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Abstract 

In this paper, group contribution (GC) property models for the estimation of acid dissociation 

constants (Ka) of organic compounds are presented. Three GC models are developed to 

predict the negative logarithm of the acid dissociation constant pKa: a) a linear GC model for 

amino acids using 180 data-points with average absolute error of 0.23; b) a non-linear GC 

model for organic compounds using 1622 data-points with average absolute error of 1.18; c) 

an artificial neural network (ANN) based GC model for the organic compounds with average 

absolute error of 0.17. For each of the developed model, uncertainty estimates for the 

predicted pKa values are also provided. The model details, regressed parameters and 

application examples are highlighted. 
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1. Introduction 

The acid dissociation constant (Ka) of a compound, which expresses the extent to which the 

compound in its aqueous solution is dissociated into its ionic form, is sought after by many 

chemists, biochemists and product formulators. Although experimental measurements would 

yield the most satisfactory results, it is not always convenient to setup and conduct 

experiments for Ka determination. This is because the organic compounds that weakly 

dissociate lack adequate spectral differences in the dissociated and undissociated forms. 

Besides, in the cases where a compound is unstable or is insufficiently soluble in water, 

experimental Ka determination is impossible (Tong and Wen, 2008). 

The currently available pKa (negative logarithm of Ka) compilations provide values for only a 

small fraction of known or possible acids and bases (Perrin, Dempsey and Serjeant, 1981). 

This motivates the development of advanced pKa prediction models. 

This paper is organized as follows. First, we give a definition on pKa and highlight its 

significance in several research areas (Section 1.1). After a brief introduction of the main 

existing methods for pKa prediction (Section 1.2), we focus on the powerful group 

contribution (GC) methods and present more details about these methods in Section 2. Three 

different GC models are then developed to predict pKa for amino acids and other classes of 

organic compounds. The performances of these models are evaluated and compared in 

Section 3.1. Finally, in Section 3.2, several examples are shown to help the reader in 

understanding how to apply the developed models for predicting pKa. 

1.1 Definition and Significance of pKa 

In aqueous solution, acids (generically represented by HA) undergo a protolytic reaction with 

water. This equilibrium reaction is given as: 

                                                                                                                     (1) 
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The equilibrium constant (in this case, the acid dissociation constant Ka) for the reaction 

given in Eq. (1) is expressed as Eq. (2), which relates the activity of the dissociated form of 

the acid (   ) to the activity of its undissociated form (   ) 

   
  

          

           
                                                                                                                     (2) 

As the Ka measurements are generally made in dilute aqueous solutions, the concentration of 

water remains nearly constant and therefore, its activity can be taken as unity. The general 

expression of Ka is then derived from Eq. (2), as 

   
  

          

     
                                                                                                                     (3) 

By taking negative logarithm on both sides of Eq. (3) and rearranging the terms, the relation 

between the pH of the solution and the pKa of HA can be obtained, given as Eq. (5). 

                             
     

     
                                                                             (4) 

             
     

     
                                                                                                    (5) 

In the special case, when the activity of HA equals that of A
–
, pKa is identical to pH. 

pKa is very significant in many different areas. For example, during liquid-liquid extraction, 

when an organic compound is to be separated from an aqueous solution, the undissociated 

form of the compound usually is more soluble in the organic phase. Hence, the pH of the 

aqueous phase can be adjusted to its optimum value if the pKa of the organic compound is 

known (Green and Perry, 2008). In preparative chemistry, considering the effects of pH on 

the properties of reactants as well as the possible intermediates and products, conditions for 

synthesis are selected by making use of pKa (Perrin, Dempsey and Serjeant, 1981). 



  

4 
 

1.2 Existing Methods for pKa Prediction 

Nowadays a large number of experimental pKa data are available, thus one can predict pKa of 

new compounds by extrapolating or interpolating the pKa of database compounds of the same 

type. Besides this, theoretical calculations and semi-empirical correlations based on 

thermodynamics and quantum chemical foundations have also been used for pKa prediction 

in various works (e.g., Jensen, Swain and Olsen, 2017 use isodemic reactions, where the pKa 

is estimated relative to a chemically related reference compound, to make COSMO-based and 

SMD-based predictions. The pKa values of 53 amine groups in 48 druglike compounds are 

computed.) 

1.2.1 Linear Free Energy Relationships (LFER) 

The Hammett-Taft equation quantifies the electronic effect of organic functional groups (or 

substituents) on other groups to which they are attached. This equation is a linear free energy 

relationship (LFER). It is widely used for pKa prediction (Metzler, 2012) and is as shown in 

Eq. (6). 

       
                                                                                    (6) 

where    
  indicates the pKa value for unsubstituted reference compounds; σi is the 

substituent constant for the substituent i; and ρ is the proportionality constant for the 

particular equilibrium dissociation reaction i.e. it is the measure of the sensitivity of the 

reaction to the presence of electron-withdrawing or electron-donating substituents, for 

example the ρ for phenylacetic acids is 0.49, while that for phenols is 2.23. It should be noted 

that, currently only a limited number of substituent constants are available, which limits the 

applicability of the LFER method for pKa prediction. 

 



  

5 
 

1.2.2 Theoretical calculations 

There are several first-principle theory based methods for pKa prediction. The Kirkwood-

Westheimer equation (Kirkwood and Westheimer, 1938) quantifies ΔpKa for a charged or a 

dipolar substituent as follows, 

     
      

            
                                                                             (7) 

In Eq. (7), ϕ is the angle between the line joining the centre of the ionizing group to the centre 

of the dipole and the axis of the dipole, e is the electronic charge, k is the Boltzmann 

constant, T is the temperature in K, μ is the dipole moment, R is the distance between two 

charges, Deff is the effective dielectric constant. The largest limitation of the Kirkwood-

Westheimer method is that it is applicable only to ellipsoidal molecules with point charges at 

their foci only. 

pKa can also be estimated based on thermodynamic cycles that relate the gas phase to the 

solution phase, where state-of-the-art quantum chemical techniques coupled with an 

appropriate solvation model are used (Shields and Seybold, 2013). Jang et al. (2001) 

predicted the pKa values for a series of 5-substituted uracil derivatives using density 

functional theory (DFT) calculations in combination with the Poisson-Boltzmann continuum-

solvation model (Im, Beglov and Roux, 1998). 

Even though theoretical calculations can yield good results in predicting pKa, these methods 

are not very attractive for some applications due to their high computational cost. For 

instance, in drug formulation design, the pKa of active ingredients (AIs) is a very important 

property for selecting AIs because the pKa value indicates the aqueous solubility of the AI 

and the ability of the AI to permeate through the gastro-intestinal membrane. In order to 
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perform a fast AI pre-screening, a quick and reliable pKa prediction method is more 

preferable than an accurate but very computationally expensive one. 

1.2.3 Group contribution based methods 

The compounds of the same class usually have small differences in their pKa values. For 

example, the pKa of 1-aminoheptane is 10.67 at 25 °C, which is just slightly lower than the 

pKa value of 10.70 for ethylamine. In general, the pKa of primary amines falls into the range 

of 10.6 ± 0.2. Also, if the alkyl-chain-substituted amines are compared with cyclic amines, 

the pKa is raised by 0.2 units for one ring and 0.3 units for two rings (Perrin, Dempsey and 

Serjeant, 1981). By employing analogical methods, one can perform pKa estimations. 

However, in order to accurately predict pKa for a certain compound, one needs quite a lot of 

information about other compounds with similar molecular structures.  

As indicated in the three types of prediction methods (see Sections 1.2.1 – 1.2.3), all have 

certain limitations, which motivates the development of new methods for fast and reliable 

pKa predictions. It is also clear that the pKa value or the degree to which a compound 

dissociates in its aqueous solution depends mostly on the molecular structure of the 

compound. This inspires us to develop group contribution (GC) based models that are 

applicable to all different classes of organic compounds. 

1.3 pKa of Amino acids 

Amino acid molecules have at least one acidic group and one basic group. This allows 

intramolecular acid-base equilibrium reaction resulting in the formation of a dipolar 

tautomeric ion known as the zwitterion or internal salt (Cheung, 1995). The dissociation of 

amino acids in aqueous solutions is represented as follows. 
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where     
  

     
     

     
                                                                                                        (8) 

and 

                                        

where     
       

     

  
   

                                                                                                        (9) 

From above, we know that an amino acid typically has at least two dissociation constants 

with the first one corresponding to the case when the COOH group is deprotonated and the 

second one corresponding to the case when the H3N
+
 group gets deprotonated in aqueous 

solution. Considering this unique behaviour, amino acids have been considered separately 

from other organic compounds in this work in the same way as in our previous GC-based 

property estimation models for amino acids (Jhamb et al. 2018). 

2. Methods and Tools used for pKa Model Development 

2.1 Experimental Dataset 

In the present study, the first dataset (dataset – 1) comprises experimental pKa values of 180 

amino acids while the second dataset (dataset – 2) contains pKa values of 1622 organic 

compounds that are not amino acids. The experimentally measured pKa values in both 

datasets are collected from the KT-Consortium database and handbooks containing the 

dissociation constants of organic compounds (      , Vogel and Andrussow, 1961; Perrin, 

1965). Table 1 provides an overview of the datasets used for developing GC-based pKa 

prediction models. The 180 amino acids in dataset – 1 are grouped according to the amino 

acid type. For instance, totally 13 amino acids including L-Alanine, N-acetyl-L-Alanine, and 

N-ethyl-L-Alanine are classified into the ‘L-Alanine’ group. Similarly, the 1622 organic 

compounds are also classified into several groups.  
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Table 1: Overview of the datasets used for model development 

Dataset – 1 Dataset – 2 

Derivatives of following amino 

acids 

Number of 

data points 

(ND) 

Classes of organic compounds 

Number of 

data points 

(ND) 

L-Alanine 13 Ethers 3 

β-L-Alanine 1 Derivatives of alkanes 6 

L-Arginine 1 Amines 253 

L-Asparagine 3 Aromatics 161 

L-Aspartic acid 2 Carboxylic acids 323 

L-Cysteine 9 Sulfonic acids 7 

L-Glutamine 1 Nitriles 9 

L-Glutamic acid 12 Aldehydes 16 

Glycine 23 Amides 61 

L-Histidine 8 Sulfonamides 60 

L-Isoleucine 2 Alcohols and thiols 105 

L-Leucine 6 Ketones 76 

L-Lysine 2 Hydrazines 13 

L-Methionine 1 Heterocyclic [1 ring, 1 heteroatom] 80 

L-Ornithine 2 Heterocyclic [1 ring, 2 heteroatoms] 109 

L-Proline 2 Heterocyclic [1 ring, 3 heteroatoms] 2 

L-Phenylalanine 10 Heterocyclic [1 ring, 4 heteroatoms] 1 

L-Serine 7 Heterocyclic [2 rings, 1 heteroatom] 31 

L-Threonine 3 Heterocyclic [2 rings, 2 heteroatoms] 9 

L-Tyrosine 10 Heterocyclic [2 rings, 3 heteroatoms] 4 

L-Tryptophan 2 Heterocyclic [2 rings, 4 heteroatoms] 5 

L-Valine 5 Heterocyclic [3 rings, 1 heteroatom] 12 

Aminobenzoic acids  16 Heterocyclic [3 rings, 2 heteroatoms] 3 

Aminonaphthalene sulfonic acids  2 Others 273 

Aminobenzenesulfonic acids  3   

Aminosulfonic acids 1   

Aminophosphonic acids 4   

Others 29   

Total 180 Total 1622 
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From Section 1.3, it is known that amino acids generally have at least two groups which can 

dissociate and hence possess at least two pKa values correspondingly. Notably, for amino 

acids with a polar or an electrically charged side chain, there is even a third dissociation 

constant as well. For example, L-Cysteine has a thiol group (–SH) in its side chain which can 

also get deprotonated besides the –COOH and –NH3
+
 groups. 

For the amino acids included in dataset – 1, only the first dissociation constant has been 

chosen, i.e., the pKa value corresponding to the deprotonation of the –COOH, –SO3H, or –

PO3H2 group, depending on whether the amino acid is carboxylic, sulphonic, or phosphonic. 

For amino acid esters where these three groups do not exist, the pKa associated with the 

deprotonation of the –NH3
+
 group has been chosen. 

When developing property models, the experimental dataset is often divided into a training 

set and a validation set. This approach should not be employed for GC models since the 

validation set is usually formed by randomly selecting the experimental data points. When 

some data points (or compounds) are selected for validation, some of the functional groups 

and model parameters may be excluded for model training, which will thereby limit the 

application domain of the resulting model. On the other hand, when only a proportion of the 

experimental data are used for parameter regression, large uncertainties of predicted property 

values could be resulted (Hukkerikar et al., 2012). 

2.2 Group Contribution Methods 

Several group contribution (GC) methods have been developed for pure-component property 

predictions, for instance, Joback and Reid (1987), Lyman et al. (1990), Marrero and Gani 

(2001), Hukkerikar et al. (2012) etc. In this work, the Marrero and Gani (MG) GC method, 

also used previously for amino acids (Jhamb et al. 2018) and other organic compounds 

(Hukkerikar et al. 2012), has been used. 
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In the MG GC method, a multilevel scheme is adopted where the property estimation is 

performed at three levels. The first level has a large number of simple groups that allow for 

the representation of a wide variety of organic molecules. The second level of estimation 

involves groups that can capture the proximity effects and can differentiate among isomers. 

The third level estimation includes groups that provide a further more detailed description of 

the molecular structures; hence, this level allows estimation of complex heterocyclic and 

poly-functional acyclic molecules. The MG GC-model has the form (Marrero and Gani, 

2001), 

                                                                     (10) 

Here, the function f(X) is a function of property X. This may contain additional adjustable 

model parameters (universal constants) depending on the property involved. In Eq. (10), Ci is 

the contribution of the first-order group of type-i that occurs Ni times. Dj is the contribution of 

the second-order group of type-j that occurs Mj times. Ek is the contribution of the third-order 

group of type-k that has Ok occurrences in a component. w and z are weighting factors set to 1 

or 0 depending on whether the second and third order groups are used for property prediction 

or not. Therefore, Eq. (10) is a general model for all the properties and the definition of f(X) 

is specific for each property X. 

In this work, the set of groups proposed for the prediction of physical properties of amino 

acids by Jhamb et al. (2018) to account for zwitterionic structures and the amphoteric nature 

of amino acids has been used. That is, the pKa prediction for amino acids in this work makes 

use of the traditional MG-GC groups along with these newly introduced groups. 

2.2.1 Linear GC model 

As described by Constantinou and Gani (1994) and later by Marrero and Gani (2001), the 

selection of an appropriate function f(X) has to achieve additivity in the contributions   ,     
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and    in order to demonstrate the best possible fit of the experimental data. In addition, the 

expressions should be able to provide sufficient extrapolating ability and therefore ensure a 

wide range of applicability. 

In this work, a linear property model function was first selected for the prediction of pKa of 

amino acids in dataset – 1 and all the other organic compounds in dataset – 2. 

                                                          (11) 

In Eq. (11), pKa is the negative logarithm of the acid dissociation constant and pKa0 is an 

adjustable model parameter.   ,     and    are group contributions to be regressed. Note that 

both w and z are set to 1, which means the second- and third-order groups are also considered 

in model development. 

2.2.2 Nonlinear GC model 

Besides the above linear GC model, a 4
th
-order polynomial GC model was also tested for pKa 

prediction, as shown below. 

                                                              (12) 

pKa is the negative logarithm of the acid dissociation constant; a, b, c and pKa0 are adjustable 

model parameters;   ,     and    are group contributions to be regressed. w and z are set to 1. 

2.2.3 Artificial Neural Network GC model 

Artificial Neural Network (ANN)-GC method has been widely used to predict physical, 

thermodynamic, and transport properties, such as vapor-liquid equilibrium data (Petersen, 

Fredenslund and Rasmussen, 1994), solubility data (Gharagheizi et al., 2011a), flash point 

(Gharagheizi, Alamdari and Angaji, 2008) and surface tension (Gharagheizi et al., 2011b). In 

this work, a very popular ANN architecture (Bishop 1995) comprising of a three-layer feed 
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forward neural network including an input layer, a hidden layer, and an output layer, is 

employed as shown in Figure 1. The input layer receives molecular structure information, in 

this work these are the 144 first-order groups present in the molecule, indicated by the input 

vector p with a size of 144×1. The hidden layer transfers the information received from the 

input layer and delivers it to the output layer where the pKa value is predicted. 

 

Figure 1: Schematic structure of the employed three-laye  a  ificial neu al ne w  k ( he sizes 

of weight matrices W1 and W2 and bias vectors b1 and b2 are given in the brackets) 

The number of neurons in the hidden layer, also the number of rows in the weight matrix W1, 

is an important adjustable parameter for network training. The selection of this number 

depends fully on the specific problem being solved. Generally, with too few neurons the 

network may not be powerful enough for predicting properties. However, with a too large 

nu be   f neu  ns,  he ne w  k  ends    pe f    “ ve -fi  ing”. In  his w  k, we s a  ed    

train the ANN with 5 neurons in the hidden layer and gradually increased the number until no 

significant improvement in the performance of the network (or a desired accuracy) was 

achieved. By following this procedure, 20 neurons in the hidden layer were finally identified. 

Therefore, the final three-layer ANN has a 144-20-1 architecture. As illustrated in Figure 1, 

for a specific compound with a known group composition vector p, the output from the 

hidden layer f1(a1) is calculated by Eq. (13) and the output from the output layer f2(a2) (i.e., 

predicted pKa) is determined by Eq. (14). 

W1

b1

W2

b2

Input Hidden Layer Output Layer

Input p
(144 1)

Output 

= f2(a2)
(20 144)

(20 1)

a1

(20 1)

a1 = W1 p + b1

f1(a1)
(1 20)

(1 1)

a2

(1 1)

a2 = W2 f1(a1) + b2
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f1(a1) = f1(W1 × p + b1)                   (13) 

f2(a2) = f2(W2 × f1(a1) + b2)                              (14) 

A sigmoid transfer function and a linear transfer function were employed in the hidden layer 

and in the output layer, respectively. The combination of a sigmoid and a linear transfer 

function has been shown to be very powerful for building three-layer feed forward neural 

networks. The mathematical formulations of the employed transfer functions are given as 

follows. 

 
xe

xf



1

1
1                      (15) 

   xxf 2                                            (16) 

2.3 Parameter Regression and Uncertainty Analysis 

The Levenberg–Marquardt optimization algorithm (Levenberg, 1944; Marquardt, 1963) 

implemented in MATLAB was employed to regress the parameters in the linear and 

nonlinear GC models. The minimization of the objective function S(P), defined as the sum of 

squares of the difference between the experimental    
   

 and model predicted    
    

, 

provides the values of unknown parameters P
*
. 

           
        

       
                                                                                         (17) 

The subscript j indicates the compound and N is the total number of compounds in the 

dataset. 

In the ANN-GC model, there are four fitting parameters, two weight matrices (W1 and W2) 

and two bias vectors (b1 and b2). They were obtained by minimizing an objective function, 

which in this work is the Mean Square Error (MSE) between the output (predicted pKa) and 
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the experimental pKa for all the compounds in the dataset. This optimization process was also 

performed by using the Levenberg-Marquardt algorithm, which is available in the neural 

network toolbox of MATLAB. 

                               (18) 

After the estimation of model parameters, uncertainty analysis can be performed to quantify 

the uncertainties in the predicted property values. The methodology discussed in Hukkerikar 

et al. (2012) is employed to estimate confidence interval of the predicted pKa at the αt 

significance level. 

         
        

                                      
  

 
                                    (19) 

where the Jacobian matrix J(P
*
) calculated using ∂f/∂P

*
 represents the local sensitivity of the 

property model f to variations in the estimated parameter values P
*
.         is the 

covariance matrix of the estimated model parameters.   is the degrees of freedom (the total 

number of data points minus the number of unknown parameters).     
  

 
  is the t-

distribution value corresponding to the   degrees of freedom and αt/2 percentile (αt is 0.05 for 

95% confidence interval). The property prediction method can be considered as reliable if the 

experimental value falls into the calculated confidence interval. 

2.4 Statistical Performance Indicators 

The evaluation of performance of the developed models is based on the determination of 

statistical indicators listed in Table 2. 
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Table 2: Statistical performance indicators used in this work 

Indicator Abbreviation Formula 

Average 

Absolute Error 
AAE     

 

 
      

        
     

 

 

Coefficient of 

determination 
R

2
       

      
        

      
 

      
       

 

  

μ is the average of the experimental pKa in the dataset 

 

3. Results and Discussions 

Three GC (linear, nonlinear, and ANN-based) models are developed to predict pKa for amino 

acids and other classes of organic compounds. The performances of these models in 

predicting pKa are evaluated in Section 3.1. Several examples are shown in Section 3.2 to 

help the reader in understanding how to apply the developed models for pKa prediction. 

3.1 Model Performances 

3.1.1 Linear GC model 

The regressed model parameters pKa0,   ,     and   are provided in the Supporting 

Information. The performance statistics of the developed linear GC model for predicting the 

pKa of amino acids in dataset – 1 and the organic compounds in dataset – 2 are given in Table 

3. 
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Table 3: Performance statistics of the developed linear GC model for the two datasets 

Method ND R
2
 Parity Plot AAE 

Linear GC 
180 

(Dataset – 1) 
0.96 

 

0.23 

Linear GC 
1622 

(Dataset – 2) 
0.57 

 

1.62 

 

For a clearer illustration, the statistical indicators of the model for different classes of 

compounds in both datasets have also been provided in Table 4. 
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Table 4: Statistical indicators of the linear GC model for different classes of amino acids 

(dataset – 1) and other organic compounds (dataset – 2) 

Derivatives of following amino 

acids 
AAE R2 Classes of organic compounds AAE R2 

L-Alanine 0.20 0.96 Ethers 7.02 -757.92 

β-L-Alanine 0.03 -- Derivatives of alkanes 1.18 -3.23 

L-Arginine 0.00 -- Amines 1.65 0.61 

L-Asparagine 0.15 0.99 Aromatics 1.80 0.91 

L-Aspartic acid 0.22 0.98 Carboxylic acids 1.03 0.31 

L-Cysteine 0.17 0.99 Sulfonic acids 3.16 -0.16 

L-Glutamine 0.74 -- Nitriles 3.45 -0.06 

L-Glutamic acid 0.24 0.96 Aldehydes 1.26 0.50 

Glycine 0.23 0.95 Amides 2.04 0.37 

L-Histidine 0.20 0.99 Sulfonamides 1.46 -0.33 

L-Isoleucine 0.12 0.56 Alcohols and thiols 2.29 0.22 

L-Leucine 0.31 0.97 Ketones 2.19 0.40 

L-Lysine 0.64 0.67 Hydrazines 1.38 0.60 

L-Methionine 0.06 -- Heterocyclic [1 ring, 1 heteroatom] 1.74 0.43 

L-Ornithine 0.40 0.89 Heterocyclic [1 ring, 2 heteroatoms] 1.50 0.57 

L-Proline 0.00 1.00 Heterocyclic [1 ring, 3 heteroatoms] 2.14 0.45 

L-Phenylalanine 0.37 0.88 Heterocyclic [1 ring, 4 heteroatoms] 0.09 -- 

L-Serine 0.11 0.99 Heterocyclic [2 rings, 1 heteroatom] 1.66 -0.05 

L-Threonine 0.12 0.48 Heterocyclic [2 rings, 2 heteroatoms] 2.67 -0.32 

L-Tyrosine 0.29 0.98 Heterocyclic [2 rings, 3 heteroatoms] 1.31 -1.38 

L-Tryptophan 0.00 1.00 Heterocyclic [2 rings, 4 heteroatoms] 1.50 0.46 

L-Valine 0.28 0.13 Heterocyclic [3 rings, 1 heteroatom] 1.54 0.42 

Aminobenzoic acids 0.21 0.80 Heterocyclic [3 rings, 2 heteroatoms] 2.43 0.97 

Aminonaphthalene sulfonic acids 0.32 0.88 Others 1.54 0.57 

Aminobenzenesulfonic acids 0.37 0.98    

Aminosulfonic acids 0.00 --    

Aminophosphonic acids 0.09 1.00    

Others 0.26 0.91    

Figure 2 shows the absolute error between the linear-GC-model predicted pKa and 

experimental pKa for the 180 amino acids in dataset – 1. The compounds in dataset – 1 are 

first sorted according to the ascending order of the absolute error and the error is then plotted 

as the Y-axis value against the X-axis of 1 to 180. As illustrated, the absolute error in 

prediction for 158 amino acids is less than 0.5, while for 15 amino acids is between 0.5 and 
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1.0. Typically, N-substituted amino acids have absolute errors greater than 1.0. The 

maximum observed absolute error is 1.86 for 3-(dimethylamino) propanoic acid. 

 

Figure 2: Absolute error between the linear-GC-model predicted pKa and experimental pKa 

for the 180 amino acids in dataset – 1 

It can be concluded that the linear GC model shows a high performance in predicting the pKa 

for amino acids. However, for the other organic compounds in dataset – 2, a satisfactory 

prediction cannot be achieved by employing linear GC correlations. In the next section, 

nonlinear GC models are developed for both datasets. 

3.1.2 Nonlinear GC model 

The regressed model parameters a, b, c, pKa0,   ,   , and    (see Eq. 12) are provided in the 

Supporting Information. The performance statistics of the developed nonlinear GC model for 

both datasets are given in Table 5. As can be seen, compared to the linear GC model, a 

significant improvement in the accuracy of pKa prediction has been obtained for both 

datasets. 
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Table 5: Performance statistics of the developed nonlinear GC model for the two datasets 

Method ND R
2
 Parity Plot AAE 

Nonlinear 

GC 

180 

(Dataset – 1) 
0.99 

 

0.02 

Nonlinear 

GC 

1622 

(Dataset – 2) 
0.81 

 

1.18 

The statistical indicators of the nonlinear GC model for different classes of amino acids 

(dataset – 1) and organic compounds (dataset – 2) are presented in Table 6. It is seen that the 

model can accurately predict the pKa for all kinds of amino acids. However, it is not able to 

successfully represent the pKa for some other compounds, for example, the ethers, derivatives 

of alkanes, and hydrazines. Besides, for heterocyclic compounds with 3 heteroatoms, the 

model does not perform well either. 
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Table 6: Statistical indicators of the nonlinear GC model for different classes of amino acids 

(dataset – 1) and other organic compounds (dataset – 2) 

Derivatives of following amino 

acids 
AAE R2 Classes of organic compounds AAE R2 

L-Alanine 0.01 1.00 Ethers 3.16 -153.92 

β-L-Alanine 0.03 -- Derivatives of alkanes 0.69 0.19 

L-Arginine 0.00 -- Amines 1.12 0.79 

L-Asparagine 3.97×10-3 0.99 Aromatics 1.59 0.66 

L-Aspartic acid 0.02 0.99 Carboxylic acids 0.88 0.57 

L-Cysteine 0.03 1.00 Sulfonic acids 1.94 0.65 

L-Glutamine 0.04 -- Nitriles 2.31 0.70 

L-Glutamic acid 0.02 1.00 Aldehydes 0.88 0.90 

Glycine 0.04 1.00 Amides 1.06 0.85 

L-Histidine 0.02 1.00 Sulfonamides 1.00 0.42 

L-Isoleucine 0.02 0.89 Alcohols and thiols 1.15 0.83 

L-Leucine 0.02 1.00 Ketones 1.13 0.87 

L-Lysine 0.03 1.00 Hydrazines 1.72 0.38 

L-Methionine 3.00×10-3 -- Heterocyclic [1 ring, 1 heteroatom] 1.61 0.69 

L-Ornithine 0.03 0.99 Heterocyclic [1 ring, 2 heteroatoms] 1.41 0.68 

L-Proline 0.06 1.00 Heterocyclic [1 ring, 3 heteroatoms] 2.13 0.56 

L-Phenylalanine 0.08 1.00 Heterocyclic [1 ring, 4 heteroatoms] 1.59 -- 

L-Serine 0.04 1.00 Heterocyclic [2 rings, 1 heteroatom] 1.40 0.54 

L-Threonine 0.02 0.99 Heterocyclic [2 rings, 2 heteroatoms] 1.67 0.46 

L-Tyrosine 0.01 1.00 Heterocyclic [2 rings, 3 heteroatoms] 1.74 -2.60 

L-Tryptophan 0.00 0.99 Heterocyclic [2 rings, 4 heteroatoms] 0.51 0.94 

L-Valine 0.02 0.99 Heterocyclic [3 rings, 1 heteroatom] 0.99 0.79 

Aminobenzoic acids 0.01 1.00 Heterocyclic [3 rings, 2 heteroatoms] 1.05 0.83 

Aminonaphthalene sulfonic acids 0.04 0.99 Others 1.09 0.78 

Aminobenzenesulfonic acids 0.00 1.00    

Aminosulfonic acids 0.02 --    

Aminophosphonic acids 0.04 1.00    

Others 1.30×10-3 1.00    

 

Figure 3 shows the absolute error between the nonlinear-GC-model predicted pKa and 

experimental pKa for the 1622 organic compounds in dataset – 2. As indicated, the absolute 

error of 507 compounds is less than 0.5 and that of 351 compounds falls into the range of 0.5 
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to 1.0. 300 compounds have the error larger than 2.0 and the maximum observed absolute 

error is 8.69. 

 

Figure 3: Absolute error between the nonlinear-GC-model predicted pKa and experimental 

pKa for the 1622 organic compounds in dataset – 2 

It can be concluded that the nonlinear GC model performs very well in predicting pKa for 

amino acids. However, the accuracy of the model for estimating pKa of the other 1622 

organic compounds still needs to be improved. 

3.1.3 ANN-GC model 

The ANN-GC model has been developed for predicting pKa of the 1622 organic compounds 

in dataset – 2. The regressed parameters W1, W2, b1, and b2 are provided in Table S4 of the 

Supporting Information. The overall model performance and the performance indicators for 

different classes of compounds are shown in Table 7 and Table 8, respectively. 
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Table 7: Performance statistics of the developed ANN-GC model for dataset – 2 

Method ND R
2
 Parity Plot AAE 

ANN-GC 
1622 

(Dataset – 2) 
0.98 
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Table 8: Statistical indicators of the ANN-GC model for different classes of organic 

compounds in dataset – 2 

Classes of organic compounds AAE R2 

Ethers 1.12×10-6 1.00 

Derivatives of alkanes 2.57×10-6 1.00 

Amines 0.24 0.98 

Aromatics 0.28 0.98 

Carboxylic acids 0.13 0.96 

Sulfonic acids 1.62×10-6 1.00 

Nitriles 0.28 0.99 

Aldehydes 0.27 0.98 

Amides 0.13 0.99 

Sulfonamides 0.14 0.79 

Alcohols and thiols 0.07 0.99 

Ketones 0.12 0.99 

Hydrazines 5.68×10-6 1.00 

Heterocyclic [1 ring, 1 heteroatom] 0.31 0.97 

Heterocyclic [1 ring, 2 heteroatoms] 0.27 0.96 

Heterocyclic [1 ring, 3 heteroatoms] 1.57×10-6 1.00 

Heterocyclic [1 ring, 4 heteroatoms] 1.15×10-8 -- 

Heterocyclic [2 rings, 1 heteroatom] 0.44 0.90 

Heterocyclic [2 rings, 2 heteroatoms] 0.46 0.93 

Heterocyclic [2 rings, 3 heteroatoms] 1.83×10-6 1.00 

Heterocyclic [2 rings, 4 heteroatoms] 1.57×10
-6

 1.00 

Heterocyclic [3 rings, 1 heteroatom] 0.99 0.76 

Heterocyclic [3 rings, 2 heteroatoms] 0.51 0.92 

Others 0.01 0.99 

Figure 4 shows the absolute error between the ANN-GC-model predicted pKa and 

experimental pKa for the 1622 organic compounds in dataset – 2. As seen, 89% of the 1622 

compounds have absolute errors less than 0.5 and about 95% have absolute errors less than 

1.0. The absolute error plot together with the estimated performance statistics indicates that 

the developed ANN-GC model can well represent the pKa of the organic compounds. 
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Figure 4: Absolute error between the ANN-GC-model predicted pKa and experimental pKa 

for the 1622 organic compounds in dataset – 2 

 

3.2. Application Examples 

In this section, three examples are provided where the linear GC model, nonlinear GC model, 

and ANN-GC model are employed to predict pKa. The non-linear model for amino acids and 

the ANN-GC model for organic compounds will be available in ProPred (a property 

prediction tool within ICAS (Gani et al., 1997). The examples given below are from a 

prototype of ProPred. 

3.2.1 Prediction of pKa using the linear and non-linear GC models (amino acids) 

Since the linear and non-linear GC model performs well for amino acids only, an example for 

the prediction of pKa of N-Acetyl L-Alanine is shown in Table 9. 
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Table 9: Prediction of pKa for N-Acetyl L-Alanine (CAS: 97-69-8) using the linear and non-

linear GC models 

Compound:  

N-Acetyl L-Alanine 

Molecular formula: C5H9NO3 

Molecular structure 

 

First-order groups Occurrences (Ni) Group contribution (Ci) 

  

CH3 

CH 

COOH 

NHCO 

 

2 

1 

1 

1 

Linear Model 

0.3417 

-0.3425 

1.4441 

0.4817 

Non-linear Model 

0.0194 

-0.0336 

-0.0912 

0.0277 

 
Second-order groups Occurrences (Mj) Group contribution (Dj) 

 

 

 

 

CHm(NHn)-COOH (m, n in 0..2) 

 

1 

 

Linear Model 

 -2.8272 

Non-linear Model 

0.1457 

Third-order groups 

 

Occurrences (Ok) 

 

Group contribution (Ek) 

    

O=C-NH-CHn-COOH (n in 0…2) 

 

1 

Linear Model 

      0.1240 

Non-linear Model 

     -0.0482 

Table 9 lists the number of occurrences and the contribution of first-order, second-order, and 

third-order groups present in the N-Acetyl L-Alanine molecule. According to Eq. (11) where 

pKa0 = 3.0683, the predicted pKa of N-Acetyl L-Alanine is 2.63. According to Eq. (19), the 

calculated 95% confidence interval of the estimated pKa is 1.79. It can be observed that the 

experimental pKa (2.34) falls in the range of [0.84, 4.42], which indicates the reliability of the 

model. On the other hand, according to Eq. (12) where pKa0 = -1.0206, a = -0.0016, b = 

0.0393 and c = -0.3250, the predicted pKa for N-Acetyl L-Alanine is 2.38 which implies that 

in the case of amino acids both the linear and non-linear GC model have a good performance. 

3.2.2 Prediction of pKa using the nonlinear GC model for Bentazon (CAS: 25057-89-0) 

In order to illustrate the pKa prediction using the nonlinear GC model, an example with 1H-

2,1,3-Benzothiadiazin-4(3H)-one, 3-(1-methylethyl)-2,2-dioxide, which is used as a 

herbicide, is shown in Table 10. 

                   

O NH

OH

O
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Table 10: Prediction of pKa for 1H-2,1,3-Benzothiadiazin-4(3H)-one, 3-(1-methylethyl)-2,2-

dioxide (CAS: 25057-89-0) using the nonlinear GC model 

Compound:  

1H-2,1,3-Benzothiadiazin-4(3H)-one, 3-

(1-methylethyl)-2,2-dioxide 

Molecular formula: C10H12N2O3S 

Molecular structure 

 

First-order groups Occurrences (Ni) Group contribution (Ci) 

CH3 

CH 

aCH 

aC fused with non-aromatic ring 

NH (cyc) 

N (cyc) 

CO (cyc) 

SO2 (cyc) 

2 

1 

4 

2 

1 

1 

1 

1 

0.1322 

-0.0182 

0.0869 

-0.6176 

0.4334 

0.1982 

0.2178 

0.4380 

 

Second-order groups 

(CH3)2CH 

Occurrences (Mj) 

1 

Group contribution (Dj) 

-0.0544 

Third-order groups 

aC-COcyc (fused rings) 

aC-NHncyc (fused rings) (n in 0..1) 

AROM.FUSED[2] 

Occurrences (Ok) 

                       1 

                       1 

                       1 

 

Group contribution (Ek) 

0.1754 

0.2404 

-0.2189 

According to Eq. (12), the predicted pKa is 2.47 

(where, a = 3.759×10-4, b = −0.0072, c = −0.0431, pKa0 = −1.3231) 

The experimental pKa is 2.92. Hence, the absolute deviation is 0.45. 

3.2.3 Prediction of pKa using the ANN-GC model for Bentazon (CAS: 25057-89-0) 

To compare the ANN-GC model with the nonlinear GC model, the pKa prediction for the 

same compound, 1H-2,1,3-Benzothiadiazin-4(3H)-one, 3-(1-methylethyl)-2,2-dioxide is 

shown in Table 11.  

                   

O

S

N

NH

O

O
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Table 11: Prediction of pKa for 1H-2,1,3-Benzothiadiazin-4(3H)-one, 3-(1-methylethyl)-2,2-

dioxide (CAS: 25057-89-0) using the ANN-GC model 

Compound:  

1H-2,1,3-Benzothiadiazin-4(3H)-one, 3-(1-

methylethyl)-2,2-dioxide 

Molecular formula: C10H12N2O3S 

Molecular structure 

 

First-order 

groups 
CH3 CH aCH aC NH(cyc) N(cyc) CO(cyc) 

SO2     
(cyc) 

Occurrences 2 1 4 2 1 1 1 1 

 W1        

 [-1.6829 6.4756 1.7533 0.7377 0.443 0.9212 2.6333 -0.1755 

 1.0509 -0.2184 -2.1471 -1.2136 1.4681 0.8396 -1.0455 7.3758 

 3.619 -2.4328 1.6553 2.1358 -0.222 -1.2836 -6.3658 1.3176 

 4.7908 -4.4383 0.8453 1.6746 -0.3299 -2.5009 3.159 -0.1221 

 0.8226 1.2565 0.5366 -0.1923 0.1443 -6.606 -0.5895 0.6971 

 2.7329 6.3506 2.4439 5.4217 -4.8977 1.3109 -5.2433 0.7122 

 -8.9644 -19.3123 11.4152 2.9152 -17.5028 5.2274 10.238 -8.6289 

 0.8619 0.5316 -3.2969 3.7527 11.7938 -1.2256 -5.6679 -5.3864 

 1.1437 -2.4476 0.1281 1.5644 1.1092 10.2064 0.2857 0.1515 

 -0.6423 0.226 -1.544 0.1394 5.3677 -0.5433 -2.6248 4.8043 

 1.1433 -2.3074 1.388 2.2463 2.8746 1.9733 -0.0806 3.7311 

 4.6161 2.011 -3.8926 4.5683 -6.1653 -13.1146 -1.5625 7.5796 

 2.7842 -1.8139 -1.0137 -0.2305 -5.2968 -1.779 2.0042 0.471 

 2.9091 -3.0596 0.6423 -1.0794 -0.5082 1.0108 1.4972 6.0197 

 -5.2623 6.3213 -4.5124 -0.5687 -2.2154 11.0957 0.5727 9.6914 

 -0.0379 2.157 1.4917 -0.9739 2.458 5.8252 0.2285 5.0562 

 6.3547 6.897 0.7735 -2.2172 -3.7028 1.37 10.668 1.3711 

 -3.5484 20.4593 2.7547 9.418 6.3029 3.7152 8.6495 3.7617 

 3.0958 -13.0759 3.5244 -5.4662 13.0565 -12.2072 2.812 3.5092 

 5.4879 -5.8329 -0.0789 2.5132 -8.8739 5.0805 -4.625 -0.7204] 
 

b1 
Transformation 

of W2 
b2 Input variable p = [2 1 4 2 1 1 1 1]’ ( he ze   ele en s a e 

removed). By following Eqs. (13-16), pKa
pred = 2.9211. The 

experimental value of pKa is 2.92. Hence, the absolute deviation 

is 0.0011. 

-15.6497 11.2478 -2.3479 
1.5128 -15.9438  

-15.1206 -6.0101  
-3.8606 -14.6460  
-8.8757 -12.7365  
-24.9630 8.3284  
9.1079 -9.0066  

13.3214 9.7666  
6.9750 -15.2921  
-1.2177 -12.5122  

-3.5163 17.6801  
11.6018 5.2121  
-1.5351 18.8958  
1.6159 13.7597  
9.8148 5.9600  
-4.6202 -18.6921  
4.1303 17.3304  
0.1458 6.0333  

-18.9379 6.0589  
27.8468 -5.7745  

                   

O

S

N

NH

O

O
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Two more examples for pKa prediction using the nonlinear GC model and the ANN-GC 

model can be found in the supporting information (Tables S6 – S7). 

4.  Conclusion 

The prediction of acid dissociation constant (Ka) is very significant in many areas. In this 

work, three GC property models have been developed and tested for the estimation of the pKa 

of organic compounds including amino acids. The linear GC model has a good performance 

(R
2
 = 0.96, AAE = 0.23) only for amino acids. For the other classes of compounds, a 

nonlinear GC model and an ANN-GC model have been developed. The nonlinear GC model 

has a moderate prediction quality (R
2
 = 0.81, AAE = 1.18) whereas the ANN-GC model 

gives a much better estimation (R
2
 = 0.98, AAE = 0.17). 

The developed models enable fast and preliminary pKa estimations in the cases where the 

experimental measurements are difficult or not feasible. Currently, these models are being 

incorporated into a computer-aided molecular design framework to identify and analyse 

promising molecules with desirable properties. 
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Highlights 

 Prediction of acid dissociation constants (Ka) for a large set of organic compounds 

 The Marrero and Gani - Group Contribution (MG-GC) method to develop the property 

models 

 Linear and nonlinear GC models for amino acids and other classes of compounds 

 An Artificial Neural Network (ANN) based GC model for organic compounds 

 Modeling details and model parameters provided 

 Accuracy of the models demonstrated through application examples 
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