
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 10, 2024

A Closed Form Railway Line Delay Propagation Model

Harrod, Steven; Cerreto, Fabrizio; Nielsen, Otto Anker

Published in:
Transportation Research. Part C: Emerging Technologies

Link to article, DOI:
10.1016/j.trc.2019.02.022

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Harrod, S., Cerreto, F., & Nielsen, O. A. (2019). A Closed Form Railway Line Delay Propagation Model.
Transportation Research. Part C: Emerging Technologies, 102, 189-209.
https://doi.org/10.1016/j.trc.2019.02.022

https://doi.org/10.1016/j.trc.2019.02.022
https://orbit.dtu.dk/en/publications/b91e4d1d-96c0-497c-b949-d1be963c37a6
https://doi.org/10.1016/j.trc.2019.02.022


 

 

Fabrizio Cerreto*, Steven Harroda, Otto Anker Nielsenb. 

Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, 

Denmark 

* Corresponding author: facer@dt.dk 

astehar@dtu.dk 

boani@dtu.dk 

  

A Closed Form Railway Line Delay Propagation 

Model 

mailto:facer@dt.dk


 

 

ABSTRACT 

Delays of railway services can be measured by the aggregate delay over a time horizon due to an event 

that delay a given train. Timetables for railway service may dampen aggregate delay by adding either 

supplement time or buffer time to the minimum driving time. The evaluation of these variables is often 

performed by time consuming numerical analysis with simulation tools and hence with some degree of 

stochasticity of the outcome. This paper proposes instead an analytical closed form formulation of 

aggregate delay with a polynomial form. The function returns the aggregate delay of a railway line 

resulting from an initial, primary, delay. This can be used to get theoretical insights into railway delays 

and as part of larger railway scheduling systems, where simulation models would require too much 

calculation time. Analysis of the function recommend a balance between the two remedial measures, 

supplement and buffer. Further, the effect of different threshold values in delay measurement is 

depicted, giving information valuable in the design of service contract. Numerical analysis of an 

example railway line shows that the polynomial function provides guidance and insight even when 

theoretical assumptions are violated. 

KEYWORDS: Rail transportation, Train delays, Timetable robustness, Timetable design, Delay 

propagation 
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1. INTRODUCTION 

Operational stability and robustness are important for railway transport. Not only are the 

passengers or users of the service sensitive to these measures of quality (Parbo et al., 2016), but railways 

are usually integrated systems or networks, where failures at one location of the system often affect 

other locations and services, sometimes quite catastrophically. A railway network planner is thus faced 

with many decisions about what quality of service to provide and what resources to allocate to deliver 

this service. Much of the literature demonstrates that there are frequently multiple feasible alternatives 

to allocate resources, and each alternative has a unique performance profile with characteristic statistics, 

especially in punctuality and robustness (Caimi et al., 2009). The analysis of these alternatives 

frequently requires laborious and inconclusive modeling with simulation software, which is time 

consuming in both model programming and analysis run-time (Parbo et al., 2014). 

Cumulative, aggregate, or total delay, is a common performance measure used in several fields, from 

operation monitoring, to timetable planning and optimization. Goverde and Meng (2011) developed a 

data analysis tool to build conflict trees based on track occupation data. The conflict trees depict the 

realized delay propagation across consecutive trains on a railway infrastructure, so that it is possible to 

identify primary delays and the overall disturbance generated in form of secondary delays. Goverde and 

Meng assess the severity of individual disturbances measuring the total delay that they generated. 

Following a comparison of methods and data used to assess performance quality by 22 metro operators 

worldwide, Barron et al. (2013) describe measures of total effect of disruptions as the best representation 

of service quality, as they provide a better understanding of how incidents affect operation and 

customers. In particular, total vehicle hours of delay reflect the operator’s interest in the vulnerability 

to network disruptions. Alternative forms of aggregate delay are currently used in transport industry for 

service quality assessment and to rule contracts between railway undertakers and infrastructure 

managers. Transport for London uses the Lost Customer Hours as a performance measure in metro 

operation. The measure consists in the total delay given to passengers, meant as estimated travel time 

extension due to incidents (TfL Investment Programme Management Office, 2008). In Europe, the 
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Performance Regime produces cash flows between railway undertakers and infrastructure managers as 

incentive to improve service quality. In Italy, every minute of train delay is valued 2€ (Rete Ferroviaria 

Italiana, 2015), and the aggregate line delay can be reconducted to the total cash flow generated by an 

individual primary delay. 

Cumulative delay is also used as a metric in the planning phase to evaluate timetables before real 

operation. It is often compared to given initial delays to evaluate how the timetable is stable against 

disturbances, and how large are the consequences of given disturbances assuming different timetables. 

Salido et al. (2012) compare timetables using the cumulative delay resulting from simulation, and define 

a timetable more robust than another, if, for a given disturbance, the cumulative delay generated is 

smaller. Cumulative delay is also found in optimization timetabling problems, as objective function to 

minimize (Toletti, 2016; Törnquist, 2007). Total vehicle delay appears in delay management problems: 

Ginkel and Schobel (2007) optimize the operational departure time for a connecting service at a transfer 

station, given that the primary service is delayed. A bicriteria model is set up to minimize the number 

of passenger missed connections and the total delay recorded by vehicles. Harker and Hong (1994) use 

cumulative line delay to evaluate dispatching choices on a railway network in a Nash noncooperative 

game. The model is set up to seek the network optimal dispatching strategy, given that the single 

divisions of the network act to minimize the aggregate deviation of operation from the schedule of trains 

running on its area of control. The model is eventually used in the pricing of train slots, according to 

the value of time attributed to individual trains. 

This paper contributes to the literature with an analytic closed form formulation of aggregate railway 

line delay propagation in response to a primary delay. This function may supplement or replace the 

application of simulation models for exploration of alternatives when appraising different timetable 

alternatives. The formulation is closed form under a set of timetable-structure assumptions that this 

paper later shows, using microsimulation, to be robust to deviation from these assumptions. The 

advantage of such a formulation is the rapidity and avoidance of simulation as compared to the often-

used micro simulation models in the industry. It facilitates a quick evaluation of the expected cumulative 
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delay, and makes it possible to evaluate structural design factors, such as running time supplement, 

headway buffers, and to design service contract performance measures. Lastly, cumulative delay 

calculated in a closed form can efficiently be implemented in optimization models for timetabling 

reducing, in this way, the time lost in simulation to estimate delays. 

The formulation is derived from a finite series of deviations from the service plan (secondary delays) 

caused by a singular initial disruption (primary delay). The primary delay is propagated to following 

trains and recovered on the individual trains’ downstream paths. The results may be used to establish 

bounds of expected performance for simulation models, and possibly reduce the use of simulation 

models in some applications. The scientific novelty of this model is the explicit and simultaneous 

inclusion of headway buffers and running time supplements to reduce the individual train delay in the 

propagation process, whereas previously proposed methods considered only one type of timetable slack 

at a time, or used queuing theory to evaluate the interferences between vehicles (Hasegawa et al., 1981; 

Huisman, 2002; Landex, 2008; Mattsson, 2007; Pyrgiotis, 2012; Salido et al., 2012). The results are 

also relevant for industrial managerial purposes, giving the possibility to investigate the effect of 

timetable design parameters in advance, such as contract delay threshold, running time supplement and 

headway buffer. 

 Structure of the Paper 

A literature review is presented in Section 2. Section 3 defines the timetable structure and relevant 

measures for railway performance. Section 4 explains the finite series delay structure applied in this 

paper, followed by the solution of the polynomial total line delay. In Section 5, the formulation is 

validated and tested for robustness with a microsimulation of a suburban railway line north of 

Copenhagen. The extended model to include primary delays at unspecified station and train is presented 

in Section 6. The novelty of such a model and inferences on the results are discussed in Section 7, 

followed by concluding remarks in section. 
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2. LITERATURE REVIEW 

Prior relevant literature defines suitable measures of railway performance and methods of 

estimating that performance. Section 3 presents literature concerning suitable performance measures 

for railways, while performance estimation methods are reviewed here. Performance estimation may be 

categorized as statistical or analytical, and the analytical literature is reviewed first. 

Hasegawa et al. (1981) applies a hydrodynamic analogy to model railway traffic. The study 

models the delay propagation as a shock wave in a compressible fluid and finds the total delay as a 

cubic function of the primary delays by means of propagative velocity. Mattsson (2007) applies a 

different analogy to standard road traffic-flow to calculate the capacity utilization of a double-tracked 

railway line, as the percentage of time used by a train sequence. The method is similar to previous 

approaches (Gibson et al., 2002; UIC, 2004), and the capacity used by a timetable has been used later 

as a measure of it reliability (Haith et al., 2014). Meester and Muns (2007) apply phase-type 

distributions to derive the net delay distribution on connected railway network segments given the 

distribution of primary delays on each segment. The derivation asserts that recursive calculation of the 

solution may be attained with just three operations: sum, nonnegative excess beyond a bound, and 

maximum. The paper states that a phase-type distribution, a distribution of the absorption time of a 

continuous time Markov chain, can be contained in the three operations in closed form. However, the 

method depends on the assertion of independence of the primary delays. The method is demonstrated 

for a sample network of 24 directional line segments with seven transfer points.  

Goverde (2010, 2007) presents an efficient delay propagation algorithm where timetables are 

modeled as timed event graphs (using max-plus algebra) and initial delays are known. The algorithm is 

very fast and in a few seconds can calculate the delay propagation over a large network consisting of 

many interdependent services, such as the Dutch national railway timetable. Goverde uses this method 

to compute performance indicators, including delay propagation statistics such us total secondary delay, 

and settling time. However, the model offers no functional relationship, and results must be calculated 

for each scenario separately. Most closely related to this paper, Landex (2008) proposes a delay 
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propagation model computing the transfer of delay between trains through the scheduled buffer times. 

This model is used to study the relation between capacity consumption and the development of the 

disruptions, but does not consider the recovery of train delays according to the timetable allowance. A 

similar method is proposed by Huisman and Boucherie (2001). Huisman and Boucherie model the delay 

propagation in absence of a timetable, assuming that all trains run at their maximum possible speed. 

The first train is assumed to run within its minimum running time, whereas the following trains increase 

their running time in terms of the delay of the previous train, reduced by the headway buffer. Using 

queuing theory, expected interference between consecutive trains are estimated, but the influence of 

primary delay is only considered implicitly as distribution of free-flow running times. Relevant 

analytical approaches for delay propagation span also other means of transportation. Pyrgiotis (2012) 

describes a mixed algorithmic and analytical model to propagate delays in airport networks, following 

the single aircrafts rosters. The analytical section of this model uses queueing theory to assign delays 

to flights due to congestion at airports, based on the airport capacity and the time-dependent traffic 

demand. The delay assigned to a flight is then propagated to the downstream airports in the aircraft’s 

roster, with an approach similar to the papers described above. The aircraft delay is reduced in every 

trip segment by means of the scheduled slack, and it is increased by congestion, using the queuing 

theory. 

Various statistical studies of railway performance exist applying either probability theory or 

simulation. Carey and Kwiecinski (1994) propose a stochastic approximation of the secondary delays 

of trains and validate the approximation with simulation studies of railway lines with common 

infrastructure of two and three aspect signals. The study finds that when trains have exponential delays 

between stations, the expected train time between stations is directly dependent on the headway between 

trains plus a constant. Carey (1999) defines many statistical measures of service plan configuration and 

many probability distributions of train performance, and offers many propositions on their sensitivity 

to changes in conditions. Gibson et al.(2002) use regression analysis on data recorded in the British 

railway network to define an exponential functional relation between the line capacity utilization and 
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the expected reactionary delays, by means of line section and route-specific constants. They furthermore 

identified several factors influencing the expected reactionary delays: geography, time of operation, and 

speed heterogeneity. Olsson and Haugland (2004) present extensive statistical analysis of recorded data 

in Norway and identify some influencing factors on railway punctuality, and some frequent patterns in 

the development of delay along the train paths. Strong correlation is found, for specific train categories, 

between the delay at the origin of the trip and at the destination. Olsson and Haugland identify critical 

values of initial delay over which the probability to encounter major delays along the way increases 

considerably. This pattern is triggered by the prioritization of the trains and the consequent dispatching 

choices of the operators. Goverde and Meng (2011) present a tool based on track circuit occupation data 

to identify realized conflicts and delay propagation from realized operation. The tool is able to identify 

a primary delay and the disturbance generated to each individual train. It is so possible to identify what 

are the critical blocking sections and signals that generate most conflict during operation using standard 

statistics and sorting after adapted performance metrics. Unfortunately, such a detailed information is 

very seldom available, either because it is not logged, or because operators keep it confidential. 

Simulation-based delay propagation models exist also at mesoscopic level. Zhu and Schnieder 

(2000) propose a model to assess railway timetable performance using Colored Petri Nets, where lined 

between stations are divided in actual blocking section that can host one train at a time. As opposite, 

the station capacity is only modeled as number of tracks and track length. Given primary delay 

distribution, the authors evaluate the timetable performance measuring the Delay degree, which is the 

sum of the train delays recorded at specific station. However, the complexity of Colored Petri Net 

models increases exponentially with the number of stations, and the authors point out the imperative 

need to reduce the model complexity. Salido et al. (2012) proposes analytical measures of robustness 

and validates them using simulation. The model uses aggregate delay as performance statistic, and 

considers the headway buffer between trains, whereas running time supplement is not considered. 

Salido uses advanced simulation models that reschedule the traffic after disruption, and eventually 

suggests that analytical models of this type are a potential supplement or replacement for simulation 



8 

 

modeling. Furthermore, Salido observes a linear relationship between primary and aggregate delay 

when the railway system is lightly utilized, whereas the relationship is nonlinear for heavily utilized 

railway systems. Cerreto (2015) introduces a method to reduce computation time in simulation models 

shrinking the number of simulation runs required with a heuristic process called the skimming method. 

Instead of simulating all combinations of trains and delays, a composite profile of train delay is 

estimated from an initial simulation analysis, and this composite delay function is used to calculate the 

aggregate system delay. Lastly, Jensen et al. (2017) estimates the capacity consumption of a timetable 

and relates it to robustness against delays using a framework based on stochastic simulation. 

3. TIMETABLE STRUCTURE AND MEASURES OF PERFORMANCE 

A variety of measures are used in practice and in the literature to characterize the railway traffic 

density, to measure the risk of disruption, to measure the magnitude of disruption, and to measure the 

recovery from disruption back to planned services.  Goverde and Hansen (2013) describes the train 

performance measures and summarizes timetable design methods typical of the German and 

Netherlands railway systems, and provides a broad summary of definitions of performance measures. 

These measures are generally applicable to most railway systems, including Denmark’s. 

In all cases, this paper and much of the cited literature presume operation according to a 

deterministic, feasible, timetable. A feasible timetable is one in which all train paths are planned in 

advance, and it is known, at a minimum, that all trains may operate without conflict with each other and 

on the known track infrastructure, if there are no errors, failures, or disruptions during the timetable 

operation. Of course, disruptions and errors in planning do occur, and so timetables are evaluated 

according to their robustness and stability. These terms are closely related and sometimes used 

interchangeably. Robustness is most closely associated with the ability of the planned train operations 

to absorb natural variation and delays due to weather, operator error, passenger actions (holding doors 

open, failure to buy a ticket, etc.), and smaller mechanical malfunctions. Stability refers to the ability 

of the planned train operations to return to their original schedule after a disruption has occurred. Lastly 
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timetable resilience refers to the adaptability of a timetable, the flexibility of the timetable structure to 

allow dynamic, tactical changes in operating plan in response a disruption.  

Two fundamental timetable design measures are the supplements and the buffers (Goverde and 

Hansen, 2013). A supplement is additional time beyond the minimum operating time between timing 

points that allows a train to experience disruptions and yet still attain scheduled arrivals (Figure 3-1). 

This measure is specific (and potentially unique) to each train between a given pair of timing points, 

and directly supports timetable robustness. 

 

Figure 3-1: Definition of timetable supplement for single train path. 

A buffer is additional time between trains so that disruptions and delays of the leading train are 

less likely to cause interference with the following train (Figure 3-2). The buffer is a component of the 

headway (the total time between passing trains), but not the same as the headway. The headway equals 

the minimum safe separation time between trains plus the buffer. The capacity or number of trains on 

the railway line is strictly determined by the headway, but clearly the buffer is a decision variable, that 

other things being equal, determines the tradeoff between capacity and stability.  
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Figure 3-2: Group of train paths with separating buffer time. 

Delays to trains are classified as primary or secondary. Primary delays are events happening to 

or “owned” by a specific train, such as a driver mistake, a passenger incident, unusual crowds, etc. 

Secondary delays are delays experienced as the result of conflict or interference with another train that 

has deviated from its plan (Figure 3-3). For example, if train 1 experiences an excessive station stop 

time due to a handicapped passenger boarding or unusual crowds, and following train 2 is delayed in 

entering the station, and following train 3 is delayed behind train 2, then train 1 is experiencing a 

primary delay, and trains 2 and 3 are experiencing secondary delays.  

The settling time is the time it takes from a primary delay until the trains have returned to their 

planned schedules. Salido et al. (2008) define a settling time performance measure called (t,k) robust. 

The measure states that if a timetable suffers a disruption of t time units, and returns to stability or the 

original plan in k time units, then it is (t,k) robust.  An unstable timetable, from the earlier definition of 

stability, would never return to its planned schedules, and would thus have an infinite or undefined 

settling time. The settling time may serve as a performance measure for the relative stability of a 

timetable. 
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Figure 3-3: Calculation of secondary delay as a function of primary delay. 

In the analysis that follows, total cumulative delay of the timetable system is the performance 

measure of interest. That is, the total deviation from the timetable of every train at every station 

(measuring point) over the time horizon of the analysis period. Thus, a train that is five minutes late at 

three sequential stops would register fifteen minutes of system delay. Törnquist (2007) finds that the 

total cumulative delay is strongly correlated with other performance measures. If the value of service is 

measured as passenger-minutes of delay (number of passengers times minutes of delay for each 

passenger), then under conditions of uniform traffic demand, the total cumulative train delay is a 

reasonable estimate of the loss of utility of the train service. Of course, if the passenger traffic is not 

uniformly distributed, then the following analysis must be modified, or may not be applicable. 

4. A FINITE SERIES MODEL OF DELAY IN TWO DIMENSIONS 

This section proposes a model that is a closed form function that calculates the total cumulative 

deviation (delay, there is no earliness allowed) from the service timetable at all measurement points, as 

a function of timetable supplement, timetable buffer, and a single initial delay to one train. This paper 

suggests that cumulative deviation is appropriate for estimating the utility loss to passengers in the 

system under relaxed assumptions of uniformity of traffic. In the following section this model will be 

shown to be a reasonable guide even when the initial conditions of uniformity are violated. 
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This model has a two-dimensional analysis horizon or domain. Many of the prior cited papers 

define the analysis horizon in terms of the length of line or the number of train path segments. This 

model specifically includes the secondary delays to trains, and thus the second dimension of the analysis 

horizon is the number of trains included in the cumulative delay statistic. This model will consider trains 

on a single line with a single direction of movement (e.g. on a double-track railway), which is a common 

operating plan in Europe and urban North America. The time horizon of the model then begins with the 

train and location of the primary delay, and ends with the return of the last train to schedule within the 

allowed service parameter (delay threshold).  

Table 1 presents the terms and labels for sets and parameters in the model. Without loss of 

generality, the timetable measurement points are called “stations”, even though they can just as well be 

any geographic location where the train must adhere to the timetable. Subscripts i and s specify the train 

and station that the parameters refer to, respectively. When parameters are later used without a subscript, 

they are constant and identical for all trains in the formulation, so that a, for example, is the running 

time supplement constant and identical for every train between any pair of consecutive stations. s*i is  

a component of the settling time, and refers to the last station after a disruption at which train i deviates 

from its planned timetable, assuming that the timetable is stable. i*s is a companion component of the 

settling time, and refers to the last train at a given station after a disruption which deviates from its 

planned timetable. δ is the delay threshold, which means that delays below a specified magnitude will 

be ignored in the calculation of utility loss. It is common to contractually define a train as “late” in 

Denmark and many other countries according to a fixed threshold of delay (Hofman et al., 2006). 
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Table 1: Table of sets and parameters 

S The ordered set of stations of the analysis, {1,2,…,|S|} 

𝑅 The ordered set of trains in the analysis, {1,2,…,|R|}. Lower numbered trains 

precede higher numbered trains. 

𝑝 Primary delay  

𝑑𝑖,𝑠 Individual delay of train i at station s 

𝑡𝑖,𝑠 Minimum running time of train i between stations s-1 and s 

ℎ𝑖,𝑠 Minimum time separation (headway) between trains i-1 and i at station s 

δ Delay threshold  

𝑎𝑖,𝑠 Running time supplement of train i between stations s-1 and s 

𝑏𝑖,𝑠 Buffer time at station s between trains i-1 and i 

𝑠∗
𝑖 Last delayed station for train i 

𝑖∗
𝑠 Last train delayed at station s 

𝜑𝑝 Timetable settling time for delay p   

 Derivation of Cumulative Delay 

The cumulative delay, Γ, represents the unweighted utility loss experienced by the railway 

service due to a disruption. It is the sum of all individual delays as measurement points in the timetable 

over the analysis horizon, and is presented in Equation (1). 

Γ = ∑ 𝑑𝑖,𝑠

𝑖∈𝑅 | 𝑑𝑖,𝑠≥𝛿

𝑠∈𝑆

 
(1) 
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p defines the primary delay, the delay of the first train at the first station, thus d1,1=p. This delay 

will propagate to, or impose secondary delays on, the following trains through the expression of 

individual delay given in  (2) 

𝑑𝑖,𝑠 = 𝑚𝑎𝑥{(𝑑𝑖,𝑠−1 − 𝑎𝑖,𝑠), (𝑑𝑖−1,𝑠 − 𝑏𝑖,𝑠), 0} ∀ 𝑖 > 1, 𝑠 > 1 

𝑑1,𝑠 = 𝑚𝑎𝑥{(𝑑𝑖,𝑠−1 − 𝑎𝑖,𝑠), 0} ∀  𝑠 > 1 

𝑑𝑖,1 = 𝑚𝑎𝑥{(𝑑𝑖−1,𝑠 − 𝑏𝑖,𝑠), 0} ∀ 𝑖 > 1 

𝑑1,1 = 𝑝 

 

(2) 

What Equation (2) represents is that every train delay incidence is defined either by delay 

originating with the train or by secondary delay imposed by another train. A train is protected by or 

may recover from its own delay by the timetable supplement ai,s. A train is likewise shielded from the 

obstruction of a preceding train by the buffer bi,s. A train then experiences a delay if either or both of 

these limits are exceeded, and the larger of the two values determines the functional train delay. The 

first train in the series of the analysis horizon (i=1, s>1) is only affected by its own delay, and trains at 

the location of the primary delay (s=1, i>1) are only affected by preceding trains. 

 Relaxed Formulation for Homogeneous Trains and Line Segments 

Consider now a railway line composed of equitemporal (not necessarily equidistant) line 

segments and identical train compositions dynamic performance, such that a, b, h, and t are constant 

values throughout the formulation. These are not wholly unrealistic assumptions for suburban railways 

or metros operating periodic timetables. Equation (2) becomes Equation (3) 

𝑑𝑖,𝑠 = 𝑝 − (𝑠 − 1)𝑎 − (𝑖 − 1)𝑏 ∀ 𝑖 ≥ 1, 𝑠 ≥ 1 | 𝑝 ≥ (𝑠 − 1)𝑎 + (𝑖 − 1)𝑏 

𝑑𝑖,𝑠 = 0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

(3) 
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The conditions linking p, i, s, b, and a define a two-dimensional region where individual train 

delay, di,s, is positive. Outside this region, trains have returned to their original planned timetable, or 

recovered. This region, where trains are recovering or settling back into their planned timetable, is 

defined the recovery region. The recovery region in turn defines the settling time of the initial delay, p.  

Consider that a positive value of δ further defines a recovery region only where di,s≥δ, and 

Equations (4) and (5) yield solutions of Equation (3) for the boundary values of the recovery region in 

dimensions of number of stations and number of trains. The extreme points of the recovery region are 

defined at 𝑠∗
1 and 𝑖∗

1. Since both i and s must be integers, these solutions are returned as floor functions. 

When the primary delay is both less than the running time supplement plus the delay threshold, and less 

than the buffer time plus the delay threshold, the recovery region is undefined because no active 

recovery occurs. 

𝑠𝑖
∗ = ⌊

𝑝 + 𝑏 − 𝛿

𝑎
− 𝑖

𝑏

𝑎
⌋ + 1 | 𝑝 ≥ 𝑎 + 𝛿 

(4) 

𝑖𝑠
∗ = ⌊

𝑝 + 𝑎 − 𝛿

𝑏
− 𝑠

𝑎

𝑏
⌋ + 1 | 𝑝 ≥ 𝑏 + 𝛿 

(5) 

Figure 4-1 depicts the boundaries of the recovery region. The diagonal boundary has an 

approximate slope of a/b. The settling time will be the greater of the times necessary to traverse the 

recovery region, either along the station axis (s) or the train axis (i), as shown in Equation (6). 

𝜑𝑝 = 𝑚𝑎𝑥{(𝑡 + 𝑎)𝑠1
∗, (ℎ + 𝑏)𝑖1

∗} (6) 
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 Symmetric Systems 

Consider the system where c=a=b, which will be called “symmetric”, because not only are the control 

values of timetable supplement and buffer equal, but the ratio a/b implies the region is symmetric with 

respect to the number of trains and stations. Then the recovery region is defined only by the primary 

delay and a single parameter, c, as shown in Equations (8) and (7). Checking the values of 𝑠∗
1 and 𝑖∗

1, 

it can be seen that indeed the region is symmetric with an equal number of trains and stations. 

𝑠𝑖
∗ = ⌊

𝑝 − 𝛿

𝑐
⌋ − 𝑖 + 2 | 𝑝 ≥ 𝑐 + 𝛿 

(7) 

𝑖𝑠
∗ = ⌊

𝑝 − 𝛿

𝑐
⌋ − 𝑠 + 2 | 𝑝 ≥ 𝑐 + 𝛿 

(8) 

 

 Calculation of Cumulative Delay 

The resulting summations for cumulative delay, Γ, are shown for the general case in Equation 

(9), and for the symmetric case in Equation (10). The summation in Equation (9) operates first in the 

s*
1

i*
1

1,1

a/b

S
ta

ti
o
n
s

Trains

Point of primary delay

Figure 4-1: Recovery region bounds 



17 

 

dimension of the stations for individual trains, returning the cumulative delay recorded on one train’s 

whole itinerary, and then it sums the cumulative delay across the individual train itineraries. 

Γ = ∑ 𝑝 + 𝑎 + 𝑏 − 𝑠𝑎 − 𝑖𝑏

𝑖∈{1,2,…,⌊𝑝+𝑎−𝛿
𝑏

−𝑠
𝑎
𝑏

⌋+1}

𝑠∈{1,2,…⌊𝑝−𝛿
𝑎

⌋+1}

 
(9) 

Γs = ∑ 𝑝 − 𝑐(𝑠 + 𝑖 − 2)

𝑖∈{1,2,…,⌊𝑝−𝛿
𝑐

⌋−𝑠+2}

𝑠∈{1,2,…⌊𝑝−𝛿
𝑐

⌋+1}

 
(10) 

The floor functions in these summations prevent them from resolving into manageable 

functions. If the floor functions are relaxed (removed), the summations resolve into the following 

polynomials: the general case in Equation (11), and the symmetric case in Equation (12). 

Γ =
𝑝3

6𝑎𝑏
+

3(𝑎 + 𝑏)𝑝2

12𝑎𝑏
+

(𝑎2 + 3𝑎𝑏 + 6𝑏𝛿 − 6𝛿2)𝑝

12𝑎𝑏

+
−𝑎2𝛿 + 9𝑎𝑏𝛿 − 3𝑎𝛿2 − 9𝑏𝛿2 + 4𝛿3

12𝑎𝑏
 

(11) 

Γ𝑠 =
𝑝3

6𝑐2
+

𝑝2

2𝑐
+

(2𝑐2 + 3𝑐𝛿 − 3𝛿2)𝑝

6𝑐2
+

4𝑐2𝛿 − 6𝑐𝛿2 + 2𝛿3

6𝑐2
 

(12) 
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Naturally there is a question of how much error is introduced by relaxing the floor functions. 

Figure 4-2 shows that the difference, with and without the floor function, is very small for a delay 

threshold of 3 (minutes) and supplements and buffers of one or two (minutes). 

  

Figure 4-2: Plot of symmetric cumulative delay for δ=3 and c=1 (top curve) and δ=3 and c=2 (bottom curve). 

Summations with and without floor function overlaid. 
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 Inferences from the Polynomial Function 

Figure 4-3 presents the contour of a symmetric system and shows that while timetable “slack”, 

in the form of supplements and buffers, certainly is valuable in damping the damage of primary delays, 

its incremental value quickly declines. The figure suggests that supplements and buffers can be applied 

excessively, wasting resources without accomplishing proportional reductions in system delay. 

Differential calculus of aggregate delay against timetable slack expresses the marginal 

reduction of aggregate delay given by increments of timetable slack. The symmetric case is represented 

by equation (13) and depicted in Figure 4-4. 

∂Γ𝑠

∂c
= −

𝑝3

3𝑐3
−

𝑝2

2𝑐2
+ 𝑝(

4𝑐 + 3𝛿

6𝑐2
−

2𝑐2 + 3𝑐𝛿 − 3𝛿2

3𝑐3
) +

8𝑐𝛿 − 6𝛿2

6𝑐2
−

4𝑐2𝛿 − 6𝑐𝛿2 + 2𝛿3

3𝑐3
 

(13) 

 

 Being (12) a polynomial form also in c, its first derivative keeps characteristic of continuity. 

The figure shows that excessive timetable slack does not contribute to reduce the aggregate line delay, 

reaching a plateau of near-zero marginal decrement. The plateau corresponds to timetable slack large 

enough to prevent any delay propagation to following trains or downstream stations. In such a system, 

the only delay registered is the primary delay assigned to the first train at the first station, which is 

unavoidable by means of timetable slack. 

Figure 4-3: Contour of symmetric case for δ=3 
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Further evidence that there is an optimal value for timetable supplement and buffer is offered 

in Figure 4-5. This contour plots Equation (6) with a running time between stations of t=5, a minimum 

headway of h=5, and a delay threshold of δ=3. Note that both timetable supplement (a) and buffer (b) 

must be present to control settling time, and that excessive values of either actually worsen the settling 

time. This figure also suggests the optimal ratio a/b=1, visible by the median wrinkle of the settling 

time envelop.  

 

Figure 4-5: Contour of settling time with δ=5, h=5, δ=3 and p=5. 

Figure 4-4: Contour of marginal reduction of aggregate delay against timetable slack and primary delay, with δ=3. 
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5. CASE STUDY 

In this section a contemporary suburban railway in Denmark is simulated and comparisons are 

made between the measured and theoretical system delay. The simulation is performed in OpenTrack 

(Nash and Huerlimann, 2004). The subject line is the Hillerød suburban railway on its northern segment 

from Hellerup to Hillerød (29 km.). On this segment there are eleven stations inclusive of the terminal, 

Hillerød, and the junction Hellerup. Hellerup is not the end of the line. All trains continue through 

Hellerup, through Copenhagen, and on to destinations much further south of Copenhagen. 

On this line there are two services with distinct stopping patterns, and this is where the case study 

deviates significantly from the theoretical model. Service “A” is an express to Hillerød, which does not 

stop at the 2nd, 3rd, 6th, and 7th stations from Hellerup. Service “E” is a local service that terminates at 

the 8th station (Holte, 11 km.). Figure 5-1 shows the simulation model track block structure and the train 

Figure 5-1: Simulation model of Hillerød Suburban railway in OpenTrack showing track blocks and speed profiles of “A” service 

(blue) and “E” service (purple) 
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performance speed profiles for both services. Figure 5-2 shows the graphical timetable or stringline 

diagram for the two services between Hellerup and Hillerød. It should be further noted that the 

heterogeneous service pattern of Figure 5-2 deviates from the homogeneous service pattern in the 

theoretical model of Figure 3-3. 

 Experimental Design of Simulation 

Two simulation analyses are presented: primary delays experienced by the A service and 

primary delays experienced by the E service. In each case, primary delays are simulated at the Hellerup 

station from a uniform distribution of [0,600] seconds, and 100 replications are sampled. Only 

northbound traffic to Hillerød is studied. Cumulative delay is measured across both services, A and E, 

on the line. 

The experimental sample deviates significantly from the theoretical ideal. Unlike the theoretical 

model of Section 4, the stations in this sample are not uniformly distributed. As previously described, 

the train sample consists of a mix of two different service patterns, stopping at different stations. Further, 

Figure 5-2: Graphical timetable (stringline) for Hillerød Suburban railway. Schedule in black, simulated operation colored. 
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the supplement and buffer times are not uniformly distributed. Table 2 presents the actual timetable 

supplements present in the simulated Hillerød Suburban railway. Table 3 presents the buffers between 

train paths. 

Table 2: Timetable supplements on Hillerød Suburban railway as simulated, seconds 

 Stations from Hellerup 

Service 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 

A    82   40 67 45 62 

E 21 20 83 10 64 9 22    

 

Table 3: Buffers between pairs of trains (first train following second train), seconds 

 Stations from Hellerup 

Pairing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 

A follow E 83   236   367    

E follow A 442   168   147    

 

Further, it should be noted that the timetable supplement, a, and headway buffer, b, are severely 

asymmetric. They are far from the recommended level of a=b of Section 4.5. The average buffer for all 

six measures of services A and E is 240.5 seconds. The average supplement at each of ten destination 

stations is 43,75 seconds. The delay threshold, δ, is zero, and all delays of any magnitude are included 

in the cumulative delay. These extremes lead to induced error in the polynomial approximation of 

Equation (9). In this case, the polynomial is continuously undervaluing the cumulative delay as seen in 

Figure 5-3. 
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Figure 5-3: Difference from polynomial function, Equation (11), to exact summation, Equation (9) for parameters 

in this section (values in seconds). 

 Results of the Simulation 

The simulation results from OpenTrack are summarized in Figure 5-4. It is hypothesized that 

the delays experienced by service E result in significantly lower cumulative system delays than those 

experienced by service A because of the difference in the headway buffer outside of Hellerup. Primary 

delays on service A greater than 83 seconds propagate to the following trains, whereas service E can 

receive primary delays up to 442 seconds without triggering delay propagation. Note that the 

polynomial approximation is lower than the simulated result from both services up until primary delays 

of magnitude 450 seconds and greater, where the polynomial occupies the interval between the A and 

E service results. At primary delays of 300 seconds, the polynomial underestimates the cumulative 

delay caused by primary delays on the A service by 39%. 

To test the proposal that asymmetry between a and b is a factor in the polynomial fit to 

experimental results, another cycle of simulations is performed with a 30 second increase of the 

supplement throughout the timetable, so that a is now 73.75. The buffer remains unchanged. The 

correlation between the polynomial and the E service result is now very strong, as shown in Figure 5-5, 

and the higher A service cumulative delay is likely because of the close headway between A and E 

services leaving Hellerup. 
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Figure 5-4: Comparison of results from simulations of delays on A and E lines with estimated delay from 

polynomial function. 

 

Figure 5-5: Fit of polynomial to simulation results with a=73.75 and b=240.5  

6. MODEL EXTENSION: A UNIVERSAL POLYNOMIAL FORM FOR PRIMARY DELAYS 

AT UNSPECIFIED STATIONS 

The polynomial model presented in section 4 rests on the selection of different equations in 

cases of full, partial, or absent recovery before the last station of the line and before the last train 

scheduled. In real operation, incidents occur at different locations on a railway line, and trains can 
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experience primary delays at any station. In this section, a universal equation is derived as an expansion 

of the previous cases. The equation is valid in any of the mentioned cases, and can be used to analyze 

the effects of primary delays at different locations on a railway line, or selecting specific areas of 

interest. The delay recovery domain is split in regions, and the polynomial form is integrated with 

logical functions to include or exclude specific sections from the delay summation domain. 

 Study region and Delay recovery region 

Delay propagation studies can be limited to limited sections of the railway lines. For example, 

the most congested section of railway lines within a node could result of greater interest than marginal 

lines. In other cases, the lines can be divided in different homogeneous study regions, suburban railway 

networks can be split in sections according to the scheduled traffic volume and average headway 

between trains. The study region is the domain of interest in the two dimensions of the model, stations 

and trains, and is defined by the number of stations S and the number of trains R. The recovery region, 

defined in section 4, is the set of trains i and stations s where the individual delay exceeds a given 

threshold δ. The recovery region shapes as a triangle, which vertices are the first train at the first station, 

where primary delay is generated (1,1), the last delayed train at first station (𝑖1
∗, 1), and the last delayed 

station for the first train (𝑖1
∗, 1). The cumulative delay is the summation of the individual delays of trains 

at stations within the study region, where the individual delay is greater than or equal to the delay 

threshold, so the summation domain extends to the area resulting from the overlap of study region and 

recovery region. The study region and the recovery region overlap depends on the values of primary 

delay p, running time supplement a, headway buffer b, delay threshold δ, the number of stations S and 

the number of trains R in the study region. Keeping the definition of cumulative delay as the overall 

effect of a primary delay over the area of interest, namely the study region, the equations proposed in 

section 4 are modified so that the cumulative effect is calculated assuming the existence of enough 

trains and station to fully recover the primary delay. The result is defined unbounded cumulative delay, 

the recovery region can extend limitless. To reduce the cumulative delay to only include the study 
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region, individual sub-recovery areas ae identified, and removed from the unbounded cumulative delay 

if the system meats specific requirements, described below. 

 

Figure 6-1: Study region and recovery region overlap 

Figure 6-1 depicts a study region entirely included in the recovery region. This case shows all 

the possible delay sub-recovery areas to include in the general formulation for the cumulative delay. 

The individual areas and the specific equations are explained in the following sections. The general 

formulation of the cumulative delay over individual areas keeps the same form of (9), as a summation 

of individual delays, but the summation domains are different for each area. 

 Unbounded cumulative delay and sub-recovery regions 

If no restriction is imposed to the number of trains and stations, the delay will always be 

completely recovered. The formulation of unbounded cumulative delay corresponds to equation (9), 

where the summation domain extends from the point of primary delay to the last delayed train and 

station. 
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When the study region terminates before the Last Delayed Station, namely 𝑠1
∗ > 𝑆, the 

unbounded cumulative delay must be reduced by an amount corresponding to the cumulative delay in 

the exceeding area, called here Line progress sub-recovery. The summation domain extends in this case 

from the first station outside the study region 𝑆 + 1 to the last delayed station for the first train 𝑠1
∗. 

Γ𝑒 = ∑ 𝑝 + 𝑎 + 𝑏 − 𝑠𝑎 − 𝑖𝑏

𝑖∈{1,…,𝑖𝑠
∗}

𝑠∈{𝑆+1,…,𝑠1
∗}

 

=
𝑝3

6𝑎𝑏
+

𝑝2(3𝑎 + 3𝑏 − 6𝑎𝑆)

12𝑎𝑏
+

𝑝(𝑎2 + 3𝑎𝑏 − 6𝑎2𝑆 − 6𝑎𝑏𝑆 + 6𝑎2𝑆2 + 6𝑏𝛿 − 6𝛿2)

12𝑎𝑏

+
−𝑎3𝑆 − 3𝑎2𝑏𝑆 + 3𝑎3𝑆2 + 3𝑎2𝑏𝑆2 − 2𝑎3𝑆3 − 𝑎2𝛿 + 9𝑎𝑏𝛿 − 6𝑎𝑏𝑆𝛿 − 3𝑎𝛿2 − 9𝑏𝛿2 + 6𝑎𝑆𝛿2 + 4𝛿3

12𝑎𝑏
 

(14) 

Similarly to the line progress sub-recovery, when the study region terminates before the Last 

Delayed Train, namely 𝑖1
∗ > 𝑅, the unbounded cumulative delay must be reduced by an amount 

corresponding to the cumulative delay in the exceeding area, called here Train fleet sub-recovery.  

In the general case, the mentioned exceeding areas can overlap. This happens when the delay 

cannot be recovered by any of the trains in the study region, before the last station. In these cases, the 

overlapping exceed should be reintroduced to prevent the subtraction twice. The last delayed station for 

the first train outside the study region is a new type of boundary for the summation domain. The 

formulation is derived from (4) and it is defined as 𝑠𝑜
∗ 

𝑠𝑜
∗ = 𝑠𝑅+1

∗ = ⌊
𝑝 + 𝑏 − 𝛿

𝑎
− (𝑅 + 1)

𝑏

𝑎
⌋ + 1 | 𝑝 ≥ 𝑎 + 𝛿 

(15) 

The summation domain extends from the first station outside the study region to 𝑠𝑜
∗. 

 Universal formulation 

The existence of the individual sub-recovery areas mentioned in this section depends on the 

relation between system parameters, R, S, a, b, δ, and the primary delay p. The universal formulation 

proposed in this section includes logical controls on the specific delay sub-recovery to select only the 
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regions that are active. The logical controls include the formulation from individual areas only if their 

specific dimension is positive. 

The line progress sub-recovery region is controlled by 𝑙𝑒, the number of excluded stations, 

defined as the difference between the last station in the study region and the last delayed station for the 

first train. Similarly, line progress sub-recovery region is controlled by 𝑙ℎ, the number of excluded train 

paths, defined as the difference between the last train in the study region and the last delayed train at 

the first station. The sub-recovery overlap is controlled by 𝑙𝑜, the overlap length between the last 

delayed station for the first train outside the study region and the last station in the study region. 

𝑙𝑒 = 𝑠1
∗ − 𝑆 = 1 − 𝑆 +

𝑝 − 𝛿

𝑎
 

(16) 

𝑙ℎ = 𝑖1
∗ − 𝑅 = 1 − 𝑅 +

𝑝 − 𝛿

𝑎𝑏
 

(17) 

𝑙𝑜 = 𝑠𝑜
∗ − 𝑆 = 1 − 𝑆 +

𝑏 + 𝑝 − 𝑏(1 + 𝑅) − 𝛿

𝑎
 

(18) 

 

Equation (19) is a closed form function that returns the cumulative delay on a railway line as a 

function of the primary delay d(p), in any condition of recovery, given the system variables a, b, δ, R, 

S. 

Γ = Γ𝑝 ∗
max(𝑠1

∗, 0)

𝑠1
∗ − Γ𝑒 ∗

max(𝑙𝑒 , 0)

𝑙𝑒
− Γℎ ∗

max(𝑙ℎ , 0)

𝑙ℎ
+ Γ𝑜 ∗

max(𝑙𝑜, 0)

𝑙𝑜
 

(19) 

The logical control on the unbounded cumulative delay is introduced in this formulation as a 

replacement of the constraint 𝑝 ≥ (𝑠 − 1)𝑎 + (𝑖 − 1)𝑏 in (3), to simplify the formulation. 
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7. MODEL DISCUSSION 

The polynomial form proposed in section 4 is third degree. It is a cubic function of the primary 

delay, if the measurement horizon extends fully over the length of line and number of trains necessary 

for the disturbance to be absorbed by the timetable running time supplements and the headway buffers 

(the recovery region). This agrees with the earlier findings of Hasegawa et al.(1981). This paper differs 

from Hasegawa in that it explicitly models the discrete summation of delays, considering three 

parameters: supplement, buffer, and threshold for measurable delay. This results in a polynomial 

function of primary delay instead of the purely cubic function of delay in Hasegawa. If the measurement 

horizon is restricted to less than the full recovery region, the polynomial reduces to second degree and 

over very short horizons it is linear. 

The polynomial is an approximation of the discrete summation, and is robust over a wide range 

of parameters. Investigation of the contour of the polynomial finds that, in the examples considered, 

running time supplement and headway buffer should be equal values. Further, excessive values of 

running time supplement and headway buffer may result in poor timetable stability. When supplement 

and buffer are identical, the cumulative delay function simplifies further to a form that is easy to work 

with. 

The model extension presented in section 6 describes the more generic case where primary 

delays occur on unspecified trains at generic stations, and allows a more extended analysis of line 

delays, and of the influence of systems parameters such as the delay threshold. It is possible, in this 

way, to inference the effect of strategic decisions for performance assessment in transportation 

contracts. The delay threshold allows for some flexibility in the planning phase, under the assumption 

that small delays are not perceived by the passengers. The calibration of the delay threshold in service 

contracts between service providers and transport authorities has influence on daily operation, and 

different strategies in the delay threshold dimensioning lead to different dispatching strategies to pursue 

the measured punctuality. Punctuality penalties are a relevant share of operations budget of 

transportation companies, especially in cases where a performance regime is applied. For example, the 
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European Performance Regime (2013) draws the guidelines for performance management in the 

European countries, and every single minute of delay of a train can cost to the service contractor up to 

2€ (Rete Ferroviaria Italiana, 2015). The relation between punctuality measurement methods, delay 

thresholds, and distribution of running time supplement in train paths across several countries in Europe 

is described by Schittenhelm (2011). Suburban and regional railway services in Europe admit thresholds 

between 3 and 5 minutes, whereas long distance services are allowed to reach from 5 to 15 minutes of 

delay before penalties are applied. The closed form introduced in (19) allows to infer the effect of 

different values of the delay threshold in a given timetable, and to evaluate the most appropriate value 

of delay threshold δ. 

Figure 7-1 presents the cumulative delay function and shows the effect of different delay 

threshold strategies. Intuitively, no cumulative delay is recorded for primary delays smaller than the 

delay threshold. The figure shows also the range of effectiveness of the delay threshold. The cumulative 

delay measure is dumped in situations of full or partial recovery. 

 

Figure 7-1: Cumulative delay as a function of primary delay on a railway line with different values of delay 

threshold. S = 11 stations, R = 5 trains, a = 1 min, b = 1 min 

The delay threshold becomes ineffective as soon as all the trains are delayed enough to be 

included in the summation, which corresponds to meeting the condition 

0 min

5 min

10 min

15 min
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𝑑𝑅,𝑆(𝑝) < 𝛿 

𝑝 < 𝛿 + 𝑎(𝑆 − 1) + 𝑏(𝑅 − 1) 

(20) 

 

Based on the formulation provided, service contractors and transport authorities can evaluate a 

convenient value for delay threshold that meats the measured delay distributions and reduces 

operational costs improving the measured punctuality.  

The novelty of this analytical approach is the ability to account explicitly for the running time 

supplement and the headway buffers at the same time. Previous approaches (Landex, 2008; Salido et 

al., 2012) only considered delay propagation to the following trains, leaving out the spatial dimension. 

Similarly to  the model presented in this paper, Pyrgiotis (2012) proposed an airport network model to 

propagate delays over the air traffic and over the single aircraft path. Railway traffic is, though, much 

more constrained than air traffic, and in most railway lines the train sequences do not change between 

stations. Pyrgiotis applied queuing theory to model the interferences between aircrafts, whereas the 

model proposed here considers explicitly the headway buffer between trains. The two models are alike 

in the explicit formulation of the delay reduction given by the running time supplement along the train 

path or aircraft roster.  

Furthermore, the polynomial formulation proposed in this paper provides insight in the relation 

between primary and secondary delays. This is not possible using other queuing models proposed in 

the past (Huisman and Boucherie, 2001) because the primary delay are accounted for implicitly in the 

variability of free running times. Huisman and Boucherie focus on the secondary delays induced by the 

speed differences in the timetable, more than the relation between primary and secondary delays. Other 

past models for delay propagation do not provide a functional relationship (Goverde, 2010, 2007), or 

use complex methods, such as Colored Petri Net, which can effectively only represent few stations (Zhu 

and Schnieder, 2000). 
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8. CONCLUSION 

This paper contributes to the literature with an analytic closed formed function that returns 

cumulative railway line delay as a function of a single initial primary delay. The function can predict 

the output of a simulation model, with high confidence, thus being a fast analytic alternative to resource 

consuming simulation models. The polynomial function may thus be used for an initial screening of 

possible timetables, leaving simulation to later parameter fine-tuning. 

The polynomial function model is shown to be robust to violations of the basic assumptions, 

and the form holds valid with heterogeneous running time supplements and headway buffers. The 

universal formulation introduced in this paper is non-specific to stations and trains, which allows to 

analyze the effects of primary delays occurring at any location on the railway line, and at any time of 

operation. Thanks to the closed formulation, it is possible to quickly evaluate the effect of different 

strategic choices on contract performances between operators and transport authorities. Operation 

design tools such as the delay threshold, running time supplement, and headway buffer, can be designed 

accurately investigating the expected cumulative delay with analytical approach. Differential calculus 

of the polynomial form shows that a limited amount of timetable slack is effective, whereas larger slack 

does not contribute in performance improvement and results in extending scheduled running times and 

delay recovery times. 

Further development of this function should consider the summation and interaction of multiple 

primary delays at different locations. In addition, the application of the model to heterogeneous 

timetables should be deepened. The closed-form model could be inverted to calculate average timetable 

supplement and buffer time. This means that given a desired punctuality and stability of service, the 

necessary timetable supplement may be estimated from this function. 

Acknowledgement : This work was funded by a Dean Grant from the Technical University of 

Denmark (DTU) and by the Danish Innovation Fund through the IPTOP project (Integrated Public 

Transport Optimisation and Planning). 
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