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ABSTRACT 

K-means clustering is employed to identify recurrent delay patterns on a high traffic railway line 

north of Copenhagen, Denmark. The clusters identify behavioral patterns in the very large (“big data”) data 

sets generated automatically and continuously by the railway signal system. The results reveal where 

corrective actions are necessary, showing where recurrent delay patterns take place. Delay profiles and 

delay-change profiles are generated from timestamps to compare different train runs, and to partition the 

set of observations into groups of similar elements. K-means clustering can identify and discriminate 

different patterns affecting the same stations, which is otherwise difficult in previous approaches based on 

visual inspection. Classical methods of univariate analysis do not reveal these patterns. The demonstrated 

methodology is scalable and can be applied to any system of transport. 
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1 INTRODUCTION 

Operations analysis is the collection and review of performance data, such as punctuality and 

process cycle time. It is a key step in the continuous improvement of transport services, and several methods 

exist to collect and analyze data from operations. The increasing availability of automated data sources is 

offering new ways to analyze operations, providing deeper insight and more reliable information. Railway 

management is very accepting of these new possibilities, and considerable effort is made by operators and 

institutions to use operations analysis in feedback loops for improving the timetabling process [1–4]. A 

better understanding of the development of delays in railways, and in transportation in general, provides 

the opportunity to improve the processes and identify the factors affecting reliability. For example, causes 

of delays might be identified in misallocation of supplements and buffers in timetables, structural conflicts 

that require mitigation actions, suboptimal design of station processes, and inefficient procedures for 

preparing a train for departure. This paper demonstrates a data-mining technique based on k-means 

clustering to identify recurrent delay patterns in transportation, identify the main reason for cluster 

membership, and provide managerial insight to improve timetables and processes. 

Prior studies propose several methods that are currently in use for operation analysis, deploying 

sources of automatic data collection. These approaches can be divided into traditional statistical methods 

and big data techniques, which differ in both the use of data and in the output provided. Traditional methods 

tend to aggregate and summarize information, so these can provide a general picture or detailed information 

on specific stations or trains. These are typically proposed in the form of multiple univariate distribution 

analysis, where the occurrence of different delay patterns at the same station is not visible. Big data 

techniques can be used to investigate recurring patterns, or internal structures in operations. These 

approaches are expanding, thanks to the growing availability of large amounts of data, and several 

techniques have been deployed to identify recurrences of delays and describe or predict delays. Advanced 

techniques such as neural networks, succession rules, Bayesian networks, and various methods of 

regression, have been developed mainly to predict delays real-time in railways, as described in §2. 
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However, train delays are necessarily correlated over the progression of a complete journey, and these data 

relations both along the journey of a train and among adjacent train paths have not received as much 

attention in the literature. 

This paper presents a big-data technique to identify recurring delay patterns in railway operations. 

Big data refer to information assets characterized by high volume, velocity and variety, which value is 

extrapolated by analytical methods [5]. In this application, the absolute delay and delay change are tracked 

for individual train paths along a railway line, resulting in absolute delay and delay change profiles. In the 

papers based on univariate statistics, systematic delays in these profiles are identified through visual 

inspection. The manual search for similarities suffers from subjective interpretation from the operator, and 

is easily biased by common artefacts of the representation. The technique presented in this paper applies k-

means clustering to find recurrent patterns in train delay progression, so that management may identify 

processes for improvement or correction. In this way it is possible to support continuous quality 

improvement. 

In the next section, §2, a literature survey of contemporary data analysis methods is offered. §3 

presents the k-means cluster method and the structure of the data to be studied. §4 presents results from the 

study of a high density Danish railway line. The effectiveness of k-means clustering for this application is 

discussed in §5, with particular regards of its novelty compared to existing literature, while conclusions of 

this paper are presented in §6. 

2 LITERATURE SURVEY 

Operations analysis is fundamental in the continuous improvement process to manage and modify 

railway operations. Data collected from real operations, or from simulation models, has been used in the 

feedback loop to design and improve railway timetables for decades. Typically, even if timetables may 

change over time, some of the fundamental infrastructure and service behaviors will not be modified. 

Timetables are often the result of only minor modifications to the previous editions and need to consider 
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problems discovered in earlier timetables. For example, after a structural change in the Danish railway 

timetable in 1998, after the opening of the Great Belt fixed link, the service structure remained largely 

unchanged until 2016 [6]. 

Data collection systems have proliferated in railway networks since 2000, and very large amounts 

of data are available today. Widespread systems to collect data increased both volume and variety of data, 

which are often collected by different systems at the same time. The methods to elaborate and interpret 

information from past operations evolved together with the amount and quality of data, starting from 

descriptive and inferential statistic and moving towards big-data techniques. For example, delay probability 

density functions can be extrapolated from historical data, and integrated in analytical models to estimate 

service reliability before operation [7]. Goverde et al. [8] performs extensive statistical analysis and 

distribution fitting of data from the Dutch railway network. Goverde et al. fits different distributions for 

arrival and departure delays and finds that no general distribution fits all groups of recorded arrival delays.  

Primary delay distributions derived from operational data are also often employed as input in 

simulation models to evaluate the propagation of delays. Sipilä [9] explores the effect of modified running 

time supplements in railway schedules through microsimulation of a Swedish railway line. The author 

identifies different strategies for running time supplement allocation by verifying the significance of the 

change in punctuality recorded in 1600 simulations of selected scenarios. Olov Lindfeldt [10] describes a 

method to aggregate delay data from real records and isolate distributions of primary delays. These 

distributions are then used to formulate microsimulation models. The data consists of manual records from 

dispatchers, who assign a delay cause code to every record greater than 4 minutes of delay on the Swedish 

railways. In absence of other sources of data, the reliability of manual record cannot be validated, although 

the whole simulation model and its results rely on the derived distributions. Studies from other countries 

show that manual input can be indeed unreliable [11,12]. The same method to extract primary delay 

distributions is later used by Anders Lindfeldt and Sipilä [13] in a simulation model to assess the effect of 

allowing freight trains to travel outside their assigned path. The authors demonstrate that the realized travel 
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times of freight trains could be shortened considerably without affecting the performance of other trains. 

The reduction of unnecessary waits for traffic management, and the permission to depart before schedule 

reduces the average travel time on one side, but increases its variability on the other. 

Historical data also provides insight on the factors that influence service reliability. Olsson and 

Haugland [14] apply regression analysis on the Norwegian railway network and identify the most relevant 

factors for punctuality, such as absolute passenger flow and passenger occupation ratio. Gorman [15] uses 

regression analysis on data from American single-tracked freight railways to identify the factors that 

contribute the most in prolongation of railway running times. Gorman predicts congestion delay based on 

meets and passes scheduled as a consequence of speed heterogeneity. Again in simulation, Shih et al. [16] 

applies an approach similar to Gorman’s to determine the best capacity expansion strategy in terms of 

reduction of average prolongation of running time for freight trains. Shih et al. identifies functional 

relationships, through regression of simulation results, between average delay per train-mile and several 

factors, such as the relative length of the doubled-tracked section of a railway line. Anders Lindfeldt [17] 

applies multilinear regression with special focus on F-statistics to investigate factors generating delays on 

the Swedish railway network. Lindfeldt measures delay changes over selected routes and analyzes their 

distributions. In particular, the response variables are the share of trains with a delay increase, the median 

change in delay, and its standard deviation on the route. Statistically significant explanatory variables are 

found in the traffic volume for both passenger and freight trains. Among passenger trains the most 

significant variables are average speed and traffic heterogeneity, and for freight trains it is the number of 

stations on the route with at least three tracks. 

Time stamps and recorded deviations from schedule can be integrated with information from other 

sources. For example, incident reports may be compiled in case of larger disruptions. Such reports include 

information about the typology of the incident, the train affected by the primary delay, other trains involved, 

the secondary delays generated, and the recovery plans taken by the dispatchers. Schittenhelm and Richter 

[1] describes the reporting system in the Danish railways (the same system in service at the time of this 
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study), and introduces a quantile-based approach to depict the development of train delays en-route. The 

plots confirm the general understanding of delays from experienced operators and can be used to quantify 

the magnitude of expected disruption. The quantile-based approach, though, describes operations as a 

whole, and it is not able to distinguish systematic delays occurring at individual stations, but with different 

origins, so analysis of individual train services is necessary to identify peculiar delay patterns. Richter [18] 

introduces new metrics to identify improvement actions, based on data from automatic detection systems. 

Richter sorts the trains according to recorded delay and identifies the worst in a percentile approach, 

associated with recorded delay causes. A similar approach is adopted with regards to change in deviation, 

or delay jump, recorded on line sections, so that most critical geographical areas are identified. Lastly, 

Richter proposes a tabular representation of the median delay of individual trains recorded at station, sorted 

by scheduled time and geographical location. In this way, the analyst can identify which specific trains 

typically suffer from primary delays, also characterized by geographical location, and which are the trains 

typically affected.  

Similarly, Peterson [4] studies the on-time performance along the path of specific train services, 

using the rolling average delay of the last three timing points. Such on-time performance is plotted for all 

the repetitions of a specific train service over a time period, and compared to the average, standard 

deviation, and 75th percentile. Peterson identifies empty areas in the pool of plotted delay profiles, and 

interprets these as recurrent delay patterns given by discrete dispatching choices along the train path. 

Peterson also interprets recurrent increases or decreases of vehicle delay as segments of insufficient or 

excess running time supplement, respectively. Reliability of service is described by the standard deviation 

of recorded delays. Peterson used the mentioned measures in a feedback loop to redistribute the running 

time supplement in train paths according to the recorded performance.  

Andersson et al. [19] assesses the effectiveness of running time supplement in railway schedules 

from empirical data collected on a Swedish railway line. The study plots the recorded delays over the train 

itinerary overlapped with scheduled running time supplement, and compares pairwise the stacked plots 
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from different railway services, stopping patterns or directions. The identification of misallocation of 

running time supplement is based on visual search for recurrent delay patterns, and a few different 

dispatching tactics are identified in clusters of similar delay profiles. Andersson et al. highlights the 

existence of a threshold value of delay that triggers prioritization of other trains that are traveling on 

schedule. The observations are clustered in groups and show recurrent delay patterns, and the analysis is 

supported by detailed analysis of possible conflicts among individual train itineraries. Noticeably, the 

authors demonstrate that the measures of punctuality currently in use on the Swedish network hide the 

effects of running time supplement misallocation and delays developed en-route. Even though the 

punctuality at the final destination is a measure of railway performance very common among railway 

operators, it does not express how trains increase or recover from delays along their journey. Schittenhelm 

[20] provides a sample of similar measuring approaches in the European railway industry. In a later study, 

Andersson et al. [21] underlines the relevance of critical points for network robustness by plotting delay 

profiles, and showing that the profiles cluster around critical points according to different dispatching 

strategies. Advanced clustering techniques may support the identification of different strategies to compute 

the effects on robustness.  

Lastly, van Oort et al. [22] evaluates data collected automatically on public transport services with 

a combination of statistical methods and visual representation. The study represents delay data similarly to 

Peterson [4], Andersson [19,21], and Schittenhelm [1], plotting the recorded delay over individual 

repetitions of the same service path, and adds the plot of relevant delay percentiles over the stations. The 

shape of the percentile-based delay profiles highlights recurrent patterns in the deviation from schedule. 

The representative delay profiles appear different depending on the percentile they represent. Patterns found 

included the presence of typical early arrival at stations in bus services, followed by waiting time until the 

scheduled departure time, or recurrent delay drops or increases at specific stations. The delay plots are 

combined with the measured headway from the previous vehicle. While the delay plots would suggest 

allocating more running time supplements at systematic increases of delay, structural delays that cannot be 
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compensated by timetable slack are highlighted in the plots of headways, were service unreliability 

corresponds to scattered recorded headways. A percentile approach was also presented by van Oort et al. 

to characterize and sort the stations according to performance, similarly to previous literature. 

The statistical analyses presented above are suitable for general description of the system 

performance, but lack specific insight on recurrent delay patterns that occur in operation, and on the 

relationships between delays at different locations. The literature presented in this survey focuses on the 

univariate analysis of selected measures, such as delays at single stations. Traditional metrics common in 

the railway industry, such as punctuality, have also been found unrepresentative of the actual service 

reliability. The methods that include the multidimensional aspect of the problem mostly deal with delay 

profiles, the sequences of delays recorded on individual train itineraries. The quality of these analyses often 

relies on visual inspection of plotted data, and the observer-operated search for matching delay profiles. 

This search lacks a standardized methodology, and is influenced by the plotting layout and the subjective 

interpretation, which is based on personal experience.  

Big data techniques have arisen recently, and seek to make use of the very large amount of 

information that is provided by automatic data collection systems, overcoming the mentioned issues of 

traditional methods. The term big data is rather broad and includes different techniques that serve specific 

purpose. The common characteristics of these techniques are Volume, Velocity and Variety, meaning large 

amounts of data, generated at high speed, possibly by different sources with different or no structure [5]. 

As opposed to standard statistical analyses, where hypotheses are formulated and tested, big data techniques 

search for internal structures directly in the data. Data generated by automatic sources typically fit into the 

big-data criteria. In railways, several data mining techniques were developed in the last years, following 

different approaches and searching for different types of information. The interest in these techniques is 

rising, together with the increasing availability of structured data. Industrial applications of these techniques 

are spreading, and new approaches are being studied also among public institutions [2]. 
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Event mining is a technique based on time sorted logs, where relations between different events are 

found based on their coincidences. Hansen et al. [23] combines an event mining tool and standard statistics 

to predict the actual running times of trains to the next station, given all the recorded current delays. 

Dependencies between pairs of events are found or “mined” in timed event graphs created from the time 

stamps of individual trains, which correspond to events of occupation and release of blocking sections. The 

process times between events are inspected by standard statistics, resulting in conditional probabilities of 

process times, given the recorded delays of all relevant trains in the system. Such a model, though, relies 

considerably on very detailed knowledge about the infrastructure and requires data which is not commonly 

available from railway infrastructure managers.  

Goverde and Meng [11] uses the same information source and similar technique to identify and 

analyze route conflicts and identify delay chains. Infrastructure data and operation data are integrated so 

that it is possible to identify a train that is occupying a blocking section linked to a signal at danger for 

another train. Delay trees are built and traced backwards to identify the primary causes, so individual delays 

can be classified automatically into primary and secondary, and the correct attribution of delay causes can 

be verified. Interestingly, the authors verify that more than half of the delay cause records were assigned 

wrongly by the dispatchers, stating that, in the Netherlands, this type of manual input is not reliable and 

objective enough to be deployed in data analysis.  

Kecman and Goverde [24] extends the model to include non-logged line sections, where it is not 

possible to distinguish delays due to signaling impositions and delays due to primary causes. Delay chains 

are also traced in less detailed data by Sørensen et al. [12]. Based on the time sequences at stations 

experiencing disturbed operations, the authors identify the trains generating the conflicts and the trains 

suffering from the conflicts. The analysis is used to identify primary delays, describe single days of 

operation, identify frequent trains originating, or subject to, delay chains, and identify point stations where 

most of the primary or secondary delays are generated. In a comparison with manually recorded delay 

causes, the study finds relevant inconsistencies with the primary delays traced in the delay chains, in 
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accordance with Goverde and Meng [11]. The method described, though, is only valid for single track lines, 

and does not identify multiple primary delays. 

Cule et al. [25] introduces association rules to identify delays recurring often together, and sets up 

an episode mining framework to highlight frequent delay patterns from train timestamps at stations. 

However, association rules can highlight common recurrences, but cannot explain relations of causality 

between two events, so primary and secondary delays cannot be distinguished. Similarly, Wallander and 

Mäkitalo [26] identifies delay chains according to the manual delay cause records from the dispatchers, and 

based on timestamps at stations with granularity of 1 minute. The succession rules used are very similar to 

association rules, but consider the time dependencies, so that events taking place earlier can be assumed to 

be the cause of events happening later under the same circumstances. Trains are characterized by the 

number and magnitude of conflicts they generate so that improvement actions can be concentrated. 

Association rules have also been adopted to evaluate the effectiveness of delay prevention actions on 

Japanese suburban networks by Yabuki et al. [27]. Yabuki et al. compares the association among occurrence 

of delays of different trains, change in delays, extension of running and dwelling times and realized 

headway in before/after scenario comparison. The downside of such models is that association rules can be 

set between binary variables, so the development of delays depicted does not include its magnitude. Further, 

the number of associations to be analyzed grows exponentially with the number of potential pairs of events, 

so the analyses must be limited to short time frames of operation. 

Neural networks are a big-data method that learns from historical records and uses the relations 

identified among variables to predict an output, given unseen values of the input variables. This technique 

is particularly suited to delay prediction and has been deployed in multiple studies. Neural networks look 

for dependencies in the data, as opposed to simulation models, which are based on interaction rules between 

objects defined initially. Malavasi and Ricci [28] uses neural networks to predict the total experienced delay 

on a railway line, given its geometrical and technological characteristics, and its scheduled utilization over 

time. In comparison to simulation, Malavasi and Ricci find neural networks more robust against extreme-
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valued input, which implicates more likely case-overfitting with simulation. Kecman et al. [29] proposes a 

Bayesian network delay prediction model. In this case, input includes the timetable and recorded delays at 

all stations. Each delay is assumed to depend only on direct connections in a timed event graph, meaning 

the recorded delay for the same train at a previous station, and for the previous train at the same station. 

Conditional delay distributions are assumed Gaussian, and the parameters are derived through recursive 

Generalized Linear Models. Chapuis [30] deploys the same assumed delay dependency in a neural network 

model, where input includes delay of the previous train and at the previous station, and distance to the next 

station. Such a model can predict the delay of a train at the next station. Independent of the actual 

infrastructure, this model is generic and can be applied at any station of the railway network. The downside 

of neural networks, though, is the risk of data overfitting, reducing the prediction capability, although this 

risk is lower in neural networks than in simulation models.  

In respone, Marković et al. [31] introduces Support Vector Regression (SVR) to establish a 

functional relationship between characteristics of the railway system and train delays. Train category, 

scheduled time, infrastructure, and share of journey completed are identified as most influencing factors to 

predict the train delay at one station. The authors show that SVR generalizes better than an artificial neural 

network, which seeks to minimize error of prediction in the historical dataset. Interestingly, the authors 

assume that the performance of delay prediction can be improved by grouping delays by magnitude, as 

factors generating smaller delays differ from factors that generate larger disturbances.  

Kecman and Goverde [32] applies big data techniques to predict running and dwelling times from 

actual operation data, based on records from block sections occupations. The study uses random forests of 

tree-based models, to predict non-linear relations between input variables and process times, with sufficient 

robustness to outliers in the data, lowered risk of overfitting, and with focus on real time application. 

Running time predictors are calculated for every block section, and dwelling time predictors are calculated 

for every station platform. Among the interesting findings, the running times are longer if the headway to 

the preceding train is short, meaning that the succeeding trains tend to slow down to smoothen the trip and 
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reduce the risk of encountering a yellow signal. Moreover, the authors find no evidence to support the 

hypothesis that trains run faster when delayed. All the trains were found to run at approximately the 

maximum performance in any condition. The authors suggest that, in case of insufficient prediction 

accuracy, new variables might be included in the model, such as platform shape for dwelling times. 

Big data techniques focus mainly in the prediction of delays and running times, or in the 

identification of delay chains and realized delay propagation among trains. New applications of these 

techniques would support the analysis of the realized development of delays along the path of individual 

train delays. As shown by statistical analysis and visual search for patterns presented by Schittenhelm and 

Richter [1,18], Peterson [4], Andersson et al. [19,21] and van Oort et al. [22], this type of data contains a 

great deal of information yet to be explored, which would provide insight on the effectiveness of running 

time supplements, and on the presence of structural issues that generate delay in transport operation. In this 

paper we present a clustering technique to identify recurrent delay patterns among train services, based on 

readily available data, and which leaves room for inference on the factors that generate specific delay 

patterns. The result shows that, within comparable train trajectories and stopping patterns, different train 

services accumulate delay at different stations, and that recovery shapes differently according to the route 

direction. Inferences on the cluster composition show the most frequent service characteristics in each 

cluster. Such information could inform the allocation of correction measures to improve timetables. Table 

1 and Table 2 summarize the literature just reviewed.  
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Table 1: Review of previous uses of univariate statistics in railway operation analysis 
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Goverde et al. (2001) X   X         Distributions of Primary and Secondary delays 

Sipilä (2010)   X   X       Comparison running time supplement strategies 

O. Lindfeldt (2010) X X X         
Distributions of Primary delays from real 
operation for simulation 

Olsson and Haugland (2004) X       X     Factors affecting punctuality 

Gorman (2009) X       X     
Factors that generate delays on single track 

lines 

A. Lindfeldt (2010) X       X     Factors that increase delays on line segments 

A. Lindfeldt and Sipilä (2014)   X   X       
Travel times with different operation models, 

with/without free freight operation 

Shih et al. (2014)   X     X     Factors affecting average delay per train-mile 

Schittenhelm and Richter (2009) X         X X 
Visual inspection of quantile-based 
representation of deviations and change in 

deviation 

Richter (2010) X         X   
Delay tabular representation and sorting train 

service performance 

Peterson (2012) X         X   Rolling average delay for specific train services 

Andresson et al. (2011) X           X 
Assessment of effectiveness of running time 

supplements 

Andresson et al. (2013) X           X Identification of critical points for robustness 

van Oort et al. (2015) X           X Delay profiles, headway profiles 
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Table 2: Review of previous uses of big data techniques in railway operation analysis 

 
Technique 

Level of 

detail 

 E
v

en
t 

m
in

in
g
 

A
ss

o
ci

at
io

n
 R

u
le

s 

S
u

cc
es

si
o
n

 R
u
le

s 

N
eu

ra
l 

N
et

w
o

rk
s 

B
ay

es
ia

n
 N

et
w

o
rk

s 

R
an

d
o

m
 f

o
re

st
s 

S
u

p
p
o

rt
 V

ec
to

r 

R
eg

re
ss

io
n
 

C
lu

st
er

in
g
 

T
ra

ck
 s

ec
ti

o
n

s 

S
ta

ti
o
n
 

Input Purpose 

Hansen et al. (2010) X        X  Current delays of al 

trains 

Prediction of running 

time to next station 

Goverde and Meng 

(2011) 
Kecman and 

Goverde (2012) 

X        X  Timestamps 
Delay chains, Actual 
primary delay causes 

Sørensen et al. 
(2017) 

X         X Timestamps 

Delay chains on single 

track lines, actual 

primary delay causes 

Cule et al. (2011)  X        X Timestamps Delay patterns 

Wallander and 

Mäkitalo (2012) 
  X       X 

Timestamps, delay 

causes from dispatchers 
Delay chains 

Yabuki et al. (2015)  X        X Timestamps 
Comparison of real 

scenarios 

Malavasi and Ricci 

(2001) 
   X     X  Physical infrastructure 

and utilization ratio 

Prediction of total 

realized delay on a 
network 

Kecman et al. 

(2015)a 
    X     X 

Current train delay, last 

delay at station 

Delay prediction at 

next stations 

Chapuis,(2017)    X      X 
Current train delay, last 

delay at station, distance 

Delay prediction at 

next stations 

Marković et al. 

(2015) 
      X   X 

Infrastructure and train 

journey characteristics 

Delay prediction at 

next stations 

Kecman et al. 

(2015)b 
     X   X  

Current traffic condition, 
actual train position, 

delays of the day 

Running time and 
dwelling time 

prediction 

Cerreto et al. (2018) 
(This paper) 

       X  X Timestamps 

Recurrent delay 

patterns across 

stations 

 

3 IDENTIFICATION OF RECURRENT DELAY PATTERNS USING BIG DATA TECHNIQUES  

In this paper, a delay profile of a train run is defined as the set of recorded deviations throughout 

its path or a part of it, on a specific date. Note that deviation is reported as the time difference between a 

scheduled and a realized event, such as arrival, departure, or a nonstop timing point. Even though delay is 

often used to refer to positive deviations, a delay profile can include null and negative values. A delay 

profile is a powerful representation of operation and the comparison of several delay profiles along the 
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same service path allows the identification of recurrent delay patterns and such a representation method has 

already been presented in the literature [1,4,18,19,21,22]. Delay change, also called delay jump, is the 

difference in deviation between two consecutive stations, and represents the delay recovery or increase. 

Schittenhelm and Richter [1] use this measure to assess delay increases or time gains between stations, and 

Goverde and Meng [11] use it to identify delay chains in railway operation. We define a delay change 

profile of a train as the set of recorded delay changes along its path or a part of it. 

A dataset of delay profiles consists of all the delay profiles recorded in a defined period, stacked 

together. Fields, or variables, of the dataset are the events at every station, whereas observations are 

individual train runs from a selected service. Such a dataset can refer to a specific train service or to several 

services following the same stopping pattern, so that the fields can be aggregated. The first case is intended 

for infrequent services, typically long-distance trains, where every single service may have its own 

characteristics in terms of planned demand, scheduled rolling stock, or the time of crossing congested 

nodes. Suburban and regional railway services are often scheduled in constant stopping patterns at high 

frequency, and could, thus, be analyzed together, expecting characteristics of operation to be more 

homogenous across services. A dataset of delay change profiles is defined analogously to delay profile 

datasets, where the fields contain the change in deviation in place of the absolute deviation. 

Previous research presented on delay and delay-change profiles interpret recurrent patterns by 

visual search for similarities [1,4,19,21]. The systematic analysis of these two types of datasets through 

clustering algorithms allows the identification of patterns that are not necessarily visible, or that could be 

wrongly associated by subjective interpretation. 

Clustering techniques partition a dataset into a collection of groups of similar observations. In this 

study, clustering is used to partition the datasets of delay profiles and identify train services that are 

candidates for identification of common causality. Inference on common factors appearing in observations 

clustered together facilitates the assessment of delay patterns in association to specific characteristics of a 
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transport service, such as time of the day (peak/off peak), day of the week, or equipment used. The 

clustering process is realized through measures of similarity between elements in the same cluster and 

dissimilarity between elements from different clusters. Several methods and metrics are available to 

accomplish the task, suitable for different uses. Hierarchical algorithms proceed by splitting or merging 

observations recursively, and are preferred when a nested structure is assumed in the clusters. In contrast, 

partitional algorithms do not impose a hierarchical structure and find all the clusters at the same time. K-

means clustering is a partitional algorithm, and was chosen due to its simplicity and frequent appearance in 

the literature [33]. 

K-means clustering is an iterative clustering process based on the identification of the mean element 

in each cluster. Every cluster is represented by its centroid, calculated as the average of the elements of the 

cluster, and every observation is assigned to the cluster corresponding to the closest centroid. Given a 

number k of initial centroids, the algorithm executes the following steps: 

1. assign every element to the cluster with the closest centroid; 

2. calculate the new centroids of all the clusters as the mean of the elements; 

3. repeat until convergence, which is met when no element changes cluster between consecutive iterations. 

This simple method requires three user-specified parameters, which might be hard to determine 

beforehand. The distance metric, the number of clusters k, and the cluster initialization. Euclidean distance 

is often used to determine the difference between observations, but other metrics are available, such as the 

L1 distance [34]. The number of clusters k is the most difficult parameter to estimate, as there is no perfect 

mathematical criterion. The parameter k is typically determined according to available knowledge about 

the data, or interpreting and evaluating the meaning of several independent partitions realized for different 

values of k. The initial centroids might influence the resulting clusters, so the initialization is often chosen 

among several independent partitions that result from sampling k initial centroids among the observations. 

The influence of initialization, however, generally diminishes with the dimensionality of the dataset [33]. 
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A substantial contribution to the simplicity of the method is given by the required structure of the 

data. Contrary to observer-operated search, clustering methods rely on the numerical relations between 

variable values recorded across single observations. It is, thus, unnecessary for the clustering algorithm to 

preprocess the data and sort the recorded delays for every train/observation. In the method proposed in this 

paper, k-means clustering is applied to observations of a multidimensional variable, whose size corresponds 

to the number of timing points of a fixed stopping pattern, where the fields contain the delays, or delay 

changes, respectively, recorded at the individual timing points. Every observation of this multidimensional 

variable is a vector, and represents a single train run. 

4 CASE STUDY: THE KYSTBANE, COPENHAGEN 

The Kystbane (Coast line) is a double-tracked railway in the Copenhagen region. It is one of the 

busiest railway lines in the network of Banedanmark, the Danish infrastructure manager, and it is operated 

to regional standards, with some international services. It is operated nearly entirely by DSB, the largest 

Danish railway undertaking, which runs three different service types. The timetable is cyclic, and the 

services operate different stopping patterns during the day, as illustrated in Figure 1. 
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Figure 1: DSB services and stopping patterns on the Kystbane. 
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• The Øresund trains (“ØK”) run all day every 20 minutes on a limited section of the coast line, 

between Copenhagen and Nivå. These trains operate between Denmark and Sweden across the 

Øresund bridge, and stop at every station in Danish territory; 

• The Regional trains (“ØP”) run all day every 20 minutes as well, but they only operate in Denmark 

and run the whole coast line. These trains skip selected stops between Copenhagen and Nivå; 

• Additional trains are operated in the morning and afternoon peak hours. The Rush hour trains (“ØD”) 

operate every 20 minutes between Copenhagen and Helsingør, skipping other selected stops. 

Fewer trains with modified stopping patterns run at night, so only weekday operation between 4:30 

and 20:00 is considered in this study. The sections between Copenhagen and Østerport, and between 

Snekkersten and Helsingør are shared with other services and operators.  

In the resulting charts, stations are identified by a code specified by the infrastructure manager. 

Station codes and names are reported in Table 3. 

Table 3: Station codes and names on the Kystbane 

Station code Station name 
Distance from 

KH [km] 

KH 
København H 

(Copenhagen Central Station) 
0,0 

KN Nørreport 1,5 

KK Østerport 3,1 

HL Hellerup 7,8 

KL Klampenborg 13,3 

SÅ Skodsborg 18,8 

VB Vedbæk 22,1 

RU Rungsted Kyst 26,1 

OK Kokkedal 29,1 

NI Nivå 32,5 

HUM Humlebæk 36,3 

GÆ Espergærde 40,0 

SQ Snekkersten 42,7 

HG Helsingør 46,2 
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Banedanmark provided a set of timestamps that state the scheduled and realized times of the trains 

at every timing point from April to December 2014. The records include information about the operation 

and about the timing points, such as station name, train ID, train category, scheduled time and recorded 

deviation. Banedanmark relies on automatic train detection systems, based on the signaling system 

components. Typically, the track circuit boundaries do not correspond exactly to the platforms, and an 

offset is generated between the time recorded by the automatic system and the actual time a train arrives at 

the platform or departs. This is a rather common problem, and it is also reported in the Netherlands [32] 

and Norway [12]. For the Danish network, a correction factor was calculated by Banedanmark using 

statistical analyses of GPS positions of train trajectories in collaboration with the main rail operator, DSB. 

The method and results are described by Richter et al. [35,36]. Nørreport station is the only station 

underground on the line, so GPS correction is not available, which is visible as a saw-tooth pattern common 

to all train services in the delay profiles presented below, with a slightly underestimated delay for arrival 

records at Nørreport and overestimated for departure records from the same station. Similarly, delay change 

records are shifted to negative values for arrivals at Nørreport, and at Østerport, whereas higher positive 

values are recorded for delay changes at departures from Nørreport. The bias is systematic and has the same 

exact effect on all the trains, therefore its influence on clustering can be neglected. 

The train time stamps were rearranged by an automatic algorithm to create datasets as described in 

§3, by means of the commercial software SAS 9.4 TS Level 1M4, by SAS Institute Inc., Cary, NC, USA. 

Observations corresponded to a realized train on a given date, and the fields contained the recorded delay 

at every station. Data from every station was divided in arrival, departure, and pass-through times, where 

trains did not stop. Each record is the delay profile or the delay-change of a train on a date, and represents 

one observation of the given train. Every variable identifies the station code and the type of timestamp, 

which can be entrance to the station, I (“Indkørsel”), exit from the station, U (“Udkørsel”), or pass through 

station, G (“Gennemkørsel), which is used where trains do not stop. 
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The analysis is intended to report delay patterns. Consequently, punctual trains are discarded from 

the dataset. In Denmark, punctuality measurements are based on a delay threshold of 5 minutes for regional 

and long-distance trains, such as the Kystbane. However, for internal management purposes, the 

infrastructure manager Banedanmark creates a delay report every time a train reaches at least 3 minutes of 

delay, containing information on the delay cause and on possible other trains hindered. Consequently, only 

trains with at least one recorded delay greater than or equal to 3 minutes are considered relevant in the 

present case study. Delay distributions are known to include large shares of trains with short delays, with 

decreasing frequency for larger delays [7,8]. Largely unbalanced clusters are a known issue in clustering 

algorithms and are an object of study to reduce the interference of large clusters [37]. In this case, punctual 

trains can therefore be considered as a compact cluster derived by prior knowledge, and they can be filtered 

out from the cluster analysis. The operation of filtering can be considered noise reduction and improves the 

quality of clustering, as the k-means procedure tends to generate spherical clusters of same radius [38]. 

According to Marković et al. [31], large delays are influenced by different factors other than smaller delays, 

which further supports the filtering choice. However, in different contexts, the filtering threshold might be 

set equal to a different value, or not be applied at all. 

Given the characteristic high frequency of train services on this line, clustering was operated by 

stopping patterns rather than by train numbers, so trains were grouped together by direction and service 

category. Grouping trains with similar characteristics and same stopping patterns increases data availability 

in the comparison and does not disqualify the result. In fact, such grouping was already proposed by 

Schittenhelm and Richter [1]. 

As explained in §3, k-means clustering requires choosing the number of clusters k in advance. To 

set the number of clusters, the k-means algorithm was repeated with different values of k, and the best result 

was selected using criteria from Jain [33]. The number of clusters k should be large enough to represent 

different patterns. At the same time, as k increases, the same delay patterns tend to split in more clusters, 

and k should remain small enough to prevent the generation of duplicate clusters. In detail, for every 
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combination of train category, direction, and clustering variable (delay or delay change), k was set as the 

highest integer that did not generate duplicate clusters. That is, the univariate distributions of delays, or 

delay changes, in every cluster should be different from all the other clusters for at least one station. Since 

k is selected independently for all the mentioned cases, the same set of trains might best be represented by 

a different number of clusters when the algorithm operates on the delay variables or on the delay change 

variables. The L1 distance was used as a clustering metric between observations, as suggested by Kashima 

et al. [34]. 

K-means clustering was performed on the described dataset by the commercial software MATLAB 

R2017a, by The MathWorks, Inc.. In the following figures, selected results of application of the method 

are reported, clustering on either delay profiles, or on the delay change profiles. 

4.1 Clustering results 

Figure 2 illustrates the effectiveness of delay profiles clustering on ØK southbound trains, on the 

delay variables. Note, after a stop at Copenhagen central station, these trains proceed to Sweden. The charts 

show that similar delay profiles are grouped together with low variance around the average centroid of each 

cluster, highlighting recurrent patterns. The resulting clusters can be interpreted as follows: 

1. Cluster 1: Trains that are punctual on the first section of the line, but suffer delays approaching the most 

congested area of Copenhagen, mainly from Klampenborg and from Østerport; 

2. Cluster 2: Trains that are punctual throughout the complete journey, which receive delays leaving from 

Copenhagen; 

3. Cluster 3: Trains that are nearly punctual, or anyway within 5 minutes of delay through the complete 

journey, and across Copenhagen central station; from Hellerup, a marginal delay recovery is visible for 

these trains; 

4. Cluster 4: The most delayed trains, being delayed throughout the whole itinerary, or it largest part; 

5. Cluster 5: Punctual trains with slightly, but steadily, increasing delay across stations. 
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Figure 2: Resulting clusters in southbound ØK trains, Nivå – Copenhagen. 
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Some clusters present outliers, such as clusters 2 and 3. Even though some delay profiles may 

appear considerably different from other profiles in the same clusters, these observations were assigned to 

the cluster with the closest centroid. This means that, in selected cases, the delay profiles are the 

representation of rather unique events, which may be neglected after more detailed analysis in the 

composition of the individual clusters. 

Individual clusters are characterized through the mean values of the aforementioned measures. The 

following measures were computed for each train run to characterize the individual clusters: 

• Average, minimum, and maximum delay across stations; 

• Range of delays across stations; 

• Standard deviation of delays recorded across stations; 

• Initial delay, the delay at first station; 

• Final delay, the delay at the last station; 

• Overall delay change, difference between final and initial delay. Positive values mean the delay has 

increased from first to last station; 

• Maximum delay change across stations. 

Cluster characteristics are summarized in Table 4: 

Table 4: Characterization of delay profile clusters, southbound ØK trains Nivå – Copenhagen 

Cluster N. 

obs. 

Mean 

average 

delay 

[min] 

Mean 

STD of 

delays 

[min] 

Mean 

initial 

delay 

[min] 

Mean 

final 

delay 

[min] 

Mean 

min 

delay 

[min] 

Mean 

max 

delay 

[min] 

Mean 

delay 

range 

[min] 

Mean 

max 

delay 

change 

[min] 

Mean 

overall 

delay 

change 

[min] 

1 270 2,26 2,78 -0,95 6,14 -1,06 7,72 8,78 4,88 7,09 

2 418 0,55 1,47 -1,05 4,71 -1,24 5,27 6,52 4,69 5,76 

3 381 3,09 1,12 1,70 1,80 0,53 4,64 4,11 2,69 0,11 

4 159 7,65 1,92 4,59 8,03 3,73 10,21 6,47 6,79 3,44 

5 395 1,92 1,14 -0,28 2,23 -0,47 4,10 4,57 2,25 2,51 

Total 1623 2,46 1,57 0,35 3,99 -0,12 5,73 5,85 3,87 3,64 
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4.2 Comparison with percentile-based approaches on delay profiles 

In this section, a comparison is provided between the pooled data and the clusters on the dataset of 

delay profiles. The same percentile representation of delay profiles is shown, as proposed by Schittenhelm 

and Richter [1], Peterson [4], and van Oort et al. [22]. These authors represented different percentiles. For 

the sake of clarity, only the 15th, 50th and 85th percentiles and the average are displayed in the following 

diagrams. 

Figure 3 shows the distribution of delays of the entire dataset of ØK southbound trains. The only 

pattern visible is a slight increase in delay toward Copenhagen, more evident for the more delayed trains, 

represented by the 85th percentile. Even though a large portion of punctual trains was discarded from the 

dataset, the residual distribution of delays remains positively skewed, as shown by the average constantly 

higher than the median value.  

The new information revealed by the clustering algorithm is provided in Figure 4. In this figure, 

the individual internal distributions of delays are compared to the pooled delay distribution from Figure 3. 

Figure 4 shows, for each cluster, the difference between the cluster statistic at each station and the 

equivalent pooled statistic from Figure 3. 

 
Figure 3: Delays recorded for ØK southbound trains.15th percentile dotted, median solid black, and 85th percentile 

dashed. Average solid gray. 

In Figure 4, the 15th and 85th percentiles and the median line of the internal cluster delay profiles 

distributions, are compared to the distribution of pooled delay profiles. The clusters where the difference 

of 85th percentile from the pooled dataset is lower than the difference of the 15th percentile have tighter  
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Figure 4: Differences in the distributions of delays recorded for ØK southbound trains. Each cluster’s internal 

distribution is compared to the pooled distribution. 15th percentile dotted, median solid, and 85th percentile dashed. 
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distributions of delay profiles compared to the pooled dataset, increasing the significance of the identified 

pattern. The local deviation present in the clusters represents the information hidden in the pooled dataset, 

which is instead brought to light by the clustering. 

4.3 Comparison with percentile-based approaches on delay change profiles 

In this section, a comparison is provided between the pooled data and the clusters on the dataset of 

delay change profiles. The same representation of delay change profiles based on the median is shown, as 

proposed by Schittenhelm and Richter [1,18], supplemented with the average, i.e. the cluster centroid.  

Figure 5 shows the delay change profiles of the entire dataset of ØD northbound trains. A 

generalized positive delay change is visible at the last station. The large changes in delay from location 

KN I to KK I are linked to the known deviation in the timestamps at Nørreport.  

 

Figure 5: Delay changes recorded for ØD northbound trains. Median in bright shade, average in dark. 

The differences between the pooled median and average delay change profile and the same profiles 

from individual clusters are represented in Figure 6. In this case, the information gained by clustering is 

more evident. All the clusters remain similar to the pooled data at most stations, except few stations, where 

a large difference is recorded in the delay change. 
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Figure 6: Delay changes recorded for ØD northbound train, by clusters. Median in bright shade, average in dark. 
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Every cluster is characterized by at least one larger delay change at one station, which would be 

hidden in the pooled distribution of delay change profiles. Noticeably, the negative effect of different delay 

patterns overlapping is evident for KN I records. All the clusters deviate negatively from the pooled data 

by around 0,5 minutes, except cluster 2, which deviates positively by around 1,5 minutes from the pooled 

profile. This means that the pooled profile was shifted by one single cluster to a central value, hiding both 

the frequent delay recovery, and the delay increase specific from cluster 2. 

4.4 Inference on the clusters 

In this section, results from clustering of delay profiles and delay change profiles are investigated 

to identify relations with cluster characteristics, using heuristic classification. For the sake of conciseness, 

only cluster centroids are reported in the following figures, and only a sample of the results is reported, 

which is ØD northbound trains and ØK southbound trains. Figure 7 shows results from clustering delay 

change profiles for ØD trains to Helsingør. 

 
Figure 7: Cluster centroids for northbound ØD trains, delay change. 
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Clusters can be interpreted as follow: 

1. Cluster 1: regular delay increases at the last three stations, where trains become unpunctual; 

2. Cluster 2: delay increase arriving at the first stop, Nørreport; 

3. Cluster 3: trains that are considerably delayed arriving at the final destination, Helsingør; 

4. Cluster 4: trains without remarkable delay changes: these train tend to keep the same delay throughout 

the whole journey; 

5. Cluster 5: specific delay increases at Humlebæk arrival; trains in this cluster show also smaller recovery 

at Skodsborg arrival, compared to other clusters; 

6. Cluster 6: these trains accumulate delays passing the stations of Hellerup and Klampenborg; on the 

other side, compared to other clusters, the average delay increase at final destination Helsingør is 

smaller. 

Table 5: Northbound ØD trains. Cluster share by train service ID. The color code compares the individual row’s 

distributions among clusters to the overall distribution among clusters reported in the last row. Clusters sorted by size.  

Time 

band 

Departure 

time from 

KH 

Train 

number 

Cluster 

2 6 4 1 3 5 

2
 –

 A
M

 P
ea

k
 

06:18 4413 18% 25% 14% 14% 18% 11% 

06:38 4415 4% 36% 4% 16% 32% 8% 

06:58 4417 26% 33% 7% 19% 4% 11% 

07:18 4419 6% 22% 8% 31% 8% 25% 

4
 –

 P
M

 P
ea

k
 

15:18 4467 21% 25% 17% 4% 21% 13% 

15:38 4469 19% 30% 7% 12% 23% 9% 

15:58 4471 44% 16% 16% 4% 8% 12% 

16:18 4473 5% 15% 28% 18% 20% 15% 

16:38 4475 43% 13% 21% 13% 10% 2% 

16:58 4477 20% 15% 39% 9% 2% 15% 

17:18 4479 16% 32% 15% 12% 9% 16% 

17:38 4481 31% 14% 19% 19% 5% 12% 

17:58 4483 46% 14% 14% 6% 10% 10% 

    

Cluster 

share 
24% 22% 17% 14% 12% 12% 
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Inference on the cluster population shows that some patterns are specific of selected train services, 

identified by their train number. Table 5 shows how every train service ID is spread across clusters. In each 

column, the shade represents the difference between individual percentages and the cluster share, where the 

brightest colors are associated to the values furthest from the cluster share. Green is positive difference, i.e. 

larger percentages than the cluster share, red is negative difference, i.e. smaller percentages than the cluster 

share. 

Delay change profiles in cluster 1 and 5 represent typical behavior of service 4419, whereas cluster 2 shows 

considerably more frequent in services 4471, 4473, and 4483. Cluster 3 is more common among services 

4415, three times more frequent than the whole population distribution across clusters, and, 4467, 4469, 

4473, which double the average frequencies. Cluster 4 is typical for services 4477, and, lastly. Cluster 6 

represents a large share of services 4417 and, again, 4415. Further investigation on other factors may reveal 

the causes that rule the train services’ cluster membership. 

The analysis of Table 5 shows the existence of a relation between train IDs in a specific time band 

and cluster membership. This is shown in detail in Table 6, where cluster membership is aggregated in time 

bands. The same color coding as Table 5 is applied. 

The timetable is divided in time bands according to the overall service frequency on the line, so 

that time bands 2 and 4 are the AM and PM peak periods, respectively, when 9 trains/h per direction are 

operated. Time band 1, 3, and 5 are the remaining off-peak periods, when ØD trains are not operated, so 

only 6 trains/h occupy the line in each direction, allowing for larger headway buffers between trains. At the 

same time, smaller congestion is expected, in off-peak periods, both on the train traffic and on the number 

of passengers to board or alight at the stations. 
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Table 6: Northbound ØD trains. Cluster share by time band. The color code compares the individual row’s distributions 

among clusters to the overall distribution among clusters reported in the last row. Clusters sorted by size. 

Time Type Time band 
Cluster 

2 6 4 1 3 5 

6:20 - 8:20 Peak AM 2 13% 28% 9% 21% 15% 15% 

15:20 - 18:00 Peak PM 4 27% 20% 19% 12% 11% 11% 

    

Cluster 

share 
24% 22% 17% 14% 12% 12% 

 

In this case, morning peak shows recurrent delay patterns presented by clusters 1 and 6, whereas 

patterns represented by clusters 2 and 4 are rare in this time band. As opposite, the distribution of trains in 

the PM peak hour is similar to the overall distribution. 

Further inference on the clusters of ØD northbound trains might highlight interferences from other 

trains. Lokaltog trains run mostly on a network independent from Banedanmark's, and share with ØD and 

ØP trains the line section between Snekkersten and Helsingør. ØD northbound trains are scheduled at a 

short headway after Lokaltog trains from Snekkersten to Helsingør. The analysis of timestamps from 

Lokaltog trains on this section and of the realized headways between Lokaltog and ØD northbound trains 

might suggest that clusters 1 and 3, which increase the delay near Helsingør, are actually the result of delay 

propagation from Lokaltog trains to ØD trains. 

The clustering results from other service categories, with different stopping patterns, can be related 

to the time periods of the day. For example, ØK southbound trains are reported in Figure 8 and Table 7. 
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Figure 8: Cluster centroids for southbound ØK trains, delay change. 

Table 7: Southbound ØK trains. Cluster share by time band. The color code compares the individual row’s distributions 

among clusters to the overall distribution among clusters reported in the last row. Clusters sorted by size. 

Start 

time 
Type Time band 

Cluster 

2 4 1 5 3 6 

04:30 Off peak 1 35% 30% 15% 12% 3% 5% 

06:20 Peak AM 2 49% 26% 10% 11% 1% 3% 

08:20 Off peak 3 39% 29% 13% 13% 3% 3% 

15:20 Peak PM 4 30% 26% 24% 9% 9% 2% 

18:00 Off peak 5 40% 29% 18% 9% 3% 1% 

    Cluster share 40% 28% 15% 12% 3% 2% 

 

Figure 8 represents the centroids of resulting clusters in train category ØK Southbound, according 

to delay change. Besides, the distribution of trains across clusters is summarized in Table 7, disaggregated 

by time bands, highlighted in the same color code as Table 5 and Table 6. Note that the number of clusters 
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in the delay change profiles of ØK southbound trains is different from the number of cluster in delay 

profiles. This is not necessarily inconsistent, as the two variables express different aspects of the 

development of delays. In this case, the cluster share by time band explains the nature of two clusters. In 

particular, cluster 1 is considerably more frequent in the PM peak hour, whereas cluster 2 is more typical 

of trains in the AM peak hour. This result can be reasonably interpreted as delays generated by passenger 

congestion. In fact, delay increases in the PM peak hour appear at departures from Copenhagen, where a 

large number of passengers leave towards Sweden. On the contrary, cluster 2 represents delays increases 

collected across stations towards Copenhagen, and a delay recovery departing from Copenhagen, where 

fewer passengers are expected to board. The cluster share for clusters 3 to 6 is comparable with the overall 

distribution across different time bands, so these delay patterns cannot directly be associated with time of 

the day. Further research may reveal factors that rule the cluster membership for these clusters. 

More disaggregated analysis of cluster composition according to train number, or service ID, is in 

accordance with aggregated time bands. This is valuable especially for time band 3, which is the most 

populated time band according to the timetable. Table 8 shows that, even if the overall distribution of trains 

in time band 3 across clusters is very similar to the overall distribution, specific train services present 

different typical delay patterns. In this case, further analysis of train service characteristics should indicate 

a better disaggregation of train services in a specific time band. The same color code as tables Table 5,Table 

6 and Table 7 is applied in Table 8. 
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Table 8: Southbound ØK trains. Cluster share by service ID. The color code compares the individual row’s distributions 

among clusters to the overall distribution among clusters reported in the last row. Clusters sorted by size. 

Time 

band 

Departure 

time from NI 

Train 

number 

Cluster 

2 4 1 5 3 6 

1 
06:01 1314 38% 20% 23% 13% 3% 5% 

06:21 1316 32% 44% 8% 8% 4% 4% 

06:41 1318 33% 33% 10% 14% 5% 5% 

2 

07:01 1320 59% 12% 12% 15% 0% 2% 

07:21 1322 50% 29% 13% 4% 0% 4% 

07:41 1324 51% 31% 10% 5% 0% 3% 

08:01 1326 41% 32% 14% 11% 2% 2% 

08:21 1328 53% 18% 0% 22% 2% 5% 

08:41 1330 42% 33% 14% 3% 3% 6% 

3 

09:01 1332 43% 30% 4% 20% 0% 4% 

09:21 1334 39% 32% 16% 13% 0% 0% 

09:41 1336 41% 24% 15% 17% 0% 2% 

10:01 1338 24% 24% 27% 16% 5% 3% 

10:21 1340 31% 39% 19% 3% 0% 8% 

10:41 1342 57% 14% 11% 14% 0% 5% 

11:01 1344 45% 24% 12% 15% 0% 3% 

11:21 1346 40% 47% 10% 3% 0% 0% 

11:41 1348 53% 35% 7% 5% 0% 0% 

12:01 1350 26% 29% 21% 15% 3% 6% 

12:21 1352 47% 32% 8% 8% 0% 5% 

12:41 1354 38% 16% 28% 16% 0% 3% 

13:01 1356 46% 19% 15% 8% 8% 4% 

13:21 1358 50% 31% 15% 0% 4% 0% 

13:41 1360 59% 24% 7% 3% 7% 0% 

14:01 1362 29% 34% 17% 17% 3% 0% 

14:21 1364 44% 32% 12% 4% 8% 0% 

14:41 1366 37% 37% 10% 15% 2% 0% 

15:01 1368 24% 24% 16% 30% 4% 1% 

15:21 1370 43% 25% 6% 14% 10% 2% 

15:41 1372 35% 41% 5% 11% 5% 3% 

16:01 1374 36% 21% 17% 17% 8% 2% 

16:21 1376 36% 33% 14% 6% 6% 6% 

4 
16:41 1378 37% 27% 22% 7% 5% 2% 

17:01 1380 19% 29% 29% 13% 6% 3% 

17:21 1382 39% 18% 18% 5% 18% 0% 

5 

17:41 1384 45% 29% 23% 3% 0% 0% 

18:01 1386 18% 43% 30% 8% 3% 0% 

18:21 1388 47% 28% 16% 9% 0% 0% 

18:41 1390 40% 24% 16% 12% 4% 4% 

19:01 1392 58% 15% 13% 15% 0% 0% 

19:21 1394 34% 31% 17% 10% 7% 0% 

19:41 1396 48% 26% 7% 7% 11% 0% 

20:01 1398 31% 38% 22% 6% 0% 3% 

    
Cluster 

share 
40% 28% 15% 12% 3% 2% 
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Even though recurrent patterns are also clear in the delay profiles dataset, the results could not be explained 

by the available variables. Further research might identify relations that guide the clustering of delay 

profiles on this line, such as realized headways, weather conditions, passenger counts, and recorded delay 

causes. 

5 DISCUSSION 

The clustering method proposed in this paper finds it strengths in being automatic, unbiased, 

flexible, and simple. A comparison to methods presented in the literature is provided in this section. 

Previous approaches [1,4,18,19,21,22] extracted information from delay profiles mainly through 

observation, occasionally combined with multiple univariate statistical analyses and observation ranking. 

In most studies, the complete dataset was plotted in the form of delay profiles, and the identification of 

frequent patterns among the observations relied on the observer’s ability. Visual inspection is typically 

affected by subjective interpretation, which can differ across analysts, and suffers from low effectiveness 

of naked eye to average data represented graphically. In some studies, supporting measures were plotted 

with the full dataset, such as average profile, median, and selected percentiles to represent the distributions.  

The application of these measures as multiple univariate distributions, though, does not catch the 

interdependencies of delays at different stations and does not provide information about the development 

of delays along the train journey. The method proposed in this paper allows automatic identification of 

delay patterns, removing, thus, the influence of subjective interpretation of delay profiles. Furthermore, 

profile clustering allows the identification of similar delay profiles in the entire pool of records. Note that, 

even though the clustered delay profiles were plotted in this paper, the observation of the profiles did not 

play a role in the identification of similarities. This exact process is indeed performed by the clustering 

algorithm, and the results are then plotted for an easier comprehension of the development of delays in the 

individual clusters. The metrics provided as 15th, 50th, and 85th percentile would be sufficient to describe 

the distributions within individual clusters and might be used in replacement of the cluster plots. 
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Compared to big-data techniques proposed in the literature for other purposes in analysis of 

transport operation [11,23,24,32], this method relies on readily available data, and does not need detailed 

knowledge on the infrastructure and occupation of individual blocking sections. It can therefore be scaled 

to different levels of detail, or transferred to other modes of transportation where delay can be measured at 

fixed points on a given path, such as bus networks or air traffic. It is a very common practice of transport 

operators to provide live data on delays recorded on their own network, which can be recorded accessing 

public websites. Furthermore, the partition of operation into recurrent delay patterns allows inference on 

individual clusters, which is not possible with association or succession rules [25–27]. These methods do 

not provide causality connection, and can only be used to compare scenarios, e.g. before and after delay 

mitigation countermeasures have been implemented. Results from clustering can be inferred with other 

mining techniques to identify further connections between specific system factors and delay membership, 

so that the causes of specific delays can be identified, and the effects of corrective actions can be estimated 

before-hand. 

Alongside flexibility, the strength of this method resides in its simplicity. Unsupervised learning 

methods, such as clustering, aim at the identification of internal structures of the system. Supervised 

learning methods, in contrast, attempt to predict results, based on assumed connections in the input. For 

these reasons, neural networks [28,30], Bayesian networks [29], and supporting vector regression methods 

[31] require initial assumptions on the factors that have direct effect on the desired output, which can be 

cumbersome to identify, and could be hidden. The clustering method proposed here does not require initial 

assumptions, so any recurrent delay pattern can be identified. In particular, the k-means algorithm was 

selected, being the most common algorithm for partitional clustering. Even though several clustering 

methods and algorithms exist in the literature, none of them is clearly preferred from the others [33]. It is 

important to stress the fact that the output of clustering algorithms only suggests hypotheses, and that the 

interpretation of results plays a more relevant role than seeking the best clustering principle. However, 

further research might improve the method. For example, a different choice of the clustering statistic 
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between observations might be explored. In addition, the choice of the parameter k might be supported by 

advanced techniques and metrics. In this paper, k was set through statistical analysis of the associated 

clusters, but further studies might reveal more efficient methods integrated in the clustering algorithm itself. 

Lastly, the clustering results might depend on the punctuality threshold selected to filter out punctual trains, 

if applied. 

The relations found in inference from resulting clusters can, eventually, be considered and 

implemented in the mentioned supervised data mining methods. The use of other sources of information 

can be further investigated, e.g. the rolling stock equipment deployed, or information on delay causes 

collected by train dispatchers. The clustering algorithm itself cannot provide information on the causes of 

delays, but relevant relationships with external variables might be found through the inference on the 

clusters. The implementation of information recorded by the dispatchers on primary and secondary delays, 

could support the identification of delay propagation. However, previous studies in Europe highlighted the 

unreliability of such manually recorded data [11,12]. These procedures are different for each infrastructure 

manager and should comply with different national regulations. This input should be analyzed in detail 

before being implemented in the inference on clusters. The timestamps might be integrated with data from 

other railway undertakings, so that the realized headways could be investigated and included in the cluster 

inferences. The effects of delay propagation might be thus investigated, and the dispatching strategies 

possibly improved. Passenger counts, or boarding/alighting timings could also reveal that specific localized 

delay increases are linked to passenger exchange, and might suggest modifications in the scheduled 

dwelling times. Useful information from the railway undertakings might include differences between 

planned and realized train compositions, or the use of energy saving strategies. Driving support systems are 

spreading among train operators to reduce the energy consumption and thus the operating cost, especially 

for diesel-powered railways. The effects of such systematic patterns in the driving style are, in any event, 

expected to emerge in the clustering algorithm, especially with more detailed data in the positioning. Further 

development of this method might expand its application to other industrial processes or other 
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transportation modes. The service timekeeping could be measured at designated check-points, to build 

standard delay profiles and delay change profiles. 

6 CONCLUSIONS 

In this paper, a new method is presented to analyze railway operations, based on big-data 

techniques. Previous studies highlighted the need for tools to analyze railway operation based on data from 

automatic data collection sources, and to automatically detect delay patterns [1]. K-means clustering is here 

applied to train delay records from automatic train detection systems to identify systematic delays, 

rearranged in delay profiles and delay-change profiles. This method is automatic, unbiased, flexible, and 

simple. 

Both institutions and industry are showing great interest in big-data applications [2]. The method 

described in this paper provides a managerial tool to identify recurrent delay patterns that affect the service 

reliability. A localized analysis with additional information supports the identification of the causes of 

individual patterns, so that specific countermeasures can be designed. For example, dispatching strategies 

might be modified when a structural conflict is detected, the boarding and alighting process might be 

improved at stations were delay increases recurrently. If the causes of recurrent delays are identified in 

frequent conflicts, small modifications to the timetable slack might be a solution to reduce delay 

propagation. 

The effectiveness of this approach is demonstrated in an application on a Danish regional railway 

line. The application shows that it is possible to identify systematic delays at specific stations in a congested 

area, and to identify different delay patterns. Furthermore, delay patterns can be conveniently associated to 

specific time periods of the day, showing time dependency, reasonably explained by the prevailing 

passenger flow direction. Specific delay patterns are demonstrated to be characteristic of individual train 

service IDs, which could depend on other service characteristics, such as structural conflicts with other 

trains in specific sections of the line, use of specific rolling stock equipment, or connections to other 
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transport services. The implementation of other sources of information might improve the inference on the 

clusters, such us weather conditions, passenger counts, information from the dispatchers, or rolling stock 

characteristics. 

Further development of this method might improve the selection of the number of clusters, identify 

new clustering metrics between observations, or integrate additional sources of information to improve the 

inference on clusters. 
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