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Graphical abstarct 

 

Highlights 

 

 A model-based soft sensor for the monitoring of lactic acid bacteria is proposed 

 Predictions based on limited available on-line measurements: base addition and pH 

 Coupling of a biokinetic model and a mixed weak acid/base model 

 Uncertainties are quantified and accounted for using Monte Carlo simulations 

 Probabilistic prediction for on-line risk-based monitoring and control 

 

Abstract 

A probabilistic soft sensor based on a mechanistic model was designed to monitor 

S. thermophilus fermentations, and validated with experimental lab-scale data. It considered 

uncertainties in the initial conditions, on-line measurements, and model parameters by 

performing Monte Carlo simulations within the monitoring system. It predicted, therefore, the 

probability distributions of the unmeasured states, such as biomass, lactose, and lactic acid 

concentrations. To this end, a mechanistic model was developed first, and a statistical 

parameter estimation was performed in order to assess parameter sensitivities and 
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uncertainties. The model coupled a biokinetic and a mixed weak acid/base model to predict 

biological variables and chemical variables like the pH, respectively. In the soft sensor, the 

limited available on-line measurements, namely the quantity of added ammonia and pH, were 

used to update the model parameters that were then used as input to the mechanistic model. 

The soft sensor predicted both the current state variables, as well as the future course of the 

fermentation, e.g. with a relative mean error of the biomass concentration of 8 %. This 

successful implementation of a process analytical technology monitoring system opens up 

further opportunities, including for on-line risk-based monitoring and control applications. 

 

Keywords: lactic acid bacteria (LAB) fermentation; modelling; soft sensor for monitoring; 

uncertainty analysis; process risk assessment; process analytical technology (PAT)  
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1. Introduction 

Lactic acid bacteria (LAB) are used as starter cultures in the dairy industry, to produce 

probiotics, lactic acid, and exopolysaccharides [1,2]. Streptococcus thermophilus strains are 

aerotolerant, homofermentative LAB and traditionally used as fermentation starter cultures 

for yogurt and cheese production. The bacteria are produced in batch and fed-batch 

fermentations, and real-time monitoring of the process is needed in order to understand and 

optimize the production process. However, robust in-line sensors for key process variables, 

like biomass, substrate, and lactic acid concentrations, are not available in the required 

concentration range due to the high complexity of the fermentation system [3]. This makes 

the real-time quantification of key process variables challenging. The process analytical 

technology (PAT) guidance from the FDA [4] requested already the development of real-time 

monitoring and control tools. The tools are meant to enhance the on-line monitoring and 

control capabilities. Hence, process conditions could be adjusted in real time to assure quality 

requirements, instead of relying solely on the end product quality control. Although the 

guidelines were originally intended for the (bio-) pharmaceutical industry, they have also 

been applied in other life science industries like the food industry.  

 

Soft sensors, which utilize the on-line available measurements, are applied to predict the 

unknown state variables and monitor the fermentation process in real time [5–7]. There are, 

generally spoken, data-based and model-based soft sensors, whereas also other approaches 

exist. Chemometric methods like principal component analysis (PCA) may be applied in 

data-based soft sensors [8]. Model-based soft sensors can for example be based on 

mechanistic understanding using first principles models (e.g. the mass balance), or empirical 

models, when the details of the process are not understood sufficiently. The development of 

first principles models is based on a fundamental process understanding and mechanistic 
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models may be implemented. Even though the development of mechanistic models might be 

time consuming, we prefer to use mechanistic models since they have many advantages over 

black-box models, e.g. that they can be reused and applied to multiple processes by updating 

the model parameters [7].  

 

Soft sensors rely typically on available on-line and at-line measurements, such as pH, 

conductivity, dissolved oxygen, heat generation, acid/base addition for pH control, and 

exhaust gas analysis. Different spectroscopic measurements, e.g. near-infrared [9], multi-

wavelength [10], and Raman [11] spectroscopy have also been used beside other methods in 

data-based soft sensor applications in fermentations. Mears et al. [12] applied a model-based 

soft sensor for on-line monitoring to a filamentous fungal fermentation at pilot scale using 

exhaust gas measurements and ammonia addition, and predicted various state variables 

(biomass, product, dissolved oxygen, kLa among others). However, especially aerotolerant, 

homofermentative LAB fermentations lack various on- and at-line measurements, such as 

exhaust gas measurements, and rely solely on conductivity, pH, and base addition 

measurements.  

 

When developing and applying mechanistic models for bioprocesses it is good modelling 

practice for PAT applications to analyze the reliability of the model [13,14]. Unfortunately, 

models describing LAB fermentations rarely provide reported results of identifiability, 

sensitivity, or uncertainty analysis, e.g. confidence intervals of the estimated parameters. If a 

model with unreliable parameters is applied as a soft sensor, predictions will be doubtful and 

the results could lead to questionable interpretations. Furthermore, a deterministic model 

implementation may lead to a good fit, but does not take the imperfect knowledge, i.e. 

uncertainties of model parameters and measurements into account. Several studies 

ACCEPTED M
ANUSCRIP

T



 

6 

 

implemented soft sensors to monitor LAB [15–18], but they did not consider uncertainties in 

the model structure.  

 

The aim of this study was therefore to design and evaluate a probabilistic model-based soft 

sensor in order to monitor S. thermophilus fermentations. To this end, a mechanistic model 

was first developed and validated, and then used as soft sensor for monitoring at lab scale. A 

statistical parameter estimation was performed to analyze parameter uncertainties. The soft 

sensor comprised a data reconciliation module, a parameter update module and the dynamic 

model. The data reconciliation and parameter update module updated model parameters 

based on the available on-line measurements. One major challenge of this study was that only 

pH and ammonia addition measurements were available on-line, whereas e.g. exhaust gas 

measurements were not available. The dynamic model consisted of a biokinetic and a 

chemical model. The biokinetic model described substrate consumption, biomass growth, and 

lactic acid secretion while the chemical model comprised a mixed weak acid/base system 

with the purpose to predict the pH. Monte Carlo simulations of the dynamic model were 

performed within the monitoring system to account for uncertainties in the lactose (substrate) 

concentration, ammonia addition rate, and model parameters. The output of the monitoring 

system was consequently a probability distribution of the state variables. 

2. Materials and Methods 

2.1 Fermentation conditions 

Streptococcus thermophilus batch fermentations were performed in 2 L stirred tank 

bioreactors (Biostat® B, Sartorius AG, Germany) at 300 rpm, 40 °C, and with nitrogen 

headspace gassing. The pH was controlled by adding 24 % ammonia solution. 10 batch 

fermentations were performed under different cultivation conditions (initial lactose 

concentration 20 or 65 g L-1, pH 5.5 – 7.0) and used for the parameter estimation, model 
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validation, and implementation of the monitoring system (see Table 4 in the Results and 

Discussion section). The pH (EasyFerm Bio VP 225, Hamilton Robotics, Reno, NV) and 

ammonia addition (balance value) were measured on-line. The fermentation medium 

contained 20 or 65 g L-1 lactose, 10 g L-1 casein hydrolysate, 12 g L-1 yeast extract, 11.5 mM 

K2HPO4, 36.6 mM sodium acetate, 8.2 mM trisodium citrate, 0.8 mM MgSO4, and 0.3 mM 

MnSO4.  

2.2 Off-line analysis 

Sugars and organic acids were quantified from filtered samples (filter pore size: 0.2 µm) in an 

HPLC system (Dionex UltiMate 3000, Thermo Fisher Scientific, Waltham, MA). It was 

equipped with an Aminex® HPX-87H column (Bio-Rad Laboratories, Hercules, CA) and a 

refractive index detector (ERC RefractoMax 520), and run with 5 mM H2SO4 at a flow rate 

of 0.6 mL min-1 at 50 °C according to suppliers instructions. Samples were diluted 1:4 with 

5 mM H2SO4 prior to analysis. Dry cell weight was quantified with replicates of 2 mL cell 

broth, which were taken in sampling tubes, centrifuged, washed with 0.9 % (w/v) NaCl 

solution, dried at 70 °C for 24 h, and weighted. Ammonia and phosphate were quantified 

with the cuvette tests LCK302, LCK303, and LCK350 (Hach®, Manchester, Great Britain). 

2.3 Biological model 

The dynamic biokinetic model described the evolution of the state variables such as biomass, 

lactose, and lactic acid of the S. thermophilus fermentation. The model was based on the 

global stoichiometric process equation [19] (Eq. 1 – 2). The biomass growth rate was 

modelled as a function depending on the lag-time (flag), lactose inhibition and limitation (fS) 

[20], lactate inhibition(fP) [21], and the pH (fpH) [22] (Eq. 3 – 4). It was assumed that only the 

dissociated form of lactic acid was growth inhibiting under the investigated pH conditions 

according to the studies of Schepers et al. [22] and Amrane and Prigent [23]. A biomass 

composition of 𝐶𝐻1.95𝑂0.63𝑁0.22𝑃0.02 [24] was assumed in the present study. 
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𝐿𝑎𝑐𝑡𝑜𝑠𝑒 +  𝐴𝑚𝑚𝑜𝑛𝑖𝑎 +  𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑖𝑐 𝑎𝑐𝑖𝑑 → 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 + 𝐿𝑎𝑐𝑡𝑖𝑐 𝑎𝑐𝑖𝑑 + 𝐺𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑒 (1) 

qS ∙ CH2O + qNH ∙ 𝑁𝐻3 + qPh ∙ 𝐻3𝑃𝑂4 → qX ∙ CHaObNcPd + qP ∙ CH2O + qGal ∙ CH2O (2) 

𝑑𝐶𝑋

𝑑𝑡
= µ𝑚𝑎𝑥 ∙ 𝑓𝑙𝑎𝑔 ∙ 𝑓𝑆 ∙ 𝑓𝑃 ∙ 𝑓𝑝𝐻 ∙ 𝐶𝑋 (3) 

𝑑𝐶𝑋

𝑑𝑡
= µ𝑚𝑎𝑥 ∙ (1 − 𝑒

−
𝑡

𝑡𝑙𝑎𝑔) ∙
𝐶𝑆

𝐶𝑆 + 𝐾𝑠 +
𝐶𝑆

2

𝐾𝐼

∙
1

1 + 𝑒𝐾𝑃,𝐿𝑎(𝐶𝐿𝐴−𝐾𝐿𝑎1)
∙ 𝑒

−(
(𝑝𝐻𝑜𝑝𝑡−𝑝𝐻)

2

𝜎𝑝𝐻
2 )

∙ 𝐶𝑋 (4) 

Where KLa1 was dependent on the pH: 

𝐾𝐿𝑎1 = 𝐾𝐿𝑎 ∙
1

1 + 𝑒𝐾𝑃,𝑝𝐻1∗(𝑝𝐻−𝐾𝑃,𝑝𝐻2)
 (5) 

An amended Luedeking and Piret equation [25] that takes only the growth dependent lactic 

acid synthesis into account was used [26]:  

𝑑𝐶𝑃

𝑑𝑡
= 𝛼 ∙

𝑑𝐶𝑋

𝑑𝑡
 (6) 

The lactose consumption is the sum of the biomass growth and the lactic acid synthesis rate 

considering the secretion of galactose (Ygal) since the studied strain metabolizes only glucose 

and secretes galactose under the present cultivation conditions: 

𝑑𝐶𝑆

𝑑𝑡
= −(1 + 𝑌𝑔𝑎𝑙) ∙ (

𝑑𝐶𝑋

𝑑𝑡
+

𝑑𝐶𝑃

𝑑𝑡
) (7) 

A P-controller with a controller gain (KP) of 10 mol was applied to maintain the pH at the set 

point value by adding ammonia solution: 

𝑁𝐻4𝑂𝐻𝑎𝑑𝑑 = 𝐾𝑃 ∙ (𝑝𝐻𝑠𝑒𝑡 − 𝑝𝐻) (8) 

The model was implemented and solved in MATLAB® (The MathWorks®, Natick, MA) 

using the solver ode15s. ode15s was chosen because the model contains slow (e.g. biomass 

growth) and fast time constants (mixed weak acid/base model, see below) resulting in a stiff 

system of differential equations.  

ACCEPTED M
ANUSCRIP

T



 

9 

 

2.4 Mixed weak acid/base model 

The purpose of the mixed weak acid/base model was to predict the pH during the 

fermentation. It comprised the dissociation reactions of the charged compounds in the 

fermentation broth as described in Musvoto et al. [27] (Table 1). The dissociation reactions of 

ammonia, phosphoric acid, lactic acid, carbonic acid, water, and an unspecified compound Z 

were considered. Z accounted for the unknown compounds in the fermentation broth, such as 

amino acids. The pKa values were derived from Dawson [28] and Loewenthal et al. [29] 

(Table 2). The activity coefficients were calculated by a modification of the Debye-Hückel 

theory from Davies [30]: 

𝑙𝑜𝑔(𝑓𝑖) = −1.825 ∙ 106 ∙ (78.3 ∙ 𝑇)−1.5 ∙ 𝑧𝑖
2 ∙ (

√𝐼

1 + √𝐼
− 0.3 ∙ 𝐼) (9) 

With the ionic strength (I): 

𝐼 =
1

2
∑ 𝑧𝑖

2𝐶𝑖

𝑖

 (10) 

The implemented stoichiometric matrix may be found in the Supplementary Material. 

2.5 Parameter estimation 

The parameter estimation was performed to fit the experimental lactose, biomass, and lactic 

acid concentration measurements using the maximum likelihood estimation method from 

Seber and Wild [31]. The model was fitted to five fermentations, which were controlled at 

different constant pH (1x pH 5.5, 2x pH 6.0, 1x pH 6.5, and 1x pH 7.0) and were performed 

with an initial lactose concentration of 65 g L-1. For the parameter estimation, the pH was 

held constant at the set point in the simulation, and the mixed weak acid/base model was not 

considered in order to obtain parameter estimates that were independent of the mixed 

weak/acid base system. The parameter estimation followed the methodology from Sin and 

Gernaey [32] as described in Spann et al. [33]. Initial parameter estimates were taken from 

literature [20–22] (Supplementary Table S1). Sensitivity and identifiability analysis were 
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conducted to find an identifiable parameter subset for regression [32]. Once the regression 

was completed, the confidence intervals of the estimated parameters were derived from a 

linear approximation method using the Jacobian matrix of the parameter estimation [34]. The 

parameter estimation was conducted in MATLAB with the nonlinear least-squares solver 

lsqnonlin. In the objective function, the weighted error of the model predictions was 

calculated for the three concentrations lactose, biomass, and lactic acid at all measured time 

points i (Eq. 11). The residuals vector then contained the weighted error vectors of the three 

states j. 

𝐸𝑟𝑟𝑜𝑟𝑖 = |
�̂�𝑖 − 𝑦𝑚𝑒𝑎𝑠,𝑖

𝑤𝑗
| (11) 

where wj is the maximum value of each specific component, here 65 g L-1 for lactose, 

30 g L-1 for lactic acid, and 6 g L-1 for biomass. For model simplification purposes, the lag-

time parameter, tlag, was described as a pH dependent distribution, in order to account for the 

different lag-times observed for fermentations having a different pH set point (Eq. 12). This 

approach simplifies the model complexity significantly and requires the estimation of only 2 

parameters, instead of 5 parameters that would have been needed, if tlag was fitted for each 

fermentation separately. 

𝑡𝑙𝑎𝑔 = 2 𝑒

(𝑝𝐻𝑜𝑝𝑡_𝑙𝑎𝑔−𝑝𝐻)
2

𝜎𝑙𝑎𝑔
2

⁄  
(12) 

The uncertainty of the estimated parameters was quantified with the relative error (RE) 

between the standard deviation of the parameter estimate with respect to the estimated mean 

value: 

𝑅𝐸𝑖 =
𝜎�̂�𝑖

𝜃𝑖

 (13) 

2.6 Initial conditions 

The initial conditions for the dynamic model are given in Table 2. 
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2.7 Assessment of the model fit 

The goodness of fit for the model prediction in the model validation procedure and on-line 

monitoring application was assessed with the root mean sum of squared errors (RMSSE): 

𝑅𝑀𝑆𝑆𝐸 = √
1

𝑛
∑(𝑦𝑚𝑒𝑎𝑠,𝑖 − �̂�𝑖)

2
𝑛

𝑖

 (14) 

3. Framework for the soft sensor 

3.1 Design of the probabilistic model-based soft sensor  

The objective of the probabilistic model-based soft sensor is to monitor the S. thermophilus 

fermentation. It predicts the probabilistic distribution of the states, such as biomass, lactose, 

lactic acid, and pH, in real time based on the on-line available ammonia addition and the pH 

measurements. The soft sensor consists of a data reconciliation module, a parameter update 

module, and a dynamic process model (Fig. 1). The model parameters µmax and tlag are 

updated every 5 minutes based on the latest on-line measurements, and the soft sensor 

predicts both the current value and the future course of the state variables. The current states 

are saved as initial conditions for the next interval. Monte Carlo simulations of the dynamic 

model are performed every interval using samples from the input uncertainty domain. To this 

end, the Latin hypercube sampling technique was used to generate 100 random samples from 

the input uncertainty domain in which we included uncertainties in the initial conditions, 

model parameters, and ammonia addition (Table 2). The outcome from the Monte Carlo 

simulations was a probability distribution of the state variables. 

3.1.1 Data reconciliation method 

The data reconciliation module is based on elemental and bio-energetic conservation 

principles such as the charge balance (Eq. 15) and the lactic acid production rate expression 

(Eq. 16). It uses the amount of added ammonia, where one measurement value is available 

every minute, to update the volumetric biomass growth and lactic acid production rate. The 
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ammonia addition data points of each interval are fitted with a smoothing spline line and the 

average ammonia addition of the interval, qNH,add, is estimated. Missing measurement points 

can also be handled due to the implementation of the fit. With the data reconciliation the 

growth rate (qX) is obtained and used as input for the parameter update module.  

𝑁𝐻4
+ + 𝐶3𝐻5𝑂3

− = 𝑞𝑁𝐻,𝑎𝑑𝑑 + 𝑞𝑃 = 0 (15) 

𝑞𝑃 = 𝛼 ∙ 𝑞𝑋 (16) 

3.1.2 Parameter update 

The updated qX is used to update µmax in every interval. µmax is updated in an iterative 

procedure until the change of µmax is less than 5 % compared to the previous iteration. In the 

first iteration (k=1) µmax is calculated based on the updated qX, the function values, and 

biomass concentration of the previous interval (Eq. 17). The subsequent iterations use the 

function values and biomass concentration based on the new µmax value. The function values 

and biomass concentration derive from an evaluation of the dynamic model. 

µ𝑚𝑎𝑥,𝑘 =
𝑞𝑋,𝑢𝑝𝑑𝑎𝑡𝑒𝑑

𝑓𝑙𝑎𝑔,𝑘−1 ∙ 𝑓𝑆,𝑘−1 ∙ 𝑓𝑃,𝑘−1 ∙ 𝑓𝑝𝐻,𝑘−1 ∙ 𝑋𝑘−1
 (17) 

It is not possible to use the updated rates (qP and qX) directly in the dynamic model, as they 

resemble only the conditions of the previous 5 minutes. However, inhibition and limitation 

effects, as well as pH variations, which will occur during a fermentation, influence the rates. 

It is therefore necessary to calculate the rates within the dynamic model according to Eq. 4 

and Eq. 6 in order to predict the future course of the fermentation, as well. 

The lag-time parameter tlag is updated based on the measured pH value as soon as the 

measured pH reaches the controlling value (here pH = 6). The continuous pH measurement is 

saved every minute. tlag is adjusted so that the modelled and measured pH reach the control 

value at the same time (Eq. 18). tlag is updated in an iterative procedure until the change is 

less than 2 % compared to the previous iteration. 

 

ACCEPTED M
ANUSCRIP

T



 

13 

 

𝑡𝑙𝑎𝑔,𝑘 = 𝑡𝑙𝑎𝑔,𝑘−1 + (𝑡𝑝𝐻=6,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑡𝑝𝐻=6,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) (18) 

Once tlag is updated, the model is run from the beginning, because tlag influences the whole 

prediction range. The current state is then saved as initial conditions for the next iteration. 

The updated parameters µmax and tlag are used as input for the dynamic model.  

3.1.3 Dynamic mechanistic process model 

The dynamic process model comprises the biological model and the mixed weak acid/base 

model as described in the Materials and Methods section. 

3.1.4 Monte Carlo simulations 

The Monte Carlo method includes three main steps namely (1) identification and definition of 

input uncertainties, (2) sampling and (3) Monte Carlo simulation. For step 1, uncertainties in 

the biological model parameters, initial lactose concentration, initial biomass concentration, 

and the ammonia addition are considered (Table 2). The uncertainties of the model 

parameters are represented by the covariance matrix (includes the standard deviation and 

correlation matrix), which is derived from the parameter estimation. Uncertainties in the 

initial lactose and biomass concentration, and the measured ammonia addition are considered 

to be normally distributed with 3σ = 10 %. The model parameters are assumed to be normally 

distributed as well because the measurement errors, on which the parameter estimation is 

founded, are assumed to be normally distributed. In order to account for the ammonia 

addition uncertainty, samples with a normal distribution, a mean value 1, and 3σ = 0.1 are 

generated and will be multiplied with the measured ammonia addition rate in the Monte Carlo 

simulations. Uncertainties in the parameters of the mixed weak acid/base system are not 

considered since pH predictions were not necessary for the online monitoring application, as 

pH was directly measured and used as input for the data reconciliation module. The 

identification of uncertain input sources and the definition of the uncertainty ranges depend 

on the system studied. In general, this should therefore be systematically evaluated for each 
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studied system separately. In this study, uncertainties of 5 % were expected based on an 

expert discussion and considering the available data. To be on the safe side, we considered 

3σ = 10 % for the uncertainties in the initial conditions and the ammonia measurement. 

For step 2, the Latin Hypercube Sampling (LHS) technique is used together with the Iman 

Conover rank correlation method to induce the correlation matrix in the input domain (see 

step 1) [35,36]. The sampling procedure features the following generic steps: First, LHS 

sampling for independent inputs is performed in the unit probability domain [0 1] for N 

sampling numbers (N =100 used in this study). Then, the correlation matrix is induced via the 

Iman Conover method [37] for the correlated parameters. Finally, the correlated parameter 

samples are inverted from the probability domain to real values considering the inverse 

cumulative distribution function for each input e.g. using the Matlab function icdf. In this 

study, we assumed both measurement errors as well as parameter estimation errors to be 

normally distributed hence we set the option “Probability distribution name” to “Normal” in 

the icdf function. In this step, the user can define any other distribution function deemed 

appropriate as well (e.g. uniform, gamma etc.). 

 

In step 3, Monte Carlo simulations of the dynamic model are performed for each sample. The 

output of the Monte Carlo simulations consists of 100 model predictions, representing a 

probabilistic distribution of the predicted state variables. 

4. Results and Discussion 

4.1 Parameter estimation 

A parameter estimation of the biological model was performed in order to assess the model 

reliability. Uncertainty and sensitivity analysis were conducted to find an identifiable 

parameter subset. It must hereby be considered that the estimated parameters depend among 

others on the nominal parameter values, the cultivation conditions, and the model structure 
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[34]. The first parameter estimation, fitting all biokinetic model parameters, revealed 

identifiability issues (Supplementary Table S2). KP,pH1, KP,pH2, KS, and KI could not be 

estimated and were therefore maintained at their initial values for the subsequent steps. The 

subsequent parameter estimation with the remaining 9 parameters revealed an identifiable 

parameter subset. The estimated parameter values were in the expected range and in the order 

of magnitude as known from previous studies (Table 3). It has to be noted that µmax = 2.06 h-1 

was higher than the actual biological value because it had to compensate for the functions in 

the growth rate expression. The relative errors of all parameters were lower than 10 %. In 

addition, all parameters had a significant effect on the model outputs (Supplementary Table 

S3). Some of the parameters met the criterion of a correlation coefficient smaller than 0.5 to 

be uniquely identifiable. However, this parameter subset should be considered as a whole due 

to the linear dependency between most of the parameters. The estimated value of one 

parameter is conditional on the value of another parameter. Therefore, the covariance matrix 

of the parameters should be used, e.g. when performing parameter sampling in Monte Carlo 

simulations, when performing model simulations, as done in this work. 

 

The model showed an acceptable fit of the fermentation data (Fig. 2, Supplementary 

Fig. S1 – 4). To measure process performance, the focus was on the biomass concentration 

because the cells were the target fermentation product. The RMSSE for biomass was around 

0.4 g L-1 for many of the fermentations, corresponding to a discrepancy of less than 10 %, 

giving evidence of a good fit (Table 4). A good model fit was achieved for the fermentations 

at pH 5.5, 6.0, and 6.5 but not at pH = 7.0, which had an error of 30 %. Furthermore, the 

secretion of galactose was underestimated in all fermentations. This could be attributed to an 

inconsistent carbon balance in the experimental fermentation data, where more carbon was 

produced than lactose consumed. The supplemented yeast extract, which was not taken into 
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account in the model, does contain approximately 6 g L-1 carbon [19] when assuming the 

elemental composition of a S. cerevisiae cell for the yeast extract. Hence, amino acids that 

derived from the yeast extract and were taken up by the cells might have led to the 

inconsistency in the carbon balance. The parameter estimation aimed therefore not to fit the 

galactose concentration, but it was anyhow kept in case the model will be extended in future 

studies. 

 

The evaluation of the pH function fpH showed a clear maximum at pH = 6.4 (Fig. 3A). 

Furthermore, growth was already reduced by 25 % at pH = 5.5 and 7. Similar trends of the 

influence of the pH on the growth of LAB were observed in other studies [21,38,39]. These 

studies found slightly different pH optimums in the range between 6 and 7 since different 

strains were studied. The growth inhibition by lactate was pH dependent, as well (Fig. 3B). 

20  g L-1 lactate inhibited growth by 50 % in the pH range from 5.5 to 6.5, whereas at pH = 7 

already 10  g L-1 lactate inhibited growth by 50 %. pH dependent inhibition of growth caused 

by lactate was also already observed for the lactic acid producing bacterium Enterococcus 

faecalis [40]. This underlines the necessity of the pH dependent lactate inhibition parameter 

KLa1 (Eq. 5).  

4.2 Model validation 

Following the statistical assessment of the quality of the parameter estimates above, the 

model was validated against two independent fermentation data sets, which were performed 

at pH = 6.0 and an initial lactose concentration of 20 g L-1 (Fig. 4, Supplementary Fig. S5). 

The model predicted the measured lactose, biomass, lactic acid, and galactose concentrations 

(Fig. 4 A-D). The lag-time parameter tlag was fitted for both fermentations because the lag 

time differs from batch to batch. The assessment of the validation model fit showed that the 

model gave an acceptable prediction accuracy with an RMSSE for biomass of 0.2 g L-1 
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(Table 4). The pH prediction was also very accurate with a discrepancy of less than 0.1 pH 

units (Fig. 4 E). In the beginning of the fermentation, the pH dropped from 6.1 to 6.0 before 

the controller started to add ammonia solution. This drop was predicted to be faster than 

actually measured, which could be attributed to a slightly different buffer capacity of the 

medium in reality compared to the mixed weak acid/base model. However, a prediction 

accuracy within ± 0.1 pH units was deemed sufficiently accurate for monitoring purposes, as 

pH measurement errors were expected to be in the same range. The only exception of an 

accurate pH fit was at the moment when the pH controller started: too much ammonia was 

added in the experiment so that the pH showed an overshoot. The pH prediction is closely 

dependent on the predictions of the ammonia addition and lactic acid concentration. The 

validity of the mixed weak acid/base model was therefore demonstrated by a correct 

prediction of the added ammonia solution (Fig. 4 F), as the pH is held constant by adding 

ammonia solution. Nevertheless, the validity of the applied Davis equation to calculate the 

activity coefficients (Eq. 9) for 𝐼 ≤ 0.5 𝑚𝑜𝑙 𝐿−1 has to be noted, and could be improved in 

future studies in particular for fermentations with an ionic strength higher than 1 mol L-1. 

Overall, these results indicate the validity of the model, which encourages its further 

application for monitoring of a fermentation process as presented below. 

4.3 Application of the probabilistic model-based soft sensor 

The probabilistic model-based soft sensor was applied to the data sets of three historical 

fermentations, where the historical on-line data was used as it would be available on-line. 

Here, the initial pH was around 7 and the pH dropped to the control value 6 due to acid 

secretion as by-product during the LAB fermentation (Fig. 5, Supplementary Fig. S6 and S7, 

while the Supplementary Movies show the virtual on-line implementation of the soft sensor). 

The on-line data, namely pH and quantity of added ammonia were used as an input to update 

the monitoring system (Fig. 5 left column). The Monte Carlo propagation of the error for the 
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biomass, lactose, and lactic acid concentration is then predicted by the monitoring system 

(Fig. 5 middle and right column). The predictions of the future states of the system are shown 

at different times, 2 h, 2 h 40 min, 3 h, 4 h, and 6 h (Fig. 5 rows). Since the pH was higher 

than the control value 6, no ammonia solution was added within the first 2 h and 35 min. 

Therefore, no data reconciliation and parameter update were conducted (Fig. 5, time =2 h), 

and Monte Carlo simulations were performed in the defined input uncertainty space (Table 2 

and Supplementary Fig. S8) considering uncertainties in the biological model parameters and 

initial conditions. The monitoring system was running without updating the parameters until 

the ammonia addition started to control the pH (Fig. 5, at time = 2 h 40 min). At this point, 

tlag was updated ensuring that the pH controller in the experiment and simulation started at the 

same time. It is clear that there is a lag-time variation from batch to batch, which has to be 

taken into account. On the one hand, a dependency on the pH measurement is introduced by 

this procedure. On the other hand, it is the only possibility – given the limited amount of on-

line measurements – to align the modelled and measured ammonia addition, which is crucial 

for the monitoring system. Once tlag was updated, and the ammonia addition started, the data 

reconciliation and parameter update modules updated µmax every 5 minutes, as described in 

the Framework description. With time, more measurement information was available and the 

prediction accuracy of the state variables increased (Fig.5, time =3 h – 6 h). 

 

The RMSSE for biomass was 0.8 g L-1 when the fermentation started, and improved to 

0.5 g L-1 at the end of the fermentation (both with a standard deviation of 0.1 g L-1) (Fig. 6). 

Mainly, the update of tlag after 2 h and 40 minutes of the fermentation improved the 

prediction accuracy. The reproducibility of the Monte Carlo simulations was validated as the 

RMSSE for biomass varied less than 0.5 % in 10 repeated Monte Carlo simulations with 100 

input samples in each simulation. Changing the tolerance limit to estimate µmax in the 
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iterative update procedure (Eq. 17) to 1% and 0.1% did not improve the prediction accuracy 

for the presented fermentations (data not shown). However, this might be necessary for other 

applications. In summary, an accurate prediction of the state variables was achieved.  

 

Several reports have implemented soft sensors to monitor LAB fermentations. Acuña et al. 

[16] and Peter and Röck [15] implemented a model-based monitoring system for LAB 

fermentations using the base addition and pH measurements, whereas the second 

implementation is limited to monitoring the lactic acid concentration. Fayolle et al. [17] and 

Payot et al. [18] designed a data-based soft sensor using mid-infrared spectroscopy and 

conductivity, respectively. However, all studies presented deterministic predictions and did 

not consider the imperfect knowledge of the process by taking uncertainties into account. 

 

Contrary to the earlier published investigations, this study accounted for several sources of 

uncertainties in the probabilistic monitoring system and assessed the combined effect of 

system uncertainties on the predictions. The initial conditions, on-line measurements, and 

biological model parameters were considered as uncertainty sources. The concentrations of 

the medium components (initial conditions) vary from batch to batch as the medium 

preparation procedure underlies uncertainties. The biomass concentration depends on the 

cryo-stock and pre-culture quality. Since the monitoring system relies on the ammonia 

addition measurement, it is important to incorporate measurement uncertainties, as well. 

Mears et al. [12] pointed out that an error of 5 % of the carbon evolution rate or oxygen 

uptake rate, caused by measurement errors in the exhaust gas, led to errors of more than 50 % 

in the model prediction of the final biomass concentration in a filamentous fungi process at 

pilot scale. The exact extent of uncertainties of the initial conditions and measurements could 

not be determined in the present study because statistically relevant data was not available. 
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The implemented uncertainties were instead based on expert knowledge. However, the model 

parameter uncertainties were obtained in the parameter regression step that has been 

presented above.  

 

The monitoring system predicted the current state variables and forecasted the future course 

of the fermentation and could therefore support a lean production. If this monitoring system 

is applied at production sites, it will provide plant operators with a PAT tool to monitor the 

biological variables in the fermentation process , such as biomass concentration, instead of 

on-line ammonia addition measurements, where the latter are difficult to comprehend (as 

shown in the virtual implementation in the Supplementary Movies). In addition, the tool 

could predict whether and when the target cell yield will be reached. This helps run the batch 

period optimally and schedule other unit operations: All downstream processing steps could 

be coordinated with the upstream fermentation batch time and therefore be prepared in time. 

Moreover, cleaning, sterilization, media preparation, and pre-culture steps affiliated with the 

start up of the batch process could be optimized to reduce the overall downtime of the 

fermentation unit. An optimized schedule with efficient utilization of the different operation 

units can contribute to a more economical operation of the production plant. The monitoring 

system could also cover the early diagnosis of process failures and warn the operators if 

biomass growth had stopped unexpectedly. The standstill of ammonia addition is a sign of 

interrupted biomass growth, as it happened in the shown fermentation after 3 h (Fig. 5, time 

= 3 h). However, a warning should only be given in case the ammonia addition stopped for a 

longer period of time – in contrast to the present fermentation, where the ammonia addition 

stopped only for a short while because the pH controller overshot. Furthermore, the system 

could be extended to calculate the risk of not achieving the target biomass yield as a result of 

the outcome of the soft sensor, which provides the probability distribution of biomass 
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concentration at the end of a given batch. It could then be implemented for risk-based 

monitoring and be further developed for control purposes. 

5. Conclusion 

A probabilistic model-based soft sensor was proposed for the monitoring of S. thermophilus 

fermentations. State variables, such as biomass, substrate, and lactic acid, which were not 

possible to be measured on-line, could be successfully predicted. The predictions were based 

on very limited available on-line measurements, namely base addition and pH measurements 

since exhaust gas measurements were not available. The aim was achieved by coupling a 

biokinetic model and a mixed weak acid/base model (for the pH calculation), which were 

validated comprehensively. Uncertainties in the initial substrate concentration, base addition, 

and biological model parameters were quantified and accounted for using Monte Carlo 

simulations in the probabilistic monitoring system. The future objective of this study will be 

to implement the monitoring system for on-line risk-based monitoring and control in pilot- 

and large-scale LAB studies. 
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Nomenclature 

  

CGal galactose concentration (g L-1) 

CGlc glucose concentration (g L-1) 

𝐶𝐻+ H+ concentration (mol L-1) 

CLA lactate concentration (g L-1) 

𝐶𝑂𝐻− OH- concentration (mol L-1) 

CP total lactic acid (lactate and lactic acid) concentration (g L-1) 

CS lactose (substrate) concentration (g L-1) 

CtCO total carbonic acid (H2CO3
∗  and 𝐻𝐶𝑂3

−) concentration (mol L-1) 

CtNH total concentration of 𝑁𝐻4
+ and 𝑁𝐻3 (g L-1) 

CtPh total concentration of 𝐻3𝑃𝑂4, 𝐻2𝑃𝑂4
−, and 𝐻𝑃𝑂4

2−(g L-1)  

CtZ total concentration of the unknown compound (dissociated and undissociated form) (mol L-1) 

CX biomass concentration (g L-1) 

Errori Weighted model prediction error of a component at time point i 

fd divalent activity coefficients (-) 

flag lag-time function (-) 

fm monovalent activity coefficients (-) 

fP lactic acid inhibition function (-) 

fpH pH dependency function (-) 

fS substrate limitation and inhibition function (-) 

H2CO3
∗  dissolved CO2 and H2CO3 

I ionic strength (g L-1) 

KC1
′  apparent equilibrium constant for the carbonic acid system (-) 

KI substrate inhibition parameter (g L-1) 

KLa lactate inhibition parameter (g L-1) 

KLa1 pH dependent lactate inhibition parameter (g L-1) 

KLA
′  apparent equilibrium constant for the lactic acid system (-) 

KNH
′  apparent equilibrium constant for the ammonia system (-) 

KP P-controller controller gain 

KP,La 2. lactate inhibition parameter (L g-1) 

KP,pH1 lactate inhibition pH parameter (-) 

KP,pH2 2. lactate inhibition pH parameter (-) 

KP1
′  apparent equilibrium constant for the phosphoric acid system (-) 

KP2
′  apparent equilibrium constant for the dihydrogen phosphate system (-) 

Kr,C1
′  apparent reverse rate constant for carbonic acid dissociation (s-1) 

Kr,LA
′  apparent reverse rate constant for lactic acid dissociation (s-1) 

Kr,NH
′  apparent reverse rate constant for NH4 dissociation (s-1) 

Kr,P1
′  apparent reverse rate constant for H3PO4 dissociation (s-1) 

Kr,P2
′  apparent reverse rate constant for 𝐻2𝑃𝑂4

− dissociation (s-1) 

Kr,W
′  apparent reverse rate constant for water dissociation (s-1) 

KS substrate limitation parameter (g L-1) 

KW
′  apparent equilibrium constant for the water system (-) 

KZ
′  apparent equilibrium constant for the unspecified compound system (-) 

n number of measurement points 

pHopt optimal pH parameter in the pH function (-) 

pHopt_lag optimal pH for the lag-time fit (-) 

pHset pH control set point (-) 

𝑝𝐾𝐶1 pKa constant for carbonic acid dissociation 

𝑝𝐾𝐿𝐴 pKa constant for lactic acid dissociation 

𝑝𝐾𝑁𝐻  pKa constant for NH4 dissociation 

𝑝𝐾𝑃1 pKa constant for H3PO4 dissociation 

𝑝𝐾𝑃2 pKa constant for 𝐻2𝑃𝑂4
− dissociation 

𝑝𝐾𝑊 pKa constant for water dissociation 

𝑝𝐾𝑍 pKa constant for the unspecified compound dissociation 

qGal volumetric galactose secretion rate (C-mol L-1 h-1) 

qNH volumetric ammonia consumption rate (mol L-1 h-1) 

qNH,add volumetric ammonia addition rate (mol L-1 h-1) 
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qP volumetric lactic acid secretion rate (C-mol L-1 h-1) 

qPh volumetric phosphoric acid consumption rate (mol L-1 h-1) 

qS volumetric substrate consumption rate (C-mol L-1 h-1) 

qX volumetric biomass growth rate (C-mol L-1 h-1) 

RE relative error (-) 

RMSSE root mean sum of squared errors (g L-1) 

T temperature in the bioreactor (K) 

t time variable (h) 

tlag lag-time coefficient (h) 

wj maximum value of the state j for the weighted error in the objective function  

Ygal galactose yield (g g-1) 

zi charge number of the i-th ion 

�̂�𝑖 i-th model value of one output (g L-1) 

𝑦𝑚𝑒𝑎𝑠,𝑖 i-th measurement value of one output (g L-1)  

 

Greek Letters 

α growth related production coefficient of lactic acid (g g-1) 

�̂�𝑖 estimated parameter value 

µmax maximum specific growth rate (h-1) 

σ standard deviation 

σpH spread parameter is the gaussian pH function 

σlag standard deviation of the lag-time fit  

𝜎�̂�𝑖
 standard deviation of the estimated parameter  
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Table Captions 

Table 1. Kinetics for the mixed weak acid/base model. fm and fd are mono- and divalent 

activity coefficients, respectively. 

Table 2. Parameters of the dynamic model of the S. thermophilus fermentations. 

Table 3. Estimated model parameters including the relative error and correlation matrix. 

Table 4. Fermentation conditions and RMSSE of the biomass prediction for all used data 

sets: parameter estimation, validation, and the monitoring system. 

 

Figure Captions 

Fig. 1. Block diagram of the probabilistic model-base monitoring system. 

Fig. 2. Model predictions for a S. thermophilus lab-scale batch fermentation. 

Fig. 3. Growth affecting functions of pH and lactate inhibition. 

Fig. 4. Model prediction for a validation lab-scale batch fermentation. 

Fig. 5. Probabilistic monitoring system applied to lab-scale batch data of a S. thermophilus 

fermentation. 

Fig. 6. 95% confidence interval of the RMSSE for the biomass prediction during the 

probabilistic monitoring of a S. thermophilus fermentation. 
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Table 1. Kinetics for the mixed weak acid/base model. fm and fd are mono- and divalent 

activity coefficients, respectively; see Loewenthal et al. (1989) and Musvoto et al. (2000). 

Reaction reaction rate vector apparent equilibrium constant 

  symbol value 

𝑁𝐻4
+ ↔ 𝑁𝐻3 + 𝐻+ Kr,NH

′ ∙ KNH
′ ∙ [𝑁𝐻4

+] − 𝐾𝑟,𝑁𝐻
′ ∙ [𝑁𝐻3] ∙ [𝐻+] KNH

′  10−𝑝𝐾𝑁𝐻 

𝐻3𝑃𝑂4 ↔ 𝐻2𝑃𝑂4
− + 𝐻+ Kr,P1

′ ∙ KP1
′ ∙ [𝐻3𝑃𝑂4] − 𝐾𝑟,𝑃1

′ ∙ [𝐻2𝑃𝑂4
−] ∙ [𝐻+] KP1

′  10−𝑝𝐾𝑃1 𝑓𝑚
2⁄  

𝐻2𝑃𝑂4
− ↔ 𝐻𝑃𝑂4

2− + 𝐻+ Kr,P2
′ ∙ KP2

′ ∙ [𝐻2𝑃𝑂4
−] − 𝐾𝑟,𝑃2

′ ∙ [𝐻𝑃𝑂4
2−] ∙ [𝐻+] KP2

′  10−𝑝𝐾𝑃2 𝑓𝑑⁄  

𝐻2𝐶𝑂3
∗ ↔ 𝐻𝐶𝑂3

− + 𝐻+ Kr,C1
′ ∙ KC1

′ ∙ [𝐻2𝐶𝑂3
∗] − 𝐾𝑟,𝐶1

′ ∙ [𝐻𝐶𝑂3
−] ∙ [𝐻+] KC1

′  10−𝑝𝐾𝐶1 𝑓𝑚
2⁄  

𝐶3𝐻6𝑂3 ↔ 𝐶3𝐻5𝑂3
− + 𝐻+ Kr,LA

′ ∙ KLA
′ ∙ [𝐶3𝐻6𝑂3] − 𝐾𝑟,𝐿𝐴

′ ∙ [𝐶3𝐻5𝑂3
−] ∙ [𝐻+] KLA

′  10−𝑝𝐾𝐿𝐴 𝑓𝑚
2⁄  

𝐻2𝑂 ↔ 𝑂𝐻− + 𝐻+ Kr,W
′ ∙ KW

′ − 𝐾𝑟,𝑊
′ ∙ [𝑂𝐻−] ∙ [𝐻+] KW

′  10−𝑝𝐾𝑊 𝑓𝑚
2⁄  

𝑍𝐻+ ↔ 𝑍 + 𝐻+ Kr,Z
′ ∙ KZ

′ ∙ [𝑍𝐻+] − 𝐾𝑟,𝑍
′ ∙ [𝑍] ∙ [𝐻+] KZ

′  10−𝑝𝐾𝑍 𝑓𝑚
2⁄  
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Table 2. Parameters of the dynamic model of the S. thermophilus fermentations. 

Symbol Value Reference Uncertainty classification 

Biological model 

KI 164 g L-1 [20]  

KLa 19.80 g L-1 parameter estimation see Table 3 

KP,La 0.24 L g-1 parameter estimation see Table 3 

KP,pH1 20 expert knowledge  

KP,pH2 7 expert knowledge  

KS 0.79 g L-1 [20]  

pHopt 6.39 parameter estimation see Table 3 

tlag individual parameter estimation  

Ygal 0.69 g g-1 parameter estimation see Table 3 

α 5.19 g g-1 parameter estimation see Table 3 

µmax 2.06 h-1 parameter estimation  

σpH 1.42 parameter estimation see Table 3 

Mixed weak acid/base model   

Kr,C1
′  107 s-1 [27] uncertainties in the mixed weak 

acid/base model are not considered 

because the pH is measured and 

used as input for the data 

reconciliation and parameter update 

module 

Kr,LA
′  107 s-1 [27] 

Kr,NH
′  1012 s-1 [27] 

Kr,P1
′  108 s-1 [27] 

Kr,P2
′  1012 s-1 [27] 

Kr,W
′  1010 s-1 [27] 

Kr,Z
′  107 s-1 [27] 

𝑝𝐾𝐶1 3404.7 (𝑇 − 14.8435 + 0.03279 ∙ 𝑇)⁄  [29] 

𝑝𝐾𝐿𝐴 3.86 [28] 

𝑝𝐾𝑁𝐻 2835.8 (𝑇 − 0.6322 + 0.00123 ∙ 𝑇)⁄  [29] 

𝑝𝐾𝑃1 799.3 (𝑇 − 4.5535 + 0.01349 ∙ 𝑇)⁄  [29] 

𝑝𝐾𝑃2 1979.5 (𝑇 − 5.3541 + 0.01984 ∙ 𝑇)⁄  [29] 

𝑝𝐾𝑊 14 [29] 

𝑝𝐾𝑍 9.4 expert knowledge (amino acid mix) 

T 313.16 K Measurement  

Initial Conditions  

CGal,t=0 0.0 g L-1   

CGlc,t=0 0.0 g L-1   

𝐶𝐻+,𝑡=0 dependent on the pH and ionic strength  

𝐶𝑂𝐻−,𝑡=0 dependent on the pH and ionic strength  

CP,t=0 0.0 g L-1  

CS,t=0 off-line measurements for the parameter estimation and validation  

CS,t=0 65 g L-1 for the monitoring system  normal distribution σ = 2.2 g L-1 

CtCO,t=0 1.002 ∙ 10−5 𝑚𝑜𝑙 𝐿−1   

CtNH,t=0 off-line measurements for the parameter estimation and validation  

CtNH,t=0 0.005 g L-1 for the monitoring system    

CtPh,t=0 off-line measurements for the parameter estimation and validation  

CtPh,t=0 2 g L-1 for the monitoring system   

CtZ,t=0 2 mol L-1   

CX,t=0 0.025 g L-1 for the parameter estimation and validation  

CX,t=0 0.025 g L-1 for the monitoring system  normal distribution σ = 0.0008 g L-1 
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Table 3. Estimated model parameters including the relative error and correlation matrix. 

kinetic 

parameters 

estimated 

parameter value 

relative 

error [%] 
correlation matrix 

   µmax KP KLa pHopt σpH α pHopt

-lag 

σlag Ygal 

µmax 2.06 1 1 -0.74 -0.83 -0.17 0.5 -0.08 -0.52 0.53 0 

KP,La 0.24 13  1 0.77 -0.2 -0.58 -0.05 0.39 -0.28 0.04 

KLa 19.80 0   1 -0.07 -0.54 0.31 0.44 -0.35 -0.28 

pHopt 6.39 1    1 -0.52 -0.13 0.76 -0.86 0.02 

σpH 1.42 3     1 0.08 -0.93 0.85 0.06 

α 5.19 0      1 -0.1 0.12 -0.4 

pHopt-lag 5.70 1       1 -0.97 -0.03 

σlag 0.3 9        1 0.03 

Ygal 0.69 5         1 
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Table 4. Fermentation conditions and RMSSE of the biomass prediction for all used data 

sets: parameter estimation, validation, and the monitoring system. 

batch data pH initial lactose conc. [g L-1] RMSSE [g L-1] final biomass [g L-1]* 

p
ar

am
et

er
 

es
ti

m
at

io
n

 

5.5 65 0.3 2.45 ± 0.1 

6 65 0.2 6.0 ± 0.2 

6 65 0.6 6.0 ± 0.1 

6.5 65 0.3 5.7 ± 0.1 

7 65 0.6 2.2 ± 0.2 

v
al

id
at

io
n
 

6 20 0.2 2.1 ± 0.2 

6 20 0.2 1.8  ± 0.1 

m
o

n
it

o
ri

n
g

 

sy
st

em
 

6** 65 0.5  ± 0.1 5.9 ± 0.1 

6** 65 0.5  ± 0.1 5.8 ± 0.2 

6** 65 0.5  ± 0.1 5.9 ± 0.2 

* with standard deviation of the last measurement at ca. 6 h fermentation time 
** the initial pH was the pH of the medium (around pH = 7). The fermentation was controlled at pH = 6. 
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Fig. 1. Block diagram of the probabilistic model-base monitoring system. The initial 

conditions for the model were defined according to the process specifications including 10 % 

uncertainties in the lactose and biomass concentration. The on-line measured ammonia 

addition rate qNH3 was used as input for the data reconciliation module to update the biomass 

growth and lactic acid production rate based on the charge balance and the lactic acid 

production rate expression. The parameter update module used the updated rates and the pH 

as input to update the model parameters µmax and tlag for the dynamic model. Monte Carlo 

simulations of the dynamic model were performed considering uncertainties in the initial 

lactose concentration, measured ammonia addition, and model parameters. The output of the 

dynamic model was a probability distribution of the state variables. 
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Fig. 2. Model predictions for a S. thermophilus lab-scale batch fermentation. . Lactose (A), 

biomass with standard deviation (B), lactic acid (C), and galactose (D) concentrations. The 

fermentation was performed in a 2 L stirred tank bioreactor at 300 rpm, 40 °C, and controlled 

at pH = 6. The model prediction (solid line) for the measurements (circles) of one of the five 

lab-scale batches that were used for the parameter estimation is shown. The biomass 

measurement is shown with the standard deviation. 
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Fig. 3. Growth affecting functions of pH and lactate inhibition. pH function vs. pH (A) and 

lactate inhibition function vs. lactic acid concentration (B). 
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Fig. 4. Model prediction for a validation lab-scale batch fermentation. Lactose (A), biomass 

with standard deviation (B), lactic acid (C), galactose (D) concentrations, pH (E), and the 

added ammonia amount (F). The S. thermophilus fermentation was performed in a 2 L stirred 

tank bioreactor at 300 rpm, 40 °C, and controlled at pH = 6. Model prediction (solid line) for 

the measurements (circles) of one of the two validation lab-scale batches.  
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Fig. 5. Probabilistic monitoring system applied to lab-scale batch data of a S. thermophilus 

fermentation. The monitoring system reads in the on-line available data (left column, black 

dots), ammonia addition and pH, and predicts the state variables every 5 minutes (middle and 

right column). 100 Monte Carlo simulations of the dynamic model were performed within the 

monitoring system considering uncertainties in the initial conditions, ammonia addition, and 

model parameters. The 95 % confidence intervals of the predictions are shown at five time 
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points during the fermentation (2 h, 2 h 40 min, 3 h, 4 h, 6 h). Predictions of the pH (blue), 

ammonia addition (red), biomass (cyan), lactose (green), and lactic acid (magenta) 

concentrations are shown. The off-line measurements for biomass (gray dot with standard 

deviation), lactose (gray circle), and lactic acid (gray square) are shown for comparison only, 

but were not used for the data reconciliation and parameter update (see Fig. 1).  
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Fig. 6. 95% confidence interval of the RMSSE for the biomass prediction during the 

probabilistic monitoring of a S. thermophilus fermentation.  
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