
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 25, 2024

Permeability Estimation Directly From Logging-While-Drilling Induced Polarization
Data

Fiandaca, G.; Maurya, P.K.; Balbarini, Nicola; Hördt, A.; Christiansen, A.V.; Foged, N.; Bjerg, Poul
Løgstrup; Auken, E.

Published in:
Water Resources Research

Link to article, DOI:
10.1002/2017WR022411

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Fiandaca, G., Maurya, P. K., Balbarini, N., Hördt, A., Christiansen, A. V., Foged, N., Bjerg, P. L., & Auken, E.
(2018). Permeability Estimation Directly From Logging-While-Drilling Induced Polarization Data. Water
Resources Research, 54(4), 2851-2870. https://doi.org/10.1002/2017WR022411

https://doi.org/10.1002/2017WR022411
https://orbit.dtu.dk/en/publications/424c9445-d9e9-4fa0-aca2-7010b293d6b5
https://doi.org/10.1002/2017WR022411


 

 

Permeability estimation directly from logging-while-drilling Induced 

Polarization data 

G. Fiandaca
1

, P.K. Maurya
1

, N. Balbarini
2

,
 
A. Hördt

3
, A.V. Christiansen

1
, N. Foged

1
,
 
P.L. 

Bjerg
2

,
 
and E. Auken

1 

1
 HydroGeophysics Group, Department of Geoscience, Aarhus University, C.F. Møllers Alle 4, 

8000, Aarhus C, Denmark. 

2 
Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, 

building 115, 2800 Kgs. Lyngby, Denmark. 

3 
Institute for Geophysik und extraterrestrische Physik, TU Braunschweig, Mendelssohnstr. 3, 

38106 Braunschweig, Germany. 

Corresponding author: Gianluca Fiandaca (gianluca.fiandaca@geo.au.dk) 

Key Points: 

 Permeability prediction from time-domain spectral induced polarization data measured in 

the undisturbed formation using El-log technique 

 Laboratory-derived empirical equations for unconsolidated sediments were used, without 

any further calibration 

 IP-derived permeability within one decade from GSA and slug test estimates, with weak 

effect of electrical water conductivity 

 

  

This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process which may lead to
differences between this version and the Version of Record. Please cite this article as an
‘Accepted Article’, doi: 10.1002/2017WR022411

This article is protected by copyright. All rights reserved.

http://orcid.org/0000-0002-3395-878X
http://orcid.org/0000-0002-7887-6219
http://orcid.org/0000-0002-2234-175X
http://orcid.org/0000-0001-5829-2913
http://orcid.org/0000-0002-1977-1871
http://orcid.org/0000-0002-5397-4832
http://crossmark.crossref.org/dialog/?doi=10.1002%2F2017WR022411&domain=pdf&date_stamp=2018-03-26


2 

 

Abstract  

In this study we present the prediction of permeability from time-domain spectral induced  

polarization (IP) data, measured in boreholes on undisturbed formations using the El-log logging- 

while-drilling technique. We collected El-log data and hydraulic properties on unconsolidated  

Quaternary and Miocene deposits in boreholes at three locations at a field site in Denmark,  

characterized by different electrical water conductivity and chemistry. The high vertical resolution  

of the El-log technique matches the lithological variability at the site, minimizing ambiguity in the  

interpretation originating from resolution issues. The permeability values were computed from IP  

data using a laboratory-derived empirical relationship presented in a recent study for saturated  

unconsolidated sediments, without any further calibration. A very good correlation, within one  

order of magnitude, was found between the IP-derived permeability estimates and those derived  

using grain size analyses and slug-tests, with similar depth-trends and permeability contrasts.  

Furthermore, the effect of water conductivity on the IP-derived permeability estimations was found  

negligible in comparison to the permeability uncertainties  estimated from the inversion and the  

laboratory-derived empirical relationship.  

1. Introduction  

The permeability (k), or its counterpart hydraulic conductivity, is a key parameter in  

hydrogeological investigations as it is a main requirement for groundwater flow characterization  

within an aquifer. Traditionally, the spatial distribution of k is estimated by grain-size analyses of  

samples from drillings or with in-situ slug-tests in screened boreholes. These methods are  

expensive, time consuming and sometimes unreliable [Rosas et al., 2014]. For example, grain size  

analysis (GSA) requires good quality of soil or sediment samples which does not necessarily  

represent the aquifer heterogeneity and can be disrupted or washed out during the drilling process.  

Moreover it is based on some empirical equations which have their own limitations [Rosas et al.,  
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2014]. In comparison to GSA, Slug test (ST) measurements are more reliable, but they are still local 

measurements and are prone to wellbore skin effects [Hinsby et al., 1992]. 

As an alternative approach, geophysical methods have been increasingly used for permeability 

mapping, and spectral induced polarization (SIP) has indicated its potential in permeability 

estimation in the laboratory [e.g., A. Binley et al., 2005; Börner et al., 1996; Revil and Florsch, 

2010; Slater, 2007; Andreas Weller et al., 2015a; Zisser et al., 2010].  

SIP is a geophysical technique used to measure the diffusion-controlled polarization processes at 

the interface between mineral grains and the pore fluid. The IP response is usually represented as 

complex conductivity, 𝜎∗ = (𝜎𝑏𝑢𝑙𝑘 + 𝜎𝑠𝑢𝑟𝑓
′ ) + 𝑖𝜎𝑠𝑢𝑟𝑓

′′ , where 𝜎𝑏𝑢𝑙𝑘 is the bulk conduction through 

the pore volume, 𝜎𝑠𝑢𝑟𝑓
′  represents the surface conduction along the mineral-fluid interface and the 

imaginary part 𝜎𝑠𝑢𝑟𝑓
′′  is related to the polarization of the charges at this interface [L D Slater and D 

Lesmes, 2002]. The imaginary part 𝜎𝑠𝑢𝑟𝑓
′′  (hereafter referred to as 𝜎′′) is commonly used to 

represent the magnitude of the interfacial polarization. 

Models describing the relationships between polarization response and permeability can be 

categorized in two classes. The first class is based on 𝜎′′ and the second class is based on relaxation 

time, a quantity used to represent the characteristic hydraulic length scale [Revil, 2012]. The 

relaxation time can be extracted for instance by Debye-Decomposition [Nordsiek and Weller, 2008] 

or from Cole-Cole inversion [Florsch et al., 2014]  of complex conductivity spectra. In our study 

the 𝜎′′-based approach was used. The premise of estimating k using 𝜎′′ is based on its strong 

relationship with surface area normalized to the pore volume (𝑆𝑝𝑜𝑟), which holds the fundamental 

basis for derived empirical relationships between k and 𝜎′′ in laboratory studies [Börner et al., 

1996; L Slater and D P Lesmes, 2002; Andreas Weller et al., 2015a]. 

Despite the potential shown by the IP method for estimating permeability in the laboratory, the 

effectiveness of the method at field scale has yet to be extensively evaluated. Three main issues are 
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reoccurring in the few attempts published so far: 1) the lack of spatial resolution in the geophysical 

imaging at the scale of the field variability [e.g. Attwa and Günther, 2013; Andrew Binley et al., 

2016; A. Hördt et al., 2009; P. K. Maurya et al., 2018]; 2) the use of site-specific relations between 

IP properties and permeability [e.g. Attwa and Günther, 2013; Börner et al., 1996; Andreas Hördt 

et al., 2007; Kemna et al., 2004]; 3) the use of relations between IP properties and permeability 

derived for lithologies different from the ones present in the field [e.g. A. Hördt et al., 2009; A 

Weller and Börner, 1996]. 

The aim of this work is to evaluate the capability of the IP method in predicting permeability at 

field scale, in presence of heterogeneity in both lithology and water chemistry, overcoming the 

above-mentioned limitations. Firstly, the SIP data were acquired in-situ through the El-log drilling 

technique [Sørensen and Larsen, 1999] extended to time-domain (TD) SIP measurements [Gazoty 

et al., 2012]. The technique measures TD SIP data while drilling, through electrodes embedded in 

the stem auger. No drilling mud or borehole back-filling are used, allowing for measurements on 

“undisturbed” formations. Hence, the high vertical resolution of the El-log technique allows for 

ruling out a limited spatial resolution from the possible ambiguities in the interpretation of the IP-

derived k estimates. Secondly, permeability was estimated using the 𝜎′′-based approach of Andreas 

Weller et al. [2015a] for unconsolidated materials, derived from an extensive dataset of laboratory 

data, without any further site-specific calibration. Permeability estimations from small-scale 

borehole measurements (down to 5 m) are presented also in Weller and Börner [1996] and Börner 

et al. [1996] but, as previously stated, the relation between IP properties and permeability was 

calibrated in Börner et al. [1996], while in Weller and Börner [1996] relations derived for 

lithologies different from the ones present in the field were used (and the correlation between IP-

derived permeability and the grain size analysis was not optimal). 

The El-log TD SIP data were collected in three locations in an unconsolidated aquifer with 

Quaternary and Miocene deposits in the Grindsted area in the south-western part of Denmark 
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(Figure 1). The aquifer south of the stream is contaminated by a leachate plume from the former 

Grindsted landfill, and significant variations in electrical water conductivity and inorganic water 

chemistry are present among the three El-logs (water conductivity: here and throughout the 

manuscript conductivity always refers to electrical water conductivity). Consequently, the effect of 

water conductivity/chemistry on the quality of the IP-derived k estimates is studied. 

The decays were carefully processed and inverted using the inversion algorithm by G. Fiandaca et 

al. [2012], that supports the modelling of full-decay and waveform. The IP-derived permeability 

values were compared to an extensive set of independent permeability estimates, composed by 54 

GSA estimates on sediment samples and 9 ST measurements. Finally, the surface area per unit 

volume, Spor, was measured on 25 samples with the BET method [Brunauer et al., 1938] and 

compared to the IP-derived values. 

2. Material and methods 

2.1 Study area 

The study was carried out in an aquifer near the Grindsted landfill situated in an outwash plain west 

of the main stationary line of the Weichselian glaciation (Figure 1). The upper Quaternary 

sediments in the aquifer consists mainly of medium to coarse meltwater sand [Heron et al., 1998] , 

while the underlying Miocene sediments are primarily medium to fine mica-rich sand with 

interbedded thin clay and lignite layers [Heron et al., 1998] . The water table is located 1-3 m below 

the terrain. The hydraulic gradient shows an overall westerly flow direction towards the Grindsted 

stream (Figure 1). The Grindsted landfill has historical deposits of municipal solid waste, industrial 

waste, sewage treatment waste, and demolition waste [Peter Kjeldsen et al., 1998]. There is no liner 

or leachate collection beneath the landfill. 

El-log E1 is situated south of the landfill (Figure 1) and expected to be unaffected by the landfill 

leachate plume [Bjerg et al., 1995]. El-log E2 is placed in the core of the landfill leachate plume in 
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an area highly contaminated with organic and inorganic contaminants (see Table S1 in  

supplementary information). This is also reflected in a recent mapping of the plume by using 2D  

and 3D electrical resistivity tomography [Pradip Kumar Maurya et al., 2017]. El-log E3 is placed  

in similar deposits north of the Grindsted stream as shown in Figure 1. Each El-log has a  

corresponding borehole (Bh1-Bh3) drilled for lithological description and collection of water  

samples, and a sediment core (Sc1) was collected next to E1 as well. The permeability estimation  

from IP data has an underlying assumption for its applicability in contaminated sites: the  

contamination should have neither IP nor DC signature, except for the effect of water conductivity.  

This requirement is not always fulfilled, for instance in subsurface settings contaminated with  

NAPLs [Chen et al., 2012; Johansson et al., 2015; e.g., Adrian Flores  Orozco et al., 2011; A.F.  

Orozco et al., 2012]. However, the IP signature is usually significant only where the contaminants  

are present  in concentrations close to the saturation point (e.g. above 1 g/l for BTEX in A.F.  

Orozco et al. [2012]). At the stream site the concentrations are much below this concentration level  

[P. K. Maurya et al., 2018] and will not have any influence on IP or DC signature. At the landfill  

site there is no presence of NAPL in the plume. The landfill is in the methanogenic phase [P.  

Kjeldsen et al., 1998] and the organic matter/dissolved organic carbon is expected to be dominated  

by fully dissolved humic like compounds without effect on EC and IP signals [Christensen et al.,  

2001].   

2.2 El-log technique   

The El-log is a high resolution drilling technique used in groundwater and environmental  

investigations for unconsolidated sediments. The El-log technique provides “while-drilling”  

measurements of the direct current (DC) resistivity, TD SIP decays and gamma radiation [Gazoty et  

al., 2012; Sørensen and Larsen, 1999]. Apparent resistivity and chargeability are measured using  

the electrodes integrated in the hollow stem auger (Figure 2). The electrodes are embedded in  

insulating material and the gamma probe is located close to the drilling head. Gamma probe and  
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electrodes are connected to a control unit on the surface through the cables passing in the hollow  

stem auger. The control unit receives the signal from gamma probe and sends the data to a field PC  

and passes the electrode connection to the multi-channel resistivity meter. A Pole-Pole  

configuration is used for measurements with two potential and one current electrodes in the auger  

(spaced 0.2 m). Two electrodes are placed on the surface as remote potential and current electrodes  

and are connected to the control unit. Measurements can be performed while the drill stem is  

rotating if good electrode contact is maintained. Alternatively, the drill rotation is paused briefly at  

regular depth intervals to obtain measurements. In addition to the logging equipment, a water  

sampler device is also located inside the auger, with inlets close to the drill tip, and is connected  

through the tubes to the surface.  

2.3 Acquisition, processing and inversion of El-log TD SIP data  

For recording of TD SIP data, we used the Terrameter-LS instrument (ABEM) and full-waveform  

data were recorded at a sampling rate of 3750 Hz. In borehole E2 and E3 a 4 second on-time and 4  

second off-time cycle was used whereas a 2 second on- and off-time was used in E1. A 50% duty  

cycle (50% on-time and 50% off-time) waveform was used in E2 and E3, while both 50% duty  

cycle and 100% duty cycle (no off-time) waveforms [P I Olsson et al., 2015] were measured in E1  

(except 5 m data from depth 16 to 21m, measured only with 100% duty cycle because of an  

instrumental failure that prevented the acquisition of the 50% duty cycle data). The acquisition  

parameters in the boreholes are slightly different from each other, because the loggings in E2 and  

E3 were originally not done with the purpose of estimating permeability. Only after the potential  

had been recognized, the data in E2 and E3 were analyzed for permeability estimation. The  

conclusions will not be affected by the differences in the acquisition settings, because the current  

waveform is taken into account in the forward algorithm and the permeability estimation will be  

based on well resolved inversion parameters. In any case, for minimizing the differences in the  

analyses of the three boreholes, the 50% duty cycle data were used for E1, where possible.  
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A maximum current of 200 mA was used. The resistivity and IP decay data were measured while 

the auger was moving and rotating. 

The full-waveform data were processed for harmonic de-noising and removal of background 

potential drift following P-I Olsson et al. [2016]. These processed data were then gated using 33 

logarithmically spaced tapered time windows in the interval 1 ms – 3980 ms (gate widths starting at 

0.26 ms , ending at 820 ms) for the 4 second pulses and in the interval 1 ms – 1980 ms (gate width 

0.26 ms to 420 ms) for the 2 second pulses. The data were then imported to the Aarhus Workbench 

software (www.aarhusgeosoftware.dk) for further manual editing and processing. In the manual 

processing, each individual IP decay curve was inspected and noisy data points, for example due to 

electrode contact problems, were removed. Generally, the first usable gate was found to be around 

2-3 ms and the average number of gates was found to be around 30, equivalent of about 3 decades 

of spectral content. 

The inversion of El-log TD SIP data was performed using the AarhusInv [Auken et al., 2014] code, 

an integrated modeling and inversion code for electrical and electromagnetic data. Forward 

modeling of El-log TD SIP data follows the recursive formulation by Sato [2000] and takes into 

account the transmitter waveform and the receiver transfer function [G. Fiandaca et al., 2012]. 

In the model space, the frequency-dependent complex conductivity 𝜎∗ is described through a re-

parameterization of the Cole-Cole model, namely the bulk and (maximum) imaginary conductivity 

(BIC) Cole-Cole model, developed explicitly for being used in permeability estimation and 

described in details in the next section. Considering the 0.2 m spacing between the current and 

potential electrodes in the auger, a 0.2 m vertical discretization was used in the E-log inversion 

models. 

2.4 Parameterization of induced polarization 

The Cole-Cole model in its conductivity form is expressed as [e.g. Tarasov and Titov, 2013]: 

This article is protected by copyright. All rights reserved.
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𝜎∗(𝑓) = 𝜎0 [1 +
𝑚0

1−𝑚0
(1 −

1

1+(𝑖2𝜋𝑓𝜏𝜎)𝐶)]       (1) 

where 𝜎∗ is the complex conductivity, 𝜎0 is the DC conductivity, 𝑚0 is the intrinsic chargeability, 

𝜏𝜎 is the relaxation time, 𝐶 is the frequency exponent, 𝑓 is the frequency and 𝑖 is the imaginary unit. 

In equation (1), the 𝑚0 and 𝐶 parameters are strongly correlated , and thus poorly resolved in the 

inversion [G.  Fiandaca et al., 2017; G. Fiandaca et al., 2018]. In order to reduce the parameter 

correlation, and hence improve the inversion results, Fiandaca et al. [2017a, 2017b] introduced the 

maximum imaginary conductivity (MIC) model, in which 𝑚0 is replaced by maximum imaginary 

conductivity 𝜎𝑚𝑎𝑥
′′  of the Cole-Cole spectrum (Figure 3) and the model space 𝒎𝑴𝑰𝑪 becomes: 

𝒎𝑴𝑰𝑪 =  {𝜎0, 𝜎𝑚𝑎𝑥
′′  , 𝜏𝜎 , 𝐶}         (2) 

In equation (2) 𝜎0 is the DC conductivity, which is the sum of the bulk conductivity 𝜎𝑏𝑢𝑙𝑘 and the 

DC surface conductivity 𝜎𝑠𝑢𝑟𝑓
′ (𝑓 = 0) [A. Weller and Boerner, 1996]: 

𝜎0 = 𝜎𝑏𝑢𝑙𝑘+𝜎𝑠𝑢𝑟𝑓
′ (𝑓 = 0) =

𝜎𝑊

𝐹
+𝜎𝑠𝑢𝑟𝑓

′ (𝑓 = 0)      (3) 

where in the last term of the equality 𝜎𝑏𝑢𝑙𝑘 is expressed through the formation factor 𝐹 and the 

water conductivity 𝜎𝑊, following Archie’s law [Archie, 1942]. When imaging the DC conductivity 

(or, equivalently, DC resistivity), as in the MIC model, the bulk and surface conduction are not 

discriminated. 

To overcome this limitation the BIC model has been developed, in which we make use of the 

petrophysical relation between the real and imaginary components of the surface conductivity 

described in A. Weller et al. [2013]: 

 𝜎′′ = 𝑙 ∙ 𝜎𝑠𝑢𝑟𝑓
′            (4) 

with 𝑙 = 0.042 ± 0.022 (dimension less). The relation in equation (4) was obtained from a database 

of 63 samples of sandstone and unconsolidated sediments, covering nine independent 
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investigations, using multisalinity resistivity measurements and  𝜎′′ measurements at a frequency  

𝑓 ≅ 1 𝐻𝑧. The variability of the proportionality with frequency is not discussed in Weller et al.  

[2013]; considering that the (surface) imaginary conductivity of the Cole-Cole model reaches a  

maximum 𝜎𝑚𝑎𝑥
′′  at the frequency 𝑓 = 1 2𝜋𝜏𝜎⁄ , we decided to enforce in the BIC model the  

proportionality between the real and imaginary surface conductivity at this frequency (which is not  

necessarily 1 Hz):  

 𝜎′′(𝑓 = 1 2𝜋𝜏𝜎⁄ ) = 𝜎𝑚𝑎𝑥
′′ = 𝑙 ∙ 𝜎𝑠𝑢𝑟𝑓

′ (𝑓 = 1 2𝜋𝜏𝜎⁄ )     (5)  

This is a conservative choice: in this way the ratio between the surface imaginary conductivity and  

real conductivity never exceeds the factor of equation (4). On the contrary, enforcing the  

proportionality at 𝑓 = 1 𝐻𝑧 would imply a ratio well above 𝑙 at the peak frequency 𝑓 = 1 2𝜋𝜏𝜎⁄  for  

models with 𝜏𝜎 ≫ 1.  

Enforcing the relation of equation (5) in the MIC Cole-Cole model, it is possible to define the BIC  

model with model space 𝒎𝑩𝑰𝑪 defined in terms of the bulk conductivity 𝜎𝑏𝑢𝑙𝑘, the maximum  

imaginary conductivity 𝜎𝑚𝑎𝑥
′′  and the other two classic Cole-Cole parameters 𝜏𝜎 and 𝐶:  

𝒎𝑩𝑰𝑪 =  {𝜎𝑏𝑢𝑙𝑘, 𝜎𝑚𝑎𝑥
′′  , 𝜏𝜎 , 𝐶}         (6)  

Therefore, contrary to the MIC model, with the BIC parameterization the bulk conductivity is  

separated from the DC surface conductivity. This allows for the estimation of the formation factor 𝐹  

directly from the inversion parameters, when the water conductivity is known.  

For any given set of parameters of the BIC model it is possible to derive the corresponding Cole- 

Cole parameters through simple algebraic relations, and to compute the complex conductivity at any  

frequency through equation (1). Figure 3 shows the spectrum of the BIC model defined by the  

parameter values {𝜎𝑏𝑢𝑙𝑘 = 10 𝑚𝑆 𝑚⁄ , 𝜎𝑚𝑎𝑥
′′ =  0.1 𝑚𝑆 𝑚⁄ , 𝜏𝜎 = 0.1 𝑠, 𝐶 = 0.5}. The 𝜎0 and 𝑚0  
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values of the corresponding Cole-Cole model are 𝜎0 = 12.1 𝑚𝑆 𝑚⁄  and 𝑚0 = 38.2 𝑚𝑉 𝑉⁄ ,  

respectively.  

2.5 Estimation of permeability and Spor   

2.5.1 Permeability from grain size analysis and slug tests  

Traditional 63 mm wells (Bh1-Bh3) were installed next to each El-log (E1-E3) using cable tool  

bailer drilling. Samples were collected every 0.5 m for geological characterization and grain size  

analyses. Each well has multiple 1 meter long screens for collecting water samples and performing  

slug tests. Note that the vertical discretization of the traditional wells is coarser than the 0.2 m  

vertical discretization of the El-log retrieved models. In addition, sediment cores (Sc1) were  

collected in PVC liners by the GeoProbe sampling system close to El-log E1. The cores were split  

in half for detailed geological characterization and subsampled for laboratory analysis.   

Grain size analysis (GSA) was performed on selected soil samples from the cores (Sc1 next to E1)  

and sampling from drilling of the traditional boreholes (Bh2 and Bh3) using sieving, for particle  

size between 2 and 0.063 mm, and laser diffractometer (Mastersizer Hydro 2000SM), for particle  

size between 63 and 0.02 µm [Switzer and Pile, 2015]. The grain size distribution curve was used to  

estimate the permeability. Many approaches have been suggested for this purpose and the calculated  

permeability can change orders of magnitudes between the various approaches [Devlin, 2015].  

Thus, several methods were applied on each sample, depending on the properties of the sample, and  

the permeability values and their uncertainty were computed through the geometric mean and the  

standard deviation of the different estimations of the applicable methods. The methods used for the  

GSA permeability estimations were selected from the review by Devlin [2015] and are: Hazen  

simplified, [Hazen, 1892], Slichter [Slichter, 1899], Terzaghi [Terzaghi, 1925], Beyer [Beyer,  

1964], Sauerbrei [Vuković and Soro, 1992] , Krüger [Krüger, 1918] , Kozeny-Carman [Kozeny,  

1953], Zunker [Zunker, 1930], United States Bureau of Reclamation [Białas, 1966], Barr [Barr,  
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2001], Alyamani and Sen [Alyamani and Şen, 1993], Chapuis [Chapuis, 2004], and Krumbein and  

Monk [Krumbein and Monk, 1943]. Not all samples qualify for all methods, and thus the number of  

methods to calculate the average varies between 2 and 13. On average, the standard deviation of all  

methods on all sample is 0.3 decades (Table S2 in supplementary material), indicating that the  

choice of the qualified methods is not crucial and the proposed approach should give robust  

estimates of permeability values and standard deviations. Table S3 in supplementary documents  

presents the permeability estimates for all the GSA methods adopted in this study.  

Slug tests were performed with a vacuum method developed for measuring local permeability in an  

unconfined sandy aquifer [Hinsby et al., 1992]. The method consists of raising the water table by  

using a vacuum pump and monitoring the decrease in water table over time with a 1 second time  

interval. The groundwater table falling curve was analyzed in AQTESOLV using Bouwer and  

Rice’s method for partially penetrating wells in unconfined aquifers [Bouwer and Rice, 1976],  

Hvorslev [1951] for partially penetrating wells in confined aquifer, and Springer and Gelhar [1991]  

when oscillatory responses were observed in the slug test. Two slug tests were performed at each  

screen and the value of permeability used for comparison was calculated by averaging the result of  

the two tests. In all cases they agreed well. Values of slug-tests are provided in Table S4 in  

supplementary material.  

2.5.2 Surface area per unit volume (𝑺𝒑𝒐𝒓) estimates with BET  

The specific surface area was measured on the selected samples from the sediment core (Sc1) using  

the Brunauer, Emmett, and Teller (BET) gas adsorption method [Brunauer et al., 1938;  

Santamarina et al., 2002]. The surface area was measured on a dry sample using N2 gas  

(Micromeritics FlowPrep 060). Since the method required a dry sample, the surface area of  

interlayer surfaces in swelling clays is only partially measured by the method [Santamarina et al.,  

2002]. Values of 𝑺𝒑𝒐𝒓 are provided in Table S5 in supplementary material.  
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2.5.3 Permeability and 𝑺𝒑𝒐𝒓 from Spectral IP   

Most of the early works for estimating the permeability (k) were based on a Kozeny-Carman type  

equation given as:  

𝑘 =
𝜙

𝑎𝑆𝑝𝑜𝑟
2 𝑇

           (7)  

where 𝜙 is the porosity, T is a pore capillary tortuosity factor, and 𝑎 is a shape factor. Considering  

the sensitivity of induced polarization to 𝑆𝑝𝑜𝑟, a number of efforts have been made to reformulate  

the equation (7) for more direct use with SIP modeling [Slater, 2007]. For example the ratio 𝑇 𝜙⁄   

can be replaced by formation factor 𝐹 (= 𝑇𝑒𝑙 𝜙⁄ ), assuming that electrical tortuosity (𝑇𝑒𝑙) is equal to  

hydraulic tortuosity (T). Such a type of model was proposed by Börner et al. [1996]:  

k=
𝑏

𝐹𝑆𝑝𝑜𝑟
𝑐            (8)  

where b and c are empirical constants and 𝐹 is the formation factor. The two unknowns, 𝐹 and 𝑆𝑝𝑜𝑟 ,  

can be estimated using the SIP measurements. Recently, Andreas Weller et al. [2015a] investigated  

a data base consisting of 114 globally collected samples. They avoided the indirect k-estimation  

through 𝑆𝑝𝑜𝑟 and suggested direct correlations between k and the imaginary conductivity  𝜎′′,  

measured with a NaCl solution with standardized electrical conductivity  𝜎𝑓 = 100 𝑚𝑆/𝑚 at a  

frequency 𝑓 ≅ 1 𝐻𝑧. For unconsolidated (saturated) sediments they proposed two empirical  

equations:  

𝑘 =
1.08∙10−13

𝐹1.12∙( 𝜎′′(𝜎𝑓))
2.27 

 
          (9)  

𝑘 = 3.47 ∙ 10−16 ∙
(𝜎0(𝜎𝑓))

1.11

( 𝜎′′(𝜎𝑓))
2.41 

 
        (10)  

where k is given in m
2
, 𝜎0 and  𝜎′′ are given in mS/m and 𝐹 is dimension less. Equation (9),  

likewise equation (8), depends on the formation factor 𝐹, while equation (10) depends on the DC  
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conductivity 𝜎0. The assumption in equation (10) is that the apparent formation factor 𝐹′ =
𝜎𝑓

𝜎0(𝜎𝑓)
 

can be used in permeability estimation instead of the true formation factor 𝐹, which is rarely 

available for most practical field applications in hydrogeophysics. This assumption was found valid 

by Andreas Weller et al. [2015a] for unconsolidated samples, while for consolidated samples the 

prediction based on 𝐹 was superior (because the exponents of 𝐹 and 𝜎0 in the formula equivalent to 

equations (9) and (10) are higher for consolidated samples, and the formation factor plays a bigger 

role in the permeability estimation). 

Although the explicit calculation of 𝑆𝑝𝑜𝑟 is no longer necessary to estimate k from equations (9) and 

(10),  𝑆𝑝𝑜𝑟  is still a macroscopic parameter that can be measured in the laboratory and the relation 

between  𝜎′′ and  𝑆𝑝𝑜𝑟  is the theoretical basis of the permeability estimation. Therefore, we also 

estimate  𝑆𝑝𝑜𝑟 using the following relationship with  𝜎′′: 

 𝜎′′ = 𝐶𝑝𝑆𝑝𝑜𝑟           (11) 

where 𝐶𝑝 is called the specific polarizability [A. Weller et al., 2010]. 

2.5.4 Permeability estimation from inversion parameters and effect of water conductivity 

The empirical equations (9) and (10) link the permeability, which is a function of the material 

structure only, to the electrical properties of the material, which depend also on the electrical water 

conductivity and, for the surface properties, also on the water chemistry. This is why the equations 

are derived from a standardized water solution (i.e. NaCl solution with electrical conductivity 

 𝜎𝑓 = 100 𝑚𝑆/𝑚). In field surveys, the water solution can be assumed to be known, but its 

conductivity will generally not equal 100
𝑚𝑆

𝑚
 nor the solute will be only NaCl. 

The dependency of the imaginary surface conductivity on the water solution for consolidated and 

unconsolidated sediments can be expressed as [A. Weller and Slater, 2012; A. Weller et al., 2011; 

Andreas Weller et al., 2015a]: 
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 𝜎′′(𝜎𝑤) =  𝜎′′(𝜎𝑓) ∙
1

𝐶𝑓
∙ (

𝜎𝑤

𝜎𝑓
)

𝑎

        (12)  

where 𝜎𝑓 = 100 𝑚𝑆/𝑚 represents the electrical conductivity of a reference NaCl solution, 𝐶𝑓  

accounts for the possible differences in ionic species between the reference and actual solution and  

the exponent 𝑎 depends on the material. Weller et al. [2011] found 𝑎 = 0.5 for sandstones, and  

Weller et al. [2015a] used 𝑎 = 0.5 for both sandstones and unconsolidated samples in the correction  

for water conductivity in permeability estimations. Nevertheless, Weller and Slater [2012] showed a  

certain variability in the exponent 𝑎 for the correction on unconsolidated samples, with average  

value and standard deviation equal to 𝑎 = 0.37 ± 0.12 (these estimates are not shown explicitly in  

Weller and Slater [2012], but can be retrieved from the full set of values shown in table 1 therein).  

In order to use equation (9) from the inversions of field data, as we do in this study, the formation  

factor and the imaginary surface conductivity  𝜎′′ (for standardized solution at frequency 𝑓 = 1 𝐻𝑧)  

need to be estimated. Remember that through the BIC model as defined through equations (3-6), we  

obtain the bulk electrical conductivity, which does not include surface conductivity any more. We  

can thus calculate the formation factor directly from 𝐹 =
𝜎𝑊

𝜎𝑏𝑢𝑙𝑘
.  

Using equation (12) with 𝑎 = 0.37 and calculating the formation factor as explained above, we  

obtain:  

𝐹1.12 ∙ ( 𝜎′′(𝜎𝑓))
2.27 

=   

= (
𝜎𝑤

𝜎𝑏𝑢𝑙𝑘
)

1.12
∙ ( 𝜎′′(𝜎𝑤) ∙ 𝐶𝑓 ∙ (

𝜎𝑓

𝜎𝑤
)

0.37

)
2.27 

= 𝐶𝑓
2.27 ∙ 𝜎𝑓

0.84 ∙
( 𝜎′′(𝜎𝑤))

2.27 

(𝜎𝑏𝑢𝑙𝑘(𝜎𝑤))
1.12 ∙ 𝜎𝑤

0.28 =    

= 4.78 ∙ 101 ∙ 𝐶𝑓
2.27 ∙

( 𝜎′′(𝜎𝑤))
2.27 

(𝜎𝑏𝑢𝑙𝑘(𝜎𝑤))
1.12 ∙ 𝜎𝑤

0.28       (13)  
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where in the last equality 𝜎𝑓 = 100 𝑚𝑆/𝑚 was used. The water-conductivity correction 𝜎𝑤
0.28  

compensates the dependency of 
( 𝜎′′(𝜎𝑤))

2.27 

(𝜎𝑏𝑢𝑙𝑘(𝜎𝑤))
1.12 on the water conductivity 𝜎𝑤. Equation (13), and  

henceforth equation (9), can be evaluated from the inversion parameters of the BIC model and from  

the knowledge of the water solution.   

Note that the dependence of the k-estimation on groundwater conductivity is weak. Indeed, the  

power of 0.28 for 𝜎𝑤 in equation (13) means that, for example, a 10-fold variation in water  

conductivity causes less than a 2-fold variation in IP-estimated permeability. The effect of the  

uncertainty of the exponent 𝑎 of equation (12) on equation (13), as well as the importance of the  

water conductivity correction in comparison to the other uncertainties in the IP-derived permeability  

estimation, are discussed in detail in the next paragraph and in the results section.  

For the correction of the water chemistry, A. Weller et al. [2011] suggest 𝐶𝑓 = 2 for CaCl2 and  

𝐶𝑓 = 1 for NaCl; for other ions, no suggestion was made. Realizing that the original suggestion is  

based on a sparse data set and that numerous cations and anions are present in the field-collected  

water samples with varying molecular concentration, it is difficult to apply an appropriate  

correction. Therefore, in our k-estimation the correction factor 𝐶𝑓 was not accounted for.  

For the evaluation of equation (13), the imaginary conductivity at frequency 𝑓 = 1 𝐻𝑧 can be  

computed from the inversion parameters {𝜎𝑚𝑎𝑥
′′  , 𝜏𝜎 , 𝐶}. Actually, as it is shown in the results  

section, minor differences exist between 𝜎𝑚𝑎𝑥
′′  and  𝜎′′(𝑓 = 1𝐻𝑧), so 𝜎𝑚𝑎𝑥

′′  is used in equation (13)  

in our computations, also because this simplifies the propagation of the inversion parameter  

uncertainty into the parameter uncertainty.  

As an alternative to equation (9) and (13) and the inversion in terms of the BIC parameters of  

equation (6), it is possible to derive the permeability from equations (10) and (12) and the inversion  

in terms of the MIC parameters of equation (2), i.e. it is possible to use 𝜎0 instead of 𝜎𝑏𝑢𝑙𝑘. In this  
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study we prefer to follow the first approach for two reasons: i) the effect of surface conductivity in 

the estimation of the formation factor is taken into account (i.e. an estimate of the true formation 

factor 𝐹 is used instead of an estimate of the apparent formation factor 𝐹′); ii) the use of the BIC 

model instead of the MIC model is better suited for permeability estimation from surface IP data, as 

shown recently by Maurya et al. [2018]. In fact, the use of the BIC model in 2D/3D imaging 

practically imposes a geometrical constraint between the spatial distribution of the inverted 

imaginary conductivity  𝜎′′ and the spatial distribution of the total DC conductivity 𝜎0 section, so 

that a chargeable area in the inversion model is also conductive. On the contrary, when 𝜎𝑠𝑢𝑟𝑓
′  gives 

a negligible contribution to 𝜎0, no geometrical constraint is enforced between the  𝜎′′ and 𝜎0 spatial 

distributions and the BIC and MIC models give equivalent results. This feature reduces the 

equivalences in the 𝜎0 imaging and helps in retrieving inversion models more representative of the 

site geology, and henceforth better permeability estimations [Maurya et al., 2018]. However, in this 

study the high vertical resolution of the El-log technique avoids equivalence problems in the 𝜎0 

estimation, and the permeability estimates retrieved by the MIC and BIC inversions are of 

comparable quality (results not shown for brevity). 

2.5.5 Evaluation of prediction quality and uncertainty on permeability estimates 

The total uncertainty on the IP-derived permeability estimation depends on the uncertainties of the 

petrophysical relations, as well as on the uncertainty of the inversion parameters used in the 

computations. The prediction quality of equation (9) and (10) was defined by Weller et al [2015a] 

in terms of the average absolute deviation (in log space) between the IP-derived permeability 𝑘𝐼𝑃 

and measured permeability 𝑘𝑚𝑒𝑎𝑠: 

𝑑 =
1

𝑁
∙ ∑ |𝑙𝑜𝑔10(𝑘𝐼𝑃𝑖

) − 𝑙𝑜𝑔10(𝑘𝑚𝑒𝑎𝑠𝑖
)|𝑁

𝑖=1        (14) 
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Using equation (9) Weller et al [2015a] found for unconsolidated samples a value 𝑑 = 0.386, 

which implies that the IP-derived permeability estimates are on average accurate within an 

Uncertainty Factor (UF) of: 

𝑈𝐹𝐼𝑃 = 10𝑑 = 100.386 ≅ 2.4         (15) 

In order to estimate the uncertainty of the correction of the imaginary conductivity due to the 

variable water conductivity, the standard deviation 𝑆𝑇𝐷𝑎 of the exponent 𝑎 of equation (12) is used. 

Indeed, the confidence interval of the permeability estimates can be computed using equation (9) 

and (13) with the confidence limits of the exponent [𝑎 − 𝑆𝑇𝐷𝑎; 𝑎 + 𝑆𝑇𝐷𝑎]. This leads to an 

Uncertainty Factor of: 

𝑈𝐹𝜎𝑊
= (

𝜎𝑊

𝜎𝑓
)

0.27

          (16) 

Combining equation (9) and (13), the upper limit 𝑎 + 𝑆𝑇𝐷𝑎 = 0.49 (practically the value used and 

suggested by Weller et al [2015a]) gives a total water-conductivity correction 𝜎𝑤
0.008, while the 

lower limit 𝑎 − 𝑆𝑇𝐷𝑎 = 0.25 gives 𝜎𝑤
0.55. This means that in the upper limit the water-

conductivity correction is practically equivalent to no correction, because of the small exponent of 

𝜎𝑤, while with the lower limit the correction depends approximately on the square root of 𝜎𝑊. 

The final contribution to the permeability uncertainty derives from the uncertainty on the inversion 

parameters. This uncertainty can be computed from the covariance of the estimator error for linear 

mapping 𝑪𝑒𝑠𝑡 described by Tarantola and Valette [1982] 

𝑪𝑒𝑠𝑡 = [𝑮𝑇𝑪𝑑
∗ −𝟏𝑮]

−1
          (17) 

where 𝑮 represents the Jacobian of the last iteration of the inversion and the diagonal matrix 𝑪𝑑
∗  is a 

modified data covariance matrix. The modification consists of taking as diagonal elements 𝑪𝑑
∗

𝑖,𝑖
 the 

maximum between the data variances 𝐶𝑑𝑖,𝑖
 and the squared misfit (𝑓𝑖 − 𝑑𝑖)2, where 𝑖 represents the 
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index of the data vector, 𝑑𝑖 is the 𝑖𝑡ℎ datum and 𝑓𝑖 is the corresponding forward response. The use 

of 𝑪𝑑
∗  instead of the classic 𝐶𝑑 in equation (17) avoids to underestimate the parameter uncertainty if 

some data are not fitted within the standard deviation in the inversion process. Once the uncertainty 

on the inversion parameters is computed, the inversion-derived uncertainty on the permeability 

estimates can be computed as: 

𝑆𝑇𝐷𝑘𝐼𝑃
= √(

𝜕𝑘

𝜕𝜎𝑏𝑢𝑙𝑘
∙ 𝑆𝑇𝐷𝜎𝑏𝑢𝑙𝑘

)
2

+ (
𝜕𝑘

𝜕 𝜎′′ ∙ 𝑆𝑇𝐷𝜎𝑚𝑎𝑥
′′ )

2
     (18) 

where 
𝜕𝑘

𝜕𝜎𝑏𝑢𝑙𝑘
 and 

𝜕𝑘

𝜕 𝜎′′ are the partial derivatives of the permeability formula obtained combining 

equation (9) and equation (13), 𝑆𝑇𝐷𝜎𝑏𝑢𝑙𝑘
 is the inversion uncertainty on the bulk conductivity and 

𝑆𝑇𝐷𝜎𝑚𝑎𝑥
′′  is the inversion uncertainty on the maximum imaginary conductivity. The Uncertainty 

Factor derived from the inversion uncertainty can then be computed as: 

𝑈𝐹𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =1+
𝑆𝑇𝐷𝑘𝐼𝑃

𝑘𝐼𝑃
         (19) 

Finally, the total uncertainty on the permeability estimates is obtained multiplying the three 

uncertainty factors of equation (15), equation (16) and equation (19): 

𝑈𝐹𝑡𝑜𝑡𝑎𝑙 = 𝑈𝐹𝐼𝑃 ∙ 𝑈𝐹𝜎𝑊
∙ 𝑈𝐹𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛        (20) 

 

3. Results 

3.1 Inversion models and data fit 

Figure 4 presents the inversion models of the three El-logs, for all inversion parameters, together 

with the parameter uncertainty computed through equation (17), while Figure 5 shows the fit of the 

DC data and of representative IP decays of the three inversions. The data standard deviations used 

in the inversion and for the computation of the parameter uncertainty were 1% on resistivity and 
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10% on each gate of the IP decays, plus a voltage noise floor 𝑉𝑛𝑜𝑖𝑠𝑒 = 0.1 𝑚𝑉 (see Olsson et al.  

[2015] for details on the computation of the total data uncertainty from 𝑉𝑛𝑜𝑖𝑠𝑒 and the relative  

standard deviation). In Figure 4 it is seen that 𝜎𝑚𝑎𝑥
′′  is a well resolved inversion parameter, with  

uncertainty comparable to the 𝜎𝑏𝑢𝑙𝑘 uncertainty, while the frequency exponent 𝐶 and, even more,  

the time constant 𝜏𝜎 present significantly wider confidence intervals. The small 𝜎𝑚𝑎𝑥
′′  uncertainty  

derives from the re-parameterization of the Cole-Cole model: when inverting the same data with the  

classic Cole-Cole model, the uncertainty on 𝑚0 is much higher, due to the high correlation between  

𝑚0 and the frequency exponent 𝐶 [G. Fiandaca et al., 2018; Madsen et al., 2017].   

In Figure 4 the imaginary conductivity  𝜎′′ at frequency 𝑓 = 1 𝐻𝑧, computed from the inversion  

parameters {𝜎𝑚𝑎𝑥
′′  , 𝜏𝜎 , 𝐶}, is shown together with the 𝜎𝑚𝑎𝑥

′′  inversion estimates, because  𝜎′′(𝑓 = 

1 𝐻𝑧) is needed in equations (9) and (13). The frequency exponent 𝐶 of the Cole-Cole  

parameterization (equation 1) is generally small, resulting in broad spectra, so that  𝜎′′(𝑓 = 1 𝐻𝑧)  

and 𝜎𝑚𝑎𝑥
′′  are close to each other. In particular, for this data set the (geometric) mean difference  

between  𝜎′′(𝑓 = 1 𝐻𝑧) and 𝜎𝑚𝑎𝑥
′′  ranges only from 4% (El-log E1) to 10% (El-log E3).  

Consequently, the difference in k-prediction using  𝜎′′(𝑓 = 1 𝐻𝑧) and 𝜎𝑚𝑎𝑥
′′  is on average only 6%  

(actually, in favor of the 𝜎𝑚𝑎𝑥
′′  estimates), which is negligible compared to the overall scatter  

between permeability values derived from IP and GSA/ST estimates seen in the next sections.  

Therefore, 𝜎𝑚𝑎𝑥
′′  will be used instead of  𝜎′′(𝑓 = 1 𝐻𝑧) in the further calculations.  

3.2 Lithology versus 𝝈𝒃𝒖𝒍𝒌, 𝝈𝒎𝒂𝒙
′′  and gamma radiation  

The maximum imaginary conductivity (𝜎𝑚𝑎𝑥
′′ ) and bulk conductivity (𝜎𝑏𝑢𝑙𝑘), retrieved from the  

Cole-Cole BIC inversion of TD SIP data from El-log E1 is shown in Figure 6b and 6c. The  

corresponding gamma log together with a detailed lithological log obtained from the sediment cores  

of Sc1 are shown in Figure 6a. The El-log TD SIP data were recorded to 27 m depth, whereas the  

gamma log is available to 29.5 m. The uncertainty on the estimates of 𝜎𝑏𝑢𝑙𝑘 and 𝜎𝑚𝑎𝑥
′′ , from a  
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linearized sensitivity analysis [Auken et al., 2014] is indicated by thin lines. A very good correlation  

between different sediment types and  𝜎𝑚𝑎𝑥
′′  can be seen. The Quaternary glacial sands (medium to  

coarse) exhibit on average low 𝜎𝑚𝑎𝑥
′′  values (~ 0.01 mS/m). The boundary between the Quaternary  

and Tertiary sand deposits (where mica sand unit starts) are observed in 9.8 m depth where a sharp  

transition in gamma log and 𝜎𝑚𝑎𝑥
′′  can be seen. The mica-rich sands (fine to medium) shows  

relatively higher 𝜎𝑚𝑎𝑥
′′  values. Interbedded thin clayey and silty layers (around 13m depth) in the  

Tertiary formation are characterized by the higher gamma peaks and correlates very well with a  

high 𝜎𝑚𝑎𝑥
′′ . The quartz sands shows only small variations in 𝜎𝑏𝑢𝑙𝑘 and 𝜎𝑚𝑎𝑥

′′ , which is also well  

supported by relatively low gamma count (~10 CPS). Overall, it can be seen that the lithological  

variations correlate well with 𝜎𝑚𝑎𝑥
′′ , which is a key parameter used for predicting k.  

3.3 Correlation between 𝑺𝒑𝒐𝒓 and 𝝈𝒎𝒂𝒙
′′   

In the laboratory, a robust relationship between  𝜎′′ and  𝑆𝑝𝑜𝑟 that explains multiple data sets was  

found [A. Weller et al., 2010]. Also, although no longer explicitly in the equations, the permeability  

prediction from  𝜎′′ is implicitly based on its correlation with 𝑆𝑝𝑜𝑟. Therefore, we investigate this  

relationship in El-log E1. Figure 6d shows the correlation between 𝑆𝑝𝑜𝑟 and 𝜎𝑚𝑎𝑥
′′ , corrected for  

water conductivity following equation (10). As observed from the cross plot, a single 𝐶𝑝 value  

cannot explain the specific polarizability of all sediment types. This discrepancy has also been  

observed in the laboratory-derived results presented by Andreas Weller et al. [2015b] who found  

that if 𝑆𝑝𝑜𝑟 is measured with the BET method, different values of 𝐶𝑝 are required to explain the  

relationship between 𝑆𝑝𝑜𝑟 and  𝜎′′. The relationships derived from their laboratory measurements  

for different 𝐶𝑝 values are shown for reference in Figure 6d. Andreas Weller et al. [2015b] found  

that sand mixed with muscovite and illite, has a higher 𝐶𝑝 value (24x10
-12 

S) than the common  

value of 𝐶𝑝 (10x10
-12 

s) suggested by A. Weller et al. [2010]. We observed the same trend for mica  

rich sands in our data. For quartz-clean sands Andreas Weller et al. [2015b] observed a lower 𝐶𝑝  
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value (5.8x10
-12 

S), which in our case is replicated by the glacial sands showing lower 𝐶𝑝 values,  

although they are not as uniform as the laboratory sands. Overall, the estimated 𝜎𝑚𝑎𝑥
′′  deviates from  

𝐶𝑝𝑆𝑝𝑜𝑟 less than one order of magnitude for most of the samples, suggesting that estimates of  

permeability within one order of magnitude can be expected from IP data in this study.  

3.4 Permeability estimation from El-log TD SIP measurements  

3.4.1 Effect of water conductivity  

Figure 7 shows the variability of the water conductivity 𝜎𝑊 measured in the three El-logs and its  

effect on the permeability estimates. In particular, the 𝜎𝑊 values measured on the screens close to  

the El-logs are shown together with: 𝜎𝑊 interpolated into depth-logs; the inverted 𝜎𝑏𝑢𝑙𝑘; the  

permeability, computed through equations (9) and (13); the confidence interval of the 𝜎𝑊  

correction, computed through equation (16); the water tables levels. The permeability estimates are  

shown only below the water table levels, because water saturation is required in equation (9). The  

𝜎𝑊 interpolation was performed individuating depth ranges of uniform conductivity based the 𝜎𝑏𝑢𝑙𝑘  

trends, and assigning the 𝜎𝑊 value of the nearest measurement. The confidence interval of the 𝜎𝑊  

correction, which practically comprises the permeability estimates without correction at all, is small  

when compared to the prediction quality of equation (9), i.e. 𝑈𝐹𝐼𝑃 =2.4 (equation 15). In particular,  

the 𝜎𝑊 correction is practically negligible in El-log E2, i.e. the El-log placed in the core of the  

landfill leachate plume, because there the water conductivity is relatively high, similar to the  

reference solution used in the laboratory measurements (i.e. 𝜎𝑓 = 100 𝑚𝑆/𝑚). In Figure 7 the  

water table levels are also shown:   

3.4.2 Comparison with ST and GSA estimates  

Permeability for all El-logs, computed using equation (9) and equation (13) with interpolated 𝜎𝑊  

depth-logs, is shown in Figure 8, together with the confidence limits derived from the total  

Uncertainty Factor 𝑈𝐹𝑡𝑜𝑡𝑎𝑙 of equation (20). Furthermore, Figure 8d shows a zoom-in of El-log E2,  
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where all the correction factors contributing to 𝑈𝐹𝑡𝑜𝑡𝑎𝑙 are also shown. In particular, it is seen that 

the smallest contribution to 𝑈𝐹𝑡𝑜𝑡𝑎𝑙 is due to 𝑈𝐹𝜎𝑊
 (equation 16), followed by 𝑈𝐹𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (equation 

19) and 𝑈𝐹𝐼𝑃 (equation 15). 

In all El-logs, permeability calculated using grain size analyses (GSA) and measured with slug-tests 

(ST) are shown for comparison. In E1, the IP-derived permeability agrees well with the GSA and 

ST estimates, both quantitatively and in terms of depth trend. Overall, the estimates are within one 

order of magnitude, except in the clay-rich sands at depths around 13.8 m (not shown in the figure), 

where smaller values are obtained from the grain size analysis (and where the applicability of the 

GSA formulae is questionable, due to the high clay content). Also around 6-10 m depth, the IP-

derived 𝑘 estimates show larger deviation from GSA estimates. However, in this interval the ST 

estimate shows closer correspondence to IP-derived 𝑘 values. Similar results can also be seen in the 

two other El-logs (E2 and E3). Furthermore, the ST permeability estimates fall always within the 

total uncertainty 𝑈𝐹𝑡𝑜𝑡𝑎𝑙 of the IP-derived estimates, and the GSA and IP-derived estimates almost 

always differ less than their combined uncertainties. Cross plots between k derived from GSA and 

ST and IP derived k are shown in Figure 9. Published data from Andreas Weller et al. [2015a], 

which encompass a wide range of unconsolidated sediments are also shown on the plot. Overall, it 

is seen that the permeability estimations from El-log TD SIP data show an agreement with the slug 

tests of quality comparable to that reported by Andreas Weller et al. [2015a] on laboratory data. The 

average deviations (equation 14) from the GSA k-estimates of El-log E1, E2 and E3 are 𝑑𝐸1,𝐺𝑆𝐴 =

0.85, 𝑑𝐸2,𝐺𝑆𝐴 = 0.63, 𝑑𝐸3,𝐺𝑆𝐴 = 0.70, respectively; the average deviation from the slug tests on all 

the El-logs is 𝑑𝑆𝑇 = 0.23. The average deviation from both GSA and slug tests all the El-logs is 

𝑑𝑡𝑜𝑡𝑎𝑙 = 0.679, practically identical to the average deviation 𝑑𝜎𝑊=𝜎𝑓
= 0.684 obtained when using 

the constant value 𝜎𝑊 = 𝜎𝑓 = 100 𝑚𝑆/𝑚 in equation (13), confirming the negligible effect of 𝜎𝑊 
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on the quality of the permeability estimation. For comparison, the average deviation found in  

Andreas Weller et al. [2015a] from laboratory measurements is 𝑑𝑙𝑎𝑏 = 0.39.  

4. Discussion  

IP-derived k values were compared with values obtained from GSA and slug tests. A better  

agreement was obtained between IP-derived k values and slug tests, than between IP and GSA  

estimates. When the grain size data are used, some data points fall outside of the bounds reported by  

Weller et al. [2015a].This likely reflects the limitations of the grain size estimates of permeability as  

much as the limitations of the IP methodology for k estimation. It is worth to note that values  

estimated from grain size analyses are based on a span of empirical equations, which give different  

permeability estimates. The variation of the GSA permeability estimates reflects the fact that the  

grain size distribution represents only one factor in permeability prediction: material with identical  

grain size distribution can be compacted in different ways resulting in different levels of packing,  

with varying porosity, and consequently varying permeability. On the contrary, IP spectra also  

depend on the packing procedure [Bairlein et al., 2014] and, in this sense, might be more accurate  

than the GSA analysis. Furthermore, the grain size analyses were performed on samples which not  

in all cases represent the actual geological layer due to losses during sampling (at least for the  

samples not retrieved from cores, i.e. Bh2 and Bh3). This would inevitably affect any k prediction  

which relies on empirical relationship with in-situ structures of the sediment. All this suggests that  

more trust should be put on the k values obtained through slug tests when evaluating the predictive  

quality of k from IP data, which were recorded in the undisturbed formation. In hindsight, it would  

have been better to design the survey with more slug tests than grain size analyses. Therefore, it is  

suggested that future studies expand the comparison to a larger data set of small-scale slug tests and  

other methods for in-situ permeability estimation [e.g., McCall et al., 2014].  
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El-log E2 is located very close to the leachate plume from the Grindsted landfill and has a  

significantly higher water electrical conductivity (50 to 192 mS/m) compared to E1 (17 to 52  

mS/m). Importantly, we found no evidence that the presence of the plume and the increased  

electrical conductivity affected the quality of k prediction from IP data, and the water-conductivity  

correction in the k-prediction itself is almost negligible, when compared to the other uncertainties in  

the estimation. This is important as a wide range of water electrical conductivities are found in  

unconsolidated sediments where this method would be useful, and especially in contaminated site  

investigations.  

In equation (13) 𝐶𝑓 accounts for the possible differences in ionic species in the reference and actual  

solution, but the lack of laboratory evidence on how to correct for solution with a variety of cations  

and anions prevented to apply the correction. The indication of A. Weller et al. [2011] about 𝐶𝑓 (i.e.  

𝐶𝑓 = 2 for CaCl2 and 𝐶𝑓 = 1 for NaCl), together with the exponent for 𝐶𝑓 in equation (13) (i.e.  

2.27), suggest a significant role of the chemical composition of the solution on the permeability  

prediction. Significant variations in inorganic water chemistry are present among the three  

boreholes, but also vertically in each borehole. Nevertheless, the quality of k prediction from IP data  

in the three El-logs is similar, without any significant bias, implying that 𝐶𝑓 for solutions with a  

variety of cations and anions might be close to 1. The data on the chemical composition of the water  

exist and is provided as supplementary document in table S1 in supplementary material: it will be  

possible to further analyze the data if new laboratory/theoretical evidence on 𝐶𝑓 will be presented.  

Another topic that deserves more investigation is the role of the IP spectral content on the  

permeability prediction. In this study a spectral inversion in terms of the BIC Cole-Cole model was  

performed, and the maximum imaginary conductivity 𝜎𝑚𝑎𝑥
′′  instead of  𝜎′′  at 1 Hz was used in the  

permeability estimation, mainly because 𝜎𝑚𝑎𝑥
′′  and  𝜎′′  at 1 Hz were very similar. However, the  

BIC Cole-Cole inversion allows for studying if better correlations exist between other parameters  
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retrieved from the IP spectrum (for instance the normalized chargeability 𝑚𝑛 also used in Weller et  

al. [2015a]) and the GSA/ST estimates. This topic will be investigated in future studies.  

Remarks should be made about the applicability of the proposed method with regard to site  

lithology and water saturation. Equations (9) and (13) are valid only for saturated unconsolidated  

sediments. Studies have been presented where a correction for water saturation was performed on  

the DC and imaginary conductivity for permeability estimation [e.g. Kemna et al., 2004], but the  

correction for water saturation and its general applicability is beyond the scope of this study.  

Regarding the site lithology, in Andreas Weller et al. [2015a] equations were proposed also for  

sandstones, but it was found that the formation factor, instead of the imaginary conductivity, exerts  

the dominant control on the permeability. This presents substantial challenges for the field-scale  

prediction of permeability from electric measurements, because an accurate estimation of the  

formation factor is required. The BIC modeling proposed in this study might help in this respect,  

because it separates the bulk conductivity from the DC surface conductivity, but its effectiveness  

has yet to be evaluated on surveys carried out on sandstones.  

Finally, a brief comment on the choice of the 𝜎′′ approach for permeability estimation instead of the  

approach based on the relaxation time [e.g. Revil et al., 2015]. This choice is a natural consequence  

of the uncertainties of the inversion parameters presented in Figure 4: 𝜎𝑚𝑎𝑥
′′  is much better resolved  

than 𝜏𝜎. This argument is even more important when considering that 𝜏𝜎 is much more difficult to  

be imaged from surface measurements instead of borehole measurements. Consequently, we believe  

that the 𝜎′′ approach is better suited for field applications.  

5. Conclusion  

In the present study, we have shown that TD SIP can be reliably used for estimating permeability of  

unconsolidated formations at field scale. For this purpose, high quality spectral TD SIP data were  

acquired in three boreholes using the El-log drilling technique. A full decay time domain inversion  
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algorithm employing a re-parameterized Cole-Cole model was used. Permeability was calculated by 

using the empirical relations for unconsolidated sediments found in the laboratory without any 

further calibration and the IP-derived k values were compared to those estimated by grain size 

analyses and measured by slug tests. The k-estimation from IP data correlates very closely with the 

slug test measurements and appears to be within one order of magnitude of k-estimates form grain 

size analyses data. This is a similar prediction quality as observed from laboratory measurements. 

Furthermore, the effect of pore water conductivity is weak in the laboratory-derived formula for the 

k estimates, and negligible when compared to the other uncertainties in the computations, because 

the combined influence on the bulk and imaginary conductivities almost cancels out the effect in the 

permeability estimation. This theoretical prediction was confirmed in our field results, in which 

equivalent quality of the permeability estimations was found in boreholes with significant 

differences in water conductivity, with and without taking into account the actual values of the 

water conductivity in the computations. These new findings pave the way for detailed and 

inexpensive mapping of permeability on saturated, unconsolidated sediments in the field, using both 

borehole and surface measurements techniques, including sites with high and varying pore water 

conductivity. 
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Figures

Figure 1. Location of the study area with positions of the El-logs shown with the black dots. The 

blue dot shows the position of the study site in the map of Denmark.  
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Figure 2. Sketch of principal components of the El-

log equipment; a=20 cm. 
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Figure 3. Spectrum of the BIC model computed using σbulk = 10 mS/m,  σmax
′′ = 0.1 mS/m, τσ =

0.1 s and C = 0.5. a) real conductivity  σ′(black curve), obtained as the sum of the bulk 

conductivity σbulk (magenta curve) and the surface real conductivity σsurf
′ . The water conductivity 

value σw with formation factor F=5 is also shown. b) imaginary conductivity  σ′′. Modified from 

Maurya et al. [2018]. 
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Figure 4. Inversion models for El-log E1 (top), E2 (middle) and E3 (bottom). All four inversion  

parameters are shown in the four figure columns (thick black lines), together with the confidence  

interval defined through equation (17) (thin black lines). In the second column, the imaginary  

conductivity  𝜎′′(𝑓 = 1 𝐻𝑧), computed from the parameters {𝜎𝑚𝑎𝑥
′′  , 𝜏𝜎 , 𝐶}, is shown in red (but  

 𝜎′′(𝑓 = 1 𝐻𝑧) is visible only where it differs significantly from 𝜎𝑚𝑎𝑥
′′ ).  
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Figure 5. Data for the three El-logs (red markers: E1; magenta markers: E2; blue markers: E3) and 

corresponding data fits (black lines). a) Apparent resistivity data and fit. b) IP decays and fit with 

current electrode C1 (see Figure 2) at depth=5 m. c) IP decays and fit with current electrode C1 at 

depth=25 m.  
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Figure 6. a) Gamma log measured in El-log-E1 and corresponding lithological log from Sc1, b) 

maximum imaginary conductivity, 𝝈′′𝒎𝒂𝒙 c) Bulk conductivity  𝝈𝐛𝐮𝐥𝐤.The thin lines, left and right 

side of both parameters represent the lower and upper error bounds estimated from equation (17) d) 

Correlation between imaginary conductivity (𝝈′′𝒎𝒂𝒙), corrected for water conductivity, and 𝑺𝒑𝒐𝒓 

measured in E1. The thin dashed black line shows the deviation of one order of magnitude from the 

 𝑪𝒑=10x10
-12

S line. 
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Figure 7. Effect of water conductivity 𝜎𝑊 on permeability estimation for: a) El-log E1; b) El-log  

E2; c) El-log E3. Green triangles: 𝜎𝑊 measured in screens. Continuous red lines: interpolated 𝜎𝑊  

depth-logs. Dashed red lines: 𝜎𝑏𝑢𝑙𝑘 retrieved from the BIC inversions. Black lines: permeability  

𝑘𝐼𝑃. Green lines: 𝑘𝐼𝑃 limits due to the correction for water conductivity (equation 16). Dashed blue  

lines: water table levels.  
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Figure 8. Vertical Permeability 𝑘𝐼𝑃 logs, estimated using equation (9) and (13), in: a) El-log E1; b)  

El-log E2; c) El-log E3. d) zoom-in of El-log E2. Thick continuous black lines: 𝑘𝐼𝑃 estimation.  

Green lines: 𝑘𝐼𝑃 limits due to the correction for water conductivity (equation 16). Thin black lines:  

𝑘𝐼𝑃 limits due to the inversion uncertainty (equation 19). Magenta lines: 𝑘𝐼𝑃 limits due to the  

uncertainty on the petrophysical empirical formula (equation 15). Dashed black lines: 𝑘𝐼𝑃 limits due  

to the total uncertainty (equation 20). Dashed blue lines: water table levels. The horizontal error  

bars show the estimated uncertainty in grain size estimated k. The vertical error bar in slug-test  

estimates shows top and bottom of the screen used for measurements. In Sc1 the permeability of a  

GSA sample around 13.8 m is 4.70 × 10−17 and is not shown in the plot.  
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Figure 9. Cross plots between measured k (𝒌𝒎𝒆𝒂𝒔), (from grain size analyses and slug tests, Bh1-3,  

and Sc1) and IP derived k (𝒌𝑰𝑷) for El-logs E1, E2 and E3 using equations (9) and (13). Dashed  

lines show deviation of one order of magnitude.  
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