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Abstract—There is a growing interest in using the flexibility of
electric vehicles (EVs) to provide power system services, such as
fast frequency regulation. Decentralized control is advocated due
to its reliability and much lower communication requirements. A
commonly used linear droop characteristic results in low average
efficiencies, whereas controllers with 3 modes (idle, fully charging,
fully discharging) result in large reserve errors when the aggrega-
tion size is small. To address these issues, we propose a stochastic,
decentralized controller with tunable response granularity which
minimizes switching actions. The EV fleet operator can optimize
the chargers’ performance according to the fleet size, the service
error requirements, the average switching rate and the average
efficiency. We use real efficiency characteristics from EVs and
chargers providing fast frequency regulation and we show that
the proposed controller can significantly reduce reserve errors
and increase efficiency for a given fleet size, while at the same
time minimizing the switching actions.

Index Terms—Decentralized control, electric vehicles, primary
frequency control, stochastic control, V2G chargers.

I. INTRODUCTION

Electric vehicles (EVs) are recognized as an important
source of load flexibility and as a potential provider of power
systems services in the context of vehicle to grid (V2G)
technologies. A suitable service for EVs is primary frequency
control (PFC), due to the chargers’ high power capacity
and very fast response, as well as the relatively low energy
requirements of this service. EVs’ technical capabilities in
providing different ancillary services including PFC have been
experimentally proven both at a microgrid level and on a
real distribution network [1], [2]. Even though a single EV’s
capacity is not particularly large compared to generators, if
a large number of EVs is controlled by an aggregator, it is
possible to offer significant amounts of reserve capacity. The
literature proposes aggregate models and control schemes for
both centralized [3], [4] and decentralized [5]-[8] solutions for
the optimal management of EV fleets performing frequency
control.

A centralized controller was proposed in [4] for offering
secondary frequency control, where a discretized regulation
logic is utilized, aiming at meeting the desired calculated total
power signal by turning certain EVs on or off according to
a priority index. More advanced control strategies have also
been proposed to track reference signals with EVs, considering
uncertainties and charging efficiencies [9]. However, as the

control architecture is centralized, real-time communication
is required, which may result in high infrastructure costs,
as well as in loss of controllability in case of an outage of
the communication system. Due to the critical nature of PFC
to a power system’s stability and stricter requirements than
secondary control, very high reliability and very low latencies
are required.

Such risks are highly reduced in the case of decentralized
EV control, as decentralized PFC offers higher reliability
and significantly reduces the communication requirements
compared to real-time centralized control. A decentralized
stochastic control component is proposed in [3], where the
decision to change the charging set-point is taken locally by
the EVs, even though with a remote centralized frequency
measurement performed by the aggregator, who will dispatch
the same correspondent signal to the EVs of the portfolio.
In [6] it is shown how demand can respond to frequency
deviations in a manner similar to the generators in a purely
decentralized way, making it a significant and reliable asset
as contribution to PFC. In [5] optimal EV droop curves are
designed to improve system stability and in [10] adaptive
droops are proposed for EVs offering PFC, to take state of
charge (SOC) requirements into account. Finally, [7] proposes
a distributed frequency control method, which randomly as-
signs delays to each EV of the fleet, aiming at avoiding
problems to the power system in case of high shares of EVs
providing regulation and simultaneous response of all units to
the same frequency signals.

Howeyver, all the mentioned works do not consider the im-
plications of using droop curves with regards to reserve errors,
average charging efficiency, average equipment switching rates
and aggregation size when offering PFC in a decentralized
way. The commonly used droop-curve characteristic that EVs
must follow to provide PFC results in a low average efficiency
because of the low loadings of the inverters in most cases.
Additionally, as we show in Section IV, a deterministic
response always results in reserve errors due to the ISO 15118,
ICE 61851 standard requirement of 1 A granularity when
setting the charging rate of the inverter [11]. A stochastic
controller (where EVs alternate between idle and full response
stochastically and do not respond linearly to the frequency
deviation) can significantly increase the efficiency, albeit the
resulting errors depend on the aggregation size.



The main contribution of this paper is the investigation of
the trade-off between service accuracy and efficiency under
stochastic decentralized control. More specifically, we propose
a stochastic controller with a varying number of states, as a
trade-off between accuracy and efficiency, which the aggrega-
tor can tune depending on the size of the fleet and the service
requirements. We show the dependency of the reserve error
on the aggregation size and the controller’s tuning and we
determine the minimum amount of EVs to guarantee a service
provision error. Additionally, we calculate the efficiencies
achieved with each controller tuning, using real data of V2G
chargers from ENEL, which are currently installed in Denmark
and offer fast frequency control grid services [12].

The proposed method allows an EV aggregator to maximize
efficiency for a specified number of EVs, by respecting the
average reserve error requirements of the provided service.
Additionally, we propose a modified version of the control
algorithm which decreases the switching rate of the inverters,
a modification which can potentially reduce the wear of the
components. We show via simulations that our controller
significantly increases the service accuracy of the droop-
based control, under the 1 A granularity limitation, even for
very small aggregation sizes, and that much higher average
efficiencies can be achieved for smaller aggregation sizes,
when a 3 mode response (idle, full charge, full discharge)
results in large reserve errors.

The remainder of the paper is structured as follows. Section
II introduces the principles of the frequency-controlled normal
operation reserve service and frequency control with EVs.
Section III presents an efficiency characteristic from opera-
tional V2G chargers. In Section IV we present the proposed
discretized, stochastic decentralized controller. In Section V
simulation results are presented and discussed. Conclusions
are reported in Section VL.

II. FREQUENCY CONTROL WITH EV'S

Fast frequency control, i.e. PFC, can take different forms
depending on the implementation of each Transmission Sys-
tem Operator (TSO). In the Regional Group Nordic (RG-
N) synchronous area, PFC consists of two separate services,
namely frequency-controlled normal operation reserve (FNR),
which is activated linearly for all system frequency deviations
up to =100 mHz and frequency-controlled disturbance reserve
(FDR), activated only when system frequency drops below
49.9 Hz. We are focusing on FNR, since the revenue potential
is higher and this service is currently being provided by
commercial V2G chargers in Denmark within a pilot project
[12].

In the case of a frequency deviation, the purpose of FNR
is to react quickly and try to contain the frequency deviation.
The TSOs in RG-N are jointly responsible for procuring 600
MW of FNR reserves, which are divided proportionally to
each TSO. FNR is a symmetrical service, which means that
the provider must offer the same upwards and downwards
reserve capacity. Frequency reserve is provided linearly, with
full activation for deviations of 100 mHz. According to the

service requirements, response has to be provided linearly and
deployed within 150 seconds [13]. These requirements are
designed for slower-acting conventional power plants; instead,
we consider instant reserve activation reserve in the case of
V2G chargers, because this can significantly improve system
performance.

For a frequency value f; at time ¢, the normalised requested
load Prq,; is calculated as

—1 if f, < 49.9 Hz
(f; —50)/0.1 if49.9 Hz < f, <50.1 Hz (1)
1 if f, >50.1 Hz

By normalized response we refer to the reserve capacity,
P, of a service provider. As already explained, there are
two ways that an aggregation of EVs can modulate its load to
provide FNR. In a centralized control scheme the aggregator
will calculate the required change in the aggregate load of
the EVs and send signals to the individual EVs when it is
required. These signals may correspond to deterministic com-
mands, i.e. explicit set-points, or signals containing switching
probabilities. In the latter case, the EV will draw a random
number and decide to change its set-point or not [5]. However,
in these approaches very advanced and reliable real-time
communication is required.

In a decentralized control scheme, each EV measures fre-
quency locally and changes its set-point based on a control
logic and the individual reserve capacity assigned to it. Other
control layers can periodically modify each EV’s reserve
capacity or target set-point, i.e. the operating set-point when
no reserve is offered, on longer time scales based on various
parameters. This control structure, which adjusts each EV’s
reserve capacity and target set-point on a longer time scale
(e.g. 15 minutes), while each EV responds based on local
measurements, can reduce the communication requirements
significantly and retain the robustness of reserve provision.
The decentralized nature of reserve provision is thus main-
tained and EVs respond by only measuring local frequency,
whereas the upper control layer can make adjustments on the
reserve capacity and target set-point. In this paper we focus on
the lower, decentralized control layer assuming that the target
set-point is equal to zero and P, is symmetrical and equal to
the maximum capability of each EV. In our future work we
will generalize our method by considering arbitrary target set-
points and non-symmetrical assigned reserve capacities. The
most standardized, simple and common control method is for
a charger to respond linearly to frequency deviations based on
a droop curve, as shown in Fig. 1 [14] for a charger with a
capacity of 25 A.

Due to the 1 A response granularity, some reserve errors
will occur because the requested response Fq: is rounded
to the nearest corresponding power value. This is an inherent
limitation of the response granularity (the implemented droop
curve cannot match the ideal one), but these errors can be
significantly reduced if a stochastic controller is introduced,
as explained in Section IV. At this point we must introduce
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Figure 1: Real and ideal droop curves with 1 A granularity.

a metric to assess the accuracy of the various controllers.
Without loss of generality, we consider the case where all
EVs (with ¢ being the index of N EVs) offer the same reserve
capacity and we denote by y! the actual, normalized load of
EV ¢ at step t. A deterministic controller will then result to
the same error for all EVs, assuming that the measured f;
is the same for the whole aggregation, which is a realistic
assumption as long as the aggregated set of chargers is not
too geographically dispersed. If each EV is offering a different
reserve capacity, then their contributions must be weighted
appropriately. For simplicity we use normalized variables, i.e.
on the maximum charger capacity which is equal to 10 kW,
and for a period of ¢, the mean average percentage error
(MAPE) will be equal to

N tl(‘( 'l
Zizl t=1 |y —
N tyo

III. V2G CHARGER EFFICIENCY CHARACTERISTIC

Pi
MAPE[%] = al 100%  (2)

An EV performing FNR in a decentralized manner is
expected to continuously alternate between charging and dis-
charging modes to follow the frequency deviations and provide
reserve power. Apart from the battery degradation that this
may cause (and the associated costs), efficiency losses may
significantly affect the economic performance of an aggregator
performing this service. As we will show next, the way EVs
perform FNR has a considerable impact on the efficiency
losses during reserve provision. In Fig. 2 a V2G charger
efficiency characteristic is presented, which was derived by
real data from EVs performing FNR [14].

One can notice that efficiency is considerably lower for
small loadings because the inverter is designed to operate
more efficiently closer to the maximum loading values. In
Fig. 3 a histogram of 10 days of frequency values for 2016
is presented, where it is evident that most frequency samples
lie within a narrow band around 50 Hz. The frequency data
corresponds to real frequency measurements of RG-N area
from the Norwegian TSO [15]. Approximately 85% of the
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Figure 2: Efficiency characteristics based on real data.

samples are between 49.95 Hz and 50.05 Hz, which means that
a droop curve like the one in Fig. 1 would result in normalized
loads below 0.5 for most of the time and consequently low
average efficiencies, according to Fig. 2.
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Figure 3: Histogram of frequency values for 10 days.

Other inverters may have significantly higher efficiencies in
lower operating points, if they are designed accordingly. Even
if in that case a droop-based response with 1 A steps will
not result in very low average efficiency, still the proposed
controller can optimize the aggregation’s average efficiency
under a decentralized control scheme. However, we consider
the presented efficiencies as a more realistic case, because they
are obtained from actual V2G chargers performing FNR.

IV. DISCRETIZED DECENTRALIZED CONTROL

A. Basic algorithm

As shown in the following example, a deterministic droop
controller with a non-continuous response will always result
in a response error, except for the cases where the requested
response coincides with a discrete step of the charger’s output.



Consider the case of a 1 A granularity, which corresponds to
0.4 kW steps for a DC voltage equal to 400 V. If the power
response is rounded to its closest value, the response error as
a function of the requested power will be as shown in Fig. 4.
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Figure 4: Response error (absolute value) as a function of the requested power.

As already shown, frequency is normally distributed around
50 Hz. If the frequency distribution is discretized in so many
steps as in our case, i.e. 25 steps, the resulting probability
distributions for each bin can be very well approximated by
uniform distributions. Considering a uniform distribution of
the frequency within each bin, the distribution of the response
errors will retain the triangular shape shown in Fig. 4. It is
trivial to show that this results in an average error of 0.1 kW,
which for a reserve capacity of 10 kW is equivalent to a MAPE
of 1%. This error is of course independent of the number
of EVs and is relatively small; however, it can be drastically
reduced by employing a simple stochastic strategy as explained
later. The main drawback of this method is that it results in
very low efficiencies, since the EVs operate at low loadings
most of the time.

We propose a decentralized stochastic controller whose tun-
ing objective is to compromise efficiency and reserve errors,
taking into account the size of the EVs aggregation. Stochastic
controllers based on random number generations which force
loads to operate either at full capacity or to be idle have been
proposed in the literature, such as [3], [16]. Our approach
differs because it employs an arbitrary discretization of the
response to address efficiency and aggregation size. A very
fine discretization results in small errors but poor efficiencies.
On the other hand, 3 states (idle, fully charging or discharging)
will result in high efficiencies but high errors, unless the
aggregation is large.

First, the response of each EV is discretized in bins rep-
resented by a vector v in ascending order and normalized
per reserve capacity. We define the mapping g : R — R2,
which maps a value Prq: to bins ¢ and j of the vector v
so that v(i) < Peq: < v(j). Depending on the calculated
Preg,t» the controller identifies the 2 bins its response must
lie within, calculates a switching probability p and draws a

random number. This simple Bernoulli trial, denoted by h(p)
and its outcome b, will determine the state s of the EV. The
control algorithm is illustrated in Algorithm 1.

Algorithm 1 Stochastic switching algorithm

1: calculate Prg ¢

20,7 ¢ g(R’eq,t)

3 d=wv(j) —v(i)

4: if Preq: > 0 then

5 p << (Preq,t - U(Z))/d
6: b+ h(p)

7: if b = 0 then

8: s+ (i)

9: else

10: s« v(j)

11: end if

12: else

13 pé () — Preqe)/d
14: b« h(p)

15: if b = 0 then

16: s <« v(j)

17: else

18: s+ (i)

19: end if
20: end if

B. Switching minimization

We presented the basic version of the control algorithm.
It is possible to minimize the switching actions of the in-
verters by modifying the algorithm for the cases where the
requested power lies within the same 2 bins in two consecutive
time steps. We illustrate the algorithm’s modification with
an example instead of an algorithm diagram, due to space
limitations. Consider the case of two time steps t;, to where
Preg,t; = 0.2 and Peeq s, = 0.3 and v = [-1,-0.5,0,0.5,1].
At t;, approximately 60% of the chargers’ outputs will be
equal to 0 and 40% equal to 50%. Instead of all the EVs
drawing random numbers at f5, only a portion of the loads
with power equal to 0 have to switch to the next bin; more
specifically, these loads will apply the stochastic process with
p=0.1/(0.5%0.6) = 33.3%. Similarly, if Peq+, = 0.1, then
only only a portion of the loads with power equal to 50%
will apply the stochastic process with p = 0.1/(0.5 % 0.4) =
50%. Following similar arguments, the chargers can minimize
their switching in the cases of negative Peq:. Note that
this algorithm is also decentralized and no coordination is
required. Each load will apply this algorithm considering the
expected state of the population and not the exact number of
EVs in each state, whereas only the change Preq ¢, — Preq,t,
determines which loads will apply the stochastic process.
These modifications in the algorithm can drastically reduce
the number of switchings without noticeable increases in the
MAPEs, as shown in the following section.



V. RESULTS

We used a real 4 hour frequency sample to assess the
performance of the different control strategies. We assume that
all EVs are available during reserve provision, as is the case
in [12], and provide the maximum reserve capacity, equal to
410 kW. The chosen frequency sample satisfies two condi-
tions: (a) frequency does not have a significant bias, so that
charging and discharging are almost equally represented, and
(b) frequency presents a relatively large variance around 50 Hz
so that small frequency deviations are not over-represented.
Frequency samples with small variance are expected to yield
worse efficiencies when a droop curve is used and our purpose
is to make a fair comparison with our proposed controller. The
normalized requested power corresponding to the frequency
sample is shown in Fig. 5 and the time step used for all
simulations is 1 s.
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Figure 5: Normalized requested power for a 4 h frequency sample.

A. Effect of aggregation size and controller granularity on
MAPE

We first analyzed the performance of a deterministic con-
troller with a 4% granularity (corresponding to the 1 A
steps) which simply rounds the requested power to the closest
possible power output; we found that it results in a MAPE
equal to 1%, as theoretically calculated in Section IV. Due to
the deterministic nature of the controller, the error does not
depend on the aggregation size.

We then examined the effect of the discretization step on
the average reserve error. We used the modified controller
which minimizes the switching rate in our simulations. As
already explained, a discretization with very small steps is
expected to produce very small reserve errors, since any
inaccurate number draws have a small impact on the error.
On the other hand, large steps are expected to result in larger
MAPESs because inaccurate number draws produce relatively
large errors. However, as the number of EVs increases, the
results of the random-number generations are closer to the
expected values and the errors decrease. The reserve MAPEs
as a function of the EVs number for 6 different discretization
steps are shown in Fig. 6.
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Figure 6: Reserve MAPEs as a function of the EVs number for different
granularities of the response.
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It is evident that for small aggregations a large granular-
ity results in significant MAPEs. The advantage of using a
stochastic controller even for the case of the 4% granularity
is evident by the fact that MAPE decreases from 1% (deter-
ministic case) to 0.4% for 10 EVs and 0.17% for 50 EVs. A
MAPE of 1% requires more than 500 EVs for a granularity
of 100% and as few as 50 EVs for a granularity of 25%.

Next, we calculated the MAPEs when the modification for
minizing the switchings was not used. A continuous switching
is expected to produce smaller MAPEs because at each time
step all EVs will draw a random number and respond; when
the switching minimization is applied, the EVs switch based
on the expected distribution of the EVs between two bins. For
smaller aggregation sizes the actual and expected distributions
may not be the same (for larger sizes the difference is
negligible) and thus the calculated probability may not reflect
the ideal probability. However, simulations showed that the
exclusion of the modification in the controller results in very
small differences in the MAPE and for a size larger than 100
EVs the errors are almost the same. For 10 EVs and 100%
granularity, the modification increases the MAPE from 7.6%
to 7.9% and for 50 EVs from 3.36% to 3.4%.

B. Effect of controller granularity on the average efficiency

To calculate the effect of the controller’s granularity on the
average efficiency we used the modified algorithm because it
significantly reduces the switching actions and it has a minimal
effect on the MAPEs. We calculated the average charging
and discharging efficiencies for the entire reserve provision
duration for each granularity; the results are shown in Fig.
7. We observed that the efficiencies do not depend on the
number of the EVs because the stochastic process itself is the
same for all loads and on average it doesn’t affect efficiency.
As already discussed, most frequency samples are distributed
close to 50 Hz, which would force the EVs to operate on
low loadings if they use a typical droop curve with small
steps. This is reflected in the simulation results, where the



average efficiencies increase significantly as the steps become
larger. This can be explained by the fact that when large steps
are used, e.g. 50% or 100%, the EVs will be either idle or
charging/discharging at much higher capacities even for small
requested powers.

90 . . . . . .
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Figure 7: Average charging and discharging efficiencies for the different
controller granularities.

To illustrate the effect of such differences on the average
EVs SOC when they are offering FNR, we simulated their
SOC for 4 different discretizations and for the case without
any losses. The average SOC is expressed in pu of P, i.c.
for Py = 10 kW a SOC value of 1 corresponds to 10 kWh.
We show the change of SOC, denoted by ASOC, compared
to an initial zero value for the different cases in Fig. 8.
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Figure 8: Evolution of the average ASOC for different controller discretiza-
tions, compared to a lossless operation.

Notice the effect the different controllers have on the
average SOC over a period of 4 hours providing FNR. If no
losses occurred, then the average SOC at the end of the period
is equal to 0.15 pu, or 1.5 kWh for a P,.; = 10 kW. Instead of
charging with this amount, the EVs would discharge by more
than 2 kWh using a droop curve of 1 A steps, whereas with
3 modes the average SOC would be equal to zero. Notice
also the variance in the evolution of the SOC; the larger it
is throughout the reserve provision period, the harder it is

for the EVs to offer reserves. In other words, the aggregator
needs to be more conservative in the amount of offered reserve
capacity, so as not to reach the upper or lower battery limits
while providing reserves.

C. Average switching actions

A potential disadvantage of using a discretized decentralized
controller is the frequent switching of the inverters. Usually in-
verters are designed to handle frequent changes in their output
but the impact on the inverters and EV batteries should also
be considered when designing the controller. Recognizing the
potential wear on the equipment, we proposed a modification
of the controller in Section IV to minimize the switching
actions. We simulated both control approaches and we present
the average switching rates for each granularity in Fig. 9. Note
that the average switching rate is presented as a percentage of
the time steps, i.e. a rate of 1% means that an inverter will
change state 144 times over 4 hours.
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Figure 9: Average switching rates with and without switching minimization.

It is interesting to note that without switching minimization
the average switching rate is almost constant and very high
(more than 30%); this means for the control time step of 1 s,
then on average an inverter will switch every 3 s, which is
a very high rate. If we modify the controller, as explained
in Section IV, the switching rates are reduced dramatically,
reaching an average value of 1.4% (or less than 1 switching per
minute) if only 3 modes are used. More complicated control
approaches may further reduce the switching rates.

D. Optimizing the controller’s discretization steps

With the proposed decentralized control approach it is
possible to define different discretizations, without necessarily
having equal distances between two consecutive bins. For
example, it is reasonable to design a controller with a finer
granularity in higher loadings, which at the same time avoids
operating at loadings below 50%. In this regard, in Fig.
10 the MAPEs and the average efficiencies for 3 different
strategies are shown. It is interesting to note the different
performance of the controllers for the used discretizations.
By taking the [—100 — 50 0 50 100]% discretization as
the benchmark, the addition of an intermediate upper state



equal to 75% of the capacity has a minimal effect on the
average efficiencies but reduces the errors. Additionally, a
discretization of [-100 — 60 0 60 100]% of the response
results in slightly larger errors compared to the previous case
but increases the average efficiencies.

= 5 I Granularity: [-100 -50 0 50 100]%
E I Granularity: [-100 -75 -50 0 50 75 100]%
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— 88
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Figure 10: MAPEs and average efficiencies for 3 different discretizations of
the controller.

Our purpose is not to present the best discretization for
the efficiency values we use in this study, but to show that
there are various trade-offs when designing the controllers. In
particular, we showed that the efficiency curves, the allowed
reserve errors based on the service requirements, the allowed
switching rates and the number of EVs must be all taken into
account to find the optimal discretization for a given EV fleet
offering FNR.

VI. CONCLUSION

We proposed a stochastic, decentralized controller which
relies only on local frequency measurements and whose
discretized response can be optimized according to a set
of criteria. We showed that a droop-curve response with a
1 A granularity results in low efficiencies and high average
switching rates, albeit in low reserve errors. On the other hand,
a response with only 3 states results in high efficiencies but
unacceptable reserve errors for small EV fleets. The proposed
controller, which is also designed to minimize the switching
actions of the chargers, can compromise efficiency, average
switching rates and reserve errors for a given EV fleet size.

Thus, if the fleet size does not allow the EVs operator to
choose the most efficient response discretization (which is
fully charging, idle or fully discharging), it can optimize the
discretization based on an efficiency, reserve error and average
switching rate trade off. It is interesting to note that since the
chargers’ efficiency characteristics are highly non-linear, the
ideal response discretization which maximizes efficiency and
guarantees a maximum reserve error is not trivial to be found
and may also depend on the frequency signal characteristics.
It is thus necessary to take all the aforementioned factors into
account and their effect on performance when optimizing the
proposed controller. In our future work we will generalize the

controller by considering arbitrary target set-points and non-
symmetrical assigned reserve capacities and we will perform
a validation on the proposed controller on real V2G chargers
performing FNR under realistic conditions.
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