj = x1. Otherwise,
oj = (b − 1) · (x1 . . . xj−1)b + xj . Note that we scale by a factor of b − 1 (and
not b) as the �rst term in this formula as each level T j(A) stores only b− 1 out
of b partial sums (the remaining sums are passed to level j− 1). Note moreover
that each oj can be easily computed in constant time and independently from
the other o�sets with the aid of modular arithmetic. It follows that sum queries
are answered in O(logb n) time. See Figure 5.1 for a concrete example of sum.

Answering update The idea for performing update(i,∆) is analogous to that
of sum(i). We access all levels that contain a partial sum covering position i
and update at most b− 1 sums per level. Using the same notation as above, for
each j = i1, . . . , it such that xj 6= 0, we update T jb (A)[oj+ l]← T jb (A)[oj+ l]+∆
for l = 0, . . . , b− xj − 1. This procedure takes O(b logb n) time.

Answering search To answer search(j) we start from T 1
b (A) and simply

perform a top-down traversal of the implicit B-tree of degree b de�ned by the
layered structure. At each level, we perform O(log b) steps of binary search to
�nd the new o�set in the next level. There are logb n levels, so search takes
overall O(log n) time.

5.2.2 Sampling

Let 0 < d ≤ n be a sample rate, where for simplicity we assume that d divides n.
Given our input array A, we derive an array A′ of n/d elements containing the

sums of groups of d adjacent elements in A, i.e. A′[i] =
∑d
j=1A[(i− 1) · d+ j],

i = 1, . . . , d. We then compact A by removing A[j ·d] for j = 1, . . . , n/d, and by
packing the remaining integers in at most nk(1−1/d) bits. We build our layered
b-ary Fenwick tree Tb(A

′) over A′. It is clear that queries on A can be solved
with a query on Tb(A

′) followed by at most d accesses on (the compacted) A.
The space of the resulting data structure is nk(1− 1/d) + Sb(n/d, k + log d) ≤

94 Succinct Partial Sums and Fenwick Trees

7 15 2 5 5 12 5 6 3 10 9 19 3 5 3 8 2 4

7 8 3 2 3 1 5 7 3 5 1 0 3 7 4 9 10 11 3 2 1 3 5 4 2 2 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

18 24 6 20 6 18

39 89

115

Figure 5.1: Example of our layered structure with n = 27 and b = 3. Hori-
zontal red lines show the portion of A covered by each element in
T j3 (A), for j = 1, . . . , logb n+1. To access the i-th partial sum, we
proceed as follows. Let, for example, i = 19 = (0201)3. The only
nonzero digits in i are the 2-nd and 4-th most signi�cant. This
gives us o2 = 2 · (0)3 + 2 = 2 and o4 = 2 · (020)3 + 1 = 13. Then,
sum(19) = T 2

3 (A)[2] + T 4
3 (A)[13] = 89 + 3 = 92.

nk + n log d
d + 2n log b

d bits. In order to retain the same query times of our basic
layered structure, we choose d = (1/ε) logb n for any constant ε > 0 and obtain

a space occupancy of nk + ε
(
n log logb n

logb n
+ 2n log b

logb n

)
bits. For b ≤ logO(1) n, this

space is nk + o(n) bits. Note that�as opposed to existing succinct solutions�
the low-order term does not depend on k.

5.3 Optimal-time sum and update

In this section we show how to obtain optimal running times for sum and update

queries in the RAM model. We can directly apply the word-packing techniques
described in [110] to speed-up queries; here we only sketch this strategy, see [110]
for full details. Let us describe the idea on the structure of Section 5.2.1, and
then plug in sampling to reduce space usage. We divide arrays T jb (A) in blocks
of b− 1 entries, and store one word (w bits) for each such block. We can pack
b− 1 integers of at most w/(b− 1) bits each (for an opportune b, read below) in
the word associated with each block. Since blocks of b−1 integers �t in a single
word, we can easily answer sum and update queries on them in constant time.
sum queries on our overall structure can be answered as described in Section
5.2.1, except that now we also need to access one of the packed integers at each
level j to correct the value read from T jb (A). To answer update queries, the idea

5.3 Optimal-time sum and update 95

is to perform update operations on the packed blocks of integers in constant time
exploiting bit-parallelism instead of updating at most b− 1 values of T jb (A). At

each update operation, we transfer one of these integers on T jb (A) (in a cyclic
fashion) to avoid over�owing and to achieve worst-case performance. Note that
each packed integer is increased by at most ∆ for at most b − 1 times before
being transferred to T jb (A), so we get the constraint (b− 1) log((b− 1)∆) ≤ w.
We choose (b− 1) = w

logw+δ . Then, it is easy to show that the above constraint

is satis�ed. The number of levels becomes logb n = O(logw/δ n). Since we spend
constant time per level, this is also the worst-case time needed to answer sum and
update queries on our structure. To analyze space usage we use the corrected
formula

Sb(1, k) = k

Sb(n, k) = n(b−1)
b · (k + log b) + nw

b + Sb(n/b, k + log b)

yielding Sb(1, k) ≤ nk + 2n log b + nw
b−1 . Replacing b − 1 = w

logw+δ we achieve

nk +O(nδ + n logw) bits of space.

We now apply the sampling technique of Section 5.2.2 with a slight variation.
In order to get the claimed space/time bounds, we need to further apply bit-
parallelism techniques on the packed integers stored in A: using techniques
from [69], we can answer sum, search, and update queries in O(1) time on
blocks of w/k integers. It follows that we can now use sample rate d = w logn

k log(w/δ)

without a�ecting query times. After sampling A and building the Fenwick
tree above described over the sums of size-d blocks of A, the overall space is
nk(1 − 1/d) + Sb(n/d, k + log d) = nk + n log d

d + O(nδd + n logw
d). Note that

d ≤ w2

k log(w/δ) ≤ w2, so log d ∈ O(logw) and space simpli�es to nk + O(nδd +
n logw
d). The term nδ

d equals nδk log(w/δ)
w logn . Since δ ≤ w, then δ log(w/δ) ≤ w, and

this term therefore simpli�es to nk
logn ∈ o(nk). Finally, the term n logw

d equals
n logw·k log(w/δ)

w logn ≤ nk
(w logn)/(logw)2 ∈ o(nk). The bounds of Theorem 5.2 follow.

Parallelism Note that sum and update queries on our succinct Fenwick trees
can be naturally parallelized as all accesses/updates on the levels can be per-
formed independently from each other. For sum, we need O(log logb n) further
time to perform a parallel sum of the logb n partial results. It is not hard to
show that�on architectures with logb n processors�this reduces sum/update
times to O(log logb n)/O(b) and O(log logw/δ n)/O(1) in Theorems 5.1 and 5.2,
respectively.

96 Succinct Partial Sums and Fenwick Trees

Chapter 6

Fast Dynamic Arrays

Philip Bille† Anders Roy Christiansen† Mikko Berggren Ettienne†

Inge Li Gørtz†

† The Technical University of Denmark

Abstract

We present a highly optimized implementation of tiered vectors, a
data structure for maintaining a sequence of n elements supporting access
in time O(1) and insertion and deletion in time O(nε) for ε > 0 while
using o(n) extra space. We consider several di�erent implementation op-
timizations in C++ and compare their performance to that of vector and
multiset from the standard library on sequences with up to 108 elements.
Our fastest implementation uses much less space than multiset while pro-
viding speedups of 40× for access operations compared to multiset and
speedups of 10.000× compared to vector for insertion and deletion op-
erations while being competitive with both data structures for all other
operations.

6.1 Introduction

We present a highly optimized implementation of a data structure solving the
dynamic array problem, that is, maintain a sequence of elements subject to the
following operations:

98 Fast Dynamic Arrays

access(i): return the ith element in the sequence.

access(i,m): return the ith through (i+m− 1)th elements in the sequence.

insert(i, x): insert element x immediately after the ith element.

delete(i): remove the ith element from the sequence.

update(i, x): exchange the ith element with x.

This is a fundamental and well studied data structure problem [23, 35, 48, 49,
64, 85, 86, 115] solved by textbook data structures like arrays and binary trees.
Many dynamic trees provide all the operations in O(lg n) time including 2-3-4
trees, AVL trees, splay trees, etc. and Dietz [35] gives a data structure that
matches the lower bound of Ω(lg n/ lg lg n) showed by Fredman and Saks [49].
The lower bound only holds when identical complexities are required for all
operations. In this paper we focus on the variation where access must run in
O(1) time. Goodrich and Kloss present what they call tiered vectors [64] with a
time complexity of O(1) for access and update and O(n1/l) for insert and delete
for any constant integer l ≥ 2, using ideas similar to Frederickson's in [48]. The
data structure uses only o(n) extra space beyond that required to store the
actual elements. At the core, the data structure is a tree with out degree n1/l

and constant height l − 1.

Goodrich and Kloss compare the performance of an implementation with l = 2
to that of vector from the standard library of Java and show that the structure
is competitive for access operations while being signi�cantly faster for insertions
and deletions. Tiered vectors provide a performance trade-o� between standard
arrays and balanced binary trees for the dynamic array problem.

Our Contribution In this paper, we present what we believe is the �rst
implementation of tiered vectors that supports more than 2 tiers. Our C++
implementation supports access and update in times that are competitive with
the vector data structure from C++'s standard library while insert and delete
run more than 10.000× faster. It performs access and update more than 40×
faster than the multiset data structure from the standard library while insert
and delete is only a few percent slower. Furthermore multiset uses more than
10× more space than our implementation. All of this when working on large
sequences of 108 32-bit integers.

To obtain these results, we signi�cantly decrease the number of memory probes
per operation compared to the original tiered vector. Our best variant requires
only half as many memory probes as the original tiered vector for access and

6.2 Preliminaries 99

update operations which is critical for the practical performance. Our imple-
mentation is cache e�cient which makes all operations run fast in practice even
on tiered vectors with several tiers.

We experimentally compare the di�erent variants of tiered vectors. Besides
the comparison to the two commonly used C++ data structures, vector and
multiset, we compare the di�erent variants of tiered vectors to �nd the best one.
We show that the number of tiers have a signi�cant impact on the performance
which underlines the importance of tiered vectors supporting more than 2 tiers.

Our implementations are parameterized and thus support any number of tiers
≥ 2. We use techniques like template recursion to keep the code rather simple
while enabling the compiler to generate highly optimized code.

The source code can be found at https://github.com/mettienne/tiered-vector.

6.2 Preliminaries

The �rst and ith element of a sequence A are denoted A[0] and A[i− 1] respec-
tively and the ith through jth elements are denoted A[i− 1, j − 1]. Let A1 ·A2

denote the concatenation of the sequences A1 and A2. |A| denotes the number
of elements in the sequence A. A circular shift of a sequence A by x is the
sequence A[|A| − x, |A| − 1] ·A[0, |A| − x− 1]. De�ne the remainder of division
of a by b as a mod b = a− qb where q is the largest integer such that q · b ≤ a.
De�ne A[i, j] mod w to be the elements A[i mod w], A[(i+1) mod w], . . . , A[j
mod w], i.e. A[4, 7] mod 5 = A[4], A[0], A[1], A[2]. Let bxc denote the largest
integer smaller than x.

6.3 Tiered Vectors

In this section we will describe how the tiered vector data structure from [64]
works.

Data Structure An l-tiered vector can be seen as a tree T with root r, �xed
height l−1 and out-degree w for any l ≥ 2. A node v ∈ T represents a sequence
of elements A(v) thus A(r) is the sequence represented by the tiered vector.

https://github.com/mettienne/tiered-vector

100 Fast Dynamic Arrays

0 0 1 0 1 2 0

7 3 0

12

R S T Y P Q F D E A B C I G H K L J M N O

1

X U V

DEF???ABC => ???ABCDEF

GHIJKLMNO => GHIJKLMNO
RSTUVXYPQ => PQRSTUVXY

PQRSTUVXY???ABCDEFGHIJKLMNO => ABCDEFGHIJKLMNOPQRSTUVX???

Figure 6.1: An illustration of a tiered vector with l = w = 3. The elements
are letters, and the tiered vector represents the sequence ABCDE-
FGHIJKLMNOPQRSTUVX. The elements in the leaves are the
elements that are actually stored. The number above each node
is its o�set. The strings above an internal node v with children
c1, c2, c3 is respectively A(c1) ·A(c2) ·A(c3) and A(v), i.e. the ele-
ments v represents before and after the circular shift. ? speci�es
an empty element.

The capacity cap(v) of a node v is wheight(v)+1. For a node v with children
c1, c2, . . . , cw, A(v) is a circular shift of the concatenation of the elements repre-
sented by its children, A(c1) ·A(c2) · . . . ·A(cw). The circular shift is determined
by an integer off(v) ∈ [cap(v)] that is explicitly stored for all nodes. Thus
the sequence of elements A(v) of an internal node v can be reconstructed by
recursively reconstructing the sequence for each of its children, concatenating
these and then circular shifting the sequence by off(v). See Figure 6.1 for an
illustration. A leaf v of T explicitly stores the sequence A(v) in a circular array
elems(v) with size w whereas internal nodes only store their respective o�set.
Call a node v full if |A(v)| = cap(v) and empty if |A(v)| = 0. In order to sup-
port fast access, for all nodes v the elements of A(v) are located in consecutive
children of v that are all full, except the children containing the �rst and last
element of A(v) which may be only partly full.

Access & Update To access an element A(r)[i] at a given index i; one tra-
verses a path from the root down to a leaf in the tree. In each node the o�set
of the node is added to the index to compensate for the cyclic shift, and the
traversing is continued in the child corresponding to the newly calculated index.
Finally when reaching a leaf, the desired element is returned from the elements
array of that leaf. The operation access(v, i) returns the element A(v)[i] and is
recursively computed as follows:

v is internal: Compute i′ = (i+ off(v)) mod cap(v), let v′ be the bi′/wcth

6.3 Tiered Vectors 101

child of v and return the element access(v′, i′ mod cap(v′)).

v is leaf: Compute i′ = (i+off(v)) mod w and return the element elems(v)[i′].

The time complexity is Θ(l) as we visit all nodes on a root-to-leaf path in T .
To navigate this path we must follow l − 1 child pointers, lookup l o�sets, and
access the element itself. Therefore this requires l − 1 + l + 1 = 2l memory
probes.

The update operation is entirely similar to access, except the element found
is not returned but substituted with the new element. The running time is
therefore Θ(l) as well. For future use, let update(v, i, e) be the operation that
sets A(v)[i] = e and returns the element that was substituted.

Range Access Accessing a range of elements, can obviously be done by using
the access-operation multiple times, but this results in redundant traversing of
the tree, since consecutive elements of a leaf often � but not always due to
circular shifts � corresponds to consecutive elements of A(r). Let access(v, i,m)
report the elements A(v)[i . . . i+m− 1] in order. The operation can recursively
be de�ned as:

v is internal: Let il = (i + off(v)) mod cap(v), and let ir = (il + m)
mod cap(v). The children of v that contains the elements to be reported
are in the range [bil·w/cap(v)c, bir·w/cap(v)c] mod w, call these cl, cl+1, . . . , cr.
In order, call access(cl, il,min(m, cap(cl) − il)), access(ci, 0, cap(ci)) for
ci = cl+1, . . . , cr−1, and access(cr, er−1, 0, ir mod cap(cr)).

v is leaf: Report the elements elems(v)[i, i+m− 1] mod w.

The running time of this strategy is O(lm), but saves a constant factor over the
naive solution.

Insert & Delete Inserting an element in the end (or beginning) of the array
can simply be achieved using the update-operation. Thus the interesting part is
fast insertion at an arbitrary position; this is where we utilize the o�sets.

Consider a node v, the key challenge is to shift a big chunk of elements A(v)[i, i+
m − 1] one index right (or left) to A(v)[i + 1, i + m] to make room for a new
element (without actually moving each element in the range). Look at the range
of children cl, cl+1, . . . , cr that covers the range of elements A(v)[i, i+m− 1] to

102 Fast Dynamic Arrays

be shifted. All elements in cl+1, . . . , cr−1 must be shifted. These children are
guaranteed to be full, so make a circular shift by decrementing each of their
o�sets by one. Afterwards take the element A(ci−1)[0] and move it to A(ci)[0]
using the update operation for l < i ≤ r. In cl and cr only a subrange of the
elements might need shifting, which we do recursively. In the base case of this
recursion, namely when v is a leaf, shift the elements by actually moving the
elements one-by-one in elems(v).

Formally we de�ne the shift(v, e, i,m) operation that (logically) shifts all ele-
ments A(v)[i, i + m − 1] one place right to A[i + 1, i + m], sets A[i] = e and
returns the value that was previously on position A[i+m] as:

v is internal: Let il = (i + off(v)) mod cap(v), and let ir = (il + m)
mod cap(v). The children of v that must be updated are in the range
[bil · w/cap(v)c, bir · w/cap(v)c] mod w call these cl, cl+1, . . . , cr. Let
el = shift(cl, e, il,min(m, cap(cl)−il)). Let ei = update(ci, size(c)−1, ei−1)
and set off(ci) = (off(ci)− 1) mod cap(c) for ci = cl+1, . . . , cr−1. Finally
call shift(cr, er−1, 0, ir mod cap(cr)).

v is leaf: Let eo = elems(v)[(i+m) mod w]. Move the elements elems(v)[i, (i+
m−1) mod w] to elems(v)[i+1, (i+m) mod w], and set elems(v)[i] = e.
Return eo.

An insertion insert(i, e) can then be performed as shift(root, e, i, size(root)− i−
1). The running time of an insertion is T (l) = 2T (l−1)+w · l⇒ T (l) = O(2lw).

A deletion of an element can basically be done as an inverted insertion, thus
deletion can be implemented using the shift-operation from before. A delete(i)
can be performed as shift(r,⊥, 0, i) followed by an update of the root's o�set to
(off(r) + 1) mod cap(r).

Space There are at most O(wl−1) nodes in the tree and each takes up constant
space, thus the total space of the tree is O(wl−1). All leaves are either empty
or full except the two leaves storing the �rst and last element of the sequence
which might contain less than w elements. Because the arrays of empty leaves
are not allocated the space overhead of the arrays is O(w). Thus beyond the
space required to store the n elements themselves, tiered vectors have a space
overhead of O(wl−1).

To obtain the desired bounds w is maintained such that w = Θ(nε) where
ε = 1/l and n is the number of elements in the tiered vector. This can be

6.4 Improved Tiered Vectors 103

achieved by using global rebuilding to gradually increase/decrease the value
of w when elements are inserted/deleted without asymptotically changing the
running times. We will not provide the details here. We sum up the original
tiered vector data structure in the following theorem:

Theorem 6.1 ([64]) The original l-tiered vector solves the dynamic array
problem for l ≥ 2 using Θ(n1−1/l) extra space while supporting access and
update in Θ(l) time and 2l memory probes. The operations insert and delete
take O(2ln1/l) time.

6.4 Improved Tiered Vectors

In this paper, we consider several new variants of the tiered vector. This section
considers the theoretical properties of these approaches. In particular we are
interested in the number of memory accesses that are required for the di�erent
memory layouts, since this turns out to have an e�ect on the experimental
running time. In Section 6.5.1 we analyze the actual impact in practice through
experiments.

6.4.1 Implicit Tiered Vectors

As the degree of all nodes is always �xed at some constant value w (it may be
changed for all nodes when the tree is rebuilt due to a full root), it is possible to
layout the o�sets and elements such that no pointers are necessary to navigate
the tree. Simply number all nodes from left-to-right level-by-level starting in
the root with number 0. Using this numbering scheme, we can store all o�sets of
the nodes in a single array and similarly all the elements of the leaves in another
array.

To access an element, we only have to lookup the o�set for each node on the
root-to-leaf path which requires l − 1 memory probes plus the �nal element
lookup, i.e. in total l which is half as many as the original tiered vector. The
downside with this representation is that it must allocate the two arrays in
their entirety at the point of initialization (or when rebuilding). This results in
a Θ(n) space overhead which is worse than the Θ(n1−ε) space overhead from
the original tiered vector.

Theorem 6.2 The implicit l-tiered vector solves the dynamic array problem
for l ≥ 2 using O(n) extra space while supporting access and update in O(l)

104 Fast Dynamic Arrays

time requiring l memory probes. The operations insert and delete take O(2ln1/l)
time.

6.4.2 Lazy Tiered Vectors

We now combine the original and the implicit representation, to get both few
memory probes and little space overhead. Instead of having a single array storing
all the elements of the leaves, we store for each leaf a pointer to a location with
an array containing the leaf's elements. The array is lazily allocated in memory
when elements are actually inserted into it.

The total size of the o�set-array and the element pointers in the leaves is
O(n1−ε). At most two leaves are only partially full, therefore the total space is
now again reduced to O(n1−ε). To navigate a root-to-leaf path, we now need
to look at l − 1 o�sets, follow a pointer from a leaf to its array and access the
element in the array, giving a total of l + 1 memory accesses.

Theorem 6.3 The lazy l-tiered vector solves the dynamic array problem for
l ≥ 2 using Θ(n1−1/l) extra space while supporting access and update in Θ(l)
time requiring l + 1 memory probes. The operations insert and delete take
O(2ln1/l) time.

6.5 Implementation

We have implemented a generic version of the tiered vector data structure such
that the number of tiers and the size of each tier can be speci�ed at compile
time. To the best of our knowledge, all prior implementations of the tiered
vector are limited to the considerably simpler 2-tier version. Also, most of the
performance optimizations applied in the 2-tier implementations do not easily
generalize. We have implemented the following variants of tiered vectors:

• Original The data structure described in Theorem 6.1.

• Optimized Original As described in Theorem 6.1 but with the o�set of a
node v located in the parent of v, adjacent in memory to the pointer to v.
Leaves only consist of an array of elements (since their parent store their
o�set) and the root's o�set is maintained separately as there is no parent
to store it in.

6.5 Implementation 105

• Implicit This is the data structure described in Theorem 6.2 where the tree
is represented implicitly in an array storing the o�sets and the elements
of the leaves are located in a single array.

• Packed Implicit This is the data structure described in Theorem 6.2 with
the following optimization; The o�sets stored in the o�set array are packed
together and stored in as little space as possible. The maximum o�set of a
node v in the tree is nε(height(v)+1) and the number of bits needed to store
all the o�sets is therefore

∑l
i=0 n

1−iε log(niε) = log(n)
∑l
i=0 iεn

1−iε ≈
εn1−ε log(n) (for su�ciently large n). Thus the n1−ε o�sets can be stored
in approximately εn1−ε words giving a space reduction of a constant factor
ε. The smaller memory footprint could lead to better cache performance.

• Lazy This is the data structure described in Theorem 6.3 where the tree is
represented implicitly in an array storing the o�sets and every leaf stores
a pointer to an array storing only the elements of that leaf.

• Packed Lazy This is the data structure described in Theorem 6.3 with the
following optimization; The o�set and the pointer stored in a leaf is packed
together and stored at the same memory location. On most modern 64-bit
systems � including the one we are testing on � a memory pointer is only
allowed to address 48 bits. This means we have room to pack a 16 bit
o�set in the same memory location as the elements pointer, which results
in one less memory probe during an access operation.

• Non-Templated The implementations described above all use C++ tem-
plating for recursive functions in order to let the compiler do signi�cant
code optimizations. This implementation is template free and serves as a
baseline to compare the performance gains given by templating.

In Section 6.6 we compare the performance of these implementations.

6.5.1 C++ Templates

We use templates to support storing di�erent types of data in our tiered vector
similar to what most other general purpose data structures in C++ do. This is
a well-known technique which we will not describe in detail.

However, we have also used template recursion which is basically like a normal
recursion except that the recursion parameter must be a compile-time constant.
This allows the compiler to unfold the recursion at compile-time eliminating all
(recursive) function calls by inlining code, and allows better local code opti-
mizations. In our case, we exploit that the height of a tiered vector is constant.

106 Fast Dynamic Arrays

To show the rather simple code resulting from this approach (disregarding the
template stu� itself), we have included a snippet of the internals of our access
operation:

template <class T, class Layer>

struct helper {

static T& get(size_t node, size_t idx) {

idx = (idx + get_offset(node)) % Layer::capacity;

auto child = get_child(node, idx / Layer::child::capacity);

return helper<T, typename Layer::child>::get(child, idx);

}

}

template <class T, size_t W>

struct helper<T, Layer<W, LayerEnd> > {

static T& get(size_t node, size_t idx) {

idx = (idx + get_offset(node)) % L::capacity;

return get_elem(node, idx);

}

}

We also brie�y show how to use the data structure. To specify the desired height
of the tree, and the width of the nodes on each tier, we also use templating:

Tiered<int, Layer<8, Layer<16, Layer<32>>>> tiered;

This will de�ne a tiered vector containing integers with three tiers. The height
of the underlying tree is therefore 3 where the root has 8 children, each of which
has 16 children each of which contains 32 elements. We call this con�guration
8-16-32.

In this implementation of tiered vectors we have decided to let the number of
children on each level be a �xed number as described above. This imposes
a maximum on the number of elements that can be inserted. However, in a
production ready implementation, it would be simple to make it grow-able by
maintaining a single growth factor that should be multiplied on the number of
children on each level. This can be combined with the templated solution since
the growing is only on the number of children and not the height of the tree (per
de�nition of tiered vectors the height is constant). This will obviously increase
the running time for operations when growing/shrinking is required, but will

6.6 Experiments 107

only have minimal impact on all other operations (they will be slightly slower
because computations now must take the growth factor into account).

In practice one could also, for many uses, simply pick the number of children
on each level su�ciently large to ensure the number of elements that will be
inserted is less than the maximum capacity. This would result in a memory
overhead when the tiered vector is almost empty, but by choosing the right
variant of tiered vectors and the right parameters this overhead would in many
cases be insigni�cant.

6.6 Experiments

In this section we compare the tiered vector to some widely used C++ standard
library containers. We also compare di�erent variants of the tiered vector. We
consider how the di�erent representations of the data structure listed in Sec-
tion 6.5, and also how the height of tree and the capacity of the leaves a�ects
the running time. The following describes the test setup:

Environment All experiments have been performed on a Intel Core i7-4770
CPU @ 3.40GHz with 32 GB RAM. The code has been compiled with GNU
GCC version 5.4.0 with �ags �-O3�. The reported times are an average over 10
test runs.

Procedure In all tests 108 32-bit integers are inserted in the data structure
as a preliminary step to simulate that it has already been used1. For all the
access and successor operations 109 elements have been accessed and the time
reported is the average time per element. For range access, 10.000 consecutive
elements are accessed. For insertion/deletion 106 elements have been (semi-
)randomly2 added/deleted, though in the case of �vector� only 10.000 elements
were inserted/deleted to make the experiments terminate in reasonable time.

1In order to minimize the overall running time of the experiments, the elements were not
added randomly, but we show this does not give our data structure any bene�ts

2In order to not impact timing, a simple access pattern has been used instead of a normal
pseudo-random generator.

108 Fast Dynamic Arrays

6.6.1 Comparison to C++ STL Data Structures

In the following we have compared our best performing tiered vector (see the
next sections) to the vector and the multiset class from the C++ standard
library. The vector data structure directly supports the operations of a dynamic
array. The multiset class is implemented as a red-black tree and is therefore
interesting to compare with our data structure. Unfortunately, multiset does
not directly support the operations of a dynamic array (in particular it has no
notion of positions of elements). To simulate an access operation we instead
�nd the successor of an element in the multiset. This requires a root-to-leaf
traversal of the red-black tree, just as an access operation in a dynamic array
implemented as a red-black tree would. Insertion is simulated as an insertion
into the multiset, which again requires the same computations as a dynamic
array implemented as a red-black tree would.

Besides the random access, range access and insertion, we have also tested the
operations data dependent access, insertion in the end, deletion, and successor
queries. In the data dependent access tests, the next index to lookup depends on
the values of the prior lookups. This ensures that the CPU cannot successfully
pipeline consecutive lookups, but must perform them in sequence. We test
insertion in the end, since this is a very common use case. Deletion is performed
by deleting elements at random positions. The successor queries returns the
successor of an element and is not actually part of the dynamic array problem,
but is included since it is a commonly used operation on a multiset in C++. It
is simply implemented as a binary search over the elements in both the vector
and tiered vector tests where the elements are now inserted in sorted order.

The results are summarized in Table 6.1 which shows that the vector performs
slightly better than the tiered vector on all access and successor tests. As
expected from the Θ(n) running time, it performs extremely poor on random
insertion and deletion. For insertion in the end of the sequence, vector is also
slightly faster than the tiered vector. The interesting part is that even though
the tiered vector requires several extra memory lookups and computations, we
have managed to get the running time down to less than the double of the vector
for access, even less for data dependent access and only a few percent slowdown
for range access. As discussed earlier, this is most likely because the entire tree
structure (without the elements) �ts within the CPU cache, and because the
computations required has been minimized.

Comparing our tiered vector to multiset, we would expect access operations to
be faster since they run in O(1) time compared to O(log n). On the other hand,
we would expect insertion/deletion to be signi�cantly slower since it runs in
O(n1/l) time compared to O(log n) (where l = 4 in these tests). We see our

6.6 Experiments 109

tiered vector set s / t vector v / t

access 34.07 ns 1432.05 ns 42.03 21.63 ns 0.63

dd-access 99.09 ns 1436.67 ns 14.50 79.37 ns 0.80

range access 0.24 ns 13.02 ns 53.53 0.23 ns 0.93

insert 1.79 µs 1.65 µs 0.92 21675.49 µs 12082.33

insertion in end 7.28 ns 242.90 ns 33.38 2.93 ns 0.40

successor 0.55 µs 1.53 µs 2.75 0.36 µs 0.65

delete 1.92 µs 1.78 µs 0.93 21295.25 µs 11070.04

memory 408 MB 4802 MB 11.77 405 MB 0.99

Table 6.1: The table summarizes the performance of the implicit tiered vector
compared to the performance of multiset and vector from the C++
standard library. dd-access refers to data dependent access.

expectations hold for the access operations where the tiered vector is faster by
more than an order of magnitude. In random insertions however, the tiered
vector is only 8% slower � even when operating on 100.000.000 elements. Both
the tiered vector and set requires O(log n) time for the successor operation. In
our experiments the tiered vector is 3 times faster for the successor operation.

Finally, we see that the memory usage of vector and tiered vector is almost
identical. This is expected since in both cases the space usage is dominated by
the space taken by the actual elements. The multiset uses more than 10 times as
much space, so this is also a considerable drawback of the red-black tree behind
this structure.

To sum up, the tiered vectors performs better than multiset on all tests but
insertion, where it performs only slightly worse.

6.6.2 Tiered Vector Variants

In this test we compare the performance of the implementations listed in Sec-
tion 6.5 to that or the original data structure as described in 6.1.

110 Fast Dynamic Arrays

0 s
10 ns
20 ns
30 ns
40 ns
50 ns
60 ns
70 ns

ori
gin

al

op
tim

ize
d o

rig
ina

l
laz

y

pa
ck

ed
 la

zy

im
pli

cit

pa
ck

ed
 im

pli
cit

(a) access

0 s
1 us
2 us
3 us
4 us
5 us
6 us
7 us
8 us

ori
gin

al

op
tim

ize
d o

rig
ina

l
laz

y

pa
ck

ed
 la

zy

im
pli

cit

pa
ck

ed
 im

pli
cit

(b) insert

Figure 6.2: Figures (a) and (b) show the performance of the original (),
optimized original (), lazy () packed lazy (), implicit ()
and packed implicit () layouts.

Optimized Original By co-locating the child o�set and child pointer, the
two memory lookups are at adjacent memory locations. Due to the cache lines
in modern processors, the second memory lookup will then often be answered
directly by the fast L1-cache. As can be seen on Figure 6.2, this small change in
the memory layout results in a signi�cant improvement in performance for both
access and insertion. In the latter case, the running time is more than halved.

Lazy and Packed Lazy Figure 6.2 shows how the fewer memory probes re-
quired by the lazy implementation in comparison to the original and optimized original
results in better performance. Packing the o�set and pointer in the leaves re-
sults in even better performance for both access and insertion even though it
requires a few extra instructions to do the actual packing and unpacking.

Implicit From Figure 6.2, we see the implicit data structure is the fastest.
This is as expected because it requires fewer memory accesses than the other
structures except for the packed lazy which instead has a slight computational
overhead due to the packing and unpacking.

As shown in Theorem 6.2 the implicit data structure has a bigger memory
overhead than the lazy data structure. Therefore the packed lazy representation
might be bene�cial in some settings.

Packed Implicit Packing the o�sets array could lead to better cache perfor-
mance due to the smaller memory footprint and therefore yield better overall
performance. As can be seen on Figure 6.2, the smaller memory footprint did
not improve the performance in practice. The simple reason for this, is that
the strategy we used for packing the o�sets required extra computation. This
clearly dominated the possible gain from the hypothesized better cache perfor-

6.6 Experiments 111

0 s

10 ns

20 ns

30 ns

40 ns

50 ns

60 ns

40
96

40
96

20
48

20
48

10
24

10
24 51

2
51

2
25

6
25

6
12

8
12

8

(a) access

0 s

50 ps

100 ps

150 ps

200 ps

250 ps

300 ps

40
96

40
96

20
48

20
48

10
24

10
24 51

2
51

2
25

6
25

6
12

8
12

8

(b) range access

0 s

1 us

2 us

3 us

4 us

5 us

6 us

40
96

40
96

20
48

20
48

10
24

10
24 51

2
51

2
25

6
25

6
12

8
12

8

(c) insert

Figure 6.3: Figures (a), (b) and (c) show the performance of the implicit ()
and the optimized original tiered vector () for di�erent tree
widths.

mance. We tried a few strategies to minimize the extra computations needed
at the expense of slightly worse memory usage, but none of these led to better
results than when not packing the o�sets at all.

6.6.3 Width Experiments

This experiment was performed to determine the best capacity ratio between
the leaf nodes and the internal nodes. The six di�erent width con�gurations
we have tested are: 32-32-32-4096, 32-32-64-2048, 32-64-64-1024, 64-64-64-512,
64-64-128-256, and 64-128-128-128. All con�gurations have a constant height 4
and a capacity of approximately 130 mio.

We expect the performance of access operations to remain unchanged, since
the amount of work required only depends on the height of the tree, and not
the widths. We expect range access to perform better when the leaf size is in-
creased, since more elements will be located in consecutive memory locations.
For insertion there is not a clearly expected behavior as the time used to physi-
cally move elements in a leaf will increase with leaf size, but then less operations
on the internal nodes of the tree has to be performed.

On Figure 6.3 we see access times are actually decreasing slightly when leaves
get bigger. This was not expected, but is most likely due to small changes in
the memory layout that results in slightly better cache performance. The same
is the case for range access, but this was expected. For insertion, we see there
is a tipping point. For our particular instance, the best performance is achieved
when the leaves have size 512.

112 Fast Dynamic Arrays

0 s

10 ns

20 ns

30 ns

40 ns

50 ns

60 ns

2 2 3 3 4 4 5 5 6 6

(a) access(i)

0 s

50 ps

100 ps

150 ps

200 ps

250 ps

300 ps

2 2 3 3 4 4 5 5 6 6

(b) access(i, m)

0 s

5 us

10 us

15 us

20 us

25 us

2 2 3 3 4 4 5 5 6 6

(c) insert

Figure 6.4: Figures (a),(b) and (c) show the performance of the implicit ()
and the optimized original tiered vector () for di�erent tree
heights.

6.6.4 Height Experiments

In these tests we have studied how di�erent heights a�ect the performance of
access and insertion operations. We have tested the con�gurations 8196-16384,
512-512-512, 64-64-64-512, 16-16-32-32-512, 8-8-16-16-16-512. All resulting in
the same capacity, but with heights in the range 2-6.

We expect the access operations to perform better for lower trees, since the
number of operations that must be performed is linear in the height. On the
other hand we expect insertion to perform signi�cantly better with higher trees,
since its running time is O(n1/l) where l is the height plus one.

On Figure 6.4 we see the results follow our expectations. However, the access
operations only perform slightly worse on higher trees. This is most likely
because all internal nodes �t within the L3-cache. Therefore the running time
is dominated by the lookup of the element itself. (It is highly unlikely that the
element requested by an access to a random position would be among the small
fraction of elements that �t in the L3-cache).

Regarding insertion, we see signi�cant improvements up until a height of 4.
After that, increasing the height does not change the running time noticeably.
This is most likely due to the hidden constant in O(n1/l) increasing rapidly with
the height.

6.6.5 Con�guration Experiments

In these experiments, we test a few hypotheses about how di�erent changes
impact the running time. The results are shown on Figure 6.5, the leftmost
result (base) is the implicit 64-64-64-512 con�guration of the tiered vector to

6.6 Experiments 113

0 s

50 ns

100 ns

150 ns

200 ns

250 ns

ba
se

rot
ate

d

no
n-a

lig
ne

d w
idt

hs

no
n-t

em
pla

ted

(a) access

0 s
50 ps

100 ps
150 ps
200 ps
250 ps
300 ps
350 ps
400 ps
450 ps

ba
se

rot
ate

d

no
n-a

lig
ne

d w
idt

hs

no
 te

mpla
tin

g

(b) range access

0 s
2 us
4 us
6 us
8 us

10 us
12 us
14 us
16 us
18 us

ba
se

rot
ate

d

no
n-a

lig
ne

d s
ize

s

no
n-t

em
pla

ted

(c) insert(i,x)

Figure 6.5: Figures (a) and (b) show the performance of the base (), rotated
(), non-aligned sizes (), non-templated () layouts.

which we compare our hypotheses.

Rotated : As already mentioned, the insertions performed as a preliminary step
to the tests are not done at random positions. This means that all o�sets are zero
when our real operations start. The purpose of this test is the ensure that there
are no signi�cant performance gains in starting from such a con�guration which
could otherwise lead to misleading results. To this end, we have randomized
all o�sets (in a way such that the data structure is still valid, but the order of
elements change) after doing the preliminary insertions but before timing the
operations. As can be seen on Figure 6.5, the di�erence between this and the
normal procedure is insigni�cant, thus we �nd our approach gives a fair picture.

Non-Aligned Sizes: In all our previous tests, we have ensured all nodes had an
out-degree that was a power of 2. This was chosen in order to let the compiler
simplify some calculations, i.e. replacing multiplication/division instructions by
shift/and instructions. As Figure 6.5 shows, using sizes that are not powers of
2 results in signi�cantly worse performance. Besides showing that powers of 2
should always be used, this also indicates that not only the number of memory
accesses during an operation is critical for our performance, but also the amount
of computation we make.

Non-Templated The non-templated results in Figure 6.2 the show that the
change to templated recursion has had a major impact on the running time.
It should be noted that some improvements have not been implemented in the
non-templated version, but it gives a good indication that this has been quite
useful.

114 Fast Dynamic Arrays

6.7 Conclusion

This paper presents the �rst implementation of a generic tiered vector support-
ing any constant number of tiers. We have shown a number of modi�ed versions
of the tiered vector, and employed several optimizations to the implementation.
These implementations have been compared to vector and multiset from the
C++ standard library. The benchmarks show that our implementation stays
on par with vector for access and on update operations while providing a con-
siderable speedup of more than 40× compared to multiset. At the same time
the asymptotic di�erence between the logarithmic complexity of multiset and
the polynomial complexity of tiered vector for insertion and deletion operations
only has little e�ect in practice. For these operations, our fastest version of
the tiered vector su�ers less than 10% slowdown. Arguably, our tiered array
provides a better trade-o� than the balanced binary tree data structures used
in the standard library for most applications that involves big instances of the
dynamic array problem.

Chapter 7

Parallel Lookups in String

Indexes

Anders Roy Christiansen † Martín Farach-Colton*

† The Technical University of Denmark

* Rutgers University

Abstract

Recently, the �rst PRAM algorithms were presented for looking up a
pattern in a su�x tree. We improve the bounds, achieving optimal results.

7.1 Introduction

Looking up a pattern string in an index is one of the most basic primitives in
stringology, and the su�x tree (and its su�x array representation) is among the
most basic indexes. It is therefore surprising that, until recently, there were no
known PRAM algorithms for looking up an m-character pattern P in a su�x
tree of an n-character text T . This contrasts sharply with the rich PRAM
literature for the problem of �nding all occurrences of P in T in the case where
P can be preprocessed, optimal solutions of which are known for the full range
of PRAM models [33,60,133]

116 Parallel Lookups in String Indexes

Recently Jekovec and Brodnik [79] considered the problem of parallel lookups in
an index, speci�cally su�x trees and quadratic-space su�x tries. They achieved
work-time optimal O(m) work and O(logm) time for su�x trie lookups in the
CREW PRAM, although the preprocessing involves quadratic work and space.
For su�x tree lookups, they achieve O(m logm) work and O(logm) time by
augmenting the O(n)-size su�x tree with further data structures1 that increase
the size to O(n log n). These bounds are time-optimal due to the Ω(log n) time
lower bound for computing the OR of n-bits [31] in the CREW PRAM.

Fischer et al. [46] gave an CREW PRAM algorithm using the su�x array and
some additional compact data structures requiring a total of n log n + O(n)
bits (ie. n + o(n) words), thus improving the space. Their algorithm uses
O(log logm log log n+logm) time andO(m+min(m, log n)(logm+log logm log log n))
work. Additionally they considered the approximate pattern lookup problem
and lookups in compressed su�x arrays.

In this paper, we improve the bounds for looking up a pattern in an index
in several ways. First, we provide an algorithm that matches the time-work
optimal bounds of O(logm) time, O(m) work while achieving O(n) space. Also,
our algorithm runs on the EREW PRAM, thus improving on the earlier CREW
PRAM algorithms. As in the previous algorithms, we use randomization, but
only in the preprocessing, whereas the pattern matching phase is deterministic2.

We consider two variants of the pattern lookup problem: exact matching and
pre�x matching. In exact matching, we �nd the place in the su�x tree where
the complete pattern matches. In pre�x matching, we �nd the location in the
su�x tree which matches the longest possible pre�x of the pattern.

Our main result is:

Theorem 7.1 Given a su�x tree of a string T of length n and a pattern P
of length m, then parallel pre�x pattern lookup in the su�x tree takes worst-
case O(logm) time and O(m) work, after O(log n log∗ n) time and O(n) work
preprocessing w.h.p. requiring O(n) additional space. All bounds are on the
EREW PRAM model.

In order to present this result, we �rst present a simpler but similar method
that does more work during preprocessing and does not support pre�x pattern
lookups. Both results augment su�x trees with Karp-Rabin �ngerprints [83]
and perfect hashing [8]. The �nal result is obtained by reducing the number

1Su�x trees of subsets of characters, hash tables, etc.
2Both earlier results involve hashing, as does ours. We give our bounds using fast, ran-

domized perfect hashing, rather than slow, deterministic perfect hashing.

7.2 Preliminaries 117

of strings that must be guaranteed to have collision-free KR �ngerprints by
discarding possible false-positives during a query. We note that the techinque
of combining indexes with Karp-Rabin �ngerprints for e�cient pattern lookups
was introduced in [3], but in that case it was to improve sequential dictionary
pattern matching.

Furthermore we include a simple algorithm for parallel pre�x pattern lookup
in a su�x array because it is deterministic in both the query and preprocess-
ing phases and works on general alphabets whereas the �rst works on integer
alphabets, at the cost of some running time. The result is summarized below:

Theorem 7.2 Pre�x pattern matching in a su�x array with LCP-values can
be performed in O(log n) time and O(m + log n) work on the CRCW PRAM
model with no other preprocessing than computing the su�x array and the LCP
array.

7.2 Preliminaries

Denote by T a text of length n of letters from an alphabet Σ. Call the corre-
sponding su�x tree S. For an edge e ∈ S denote by T (e) the string of letters on
the path from the root to e and including the letters on e. Similarly let pre(e)
denote the string of letters on the path from the root to e including only the
�rst letter on e. Let parent(e) be the edge that shares a node with e and is on
the e-root path. Let T [i] be the ith character of T and T [i, j] be the substring
of T from the ith character to the jth character, both inclusive.

In this paper we will be working in the PRAM model see [77] for details. We
present all results based on the work-time presentation framework described in
[77] (ie. without having the number of processors as a parameter).

We will be using the following lemmas throughout our solutions:

Lemma 7.3 (Follows from list rank in [29]) Given a set of linked
lists represented by a table of length n of next-pointers and the index of a head
element one can compute which elements are in the linked list that contains the
head. This can be done in O(log n) time and O(n) work in the EREW PRAM
model.

Lemma 7.4 ([44]) Given a table B of n bits, one can �nd the leftmost 1-bit
in B in O(1) time and O(n) work in the CRCW PRAM model.

118 Parallel Lookups in String Indexes

Lemma 7.5 (Follows from Prefix Sum [93]) Given a string T of length
n, all pre�x Karp-Rabin �ngerprints[83] φ(T [1, 1]), φ(T [1, 2]), . . . can be com-
puted in O(log n) time and O(n) work in the EREW PRAM model.

Lemma 7.6 (From [8], adapted to EREW) Given a (multi-)set of n
integers a perfect hash table of size n can be computed in time O(log n log∗ n)
using O(n) work and space w.h.p. in the EREW PRAM model.

7.3 Simple Fingerprint-Based Pattern Lookup

The main idea in this solution is to use a combination of Karp-Rabin �ngerprints
and perfect hash tables to avoid doing an actual traversal of the su�x tree from
the root. We �rst show a simpli�ed version of this solution, and then extend it
to reduce preprocessing time and to support pre�x lookups.

Data Structure. Let φ be a Karp-Rabin based �ngerprint function that is
collision free for all substrings in T . We store the string T , the su�x tree S for T ,
and a perfect hash table Hd for each d = 1 . . . n mapping H|pre(e)|[φ(pre(e))]→ e
for each edge e in S. These structures use O(n) space in total.

Query. Given a pattern P , �rst compute the pre�x �ngerprints of P using
Lemma 7.5. In parallel, look up a �ngerprint φ(P [1, d]) in hash table Hd, for
all d = 1 . . .m. If there is a match, let M [d] = Hd[φ(P [1, d])], and otherwise
let M [d] = ⊥. Since all lookups are in di�erent hash tables there are no read
con�icts. Find the rightmost non-⊥ value in M and call it ec. If P occurs in
T then this match must be on ec in the su�x tree. Match P character-by-
character to T (ec)[1,m]. If there are no di�erences, report that P exists on ec
in T ; otherwise, report that P does not occur.

Since all characters of P are compared to a substring of T before reporting
an occurrence, no false positives are reported. We need this veri�cation part
because our �ngerprints are only guaranteed to be collision-free on T , not on P .

If P does occur in T , then the �ngerprint function is guaranteed to be collision-
free in both P and T , and so we will �nd a single maximal ec so that a pre�x
of P matches with pre(ec). The brute-force matching phase then extends the
match length down the edge ec.

7.4 Better Fingerprint-Based Pattern Lookup 119

The bottleneck of the query is the O(logm)-time, O(m)-work of computing the
�ngerprints (Lemma 7.5), and the same time and work to verify a match. We
conclude that these are overall work-time bounds.

Preprocessing. We assume the su�x tree is given3. In O(log n) time and
O(n) work we can compute all pre�x �ngerprints of T using Lemma 7.5. From
these pre�x �ngerprints the �ngerprint of an arbitrary substring of T can be
computed in constant time and work.

Validate that φ is collision-free for the substrings of T by computing all possible
�ngerprints. Since there are Θ(n2) di�erent substrings this takes O(n2) work.
They can all be calculated independently, but O(n) �ngerprints might depend
on the same �ngerprint pre�x which means the algorithm might need to read
the same memory cell at the same time. Since a CREW algorithm can be
simulated as an EREW algorithm with O(log n) time overhead per step [77],
this takes O(log n) time. Construct a hash table over all the �ngerprints using
Lemma 7.6 to check for duplicates - if there are any duplicates, start over with a
new random Karp-Rabin �ngerprint function. In total this takes O(log n log∗ n)
time and O(n2) work w.h.p.

Finally constructing the n di�erent hash tables with a total of O(n) elements
can be done in O(log n log∗ n) time and O(n) work w.h.p. using Lemma 7.6.

Overall preprocessing takes O(log n log∗ n) time and O(n2) work, both w.h.p.

7.4 Better Fingerprint-Based Pattern Lookup

We now show how to improve the above solution such that the preprocessing
work will be O(n) w.h.p. instead of O(n2). Furthermore, this method will sup-
port general pre�x pattern lookups. These improvements are achieved by reduc-
ing the number of substrings of T that must be guaranteed to have collision-free
�ngerprints from O(n2) to O(n), and instead taking care of possible false posi-
tives during the query.

Data Structure. The data structure used is the same as above with the
di�erence that the �ngerprint function φ is only guaranteed to be collision free
for the substrings pre(e) for all e ∈ S, of which there are O(n).

3Though, in fact, the su�x tree of T can be constructed in O(log2 n) time, O(n logn) work
and O(n) space [81] for general alphabets.

120 Parallel Lookups in String Indexes

Figure 7.1: An illustration of a small part of the
su�x tree S. Green edges represent
the edges in M . As illustrated they
all form disjoint monotone paths. A
pre�x of the pattern P of length m′

occurs on the left-most path in the
illustration. An example of the N -
array is included. The y-position of
a node represents the string depth.

m’

P
[1
,m

’]

6

5

2

‐

‐

8

‐

‐

‐

‐

4

1

2

3

8

5

6

7

9

10

N

Query. Given a pattern P , �rst compute its pre�x �ngerprints. In parallel,
look up the �ngerprint φ(P [1, d]) in the respective hash table Hd for all d =
1 . . .m. If there is a match set M [d] = Hd[φ(P [1, d])] otherwise M [d] = ⊥.
If M [1] = ⊥ then P does not occur in T , so in this case stop and report no
match. The edges contained in M form a set of disjoint paths in S (see proof
below). Consider each of these paths to be a linked list of edges. Let N [i]
be a table describing the next-pointers ie. which edge M [N [i]] follows M [i].
De�ne e = M [d] and e′ = parent(e), and set N [|pre(e′)|] = d if e 6= ⊥ and
M [|pre(e′)|] = e′. Let N [d] = ⊥ denote unset entries. Use Lemma 7.3 to
compute which edges are in the same linked list as M [1], let d be the index of
the right-most of these. Now ec = M [d] is our candidate edge. In parallel �nd
the longest pre�x of the strings P and T (ec)[1,m] that matches. Report the
result.

Before reporting any results we verify by comparing P to a substring of T , so
that no false-positives are reported.

We focus on proving that we always �nd a (pre�x) match of P in T if it exists.
So assume a non-empty pre�x of P exists somewhere in T . In this case there
is a path P̂P from the root spelling out this pre�x of P . We now need to show
P̂P is a pre�x of the path PP from the root to the edge ec our algorithm picks
as the candidate edge for veri�cation.

Consider the set of edges the algorithm �nds in M . All edges e ∈ P̂P are
in this set as P [1, |pre(e)|] = pre(e) ⇒ φ(P [1, |pre(e)|]) = φ(pre(e)). If the
�ngerprint function were collision-free (even with P), then this set of edges
would be exactly the edges on PP. Unfortunately, this is not the case for the
restricted-collision-free �ngerprint function we are using. In our case the set of
edges form a disjoint set of monotone paths in S as illustrated in Figure 7.1.
To prove this, we show that at most one outgoing edge of a node can be in M .
Assume to the contrary that e1 and e2 are both outgoing edges of a node with
string depth d and they are both in M . Then φ(P [1, d + 1]) = φ(pre(e1)) and
φ(P [1, d + 1]) = φ(pre(e2)), which implies that φ(pre(e1)) = φ(pre(e2)). This

7.5 Parallel Su�x Array Pattern Lookup 121

contradicts that the �ngerprint function is collision free for strings pre(e) where
e ∈ S.

Since all edges in PP are in M and any node can have at most one outgoing
edge, the path we are interested in is the one containing the root of S. All other
paths can safely be discarded. Therefore we use Lemma 7.3 to remove all edges
of M not connected to the root. Since all the edges on P̂P are on this path and
we pick the deepest, P̂P is a pre�x of PP. This completes the proof.

Preprocessing. All steps of the preprocessing are similar to the steps of the
preprocessing before with the only exception we only need to verify our Karp-
Rabin �ngerprint function is collision free on a set of O(n) strings. As this was
the bottleneck on the work before, the work is now reduced to O(n) w.h.p.

7.5 Parallel Su�x Array Pattern Lookup

Here we describe a parallelization of [98], which has the advantage of working
for any alphabet and of being deterministic in both query and preprocessing.
The query run time is slower.

Manber's algorithm performs a binary search over the su�x array. It main-
tains an interval [L,R] ⊆ [1, n] of the su�x array wherein potential matches
lie. In each round the middle element M in [L,R] is found, and it is deter-
mined if the search should continue in the interval [L,M] or [M,R]. This is
accomplished by matching P to T [SA[M],SA[M] + m]. Finding the leftmost
mismatch between the two strings in parallel takes O(1) time and O(m) work
using Lemma 7.4. There are O(log n) rounds, so the overall time is O(log n)
and the work is O(m log n).

This method can be generalized to the algorithm that uses the LCP-array as
well. If we just keep comparing the current su�x with the entire part of P that
has not yet been matched we will obtain the same time and work bounds as
above. By a small modi�cation, the work can be reduced to O(m) as follows.
Instead of comparing all of the pattern to the current su�x the algorithm should
perform the comparison in chunks of size m

logn .

In rounds where no more than m
logn characters match, the total work is O(m+

log n). In the remaining rounds, the total work is O(m). Thus the overall time
is still O(log n) but the work is reduced to O(m+ log n).

122 Parallel Lookups in String Indexes

Bibliography

[1] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pattern match-
ing in dynamic texts. In Proceedings of the 11th Annual Symposium on
Discrete Algorithms. Citeseer, 2000.

[2] Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor
problems. In Proc. 39th FOCS, pages 534�543, 1998.

[3] Amihood Amir, Martin Farach, and Yossi Matias. E�cient randomized
dictionary matching algorithms. In Proc. 3rd CPM, pages 262�275, 1992.

[4] Amihood Amir, Gad M Landau, Moshe Lewenstein, and Dina Sokol. Dy-
namic text and static pattern matching. ACM TALG, 3(2):19, 2007.

[5] A. Apostolico and S. Lonardi. Some theory and practice of greedy o�-line
textual substitution. In Proc. DCC, pages 119�128, 1998.

[6] A. Apostolico and S. Lonardi. Compression of biological sequences by
greedy o�-line textual substitution. In Proc. DCC, pages 143�152, 2000.

[7] Alberto Apostolico and Stefano Lonardi. O�-line compression by greedy
textual substitution. Proceedings of the IEEE, 88(11):1733�1744, 2000.

[8] Holger Bast and Torben Hagerup. Fast and reliable parallel hashing. In
Proceedings of the third annual ACM symposium on Parallel algorithms
and architectures, pages 50�61. ACM, 1991.

[9] D. Belazzougui, T. Gagie, P. Gawrychowski, J. Karkkainen, A. Ordonez,
S.J. Puglisi, and Y. Tabei. Queries on lz-bounded encodings. In Proc.
DCC, pages 83�92, April 2015.

124 BIBLIOGRAPHY

[10] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna.
Fast pre�x search in little space, with applications. In Proc. 18th ESA,
pages 427�438, 2010.

[11] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna.
Fast pre�x search in little space, with applications. In Proc. 18th ESA,
pages 427�438, 2010.

[12] Djamal Belazzougui, Patrick Hagge Cording, Simon J. Puglisi, and Yasuo
Tabei. Access, rank, and select in grammar-compressed strings. In Proc.
23rd ESA, 2015.

[13] Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algo-
rithm for unbounded searching. Inform. Process. Lett., 5(3):82 � 87, 1976.

[14] Philip Bille, Patrick Hagge Cording, and Inge Li Gørtz. Compressed sub-
sequence matching and packed tree coloring. Algorithmica, pages 1�13,
2015.

[15] Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, Benjamin Sach,
Hjalte Wedel Vildhøj, and Søren Vind. Fingerprints in compressed strings.
In Proc. 13th SWAT, 2013.

[16] Philip Bille, Mikko Berggren Ettienne, Inge Li Gørtz, and Hjalte Wedel
Vildhøj. Time-space trade-o�s for lempel-ziv compressed indexing. In
28th Annual Symposium on Combinatorial Pattern Matching. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2017.

[17] Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj, and Søren Vind. String
indexing for patterns with wildcards. Theory Comput. Syst., 55(1):41�60,
2014.

[18] Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srini-
vasa Rao Satti, and Oren Weimann. Random access to grammar-
compressed strings and trees. SIAM J. Comput, 44(3):513�539, 2014.
Announced at SODA 2011.

[19] Guy E. Blelloch, Bruce M. Maggs, and Shan Leung Maverick Woo. Space-
e�cient �nger search on degree-balanced search trees. In Proc. 14th
SODA, pages 374�383, 2003.

[20] Richard P Brent. The parallel evaluation of general arithmetic expressions.
Journal of the ACM (JACM), 21(2):201�206, 1974.

[21] Gerth Stølting Brodal. Finger search trees. In Handbook of Data Structures
and Applications. Chapman and Hall/CRC, 2004.

BIBLIOGRAPHY 125

[22] Gerth Stølting Brodal, George Lagogiannis, Christos Makris, Athana-
sios K. Tsakalidis, and Kostas Tsichlas. Optimal �nger search trees in
the pointer machine. J. Comput. Syst. Sci., 67(2):381�418, 2003.

[23] Andrej Brodnik, Svante Carlsson, Erik D. Demaine, J. Ian Munro, and
Robert Sedgewick. Resizable arrays in optimal time and space. In Proceed-
ings of the 6th International Workshop on Algorithms and Data Structures,
WADS '99, pages 37�48, London, UK, UK, 1999. Springer-Verlag.

[24] Timothy M. Chan, Kasper Green Larsen, and Mihai Patrascu. Orthogonal
range searching on the ram, revisited. In Proc. 27th SOCG, pages 1�10,
2011.

[25] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai,
and A. Shelat. The smallest grammar problem. IEEE Trans. Inf. Theory,
51(7):2554�2576, 2005. Announced at STOC 2002 and SODA 2002.

[26] BG Chern, Idoia Ochoa, Alexandros Manolakos, Albert No, Kartik
Venkat, and Tsachy Weissman. Reference based genome compression.
In IEEE ITW, pages 427�431, 2012.

[27] Francisco Claude and Gonzalo Navarro. Self-indexed grammar-based com-
pression. Fund. Inform., 111(3):313�337, 2011.

[28] Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary match-
ing and indexing with errors and don't cares. In Proc. 36th STOC, pages
91�100, 2004.

[29] Richard Cole and Uzi Vishkin. Approximate and exact parallel scheduling
with applications to list, tree and graph problems. In Foundations of
Computer Science, 1986., 27th Annual Symposium on, pages 478�491.
IEEE, 1986.

[30] Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications
to optimal parallel list ranking. Information and Control, 70(1):32 � 53,
1986.

[31] Stephen Cook, Cynthia Dwork, and Rüdiger Reischuk. Upper and lower
time bounds for parallel random access machines without simultaneous
writes. SIAM Journal on Computing, 15(1):87�97, 1986.

[32] Patrick Hagge Cording, Paweª Gawrychowski, and Oren Weimann. Book-
marks in grammar-compressed strings. In Proc. 23rd SPIRE, pages x�y,
2016.

[33] Artur Czumaj, Zvi Galil, Leszek G¡sieniec, Kunsoo Park, and Wojciech
Plandowski. Work-time-optimal parallel algorithms for string problems.
In Proceedings of the twenty-seventh annual ACM symposium on Theory
of computing, pages 713�722. ACM, 1995.

126 BIBLIOGRAPHY

[34] Paul F Dietz. Optimal algorithms for list indexing and subset rank. In
Proc. 1st WADS, pages 39�46, 1989.

[35] Paul F. Dietz. Optimal algorithms for list indexing and subset rank. In
Proceedings of the Workshop on Algorithms and Data Structures, WADS
'89, pages 39�46, London, UK, UK, 1989. Springer-Verlag.

[36] Paul F. Dietz and Rajeev Raman. A constant update time �nger search
tree. Inf. Process. Lett., 52(3):147�154, 1994.

[37] Huy Hoang Do, Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung.
Fast relative Lempel�Ziv self-index for similar sequences. TCS, 532:14�30,
2014.

[38] M. Farach and M. Thorup. String Matching in Lempel�Ziv Compressed
Strings. Algorithmica, 20(4):388�404, 1998.

[39] Martin Farach and S. Muthukrishnan. Perfect hashing for strings: For-
malization and algorithms. In Proc. 7th CPM, pages 130�140. Springer,
1996.

[40] Peter M Fenwick. A new data structure for cumulative frequency tables.
Software: Practice and Experience, 24(3):327�336, 1994.

[41] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J.
ACM, 52(4):552�581, 2005.

[42] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro.
Succinct representation of sequences. Technical report, 2004.

[43] Paolo Ferragina and Rossano Venturini. A simple storage scheme for
strings achieving entropy bounds. TCS, 372(1):115 � 121, 2007.

[44] Faith E Fich, Prabhakar Ragde, and Avi Wigderson. Relations between
concurrent-write models of parallel computation. SIAM Journal on Com-
puting, 17(3):606�627, 1988.

[45] Johannes Fischer, Travis Gagie, Paweª Gawrychowski, and Tomasz Ko-
ciumaka. Approximating lz77 via small-space multiple-pattern matching.
In Algorithms-ESA 2015, pages 533�544. Springer, 2015.

[46] Johannes Fischer, Dominik Köppl, and Florian Kurpicz. On the bene�t
of merging su�x array intervals for parallel pattern matching. In Proc.
27th CPM, 2016.

[47] Rudolf Fleischer. A simple balanced search tree with O(1) worst-case
update time. Int. J. Found. Comput. Sci., 7(2):137�150, 1996.

BIBLIOGRAPHY 127

[48] Greg N. Frederickson. Implicit data structures for the dictionary problem.
J. ACM, 30(1):80�94, January 1983.

[49] M. Fredman and M. Saks. The cell probe complexity of dynamic data
structures. In Proceedings of the Twenty-�rst Annual ACM Symposium
on Theory of Computing, STOC '89, pages 345�354, New York, NY, USA,
1989. ACM.

[50] M. L. Fredman and D. E. Willard. Blasting through the information
theoretic barrier with fusion trees. In Proceedings of the Twenty-second
Annual ACM Symposium on Theory of Computing, STOC '90, pages 1�7,
New York, NY, USA, 1990. ACM.

[51] Michael Fredman and Michael Saks. The cell probe complexity of dynamic
data structures. In Proc. 21st STOC, pages 345�354, 1989.

[52] Michael L Fredman. The complexity of maintaining an array and com-
puting its partial sums. Journal of the ACM (JACM), 29(1):250�260,
1982.

[53] Michael L. Fredman and Dan E. Willard. Surpassing the information
theoretic bound with fusion trees. J. Comput. System Sci., 47(3):424�
436, 1993.

[54] P. Gage. A new algorithm for data compression. The C Users J., 12(2):23
� 38, 1994.

[55] Travis Gagie, Paweª Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and
Simon J Puglisi. A faster grammar-based self-index. In Proc. 6th LATA,
pages 240�251, 2012.

[56] Travis Gagie, Paweª Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and
Simon J Puglisi. LZ77-based self-indexing with faster pattern matching.
In Proc. 11th LATIN, pages 731�742. Springer, 2014.

[57] Travis Gagie, Pawel Gawrychowski, and Simon J. Puglisi. Approximate
pattern matching in lz77-compressed texts. J. Discrete Algorithms, 32:64�
68, 2015.

[58] Travis Gagie, Christopher Hoobin, and Simon J. Puglisi. Block graphs in
practice. In Proc. ICABD, pages 30�36, 2014.

[59] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-time text
indexing in bwt-runs bounded space. 06 2017.

[60] Zvi Galil. A constant-time optimal parallel string-matching algorithm.
Journal of the ACM (JACM), 42(4):908�918, 1995.

128 BIBLIOGRAPHY

[61] Paweª Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub
�¡cki, and Piotr Sankowski. Optimal dynamic strings. arXiv preprint
arXiv:1511.02612, 2015.

[62] Paweª Gawrychowski, Moshe Lewenstein, and Patrick K Nicholson.
Weighted ancestors in su�x trees. In Proc. 22nd ESA, pages 455�466.
2014.

[63] Leszek G�asieniec, Roman Kolpakov, Igor Potapov, and Paul Sant. Real-
time traversal in grammar-based compressed �les. In Proc. 15th DCC,
page 458, 2005.

[64] Michael T. Goodrich and John G. Kloss. Tiered Vectors: E�cient Dy-
namic Arrays for Rank-Based Sequences, pages 205�216. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1999.

[65] Mayank Goswami, Allan Grønlund, Kasper Green Larsen, and Rasmus
Pagh. Approximate range emptiness in constant time and optimal space.
In Proc. 26th SODA, pages 769�775, 2015.

[66] Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda.
LZD factorization: Simple and practical online grammar compression with
variable-to-�xed encoding. In Proc. 26th CPM, pages 219�230. Springer,
2015.

[67] Roberto Grossi, Ankur Gupta, and Je�rey Scott Vitter. High-order
entropy-compressed text indexes. In Proc. 14th SODA, pages 841�850,
2003.

[68] Leonidas J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R.
Roberts. A new representation for linear lists. In Proc. 9th STOC, pages
49�60, 1977.

[69] Torben Hagerup. Sorting and searching on the word ram. In STACS 98,
pages 366�398. Springer, 1998.

[70] Dov Harel and Robert E. Tarjan. Fast algorithms for �nding nearest
common ancestors. SIAM J. Comput., 13(2):338�355, 1984.

[71] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Succinct data
structures for searchable partial sums with optimal worst-case perfor-
mance. TCS, 412(39):5176�5186, 2011.

[72] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Succinct data
structures for searchable partial sums with optimal worst-case perfor-
mance. Theoretical Computer Science, 412(39):5176�5186, 2011.

BIBLIOGRAPHY 129

[73] Christopher Hoobin, Simon J Puglisi, and Justin Zobel. Relative Lempel-
Ziv factorization for e�cient storage and retrieval of web collections.
PVLDB, 5(3):265�273, 2011.

[74] Thore Husfeldt and Theis Rauhe. New lower bound techniques for dy-
namic partial sums and related problems. SIAM J. Comput., 32(3):736�
753, 2003.

[75] Thore Husfeldt, Theis Rauhe, and Søren Skyum. Lower bounds for dy-
namic transitive closure, planar point location, and parentheses matching.
In Proc. 5th SWAT, pages 198�211, 1996.

[76] Tomohiro I, Wataru Matsubara, Kouji Shimohira, Shunsuke Inenaga,
Hideo Bannai, Masayuki Takeda, Kazuyuki Narisawa, and Ayumi Shi-
nohara. Detecting regularities on grammar-compressed strings. Inform.
Comput., 240:74�89, 2015.

[77] Joseph JáJá. An introduction to parallel algorithms. addison Wesley, 1992.

[78] Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. CRAM: Com-
pressed random access memory. In Proc. 39th ICALP, pages 510�521.
2012.

[79] Matevº Jekovec and Andrej Brodnik. Parallel query in the su�x tree.
arXiv preprint arXiv:1509.06167, 2015.

[80] Artur Je». Faster fully compressed pattern matching by recompression.
ACM Transactions on Algorithms (TALG), 11(3):20, 2015.

[81] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work
su�x array construction. J. ACM, 53(6):918�936, 2006.

[82] Juha Kärkkäinen and Esko Ukkonen. Lempel-Ziv parsing and sublinear-
size index structures for string matching. Proceedings of the 3rd South
American Workshop on String Processing (WSP'96), 26(Teollisuuskatu
23):141�155, 1996.

[83] Richard M Karp and Michael O Rabin. E�cient randomized pattern-
matching algorithms. IBM J. Res. Dev., 31(2):249�260, 1987.

[84] Richard M. Karp and Michael O. Rabin. E�cient randomized pattern-
matching algorithms. IBM J. Res. Dev., 31(2):249�260, 1987.

[85] Jyrki Katajainen. Worst-Case-E�cient Dynamic Arrays in Practice,
pages 167�183. Springer International Publishing, Cham, 2016.

[86] Jyrki Katajainen and Bjarke Buur Mortensen. Experiences with the De-
sign and Implementation of Space-E�cient Deques, pages 39�50. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001.

130 BIBLIOGRAPHY

[87] Brian Kernighan and Dennis Ritchie. The C Programming Language (1st
Ed.). Prentice-Hall, 1978.

[88] J. C. Kie�er and E. H. Yang. Grammar based codes: A new class of
universal lossless source codes. IEEE Trans. Inf. Theory, 46(3):737�754,
2000.

[89] J. C. Kie�er, E. H. Yang, G. J. Nelson, and P. Cosman. Universal lossless
compression via multilevel pattern matching. IEEE Trans. Inf. Theory,
46(5):1227 � 1245, 2000.

[90] S. Rao Kosaraju. Localized search in sorted lists. In Proc. 13th STOC,
pages 62�69, New York, NY, USA, 1981.

[91] Shanika Kuruppu, Simon J Puglisi, and Justin Zobel. Relative Lempel-
Ziv compression of genomes for large-scale storage and retrieval. In Proc.
17th SPIRE, pages 201�206, 2010.

[92] Shanika Kuruppu, Simon J Puglisi, and Justin Zobel. Optimized relative
Lempel-Ziv compression of genomes. In Proc. 34th ACSC, pages 91�98,
2011.

[93] Richard E Ladner and Michael J Fischer. Parallel pre�x computation.
Journal of the ACM (JACM), 27(4):831�838, 1980.

[94] N Jesper Larsson and Alistair Mo�at. O�-line dictionary-based compres-
sion. Proc. IEEE, 88(11):1722�1732, 2000.

[95] Moshe Lewenstein, Yakov Nekrich, and Je�rey Scott Vitter. Space-
e�cient string indexing for wildcard pattern matching. In Proc. 31st
STACS, pages 506�517, 2014.

[96] Stan Y. Liao, Srinivas Devadas, and Kurt Keutzer. A text-compression-
based method for code size minimization in embedded systems. ACM
Trans. Design Autom. Electr. Syst., 4(1):12�38, 1999.

[97] Stan Y. Liao, Srinivas Devadas, Kurt Keutzer, Steven W. K. Tjiang, and
Albert Wang. Code optimization techniques in embedded DSP micropro-
cessors. Design Autom. for Emb. Sys., 3(1):59�73, 1998.

[98] Udi Manber and Gene Myers. Su�x arrays: a new method for on-line
string searches. siam Journal on Computing, 22(5):935�948, 1993.

[99] K. Mehlhorn and S. Nähler. Bounded ordered dictionaries in O(log logN)
time and O(n) space. Inform. Process. Lett., 35(4):183�189, 1990.

[100] Kurt Mehlhorn. A new data structure for representing sorted lists. In
Proc. WG, pages 90�112, 1981.

BIBLIOGRAPHY 131

[101] Kurt Mehlhorn, Rajamani Sundar, and Christian Uhrig. Maintaining dy-
namic sequences under equality tests in polylogarithmic time. Algorith-
mica, 17(2):183�198, 1997.

[102] Gonzalo Navarro and Veli Mäkinen. Compressed Full-Text Indexes. ACM
Computing Surveys (CSUR), 39(1):2, 2007.

[103] Gonzalo Navarro and Yakov Nekrich. Optimal dynamic sequence repre-
sentations. In Proc. 24th SODA, pages 865�876, 2013.

[104] Gonzalo Navarro and Alberto Ordónez. Grammar compressed sequences
with rank/select support. In 21st SPIRE, pages 31�44. Springer, 2014.

[105] Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and
dynamic succinct trees. ACM Trans. Alg., 10(3):16, 2014.

[106] Craig G Nevill-Manning and Ian HWitten. Identifying Hierarchical Struc-
ture in Sequences: A linear-time algorithm. J. Arti�cial Intelligence Res.,
7:67�82, 1997.

[107] Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. Fully dynamic data structure for LCE queries in com-
pressed space. In Proc. 41st MFCS, pages 72:1�72:15, 2016.

[108] Takaaki Nishimoto, I Tomohiro, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. Dynamic index, LZ factorization, and LCE queries in
compressed space, apr 2015.

[109] Mihai P tra³cu and Erik D Demaine. Tight bounds for the partial-sums
problem. In Proc. 15th SODA, pages 20�29, 2004.

[110] Mihai Patrascu and Erik D Demaine. Logarithmic lower bounds in the
cell-probe model. SIAM Journal on Computing, 35(4):932�963, 2006.

[111] Mihai P tra³cu and Mikkel Thorup. Dynamic integer sets with optimal
rank, select, and predecessor search. In Proc. 55th FOCS, pages 166�175,
2014.

[112] Benny Porat and Ely Porat. Exact and approximate pattern matching in
the streaming model. In Proc. 50th FOCS, pages 315�323, 2009.

[113] William Pugh. Skip lists: A probabilistic alternative to balanced trees.
Commun. ACM, 33(6):668�676, 1990.

[114] Rajeev Raman, Venkatesh Raman, and S Srinivasa Rao. Succinct dynamic
data structures. In Proc. 7th WADS, pages 426�437. 2001.

132 BIBLIOGRAPHY

[115] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct Dy-
namic Data Structures, pages 426�437. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2001.

[116] W. Rytter. Application of Lempel-Ziv factorization to the approximation
of grammar-based compression. Theor. Comput. Sci., 302(1-3):211�222,
2003.

[117] Wojciech Rytter. Application of Lempel�Ziv factorization to the ap-
proximation of grammar-based compression. Theoret. Comput. Sci.,
302(1):211�222, 2003.

[118] Kunihiko Sadakane and Roberto Grossi. Squeezing succinct data struc-
tures into entropy bounds. In Proc. 17th SODA, pages 1230�1239, 2006.

[119] S. C. Sahinalp and U. Vishkin. E�cient approximate and dynamic match-
ing of patterns using a labeling paradigm. In Proceedings of 37th Confer-
ence on Foundations of Computer Science, Oct 1996.

[120] Raimund Seidel and Cecilia R. Aragon. Randomized search trees. Algo-
rithmica, 16(4/5):464�497, 1996.

[121] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shino-
hara, and S. Arikawa. Byte Pair encoding: A text compression scheme
that accelerates pattern matching. Technical Report DOI-TR-161, Dept.
of Informatics, Kyushu University, 1999.

[122] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary
search trees. J. ACM, 32(3):652�686, July 1985.

[123] James A. Storer and Thomas G. Szymanski. The macro model for data
compression. In Proc. 10th STOC, pages 30�39, 1978.

[124] James A Storer and Thomas G Szymanski. Data compression via textual
substitution. J. ACM, 29(4):928�951, 1982.

[125] Bjarne Stroustrup. The C++ Programming Language: Special Edition
(3rd Edition). Addison-Wesley, 2000. First edition from 1985.

[126] Toshiya Tanaka, I Tomohiro, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. Computing convolution on grammar-compressed text.
In Proc. 23rd DCC, pages 451�460, 2013.

[127] I Tomohiro. Longest common extensions with recompression. CoRR,
abs/1611.05359, 2016.

[128] I Tomohiro, Takaaki Nishimoto, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. Compressed automata for dictionary matching. Theor.
Comput. Sci., 578:30�41, 2015.

BIBLIOGRAPHY 133

[129] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation
of an e�cient priority queue. Theory Comput. Syst., 10(1):99�127, 1976.

[130] Peter van Emde Boas. Preserving order in a forest in less than logarithmic
time and linear space. Inform. Process. Lett., 6(3):80�82, 1977.

[131] Peter van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementa-
tion of an e�cient priority queue. Mathematical Systems Theory, 10:99�
127, 1977.

[132] Elad Verbin and Wei Yu. Data structure lower bounds on random access
to grammar-compressed strings. In Proc. 24th CPM, pages 247�258, 2013.

[133] Uzi Vishkin. Optimal parallel pattern matching in strings. Information
and control, 67(1-3):91�113, 1985.

[134] Terry A. Welch. A technique for high-performance data compression.
IEEE Computer, 17(6):8�19, 1984.

[135] Dan E Willard. Examining computational geometry, van emde boas trees,
and hashing from the perspective of the fusion tree. SIAM J. Comput.,
29(3):1030�1049, 2000.

[136] E. H. Yang and J. C. Kie�er. E�cient universal lossless data compression
algorithms based on a greedy sequential grammar transform � part one:
Without context models. IEEE Trans. Inf. Theory, 46(3):755�754, 2000.

[137] Andrew C Yao. On the complexity of maintaining partial sums. SIAM
Journal on Computing, 14(2):277�288, 1985.

[138] Jacob Ziv and Abraham Lempel. A Universal Algorithm for Sequential
Data Compression. IEEE TRANSACTIONS ON INFORMATION THE-
ORY, (3), 1977.

[139] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential
data compression. IEEE Trans. Inf. Theory, 23(3):337�343, 1977.

[140] Jacob Ziv and Abraham Lempel. Compression of individual sequences via
variable-rate coding. IEEE Trans. Inf. Theory, 24(5):530�536, 1978.

	Abstract
	Danish Abstract
	Preface
	Contents
	1 Introduction
	1.1 Overview
	1.2 Preliminaries
	1.3 The Lempel-Ziv Family and Friends
	1.4 Context-Free Grammars and SLPs
	1.5 Heavy Paths
	1.6 On Chapter 2: Finger Search in Grammar-Compressed Strings
	1.7 On Chapter 3: Compressed Indexing with Signature Grammars
	1.8 On Chapter 4: Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation
	1.9 On Chapter 5: Succint Partial Sums and Fenwick Trees
	1.10 On Chapter 6: Fast Dynamic Arrays
	1.11 On Chapter 7: Parallel Lookups in String Indexes

	2 Finger Search in Grammar-Compressed Strings
	2.1 Introduction
	2.1.1 Related Work
	2.1.2 Our results
	2.1.3 Technical Overview
	2.1.4 Longest Common Extensions

	2.2 Preliminaries
	2.3 Fringe Access
	2.3.1 van Emde Boas Decomposition for Grammars
	2.3.2 Data Structure
	2.3.3 Improving the Query Time for Small Indices

	2.4 Static Finger Search
	2.5 Dynamic Finger Search
	2.5.1 Left Heavy Path Decomposition of a Path
	2.5.2 Data Structure
	2.5.3 Moving/Access to the Left of the Finger

	2.6 Finger Search with Fingerprints and Longest Common Extensions
	2.6.1 Fast Fingerprints on the Fringe
	2.6.2 Finger Search with Fingerprints
	2.6.3 Longest Common Extensions

	3 Compressed Indexing with Signature Grammars
	3.1 Introduction
	3.1.1 Our Results
	3.1.2 Technical Overview

	3.2 Preliminaries
	3.3 Signature Grammars
	3.3.1 Signature Grammar Construction
	3.3.2 Properties of the Signature Grammar

	3.4 Long Patterns
	3.4.1 Data Structure
	3.4.2 Searching
	3.4.3 Correctness
	3.4.4 Complexity

	3.5 Short Patterns
	3.6 Semi-Short Patterns
	3.6.1 Data Structure
	3.6.2 Searching
	3.6.3 Analysis

	3.7 Randomized Solution

	4 Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation
	4.1 Introduction
	4.1.1 Dynamic Relative Compression
	4.1.2 Dynamic Partial Sums
	4.1.3 Substring Concatenation
	4.1.4 Extensions

	4.2 Dynamic Relative Compression
	4.2.1 Data Structure
	4.2.2 Answering Queries

	4.3 Dynamic Partial Sums
	4.3.1 Dynamic Partial Sums for Small Sequences
	4.3.2 Dynamic Partial Sums for Large Sequences

	4.4 Substring Concatenation
	4.5 Extensions
	4.5.1 Dynamic Relative Compression with Access and Replace
	4.5.2 Dynamic Relative Compression with Split and Concatenate

	4.6 Conclusion

	5 Succinct Partial Sums and Fenwick Trees
	5.1 Introduction
	5.2 Data structure
	5.2.1 Layered b-ary structure
	5.2.2 Sampling

	5.3 Optimal-time sum and update

	6 Fast Dynamic Arrays
	6.1 Introduction
	6.2 Preliminaries
	6.3 Tiered Vectors
	6.4 Improved Tiered Vectors
	6.4.1 Implicit Tiered Vectors
	6.4.2 Lazy Tiered Vectors

	6.5 Implementation
	6.5.1 C++ Templates

	6.6 Experiments
	6.6.1 Comparison to C++ STL Data Structures
	6.6.2 Tiered Vector Variants
	6.6.3 Width Experiments
	6.6.4 Height Experiments
	6.6.5 Configuration Experiments

	6.7 Conclusion

	7 Parallel Lookups in String Indexes
	7.1 Introduction
	7.2 Preliminaries
	7.3 Simple Fingerprint-Based Pattern Lookup
	7.4 Better Fingerprint-Based Pattern Lookup
	7.5 Parallel Suffix Array Pattern Lookup

	Bibliography

