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The hydrodynamic Drude model (HDM) has been successful in describing the optical properties of metallic
nanostructures, but for semiconductors where several different kinds of charge carriers are present an extended
theory is required. We present a two-fluid hydrodynamic model for semiconductors containing electrons and holes
(from thermal or external excitation) or light and heavy holes (in p-doped materials). The two-fluid model predicts
the existence of two longitudinal modes, an acoustic and an optical, whereas only an optical mode is present in
the HDM. By extending nonlocal Mie theory to two plasmas, we are able to simulate the optical properties of
two-fluid nanospheres and predict that the acoustic mode gives rise to peaks in the extinction spectra that are
absent in the HDM.

DOI: 10.1103/PhysRevB.97.115415

I. INTRODUCTION

Plasmonics, the study of collective excitations of elec-
trons, takes place on ever smaller scales as fabrication and
characterization techniques continue to improve. While this
allows for the design of entirely new devices and materials
with promising properties, it also requires improved theoretical
tools to properly model the systems.

Metals, by far the most widely used plasmonic materials,
are often described very accurately by the Drude model. But
when the sizes approach the nanoscale, the model is no longer
able to explain experimentally observable phenomena like,
for example, the blueshift of the resonance frequency of the
localized surface plasmon (LSP) in metallic nanospheres [1].
An improved model that has been successful in describing
the optical properties of metals on the nanoscale is the
hydrodynamic Drude model (HDM) [2–12]. In this model,
the polarization depends nonlocally on the electrical field,
and the aforementioned blueshift appears as a size-dependent
nonlocal effect [7,13,14]. Furthermore, the HDM also predicts
the existence of confined bulk plasmons in nanoparticles [5,7],
something that also has been found experimentally [15].

While metals are the most commonly used plasmonic
materials because of their large density of free electrons,
semiconductors are also interesting due to the tunability of
the electron density, either statically by doping or dynamically
by applying a bias. Furthermore, intrinsic semiconductors
may contain plasmas created either thermally or by external
excitations (e.g., from a laser), and here the electron density
can be controlled dynamically with the temperature or the
excitation energy, respectively. Plasmonics has already been
shown in several papers for doped semiconductors [16–28],
biased semiconductors [29–32], laser excited semiconductors
[33], and thermally excited intrinsic semiconductors [34–37].

Among these studies, Refs. [24–30] investigated plas-
mons in nanostructures of semiconductors, but except for
Refs. [27,29] they all used the Drude model to describe their

results. And just as for metals one would expect that the Drude
model only is accurate for semiconductor structures down
to a certain size. Now, it is well known that semiconductor
particles of only a few nanometers behave as quantum dots, but
in the intermediate size regime between structures described
by the Drude model and quantum dots a different theoretical
framework is needed (see, e.g., Refs. [38–40]).

Recently we made a case for applying the HDM to semi-
conductor structures in the mentioned intermediate size regime
[41]. In that paper, we adapted the HDM to nanospheres made
of doped semiconductors and intrinsic semiconductors with
thermally excited charge carriers. In both cases we found
that the nonlocal blueshift was even more pronounced than
in metals and occurred in larger particles. In essence, this can
be attributed to the increased Fermi wavelength and smaller
effective mass in semiconductors, as compared to that in
metals. Based on the HDM we also predicted the existence
of standing bulk plasmons above the plasma frequency in
semiconductors, and very recently these resonances were mea-
sured by de Ceglia et al. [42] in doped semiconductors. These
interesting new developments are no doubt only the beginning
of a series of investigations of hydrodynamic behavior in
various semiconductor structures.

In the present paper, we propose an extension of the
HDM for semiconductors. In Ref. [41] we assumed that only
electrons were present as charge carriers (and so did de Ceglia
et al. [42]), and due to the generally smaller effective mass
of the electrons compared to the holes this is a reasonable
approximation whenever electrons are present as majority
charge carriers. In general, however, semiconductors may
contain several different kinds of charge carriers such as
electrons, heavy holes, and light holes, and ideally all should
be taken into account. Therefore, the aim of this paper is to
develop a hydrodynamic model for materials containing more
than one kind of charge carrier. We will restrict ourselves
to include only two different types of charge carriers, e.g.,
electrons and holes or heavy and light holes, and call the model
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the hydrodynamic two-fluid model (as opposed to the HDM
which contains only one hydrodynamic fluid). Other models
that include multiple charge carriers already exist in the form
of transport equations [43,44], and quantum-mechanical and
semiclassical theories [45–50]. And while Ref. [47] briefly
considers the hydrodynamic model for a two-fluid system,
we will here present a more detailed analysis of the optical
properties as well as consider finite systems. Our extension
of a single fluid (appropriate for majority-carrier systems)
to a two-fluid description shows interesting phenomena be-
yond the independent-fluids approximation that constitute an
integral part of the local-response electrodynamics of doped
semiconductors, i.e., the mere addition of electron and hole
conductivities [44].

In the next section, we will present the theoretical foun-
dation for the two-fluid model, which will then be supported
by a microscopic derivation in Sec. III. In Sec. IV we will
discuss some of the general properties of the model, while in
Sec. V we will focus on systems of spherical geometry and
derive extended versions of the Mie coefficients that take two
hydrodynamic fluids into account. These coefficients will be
used in Sec. VI, where the optical properties of semiconductor
nanoparticles will be calculated.

II. THE MODEL

In the traditional HDM, the electrical field and the current
density are determined by a wave equation and a hydrodynamic
equation of motion [9]. A natural extension to the HDM is
therefore to include multiple hydrodynamic plasmas, each
described with a hydrodynamic equation of motion. In the
model presented here, we will consider two different kinds of
charge carriers (or fluids), such as electrons and holes or light
and heavy holes. The governing equations for the two-fluid
model are therefore

β2
a

ω2 + iγaω
∇(∇ · Ja) + Ja = iωε0ω

2
a

ω2 + iγaω
E, (1a)

β2
b

ω2 + iγbω
∇(∇ · Jb) + Jb = iωε0ω

2
b

ω2 + iγbω
E, (1b)

−∇ × ∇ × E + ω2

c2
ε∞E = −iμ0ω(Ja + Jb), (1c)

where Eqs. (1a) and (1b) are the linearized hydrodynamic
equations of motion related to the charge carriers a and b,
respectively, and Eq. (1c) is the wave equation originating from
Maxwell’s equations. Here ωa and ωb are the plasma frequen-
cies for the two fluids, γa and γb are the damping constants,
and βa and βb are the nonlocal parameters. Note that if one of
the current densities is set to zero (whereby the corresponding
hydrodynamic equation can be removed) the equations reduce
to the original equations of the HDM [see Eqs. (15) in Ref. [9]].
Although not considered here, it is also clear that the model
easily could be extended to more than two types of charge
carriers.

The real-space equations will be the starting point for most
practical problems, but it can also be instructive to look in
the reciprocal space as well. If the material is assumed to be

infinite, the spacial Fourier transforms of Eqs. (1) are [51]

− β2
i

ω2 + iγiω
q(q · Ji) + Ji = iωε0ω

2
i

ω2 + iγiω
E, (2)

q × q × E + ω2

c2
ε∞E = −iμ0ω(Ja + Jb), (3)

where q is the wave vector and i = a,b. Let us now consider
the transversal and the longitudinal parts of the field separately.
Starting with the transversal, or divergence-free, part of the
field, this has the property q · ET = 0 (and similarly for JT

a and
JT

b ). This also means that q × q × ET = −q2ET , and Eqs. (3)
and (2) can be combined to

q2 =
(

ε∞ − ω2
a

ω2 + iγaω
− ω2

b

ω2 + iγbω

)
ω2

c2
. (4)

From the relation εT ω2/c2 = q2 we now see that the transver-
sal dielectric function is given by

εT (ω) = ε∞ − ω2
a

ω2 + iγaω
− ω2

b

ω2 + iγbω
. (5)

The longitudinal, or rotation-free, part of the field has the
property q × EL = 0 (and similarly for JL

a and JL
b ). This means

that q(q · JL
i ) = q2JL

i , and Eqs. (3) and (2) give us

0 = ε∞ − ω2
a

ω2 + iγaω − β2
aq

2
− ω2

b

ω2 + iγbω − β2
bq

2
. (6)

From the relation εL = 0 we now see that the longitudinal
dielectric function is given by

εL(q,ω) = ε∞ − ω2
a

ω2 + iγaω − β2
aq

2
− ω2

b

ω2 + iγbω − β2
bq

2
.

(7)

We here see that εL is nonlocal (i.e., depends on the wave
number q), while εT is local. This can be compared with the
dielectric functions of the single-fluid HDM [51]:

εT (ω) = ε∞ − ω2
p

ω2 + iγ ω
, (8a)

εL(q,ω) = ε∞ − ω2
p

ω2 + iγ ω − β2q2
, (8b)

where εT and εL also are local and nonlocal, respectively.
For the two-fluid model, we notice that if the fluids have the

same γ ’s and β’s then the plasma frequencies in the nominators
of Eqs. (5) and (7) could be combined into a single effective
parameter given by

ω2
eff = ω2

a + ω2
b, (9)

whereby the expressions for εT and εL become equal to
Eqs. (8a) and (8b), respectively. In other words, a two-fluid
system can effectively be described by the single-fluid HDM
whenever both γa = γb and βa = βb.

III. MICROSCOPICAL FOUNDATION

In this section, we will show that the expression for εL

in the two-fluid model in fact can be derived from quantum
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mechanics by using a slightly modified version of the Lind-
hard approximation. We will consider a system of fermions
described by the Hamiltonian H0 subject to a perturbation of
the form

H1 = U0e
i(q·r−ωt) + U ∗

0 e−i(q·r−ωt), (10)

where U0 is the amplitude of the perturbation. According to
Fermi’s “golden rule,” this results in the following expression
for the longitudinal dielectric function [52]:

εL(q,ω) = 1 + 2e2

ε0q2

1

V

∑
αβ

|〈ψβ |eiq·r|ψα〉|2
Eβ − Eα − h̄ω − iη

× [f (Eα) − f (Eβ)], (11)

where V is the volume, e is the elementary charge, and E is the
energy (the electrical field is not used in this section so there
is no risk of confusion). The excitation takes place between
the states |ψα〉 and |ψβ〉, the function f is the Fermi-Dirac
distribution, and η is a small real number originating from the
Dirac identity [52].

We will now apply the Lindhard approximation in which
the bands are assumed to be isotropic and perfectly parabolic
and the wave functions are plane waves. This means that
the matrix element in εL(q,ω) equals 1 when the excitation
is from k to k + q and zero otherwise. But different from
the typical Lindhard approximation in which only a single
band is taken into account, we will here include two bands
in the derivation. Excitations between these two bands are
neglected, however, which is a reasonable approximation when
considering energies smaller than the band gap. The result is

εL(q,ω) = 1 + χa(q,ω) + χb(q,ω), (12)

where the susceptibilities for bands a and b are given by

χi(q,ω) = 2e2

ε0q2

1

V

∑
k

fi(k) − fi(k + q)

Ei(k + q) − Ei(k) − h̄ω − iη
.

(13)

In Appendix A we show that in the q → 0 limit Eq. (13)
can be rewritten as

χi(q,ω) = − ω2
i

ω2 + iγ ω
− ω2

i

(ω2 + iγ ω)2
β2

i q
2 − . . . , (14)

where γ is the damping constant and the plasma frequencies
are given by

ω2
i = e2ni

ε0m
∗
i

. (15)

Here ni and m∗
i are the charge-carrier density and the effective

mass, respectively, of band i. The nonlocal parameter βi

depends on the nature of the charge carriers. In this paper we
will consider them to be electrons and holes in an intrinsic
semiconductor originating either from thermal excitation or
laser excitation across the band gap, or heavy and light holes
in a p-doped semiconductor. As shown in Appendix A, the
nonlocal parameter is in these cases given by

Thermally excited
charge carriers β2

i = 3kBT

m∗
i

, (16)

Laser excited charge carriers
Heavy and light holes β2

i = 3k2
Fi h̄

2

5m∗2
i

= 3

5
v2

Fi,

(17)

where T is the temperature, kB is Boltzmann’s constant,
and kFi and vFi are the Fermi wave number and the Fermi
velocity, respectively, of band i. For thermally excited charge
carriers, it has been assumed that the temperature is low enough
for the Fermi-Dirac distribution to be approximated by the
Boltzmann distribution (see Appendix A). For laser-excited
charge carriers and heavy and light holes, the distribution has
been approximated with a step function. This also means that a
quasiequilibrium is assumed to form in the laser-excited semi-
conductor. Expressions for ni and kFi are found in Appendix B.

If we assume that β2
i q

2 � ω2 + iγ ω, then the expression
in Eq. (14) can be rewritten by using the fact that it resembles a
geometric series to first order. Together with Eq. (12), we then
find that the longitudinal dielectric function is given by

εL(q,ω) = 1 − ω2
a

ω2 + iγ ω − β2
aq

2
− ω2

b

ω2 + iγ ω − β2
bq

2
,

(18)

which is almost identical to Eq. (7) from previous section.
The main difference is the presence of ε∞ in Eq. (7) which
contains the interband transitions. This parameter is simply
added “by hand,” and the value can often be found as a constant
in data books. The second discrepancy is the damping constant
γ which in Eq. (7) is different for the two charge carriers. Since
the charge carriers are expected to have different mobilities μa

and μb, and the damping constants are related to the mobilities
by [53]

γi = e

m∗
i,condμi

, (19)

we will allow γi to assume different values for the two charge
carriers. Note that the effective mass entering Eq. (19) is the
conductivity effective mass, while m∗

i used in Eqs. (15)–(17) is
the density-of-states effective mass.

The parameters ωi , βi , and γi will in general be different
for the two fluids, but there are situations where they coincide.
An intrinsic semiconductor with identical effective masses and
mobilities of electrons and holes would according to Eqs. (15)
and (16) have the same plasma frequency, β and γ for the two
fluids. A more typical semiconductor where m∗

e < m∗
h could

also be modulated to obtain βe = βh by combining p doping
and laser excitation. A larger density of holes would then be
used to compensate for the fact that they are heavier than
electrons, and obtaining m∗

h/m∗
e = kFh/kFe would according

to Eq. (17) result in identical β’s [note that k3
Fi = 3π2ni

according to Eq. (A6)].

IV. BULK AND GENERAL PROPERTIES

In this section, we will analyze some of the general proper-
ties of the two-fluid model as well as properties related to the
infinite medium. The vector wave equations derived here will
also be used in Sec. V.
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A. Normal modes

For the single-fluid HDM, it has been found useful to
derive a set of homogeneous equations for the transversal
and longitudinal components of the current density [54] as
originally introduced by Boardman and Paranjape [55]. We
will accordingly derive a set of Boardman equations for the
two-fluid model. The first step is to apply either the curl or the
divergence to Eqs. (1) whereby a set of equations is obtained
for either the transversal or the longitudinal fields, respectively.
This is shown in Appendix C using a compact matrix notation.
Secondly, we introduce the following linear relations for both
transversal (T ) and longitudinal (L) current densities:

Jz
a = az

1Jz
1 + az

2Jz
2, (20a)

Jz
b = bz

1Jz
1 + bz

2Jz
2, (20b)

where z = T ,L. Notice that all current densities share the prop-
erties ∇ × J = ∇ × JT and ∇ · J = ∇ · JL. We now require
that J1 is independent of J2, which results in eight equations
in total: For both curl and divergence we get two for both J1

and J2. The four equations for the longitudinal fields

[
β2

a∇2 + ω(ω + iγa) − ω2
a

ε∞

(
1 + bL

j

aL
j

)]
∇ · Jj = 0,

(21a)[
β2

b∇2 + ω(ω + iγb) − ω2
b

ε∞

(
1 + aL

j

bL
j

)]
∇ · Jj = 0

(21b)

with j = 1,2 are the Boardman equations for the divergence.
The four equations for the transversal fields

[
c2∇2 + ω2ε∞ − ω2ω2

a

ω(ω + iγa)

(
1 + bT

j

aT
j

)]
∇ × Jj = 0,

(22a)[
c2∇2 + ω2ε∞ − ω2ω2

b

ω(ω + iγb)

(
1 + aT

j

bT
j

)]
∇ × Jj = 0

(22b)

are the Boardman equations for the curl. The Boardman
equations are useful tools when finding the current densities
and the electrical fields, and below we use the Boardman
equations for the divergence to find the dispersion relations
for the longitudinal fields.

B. Vector wave equation

When solving Maxwell’s equations for any geometry, such
as the spherically symmetric systems considered in Sec. V, a
suitable starting point is the vector wave equation. Therefore
we will now derive the vector wave equation for both the
transversal and the longitudinal electrical fields and simulta-
neously find the dispersion relations.

Considering purely transversal fields, Eqs. (1) become

JT
i = iωε0ω

2
i

ω2 + iγiω
ET i = a,b, (23)

∇2ET + ω2

c2
ε∞ET = −iμ0ω

(
JT

a + JT
b

)
, (24)

which can be combined directly into the vector wave equation
for the transversal field

∇2ET + k2
T ET = 0, (25)

where the transversal wave number is given by

k2
T = ω2

c2

(
ε∞ − ω2

a

ω2 + iγaω
− ω2

b

ω2 + iγbω

)
. (26)

Notice that this is consistent with the expression for εT in
Sec. II, but differs from that by being valid for any geometry
(and not just for the infinite case).

Deriving the vector wave equation for the longitudinal
field requires a slightly different procedure. Turning to the
Boardman equations (21a) and (21b) with j = 1, we notice
that they both have the form

(∇2 + k2)∇ · J1 = 0. (27)

This also means that the variable k must be the same in both
cases

k2 = ω(ω + iγa)

β2
a

− ω2
a

β2
a ε∞

(
1 + bL

1

aL
1

)

= ω(ω + iγb)

β2
b

− ω2
b

β2
b ε∞

(
1 + aL

1

bL
1

)
. (28)

From this we find an expression for the ratio bL
1 /aL

1 which we
will call αL

1 :

bL
1

aL
1

= αL
1 = β2

a ε∞
ω2

a

1

2

(
k2
a − k2

b

∓
√(

k2
a − k2

b

)2 + 4ω2
aω

2
b

β2
aβ

2
b ε

2∞

)
,

k2
i =

(
ω(ω + iγi) − ω2

i

ε∞

)
1

β2
i

i = a,b. (29)

Now, the same procedure can be carried out for Eqs. (21a)
and (21b) with j = 2, and this gives us instead αL

2 = bL
2 /aL

2 .
However, the expression for αL

2 is exactly the same as the one
for αL

1 because the Boardman equations for the divergence of
J1 and J2 are the same. Although this seems strange, it is in fact
exactly what we would expect: since we have put no restraints
on ∇ · J1 and ∇ · J2 (or equivalently JL

1 and JL
2 ), they each

have to contain both solutions [“+” and “−” in Eq. (29)]. We
can therefore chose αL

1 as the “−” solution and αL
2 as the “+”

solution (and this will be done henceforth).
We can also obtain an expression for k2 by inserting either

αL
1 or αL

2 back into Eq. (28). The result is two different wave
numbers belonging to JL

1 and JL
2 , respectively:

k2

L,
1
2

= 1

2

(
k2
a + k2

b ±
√(

k2
a − k2

b

)2 + 4ω2
aω

2
b

β2
aβ

2
b ε

2∞

)
. (30)
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FIG. 1. The dispersion relations of the optical mode (blue lines)
and the acoustic mode (red lines). The full and dashed lines show the
real and imaginary components, respectively, of kL,j . The parameters
are ωb/ωa = 2, βb/βa = 4, γa = γb = 0.01ωa , and ε∞ = 1. Notice
that the optical mode has a finite imaginary component (i.e., is
damped) below ωeff/ε

1/2
∞ . Due to the small damping constants, the

red dashed line lies almost exactly on top of the y axis.

Here k has been given the subscript “L,” because it turns out
that this is in fact the longitudinal wave number. This can be
seen by taking the divergence of Ampere’s law and defining
the longitudinal fields EL

1 and EL
2 where EL

j ∝ JL
j . Introducing

this into Eq. (27) we find

∇2EL
j + k2

L,j EL
j = 0 j = 1,2, (31)

which is the sought vector wave equation for the longitudinal
fields.

C. Dispersion for an infinite medium

With Eq. (30) we are now in a position to plot the dispersion
relations for the longitudinal modes kL,j (ω) for an infinite
medium. In Fig. 1 we show kL,j (ω)βa/ωa as a function of
ω/ωa , and we notice that the two modes (j = 1,2) have very
different appearances. The mode kL,1(ω) follows almost a
straight line, while kL,2(ω) is real-valued above a line given
by ωeff/ε

1/2
∞ with ω2

eff = ω2
a + ω2

b and imaginary (damped)
below it. Because the j = 2 mode has nonzero ω for kL,2 ≈ 0,
it can be excited by electromagnetic radiation, and for that
reason it is denoted the optical mode. The j = 1 mode is
denoted the acoustic mode, and unless methods for momentum
matching are applied it cannot be excited by electromagnetic
radiation. The appearance of an optical and an acoustic branch
in systems with two different kinds of charge carriers has been
observed before in random-phase-approximation models for
infinite media [45,48,49]. Here we have found the formation
of an optical and an acoustic mode in a two-fluid hydrodynamic
model for an infinite medium, something that was briefly
touched upon by Schaefer and von Baltz [47]. In Sec. VI we
will analyze both modes in finite systems.

The graphical presentation in Fig. 1 can be supported by
making approximations to Eq. (30). By isolating the frequency

such that we obtain ωj (k), and taking the limit k → 0, we get
the following expressions (ignoring loss):

ω2
1(k) ≈ ω2

bβ
2
a + ω2

aβ
2
b

ω2
eff

k2, (32a)

ω2
2(k) ≈ ω2

eff

ε∞
+ ω2

aβ
2
a + ω2

bβ
2
b

ω2
eff

k2. (32b)

Here it is clear that the acoustic mode (ω1) has a linear
dependence on k, while the optical mode (ω2) mainly is
imaginary below the line ωeff/ε

1/2
∞ .

In Fig. 1 we also see that Im(kL,2) is cut off at
Im(kL,2)βa/ωa ≈ 1.1 for ω = 0. More generally the cutoff
value is Im(kL,2) = (ω2

a/β
2
a + ω2

b/β
2
b )1/2/ε

1/2
∞ as follows from

Eq. (30). This is no unique property of the two-fluid model,
and the single-fluid HDM has a similar cutoff at ωp/(βε

1/2
∞ )

[see the expression for kL below Eq. (37) in Sec. V].
That the model contains two longitudinal modes follows

directly from the fact that it includes two different kinds of
charge carriers. It can be compared with the single-fluid HDM
that only has one longitudinal mode. This is an optical mode,
i.e., damped below a certain frequency, and for this reason
no longitudinal excitations are expected in this low-frequency
region [54]. The two-fluid model, on the other hand, also
has an acoustic mode which in principle could give rise to
excitations below ωeff/ε

1/2
∞ . In Sec. VI we will consider the

optical properties of spherical particles. There we will see that
peaks indeed emerge in the spectrum below the dipole LSP as
a direct consequence of the acoustic mode. In that section we
will also show that at higher frequencies the two fluids will
decouple, and the optical response then will resemble that of
two independent charge-carrier species.

V. EXTENDED MIE THEORY

We wish to analyze the two-fluid model for finite systems,
and in this paper we will focus on spherically symmetric
systems. Maxwell’s equations were originally solved for
transversal waves in spherical geometry by Mie [56], and
Ruppin later found a solution including longitudinal waves
[57] which has been used together with the HDM for spherical
metal particles [5,7,58]. The addition of a second longitudinal
wave, however, results in a different system of equations, and
here we will derive the Mie coefficients for the two-fluid model.

In spherical geometry, the general solutions to the transver-
sal wave equation [Eq. (25)] are me

oml and ne
oml , and the

solutions to the longitudinal wave equation [Eq. (31)] are le
oml

[59]. Here “e” and “o” are short-hand notation for even and
odd, and m and l are integers for which m � l holds. We
now consider a typical experimental scenario where a plane
wave Ei is incident on a spherical particle which results in
a wave scattered (or reflected) from the particle Er and a
wave transmitted into the particle Et . Because the functions
me

oml(kT ,r), ne
oml(kT ,r), and le

oml(kL,j ,r) form a complete basis,
any wave can be written as a linear combination of these. For
an x-polarized plane wave propagating in the z direction, it can
be shown that the linear combination only uses functions of the
forms mo1l , ne1l , and le1l [59]. Furthermore, we will assume
that the exterior medium is purely dielectric, which means that
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the incident and reflected fields can be written in terms of mo1l

and ne1l alone. This means that

Ei(r,t)

= E0e
−iωt

∑
l=1

il
2l + 1

l(l + 1)

(
m(1)

o1l(kD,r) − in(1)
e1l(kD,r)

)
,

(33)

Er (r,t)

= E0e
−iωt

∑
l=1

il
2l + 1

l(l + 1)

(
ar

l m(3)
o1l(kD,r) − ibr

l n(3)
e1l(kD,r)

)
,

(34)

where kD = ε
1/2
D ω/c and εD is the permittivity of the sur-

rounding dielectric. The superscripts 1 and 3 indicate that
the contained spherical Bessel functions are Bessel functions
of the first kind (jl) and Hankel functions of the first kind
(h(1)

l ), respectively. The expansion coefficients ar
l and br

l in
the reflected field are known as the Mie coefficients, and the
primary goal in this section is to obtain expressions for these.

The transmitted field (i.e., inside the sphere) contains, in
addition to the transversal fields, two different longitudinal
fields:

Et (r,t)

= E0e
−iωt

∑
l=1

il
2l + 1

l(l + 1)

(
at

l m
(1)
o1l(kT ,r) − ibt

l n
(1)
e1l(kT ,r)

+ ct
1l l

(1)
e1l(kL,1,r) + ct

2l l
(1)
e1l(kL,2,r)

)
, (35)

where kT and kL,j are given by Eqs. (26) and (30), respectively.
To find the Mie coefficients, a set of suitable boundary

conditions (BCs) must be provided. By requiring that the fields
satisfy Maxwell’s equations and are finite at boundaries, it is
found that the parallel components of the electrical and the
magnetic fields are continuous, i.e., �E‖ = 0 and �B‖ = 0.
While these Maxwell BCs are sufficient in the local-response
solution, additional BCs are needed in the two-fluid model.
A similar problem was encountered in the HDM where it
was found that one additional BC was needed. A physically
meaningful BC that is widely used in the HDM is J⊥ = 0,
which implies that the charge carriers cannot leave the surface
[9]. The two-fluid model requires two additional BCs, and
here we will use the conditions Jb,⊥ = 0 and Ja,⊥ = 0. (or
equivalently J1,⊥ = 0 and J2,⊥ = 0).

Given these BCs, we obtain the system of linear equations
presented in Appendix D from which a

r,t
l , b

r,t
l , and ct

j l can be
found. The ar

l and br
l coefficients, which are of primary interest,

are given by

ar
l = −jl(xD)[xT jl(xT )]′ + jl(xT )[xDjl(xD)]′

h
(1)
l (xD)[xT jl(xT )]′ − jl(xT )

[
xDh

(1)
l (xD)

]′ , (36a)

br
l = −εDjl(xD)(�l+[xT jl(xT )]′)+εT jl(xT )[xDjl(xD)]′

εDh
(1)
l (xD)(�l+[xT jl(xT )]′)−εT jl(xT )

[
xDh

(1)
l (xD)

]′ ,
(36b)

where xD = RkD and xT = RkT . The differentiation (denoted
with the prime) is with respect to the argument. The parameter

�l is given by

�l = jl(xT )l(l + 1)

A

(
jl(x1)C2

x1j
′
l (x1)

− jl(x2)C1

x2j
′
l (x2)

)
, (36c)

where xj = RkL,j and

Cj = ω2
aε∞k2

L,j

β2
a

(
1 + 1

αL
j

) − ω2
bε∞k2

L,j

β2
b

(
1 + αL

j

) , (36d)

A = (ω2 + iγaω)(ω2 + iγbω)
(
αL

1 − αL
2

)
β2

aβ
2
b

(
1 + αL

1

)(
1 + αL

2

) , (36e)

and αj is defined in Eq. (29). The coefficients ar
l are related to

oscillations of the magnetic type, and the expression is identical
to the one found in the classical local derivation [59]. The
coefficients br

l are related to oscillations of the electrical type,
and the expression is different from the local result unless
the nonlocal parameter �l is set to zero. It should also be
mentioned that the formula for br

l is identical to the one found
for the single-fluid HDM [57,58], except that there �l is given
by [58]

�l = jl(xT )jl(xL)l(l + 1)

xLj ′
l (xL)

(
εT

ε∞
− 1

)
, (37)

where xT = Rε
1/2
T ω/c and εT is given by Eq. (8a). Also defined

is the dimensionless parameter xL = RkL where kL = (ω2 +
iγ ω − ω2

p/ε∞)1/2/β.
When the expressions for ar

l and br
l have been found, the

extinction cross section is easily calculated with [59]

σext = −2π

k2
D

∑
l=1

(2l + 1)Re(ar
l + br

l ). (38)

In the next section, Eq. (38) will be used to find the extinction
spectra of nanospheres in the two-fluid model.

VI. NUMERICAL RESULTS

In this section, we will present some numerical simulations
of the optical properties of both realistic and artificial materials
containing two-fluid systems.

A. Features in the extinction spectrum

First we will analyze the artificial material “semiconduc-
tor A” with the parameters ωa = 3.6 × 1014 s−1, ωb = 1.8 ×
1014 s−1, γa = γb = 1.0 × 1012 s−1, βa = 4.3 × 105 m s−1,
βb = 1.4 × 105 m s−1, and ε∞ = 5. As we will see later, these
parameters are comparable to those of a realistic semiconduc-
tor with the exception of the damping constants which have
been set low to make the characteristic features of the spectrum
clear. We will now consider a spherical particle of this material
with R = 10 nm surrounded by vacuum (εD = 1). Equation
(38) then gives us the extinction cross section which is shown
with the solid line in Fig. 2(a) as a function of the relative
frequency ω/ωeff where ω2

eff = ω2
a + ω2

b. The spectrum has
been normalized with σgeom = πR2.

The large peak situated around ω/ωeff = 0.4 can be recog-
nized as the dipole LSP resonance, ωLSP, which is also present
in the classical local result. However, the peak is shifted to
higher frequencies in the two-fluid model as can be seen in the
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FIG. 2. (a) The extinction spectrum for semiconductor A (see
parameters in the main text) with R = 10 nm and εD = 1. The
spectrum has been normalized with σgeom = πR2. The dashed line
is the local Drude model, and the full line is the two-fluid model.
(b) The same spectrum plotted with the logarithmic y axis. The bulk
plasmon peaks are labeled with [j,n], while the first acoustic peak
and the LSP peak are indicated with “X” and “Y,” respectively.

figure by comparing with the local Drude model shown with
a dashed line. The local result was found by setting �l = 0 in
Eq. (36b). This blueshift is a well-known nonlocal effect that
is also observed in the single-fluid HDM for both metals [7,13]
and semiconductors [41]. There it is found that the blueshift
increases as the particle radius is reduced.

In Fig. 2(a) we also see small peaks that appear to be present
only in the nonlocal model. To investigate this further, the
extinction spectrum is shown again in Fig. 2(b) in a semiloga-
rithmic plot. Now the peaks have become more visible, and
several even smaller peaks have appeared. Apart from the
LSP resonance, none of these peaks are present in the local
solution and, as we will show later, several are not present in
the single-fluid HDM either.

To understand the nature of these resonances, we will
consider wavelengths much larger than the particle whereby
all the Mie coefficients in Eq. (36b) except br

1 are reduced
to zero (see Ref. [59]). Now, when looking for frequencies
where the expression diverges, we notice that this occurs
whenever j ′

1(x1)j ′
1(x2) in the denominator of �1 vanishes.

If we consider the high-frequency region, we can introduce
the following large-argument approximation for the spherical
Bessel functions [59]:

jl(xj ) ≈ 1

xj

cos

(
xj − l + 1

2
π

)
, (39)

and we find that the condition j ′
1(x1)j ′

1(x2) = 0 is approx-
imately fulfilled whenever xj = πn with j = 1,2 and n =
1,2, . . .. The expression for kL,j in Eq. (30) can also be
simplified at high frequency when ka,kb � 2ωaωb/βaβbε∞

(here ignoring loss):

k2
L,j ≈ 1

2

[(
ω2 − ω2

a

ε∞

)
1

β2
a

+
(

ω2 − ω2
b

ε∞

)
1

β2
b

±
(

ω2 − ω2
a

ε∞

)
1

β2
a

−
(

ω2 − ω2
b

ε∞

)
1

β2
b

]
. (40)

Combining this with the condition for xj , we get the following
expressions for the resonances:

ω2 =
{

π2n2β2
a

R2 − ω2
a

ε∞
(j = 1)

π2n2β2
b

R2 − ω2
b

ε∞
(j = 2)

. (41)

Here we see that the positions of the peaks are given by two
arrays that depend on the properties of either the a fluid or
the b fluid. In other words, the charge carriers behave as two
independent fluids for high frequencies. In Fig. 2(b), the large
peaks above ωLSP can be identified as resonances of the a fluid
and are found with the j = 1 expression, while the small peaks
are resonances of the b fluid found with the j = 2 expression
(notice that the distances between the peaks are determined by
βa and βb). The peaks have been labeled with [j,n], and we
notice that n does not start at 1 as is natural to expect. It turns
out that the n = 1 peak simply does not exist and is an artifact
of the approximations leading to Eq. (41).

What is particularly noteworthy in the spectrum is that
resonances are found in the region below the LSP peak which is
“forbidden” in the HDM. The reason is that the a and b fluids
hybridize and form both an optical and an acoustic branch,
where the acoustic branch is characterized by a primarily real
wave number at frequencies below the LSP peak. This gives
rise to the peaks below ωLSP for what reason we will call them
acoustic peaks. The single-fluid HDM, on the other hand, only
contains an optical longitudinal branch, which means that no
bulk plasmon peaks can exist below the LSP peak [54].

Among the acoustic peaks in Fig. 2, we find two bulk
plasmon peaks labeled with [2,2] and [2,3]. However, as a
result of the hybridization, these resonances are not purely
related to the b fluid, and their positions are therefore only
poorly predicted by Eq. (41). Also found below ωLSP is a
resonance marked with “X,” and it turns out that this is quite
different from the bulk plasmons. To see this, the charge
distribution inside the sphere is shown in Fig. 3 for different
frequencies. The contour plots show the distribution in the xz

plane when the incoming wave is moving in the z direction,
and the electrical field is polarized in the x direction. We here
see that the first acoustic peak, marked with “X,” is in fact a
surface plasmon characterized by a high charge density near
the surface. We will discuss this resonance in detail below.
The resonance marked with [2,2], on the other hand, is a bulk
plasmon with a high charge density near the center, and its
distribution is nearly identical to the one marked with [1,2]
which is the bulk plasmon of the a fluid of the same order. The
peaks marked with [2,5] and [1,3] are bulk plasmons of higher
orders for the b fluid and the a fluid, respectively. The charge
distribution for the LSP peak is also shown (marked with “Y”),
and we see from the contour plot that although it is indeed a
surface plasmon it also displays the pattern of a confined bulk
plasmon. The reason is that the LSP resonance hybridizes with
the b-fluid bulk plasmon marked by [2,4], resulting in a charge
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FIG. 3. The charge distribution in the xz plane for semiconductor
A at different frequencies. The damping constants have been set
to γa = γb = 1.0 × 1011 s−1 to make the patterns more clear. The
incoming wave is directed in the z direction with the electrical field
polarized in the x direction.

distribution with features from both surface and bulk plasmons.
Such a hybridization would never take place in the HDM where
the surface plasmons always are clearly separated in frequency
from the bulk plasmons.

Notice that all the charge distributions are dipole modes, i.e.,
symmetric along the direction of the E field, and the same is true
for all the visible peaks in Fig. 2(b). A family of higher-order
modes in fact does exist for each peak, but they are too faint
to be seen in this spectrum (see Ref. [7] for an analysis of
multipoles in the HDM).

B. Comparison to the HDM

It has already been indicated that the two-fluid model is
similar to the traditional single-fluid HDM on some points and
different on others. To analyze the differences, the extinction
spectra for semiconductor A as calculated by the two different
models are shown in Fig. 4 for R = 10 nm and εD = 1. The
extinction cross section has been calculated for the single-fluid
HDM by only including one kind of charge carrier and ignoring
the other (this was also done in Ref. [41]). In this case, the
single-fluid parameters are given by ωp = ωi , β = βi , and γ =
γi , and the nonlocal parameter �l is found with Eq. (37) rather
than Eq. (36c).

When the a fluid is included in the single-fluid HDM, the
spectrum with the dashed magenta line is obtained, and we
see that it reproduces the j = 1 bulk plasmon peaks found
in the two-fluid model very well. This is related to the fact
that the bulk plasmon peaks in the two-fluid model mainly are
determined by the properties of the charge carriers separately,
as was indicated in Eq. (41). Additionally, the LSP peak in the
single-fluid model is almost at the same position as the one in
the two-fluid model.

The dash-dotted green line in the figure shows the extinction
cross section for the single-fluid HDM when only the b fluid is
included, and we see that it matches well with the j = 2 bulk
plasmon peaks in the two-fluid model. It also reproduces two

FIG. 4. The spectrum of semiconductor A (parameters given in
the main text) as found by the two-fluid model is shown with the solid
black line. The dashed magenta line and the dash-dotted green line
show the spectra found with the single-fluid HDM when including
the a fluid and b fluid, respectively.

of the acoustic peaks reasonably well, but is completely off
when it comes to the first acoustic peak [marked with “X” in
Fig. 2(b)]. This first peak is therefore a feature of the two-fluid
model that cannot be reproduced by two independent single-
fluid models.

It was mentioned in Sec. II that the two-fluid model reduces
to the single-fluid model if βa = βb and γa = γb. This is shown
in Fig. 5 where the extinction spectrum for semiconductor A in
the two-fluid model is plotted for increasingly similar β values.
The green dashed line in the figure shows the single-fluid HDM
with ω2

p = ω2
a + ω2

b and β = βa , and we see that it is exactly
on top of the line showing the βb = 0.9999βa case. Confirming
that the two-fluid model reduces to the single-fluid HDM
for βa = βb is also a corroboration of the numerical results.
Finally, it is worth mentioning that the local approximation,

FIG. 5. The spectrum of semiconductor A (parameters given in
the main text) as found by the two-fluid model for different values of
βb: 0.33βa , 0.9βa , and 0.9999βa . When the β’s approach the same
value, the spectrum coincides with the one predicted by the single-
fluid HDM (shown with the dashed green line).
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FIG. 6. The spectrum of semiconductor A (parameters given in
the main text) as found by the two-fluid model for different values
of ωb: 0.5ωa , 0.1ωa , and 0.01ωa . As ωb diminishes, the spectrum
becomes identical to the one obtained by the single-fluid HDM (shown
with the dashed green line).

βa = βb = 0, is a special case of identical β’s. This can be
understood from the fact that in the Drude model both current
densities are directly proportional to the electrical field, which
means that they always can be collected into an effective
current density (still assuming that γa = γb).

Apart from the singular situation where the β’s and γ ’s
are identical, the two-fluid model should ideally always be
applied to semiconductors where two kinds of charge carriers
are present. But as noted in the Introduction, materials where
electrons are present as majority carriers can effectively be con-
sidered single-fluid systems. The smaller effective mass and
larger density of electrons compared to holes will according
to Eq. (15) result in a much larger plasma frequency. And this
in turn causes the electrons to determine the optical properties
almost completely, which means that it is sufficient to use the
single-fluid HDM. In Fig. 6, the spectrum of semiconductor A
is shown for various values of ωb. We see that for ωb = 0.01ωa

almost all unique features of the two-fluid model are gone, and
the spectrum coincides with the one predicted by the single-
fluid HDM including only charge carrier a. Ratios of 0.01
between the plasma frequencies are easily obtained in doped
semiconductors. If we consider an n-doped semiconductor
with n = 1018 cm−3 and an intrinsic carrier concentration
of nint = 1016 cm−3, the fundamental relation [44] n2

int = np

tells us that the hole concentration will be p = 1014 cm−3.
Accounting for the larger mass of the holes (h) compared
to the electrons (e) we indeed obtain ωh/ωe < 0.01. For this
reason we propose the two-fluid model for p-doped systems
and systems where ωh/ωe > 0.1.

C. Indium antimonide and gallium arsenide

After analyzing the artificial material semiconductor A,
we will now look at more realistic semiconductors. The
first material we will consider is intrinsic InSb where the
electrons are thermally excited across the band gap. As seen
in Table I, InSb has a very narrow band gap which gives
rise to relatively high charge-carrier densities even at room

TABLE I. Data for GaAs and InSb. The intrinsic charge-carrier
density is denoted by ni . The masses m∗

e and m∗
hh for InSb are taken

from Refs. [60,61], respectively. For GaAs, m∗
e and m∗

e,cond (which
depends on the doping level Na) are from Ref. [62], and m∗

lh and m∗
hh

are from Ref. [63]. Eg for InSb is taken from Ref. [64], and μe and
μh for GaAs are from Ref. [65]. The rest of the data are taken from
Ref. [66]. Note that for InSb the value of m∗

e,cond is assumed to be
identical to m∗

e , and m∗
lh is the 0-K value.

GaAs (300 K) InSb (300 K) InSb (400 K)

ε∞ 10.86 15.68 15.68
Eg (eV) 1.424 0.174 0.146
ni (cm−3) 2.18 × 106 1.34 × 1016 5.73 × 1016

μe (cm2 V−1 s−1) 7000a 77000 48000
1100b

μh (cm2 V−1 s−1) 400a 850 480
80b

m∗
e/m0 0.0636 0.0115 0.0100

m∗
e,cond/m0 0.0636a 0.0115 0.0100

0.1014b

m∗
lh/m0 0.093 0.016 0.016

m∗
hh/m0 0.50 0.37 0.40

aNa = 0 cm−3.
bNa = 1019 cm−3.

temperature. If we choose T = 300 K, electrons (e) as the
a fluid, and holes (h) as the b fluid and use the data from
Table I, we then find ωe = 6.09 × 1013 s−1, ωh = 1.07 ×
1013 s−1, γe = 1.99 × 1012 s−1, γh = 6.67 × 1012 s−1, βe =
1.13 × 106 m s−1, and βh = 1.99 × 105 m s−1. Here we have
used Eqs. (15) and (19), but the values of ni and βi have been
found by numerical solution of the sums in Eqs. (A9) and
(A10) rather than by using Eqs. (B7) and (16). This allows us
to use the Fermi-Dirac distribution instead of the Boltzmann
distribution and thus obtain slightly more accurate values.

Considering a very small particle of InSb would give us
clearly visible nonlocal effects which are interesting in terms
of analyzing the model, but the number of charge carriers,
which scale as R−3, would also be smaller. And at some
point there will be too few charge carriers for them to be
considered a plasma, which means that a plasma model no
longer is suitable. Therefore we will choose the radius of the
InSb particle to be 100 nm, which results in the number of
electrons and holes being Ne = Nh = 56. If we then choose
the surrounding medium to be vacuum, we find the extinction
spectrum shown in Fig. 7(a) with the dashed red line. Here we
see the LSP peak at ∼3 × 1013 s−1 followed by several electron
bulk plasmon peaks. The hole plasmon peaks are completely
invisible, a result of the size of the particle and the low mobility
of the holes. However, one of the acoustic peaks is still visible,
which could be interesting in terms of verifying the model.

The solid blue line in Fig. 7(a) shows the extinction
spectrum of a 40-nm intrinsic GaAs particle in vacuum with
electrons excited to the conduction band by a laser pulse.
The pulse has an energy density of upulse = 105 J cm−3

which results in a number of electrons and holes of
Ne = Nh = 114. Using the equations from Sec. III
and Appendix B we find ωe = 1.46 × 1014 s−1, ωh =
5.07 × 1013 s−1, γe = 3.95 × 1012 s−1, γh = 1.16 × 1013 s−1,
βe = 3.29 × 105 m s−1, and βh = 3.95 × 104 m s−1. We here
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FIG. 7. Extinction spectra for InSb and GaAs. In all cases is
εD = 1. (a) The dashed red line and the solid blue line show the
spectra for intrinsic InSb at 300 K with R = 100 nm and laser excited
GaAs with upulse = 105 J cm−3 and R = 40 nm, respectively. (b)
The dashed red line and the solid blue line show the spectra for
intrinsic InSb at 400 K with R = 60 nm and laser excited GaAs with
upulse = 106 J cm−3 and R = 15 nm, respectively. (c) The spectrum
for p-doped GaAs with NA = 1019 cm−3 and R = 30 nm is shown
with the dashed red line. For the solid blue line the mobility of the
holes is artificially set 100 times higher.

recognize the largest peak as the LSP peak followed by a
series of electron bulk plasmon peaks, while the hole bulk
plasmon peaks are completely suppressed by damping.

It is also interesting to consider a higher temperature for the
InSb particle and a stronger laser pulse for the GaAs particle.
The dashed red line in Fig. 7(b) shows an intrinsic InSb particle
with R = 60 nm at 400 K which results in Ne = Nh = 51,
and the solid blue line shows an intrinsic GaAs particle with
R = 15 nm and upulse = 106 J cm−3 which results in Ne =
Nh = 57. Here the acoustic peaks, one of the interesting
features of the spectra, are more visible.

To analyze the two-fluid model for semiconductors with
light and heavy holes, we will consider p-doped GaAs with
an acceptor concentration of NA = 1019 cm−3. According to
the equations of Sec. III and Appendix B, this results in
a concentration of light and heavy holes of nlh = 7.43 ×
1017 cm−3 and nhh = 9.26 × 1018 cm−3 and the parameters
ωlh = 1.59 × 1014 s−1, ωhh = 2.43 × 1014 s−1, γlh = γhh =
5.79 × 1013 s−1, βlh = 2.70 × 105 m s−1, and βhh = 1.17 ×
105 m s−1. Here it has been assumed that the light and heavy
holes have the same damping constant which is found with μh

from Table I and mh,cond from Eq. (B8). Choosing R = 30 nm
and εD = 1 produces the extinction spectrum shown with the

dashed red line in Fig. 7(c). Here the only visible feature is the
LSP peak, while the bulk plasmons are completely damped. For
the purpose of analyzing the model, the solid blue line shows
the spectrum for the same material, but with the mobility of
the holes set 100 times larger. Now we see the bulk plasmon
peaks for both charge carriers as well as the peaks below ωLSP.

Another group of semiconductors that is gaining increasing
popularity as plasmonic materials is the transparent conducting
oxides (TCO) such as indium tin oxide (ITO), aluminum-doped
ZnO (AZO), and indium-doped CdO (In:CdO). ITO was used
in Refs. [25,29,30], and In:CdO was used in Refs. [33,42].
Apart from the advantages that TCOs share with other semi-
conductors (such as tunability), they are particularly suitable
for the creation of thin films and often allow for heavy doping
[67]. The most commonly used TCOs, including ITO, AZO,
and In:CdO, are n-type semiconductors [68] (ZnO and CdO
are even n-type semiconductors without intentional doping
[23,69]) and, as established above, materials with electrons as
majority carriers can be modeled with the single-fluid HDM.
However, much effort is currently going into the development
of p-type TCOs [70–72], and it is not unlikely that TCOs suit-
able for investigating the two-fluid model will be discovered.

In our model, we have left out some of the mechanisms
found in real semiconductors. As mentioned in Sec. III,
interband transitions are ignored, and the effects of them are
assumed to be contained in ε∞. This is a reasonable approxima-
tion as long as the energies considered are smaller than the band
gap. Some semiconductors also contain excitons which are
caused by the Coulomb interaction between electrons and holes
and give rise to energy levels inside the band gap. However,
for doped semiconductors and intrinsic semiconductors with
narrow band gaps, the screening from the high density of
charge carriers significantly weakens the binding energy of
the excitons [73]. It is therefore a decent approximation for
these materials to leave out excitons. A third kind of excitation
especially found in nonelemental semiconductors is optical
phonons. These resonances of the lattice may couple to the
plasmons if they are in the same frequency range, and this
interaction has been studied for both InSb [74,75] and GaAs
[76,77]. It should also be mentioned that for InSb, in particular,
a charge-carrier depleted region known as the space-charge
layer may exist close to the surface which would be relevant
for the optical properties. This layer has been investigated in
several earlier papers [34,78–80], and the question of how
it affects features such as the acoustic peak still remains.
Finally, the two-fluid model, just as the single-fluid HDM,
does not account for Landau damping whereby the energy of
the plasmons dissipates into single-particle excitations. The
excitation of single particles depends on the momentum q, and
in that sense Landau damping is a size-dependent nonlocal loss
mechanism. Although not considered here, nonlocal damping
could be incorporated into the two-fluid model by allowing the
β’s to become complex as it is done for the single-fluid HDM
in Refs. [9,42,81].

D. The acoustic peaks

One of the defining characteristics of the two-fluid model is
the presence of resonances below ωLSP, and the experimental
observation of these could potentially be used to verify the
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FIG. 8. (a) The spectral position of the first acoustic peak as a
function of ωa for semiconductor A is shown with a red line, while
the blue line shows the position of the LSP peak. The vertical dashed
line shows the value ωa = 3.6 × 1014 s−1 which was used in previous
figures with semiconductor A. The dent in the blue line around ωa ≈
1014 s−1 is not a numerical artifact, but is caused by bulk plasmon
resonances that are superimposed on the LSP peak and thereby make
the definition of the peak ambiguous. (b) The amplitude of the first
acoustic peak normalized with σgeom as a function of ωa .

model. Therefore this section will be used to analyze these
acoustic peaks, and the focus will be on the first acoustic peak
[marked with “X” in Fig. 2(b)].

We will start by considering the artificial material semicon-
ductor A, and in Fig. 8(a) the spectral positions of the first
acoustic peak and the LSP peak are shown as functions of ωa

with a red and blue line, respectively. Here it is interesting
to note that while the LSP peak blueshifts as ωa increases,
the acoustic peak instead moves to lower frequencies. Also
shown in the figure with dashed black lines is the position of
the LSP peak in the local response approximation as given
by ωLSP,a+b = (ω2

a + ω2
b)1/2/(ε∞ + 2εD)1/2 (including both

kinds of charge carriers) and ωLSP,i = ωi/(ε∞ + 2εD)1/2 (in-
cluding charger carrier a or b). The vertical dashed line marks
ωa = 3.6 × 1014 s−1, which was used in previous figures with
semiconductor A

Apart from the position of the acoustic peak, the amplitude
will also play a role, especially in terms of detecting the
resonance. Figure 8(b) shows the amplitude of the first acoustic
peak, and we here see that it decreases when ωa goes up.

Turning to intrinsic GaAs, Fig. 9(a) shows the spectral po-
sitions of the first acoustic peak and the LSP peak as functions
of the radius of the particle. The particle has been excited
by a laser pulse of upulse = 106 J cm−3 and is surrounded by
vacuum. Here we see that the position of the acoustic peak,
shown with a red line, blueshifts when R is reduced. The
LSP peak, shown with a blue line, also blueshifts, which is
similar to what is found in the HDM for both metals [5,7] and
semiconductors [41].

FIG. 9. (a) The spectral positions of the first acoustic peak and
the LSP peak as functions of R for intrinsic GaAs shown with a red
and blue line, respectively. GaAs was excited with a laser pulse of
upulse = 106 J cm−3. The vertical dashed line marks the value R =
15 nm which was used in Fig. 7(b). (b) The amplitude of the first
acoustic peak as a function of R (un-normalized). The number of
electrons in the particle is indicated for three different sizes.

Figure 9(b) shows the amplitude of the first acoustic peak,
and it is interesting to see that the height of the peak reaches a
maximum around R = 20 nm. The number of electrons in the
particle is also given in the figure for three different particle
sizes. Note that the extinction cross section in this figure is the
absolute value, since normalization with πR2 would make the
interpretation of the results more difficult.

As the first acoustic peak could be used to verify the model,
it is relevant to find the scenario where this resonance is
easiest to detect. Figure 8 shows the amplitude and position
of the peak as functions of ωa for semiconductor A, but for
a realistic semiconductor it will not be possible to freely
vary this parameter. For laser-excited GaAs, Fig. 9(b) shows,
interestingly, that the amplitude of the acoustic peak reaches a
maximum for a certain finite radius, and a similar behavior is
expected for other materials and geometries.

The materials investigated here are not all equally well
suited to test the model. In the case of p-doped GaAs, it
was found that none of the features of the two-fluid model
are present due to the low mobility of the holes. However,
a p-doped semiconductor with higher mobility of the holes
might still be used to test the two-fluid model. In the case
of laser-excited GaAs with upulse = 106 J cm−3, clear acoustic
peaks were found, but it must be remembered that the charge
carriers will decay over time, which will create new experimen-
tal opportunities and challenges. Finally, intrinsic InSb with
thermally excited charge carriers is perhaps the best candidate
in terms of testing the model, as the spectrum remains stable
over time and is expected to contain the acoustic peaks.
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VII. CONCLUSIONS

The hydrodynamic Drude model, which has successfully
described the optical properties of metallic nanostructures,
can be adapted to semiconductors by accounting for the fact
that several different kinds of charge carriers are present.
In this paper, we have presented a two-fluid hydrodynamic
model for semiconductors containing electrons and holes or
light and heavy holes. We have shown that the two-fluid
model is supported by a microscopic theory, and simulta-
neously we found expressions for the nonlocal parameter β

for thermally excited charge carriers, laser excited charge
carriers, and p-doped semiconductors with light and heavy
holes.

It was found that the two hydrodynamic fluids hybridize
to form an acoustic and an optical branch, both longitudinal,
whereas the single-fluid HDM only contains an optical branch.
An extended Mie theory was developed to accommodate the
two longitudinal waves, and this theory was subsequently
applied to semiconductor nanospheres to find the extinction
spectra. We found that in addition to the well-known features
of the single-fluid HDM the two-fluid model displays at least
two additional optical features: (1) a second set of bulk plasmon
resonances and (2) acoustic resonances below the dipole LSP

peak, of which the first attains its maximal strength at a finite
particle size [Fig. 9(b)]. Although we considered only spherical
particles here, it is expected that these features will be present
in other geometries as well.

The acoustic resonances are particularly interesting since
they are completely absent in the single-fluid HDM, and exper-
imental observation of these peaks could serve as verification
of the two-fluid model. To this end we analyzed different
materials and different kinds of charge carriers. Here we saw
that for the considered p-doped semiconductors with light and
heavy holes the damping was too high to discern any of the
features of the two-fluid model. On the other hand, the intrinsic
semiconductor particles that we studied, with thermally excited
or laser-excited charge carriers, both have acoustic peaks in
their spectra.
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APPENDIX A: THE SUSCEPTIBILITY

We will show that the susceptibility is given by Eq. (14). Starting from Eq. (13), this can be rewritten in the following way by
using the temporary variable k′ = −k − q:

χi(q,ω) = 2e2

ε0q2

1

V

(∑
k

fi(k)

Ei(k + q) − Ei(k) − h̄ω − iη
−
∑

k′

fi(k′)
Ei(k′) − Ei(k′ + q) − h̄ω − iη

)

= 4e2

ε0q2

1

V

∑
k

fi(k)
Ei(k + q) − Ei(k)

[Ei(k + q) − Ei(k)]2 − (h̄ω + iη)2
. (A1)

For holes the substitutions fi → 1 − fi and Ei → Ev − Ei can be made in order to treat the electrons and holes on equal footing
(Ev is the valence-band edge). However, this will leave Eq. (A1) unchanged. The next step is to take the limit q → 0 which
allows for the series expansion

χi(q,ω) = − 4e2

ε0q2

1

V

∑
k

fi(k)
Ei(k + q) − Ei(k)

(h̄ω + iη)2

(
1 + [Ei(k + q) − Ei(k)]2

(h̄ω + iη)2 + . . .

)
. (A2)

Without loss of generality it is assumed that q = q ẑ, which means that

Ei(k + q) − Ei(k) = h̄2

2m∗
i

(2kzq + q2), (A3)

and inserting this into χi(q,ω) gives us

χi(q,ω) = − 4e2

ε0q2

(
1

(h̄ω + iη)2

h̄2q2

2m∗
i

1

V

∑
k

fi(k) + 1

(h̄ω + iη)4

3h̄6q4

2m∗
i

3

1

V

∑
k

fi(k)k2
z + · · ·

)
, (A4)

where it has been taken into account that odd powers of kz cancel out.
To evaluate the k sums in Eq. (A4) for light and heavy holes, we assume that T = 0 K, whereby the distribution becomes a

step function. By using that the volume of a single state in k space is Vk = (2π )3/V , we find the first sum to be

1

V

∑
k

fi(k) = 1

V Vk

∫
dkfi(k) = 4π

V Vk

∫ kFi

0
dkk2 = 4π

V Vk

k3
Fi

3
, (A5)

which by definition also is equal to ni/2. From this we also find the following simple relation:

k3
Fi = 3π2ni. (A6)
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The second sum is given by

1

V

∑
k

fi(k)k2
z = 1

V Vk

∫ kFi

0
dkk4

∫ π

0
dθ sin θ cos2 θ

∫ 2π

0
dφ = 4π

3V Vk

k5
Fi

5
= k2

Fi

5

ni

2
. (A7)

The same results are obtained for laser-excited charge carriers, except that the Fermi levels kFi are for the quasiequilibria that are
assumed to be formed.

For the thermally excited intrinsic semiconductor, we will assume that the Fermi-Dirac distribution can be approximated by
the Boltzmann distribution

fe(E) = 1

exp
(

E−EF

kBT

)
+ 1

≈ exp

(
−E − EF

kBT

)
,

which is reasonable for electrons whenever Ec − EF � kBT where Ec is the conduction-band edge (a similar expression exists
for holes). For electrons, the first sum becomes

1

V

∑
k

fe(k) = 4π

V Vk

∫ ∞

0
dkk2fe(k) ≈ 2π

V Vk

(
2m∗

e

h̄2

) 3
2
∫ ∞

Ec

dE
√

E − Ec exp

(
−E − EF

kBT

)
, (A8)

where it has been used that

E = Ec + h̄2k2

2m∗
e

.

We now introduce the variable ρ = (E − EF )/kBT , whereby the integral can be identified as a gamma function. With this, the
sum is found to be

1

V

∑
k

fe(k) ≈ 2π

V Vk

(
2m∗

ekBT

h̄2

) 3
2

exp

(
EF − Ec

kBT

)√
π

2
, (A9)

which by definition also is equal to ne/2. Using a similar method, the second sum is found to be

1

V

∑
k

fe(k)k2
z ≈ 2π

V Vk

(
2m∗

ekBT

h̄2

) 5
2

exp

(
EF − Ec

kBT

)
1

3
�

(
5

2

)
= m∗

ekBT

h̄2

ne

2
. (A10)

The sums for the holes can be found in the same way.
Inserting the expressions of the sums into Eq. (A4), using η2 ≈ 0 and defining γ = 2η/h̄ gives us Eq. (14) where βi is given

by either Eq. (16) or (17) depending on the nature of the charge carriers.

APPENDIX B: CHARGE-CARRIER DENSITIES AND
FERMI WAVE NUMBERS

To find expressions for kF lh and kFhh for light and heavy
holes, we will use the fact that the Fermi energy is the same
for both kinds of holes:

h̄2k2
F lh

2m∗
lh

= h̄2k2
Fhh

2m∗
hh

. (B1)

If we then use the relation between ni and kFi from Eq. (A6)
and assume complete ionization, Na = nlh + nhh, we straight
away get

kF lh = kFhh

√
m∗

lh

m∗
hh

=
⎡
⎣ Na3π2

1 + (m∗
hh

m∗
lh

) 3
2

⎤
⎦

1
3

. (B2)

For laser-excited charge carriers, the energy density of a
laser pulse that excites electrons from the valence band to the
conduction band is given by

upulse = ue + ulh + uhh + Egne, (B3)

where ui is the energy density of the charge-carrier type i

with respect to the band edge, and e, lh, and hh are electrons,

light holes, and heavy holes, respectively. From Eq. (A6) and
Ei = h̄2k2/2m∗

i we have ni = E
3/2
Fi (2m∗

i )3/2/3π2h̄3 and the
energy densities are given by

ui = (2m∗
i )

3
2

2π2h̄3

∫ EFi

0
dEiE

3
2
i = 3h̄2

10m∗
i

(3π2)
2
3 n

5
3
i . (B4)

Inserting this into Eq. (B3) and using the following definition
of the density-of-states hole mass [44],

m∗
h = (m∗

lh

3
2 + m∗

hh

3
2
) 2

3 , (B5)

together with charge conservation ne = nh = nlh + nhh and
Eq. (B1) we obtain

upulse = 3h̄2

10
(3π2)

2
3

(
1

m∗
e

+ 1

m∗
h

)
n

5
3
e + Egne. (B6)

From this expression, the density of electrons can be found
using numerical tools, and kFi is found using Eq. (A6).

For thermally excited charge carriers in an intrinsic semi-
conductor, the charge-carrier densities are given by [44]

ne = nh = 2

(
2πkBT

h2

) 3
2

m∗
e

3
4 m∗

h

3
4 exp

( −Eg

2kBT

)
, (B7)
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where Eg is the band gap. Here it is assumed that the Boltzmann
distribution can be used for the electrons.

For both laser-excited and thermally excited charge carriers
the density-of-states effective hole mass is given by Eq. (B5),

while the conductivity effective hole mass is given by [82]

m∗
h,cond = m∗

lh

3
2 + m∗

hh

3
2

m∗
lh

1
2 + m∗

hh

1
2

. (B8)

APPENDIX C: MATRIX NOTATION

Here, we rewrite the two-fluid equations (1) in a matrix notation:

L̂E = −iωμ0

(
1

1

)(
Ja

Jb

)
, (C1a)

≡ξ 2︷ ︸︸ ︷⎛
⎝ β2

a

ω2
a

0

0 β2
b

ω2
b

⎞
⎠∇(∇·)

(
Ja

Jb

)
+ k2

(
c2

ω2
a

0

0 c2

ω2
b

)[
I +

(
iγa

ω
0

0 iγb

ω

)]
︸ ︷︷ ︸

≡�2

(
Ja

Jb

)
= iωε0

(
1

1

)
E, (C1b)

where L̂ = −∇ × ∇ × +ε∞k2 with k = ω/c, while I is a
2 × 2 identity matrix. Next, we follow a trick developed in
Ref. [83], where one acts with L̂ on the constitutive equation
(C1b). At first sight, this generates less appealing fourth-order
derivatives, but the curl of any gradient field vanishes, and we
are eventually left with only second-order derivatives, i.e.,

[ε∞ξ 2∇(∇·) − �2∇ × ∇ × −M]

(
Ja

Jb

)
= 0, (C2)

where M ≡ 1̃ − ε∞k2�2 and 1̃ is a 2 × 2 all-ones matrix.
While ξ and � are diagonal matrices, M has nonzero off-
diagonal elements and the two currents are consequently
coupled. The coupling originates from a mutual interaction
through common electromagnetic fields (which we have inte-
grated out).

To find the uncoupled homogeneous equations for the
normal modes, we take either the curl or the divergence of
Eq. (C2) and obtain the following equations:

[�2∇2 − M]∇ ×
(

Ja

Jb

)
= 0, (C3a)

[ε∞ξ 2∇2 − M]∇ ·
(

Ja

Jb

)
= 0, (C3b)

where it is used that ∇2 = ∇(∇·) − ∇ × ∇×. Next, the linear
relations between {Ja,Jb} and {J1,J2} given in Eqs. (20) are
introduced for both the transversal fields (the curl equation)
and the longitudinal fields (the divergence equation), which
gives us

[�2KT ∇2 − MKT ]∇ ×
(

J1

J2

)
= 0, (C4a)

[ε∞ξ 2KL∇2 − MKL]∇ ·
(

J1

J2

)
= 0, (C4b)

where

Kz =
(

az
1 az

2

bz
1 bz

2

)
,

with z = T ,L. If we then require that J1 and J2 are uncoupled
for both the transversal and the longitudinal fields, the 2 × 2
nondiagonal matrices can be treated as 4 × 4 diagonal matri-
ces. In other words, we obtain eight homogeneous equations
in total: for both curl and divergence we get two for both J1

and J2. These are the Boardman equations written explicitly in
Sec. IV. The fact that there are two equations for every ∇ × Jj

and ∇ · Jj can be used to find the coefficients az
j and bz

j which
so far have been undetermined.

APPENDIX D: LINEAR EQUATIONS

When applying the boundary conditions �E‖ = 0, �B‖ = 0, Ja,⊥ = 0, and Jb,⊥ = 0 to the electrical fields in Eqs. (33)–(35),
the following system of linear equations is obtained:

−ar
l h

(1)
l (xD) + at

l jl(xT ) = jl(xD), (D1a)

−ar
l

[
xDh

(1)
l (xD)

]′ + at
l [xT jl(xT )]′ = [xDjl(xD)]′, (D1b)

−br
l

[
xDh

(1)
l (xD)

]′
kD

+ bt
l

[xT jl(xT )]′

kT

+ ict
1ljl(x1) + ict

2ljl(x2) = [xDjl(xD)]′

kD

, (D1c)

−br
l xDh

(1)
l (xD) + bt

l xT jl(xT ) = xDjl(xD), (D1d)
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−ibt
l

l(l + 1)

xT

jl(xT ) + ct
1lj

′
l (x1)kL,1

(
1 + β2

a ε∞k2
L,1

ω2
a(1 + α1)

)
+ ct

2lj
′
l (x2)kL,2

(
1 + β2

a ε∞k2
L,2

ω2
a(1 + α2)

)
= 0, (D1e)

−ibt
l

l(l + 1)

xT

jl(xT ) + ct
1lj

′
l (x1)kL,1

(
1 + β2

b ε∞k2
L,1

ω2
b

(
1 + α−1

1

)
)

+ ct
2lj

′
l (x2)kL,2

(
1 + β2

b ε∞k2
L,2

ω2
b

(
1 + α−1

2

)
)

= 0, (D1f)

which directly allows us to find ar
l and br

l .
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