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ABSTRACT

One challenge of outdoor concerts close to urban environments is to ensure adequate levels for the audience while
avoiding disturbance of the surrounding residential areas. This paper outlines the initial concept of a sound �eld
control system for tackling this issue. The idea is to create acoustic contrast between the audience area and the
surrounding using methods from sound zoning. Control over large areas implies the need for precise information of
transfer-functions between the loudspeakers and the control areas. The envisioned system uses a combination of
measurements and Bayesian inference to update the parameters of a sound propagation model which estimates these
transfer-functions. We present a simple case in which sound �eld control and propagation model work together.

1 Introduction

Outdoor music events in urban environments face the
challenge to both deliver an excellent concert experi-
ence and comply with the local regulations on sound
exposure of neighboring residential areas. If the regula-
tions limit the achievable sound pressure levels (SPL)
inside the audience area too much, the audio experience
can degrade severely as high SPL is an essential part
of the concert experience. At the same time, these reg-
ulations are important as exposure to excessive noise
levels is known to have a negative impact on quality of
life.

Active sound �eld control methods based on sound
zones principles have been shown to produce signi�-
cant SPL differences (acoustic contrast) between con-
trol areas, using methods from sound zoning [1, 2, 3] or
beamforming [4, 5]. The �rst hypothesis of this work
is that such sound �eld control methods can be applied
in large-scale outdoor concerts to focus and contain the
low frequency sound more ef�ciently on the audience
area. We believe that this could substantially enhance
the trade-off between SPL in the audience area and
sound exposure of neighboring residents.

Most modern sound reinforcement systems are based
on the line array principle, which allows for the control
of directivity of the sound radiation of high and mid
frequencies. However, the radiation of low frequencies,
can not be as easily controlled, they are less attenuated

by air and re�ections from boundaries, and are damped
the least by the structures of residential buildings. Low
frequencies are therefore the most critical frequencies
in the noise problem of outdoor concerts. As control-
ling the sound �eld over large areas with a feasible
number of loudspeakers is restricted to low frequen-
cies, we believe that such a technology is a good �t for
this problem.

Accurate estimations of the transfer-function between
the loudspeakers and the control regions is essential
for the optimization of loudspeaker �lters. The two ap-
proaches for estimation of transfer-functions are direct
measurement and prediction using numerical methods.
In large scale outdoor applications, the former is in-
feasible, because the sound �eld has to be sampled
with respect to the Nyquist theorem to avoid aliasing
problems, leading to a large amount of measurement
points. The latter is too inaccurate for control purposes
due to uncertainties in the model parameters, e.g. the
re�ection coef�cients of boundaries or the atmospheric
conditions. It is our second hypothesis that the accu-
racy of the sound propagation model can be improved
by simultaneously measuring two sources of real-time
data: 1) Weather conditions (wind, humidity and tem-
perature) to construct the prediction model and 2) a
small set of pressure transfer-functions over the con-
trol areas to correct and update the acoustic parameters
and validate the model. The parameter estimation is
done by applying the Bayesian inference framework,
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which has been shown to work well in similar regres-
sion problems [6, 7, 8]. Bayesian inference is adequate
for working with constrained multiparameter models
including noise and uncertainty effects.

In the current work we present our �rst ideas for such
a sound �eld control system for outdoor concerts, illus-
trate the basic concepts using a simple simulation, and
discuss the challenges of a real implementation of such
a technology.

The paper is structured as follows. Section 2 gives an
overview of the closed loop architecture of the sound
�eld control system. Section 3 describes the methods
used for the sound zoning, Bayesian inference and
the propagation model. In section 4, the methods are
applied to a simple simulation example. Section 5 and
section 6 discuss the simulation results and highlight
some of the challenges of controling sound �elds for
outdoor concerts.

2 Concept

The fundamental concept of the sound �eld control sys-
tem is shown in �gure 1. There are two main functional
modules: the sound �eld controller and the sound prop-
agation model. In an initialization phase, the propaga-
tion model is fed with the constant model parameters
like loudspeaker positions, directivities, venue geome-
tries, acoustic parameters of the occurring surfaces, and
pre-measured transfer-functions between the sources
and the regions in which the sound is to be controlled.
An initial estimate of the transfer-functions is then cal-
culated and fed to the sound �eld controller. The sound
�eld controller derives the optimal loudspeaker �lters
using the estimated transfer-functions from the propa-
gation model. Internet-of-Things (IoT) enabled sensors
distributed throughout the venue and its surroundings
are connected to a dedicated cloud and gather real-time
sound pressure and meteorological data. The propaga-
tion model uses this information to continuously update
its model parameters and the estimate of the transfer-
functions. The information can then also be shared with
the IoT cloud, e.g. a noise map of the venue and it’s
surroundings can be provided to the event organizers
or sound engineers.

This system is planned to be part of the EU project
MONICA [9], whose goal is the integration of IoT
technologies and enabled IoT devices into a common
platform to improve the experience of citizens in large
outdoor events.
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Fig. 1: Information �ow in the sound �eld control sys-
tem.

3 Methods

3.1 Sound Field Optimization

Sound �eld optimization is the sound �eld controller’s
main function. The term describes methods that create
a desired target sound �eld by optimization of each
loudspeakers input signal. These are applied for in-
stance in the creation of sound zones, i.e. spatially ex-
tended zones with different acoustic characteristics. In
this work we want to create two sound zones: a bright
zone in the audience area with a homogeneous sound
�eld in space and frequency and a dark zone in the
surrounding neighborhood in which the sound pressure
is as low as possible. The loudspeaker �lters that create
such a sound �eld can be derived from the solution of
an optimization problem. Here we use the combination
of pressure-matching and acoustic contrast control pro-
posed by Chang and Jacobsen [1] and formulated by
Betlehem et al. [3] as a constraint optimization prob-
lem, which minimizes the reproduction error in the
bright zone while restricting the mean square pressure
in the dark zone.

The sound pressure �eld p in the bright zone (BZ)
and the dark zone (DZ) is sampled spatially at JBZ
evaluation points r j; j 2 BZ, at JDZ evaluation point
positions r j; j 2 DZ and at N frequencies f (n) with
frequency resolution D f . It can then be represented by
coef�cients p(n)

j . Let there be loudspeakers positioned
outside the two zones at I positions si. The total sound
pressure at each frequency n and evaluation point j is

p(n)
j =

I

å
i=1

H(n)
i j q(n)

i ; (1)

where H(n)
i j denotes the transfer-function between

sources and evaluation points at the given frequency
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and q(n)
i denotes the complex weight or �lter coef�-

cients for each source and frequency.

The goal of the optimization is to �nd the optimal set of
loudspeaker weights which minimize the relative mean
square error in the bright zone between the target �eld
pt;(n)

j and the realized �eld p(n)
j , while constraining

both the mean square pressure in the dark zone and the
frequency-integrated mean square of the loudspeaker
strengths, i.e.

min
q

1
JBZN å

i2BZ

N

å
n=1

jpt;(n)
j � p(n)

j j
2

jpt;(n)
j j2

s. t.
1

JDZ
å

i2DZ
jp(n)

j j
2 � D0 8n = 1; : : : ;N

1
I

I

å
i=0

N

å
n=1
jq(n)

i j
2D f � E0

: (2)

This is an inverse problem and the constraint on the
square of the source strengths acts as a regulariza-
tion. The quadratically constrained quadratic prob-
lem is convex, if the transfer-functions are such that
for each frequency H(n)HH(n) is semi-de�nite, where
[H(n)]i j = H(n)

i j [10].

The problem is solved using the Sequential Linear
Squares Programming algorithm of SciPy’s optimiza-
tion module [11].

3.2 Propagation model

One of the most common outdoor sound propagation
models in Nordic countries is Nord2000 [12], which
is based on the image source method. A simpli�ed
version is used in this paper to show how Bayesian
inference could improve its performance.

In this simpli�ed model, the loudspeakers are assumed
monopole sources with a constant frequency response.
The total pressure at each evaluation point is the sum of
the pressure generated by each source and its re�ections
from the ground. The transfer-function for each source-
evaluation point combination and frequency is

H(n)
i j =

jr
4p

0

@e�j 2p f (n)
c rd

i j

rd
i j

+ R
e�j 2p f (n)

c ri
i j

ri
i j

1

A ; (3)

where rd
i j and ri

i j are the direct and indirect path
lengths between sources and evaluation points. For
the sake of simplicity, ground re�ections at an angle a
are modelled with a plane wave re�ection coef�cient
R = Z cos(a)+rc

Z cos(a)�rc and the Miki model for the ground
impedance [13]

Z =rc

 

1 + 5:51

 
1000 f

s

!�0:632

(4)

� j8:42

 
1000 f

s

!�0:632!

:

Even though the spherical re�ection coef�cient is a
much more precise model of the re�ection, it will not
affect the purpose of this paper.

3.3 Bayesian Inference and Parameter
Estimation

Moving from simulated scenarios to real measurements
implies that most of the parameters involved are only
known with some uncertainty, causing wrong propa-
gation predictions. Bayesian inference is a method to
�nd better estimates of these parameters on the basis of
data. In this section the present problem is formulated
in terms of Bayes’ theorem and an example of normal
non-linear regression is presented.

Bayes’ theorem [14] states that given a set of measured
pressure data �p j = p j +n j and a vector of parameters
q used to model that data, the posterior probability is

p(q j �p j) =
p(q)p( �p jjq)

p( �p j)
; (5)

where �p j is the pressure vector of size N, �n j the noise,
p( �p j) is the evidence, p( �p jjq) the likelihood and p(q)
the prior. The posterior is a measure of how well the
model, given these parameters, explains the measured
data. The goal of the inference is to �nd those parame-
ters q that maximize the posterior distribution. From
Eq. (5), maximizing the posterior is proportional to
maximizing the likelihood.

In the particular case where the noise is normally
distributed and independent for each receiver n j �
N (0;Sn j ), the measured pressure at each receiver is
also normally distributed �p j �N (p j;Sn j ), where Sn j
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is the covariance. The mean of the distribution is Eq.
(1) and the variance is the background noise. The like-
lihood is

p( �p jjq) =
J

Õ
j=1

e�
1
2

�
( �p j�p j(q))>S�1

n j ( �p j�p j(q))
�

(2�)
N
2 jSn j j

N
2

: (6)

The covariance Sn j plays a main role in modelling the
data, because it links the dependency between the differ-
ent subspaces (in this case, frequencies). If frequencies
are assumed independent, maximizing the likelihood
simpli�es to a least squares problem.

In high dimensional and complex models, however,
the computation of the posterior distribution is usu-
ally intractable analytically. In this experiment the
Hamiltonian Monte Carlo (HMC) technique is used to
approximate the posterior distribution p(q j �p j) by draw-
ing samples of q in an ef�cient way [14]. The use of
this technique makes the Bayesian inference modelling
more �exible for including additional parameters.

3.3.1 Bayesian Inference of Propagation Model
Parameters

Focusing on the model in Eq. (3), the parameters that
are considered uncertain are the position of sources
and receivers and the re�ection coef�cient. In addition,
the transfer-functions measured in the control areas
are contaminated with background noise. These noisy
parameters are represented with a tilde. Figure 2 shows
the inference diagram and the relationship between the
uncertain parameters q = (r;s;s).

The error that affects each parameter is the combina-
tion of two: known and unknown uncertainties [15].
Setting proper prior distributions requires prior infor-
mation about the parameters (e.g. physical constrains,
known uncertainties). As an illustrative example let us
look at the measurement of the loudspeaker positions.
If a distance meter is used, its technical speci�cations
will reveal its accuracy, which comes from empirical
evidence. This is considered a known uncertainty. How-
ever, other factors such as errors in the manipulation
of the device, may affect the measurements. These are
unknown uncertainties.

To take into account both contributions, normal distri-
butions are used in all the parameters. This allows to

��

Z

��

R

r

s

p

Fig. 2: Inference diagram describing the relationship
between the parameters of the propagation
model.

constrain the variance with the known uncertainty and
be more speci�c than a uniform distribution, while still
making it possible to sample in entire R, thus account-
ing for unknown uncertainties.

The mean of source and receiver coordinates are the
measured values �s and �r. The deviation ec is the same
for all of them, as the same measurement device and
procedure is assumed. The �ow resistivity is usually
not measured, but taken from existing tables that group
different types of grounds. If Nord2000 is used, �ow
resistivity’s mean should be the representative value
�s of the selected Nordtest [16] impedance class. The
standard deviation es has to be suf�ciently large to
ensure sampling in the entire �ow resistivity range of
mentioned class. The �ow resistivity cannot be less
than 0, therefore the normal distribution is truncated to
account only for positive values. The noise in the mea-
sured pressure data is considered independent for each
position as each receiver might be affected by different
noise in a real scenario. For the sake of simplicity it is
modelled constant over frequency.

3.4 Setup

Sound �eld optimization and parameter estimation is
illustrated here with simulations for a simple case re-
sembling a small, open air concert setup in which the
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radiation of sound to a sensitive area behind the concert
is to be mitigated.

The setup is shown in Figure 3. The bright zone is
bounded by two loudspeaker arrays with 5 and 10 loud-
speakers, respectively. The target �eld in the bright
zone is a 100dBSPL plane wave travelling in negative
y-direction. The dark zone is placed 17:5m away from
the bright zone. Both zones are sampled at 2.5 evalua-
tion points per maximum wavelength in each direction.
The frequency range of interest is from 20 to 250Hz
with a frequency resolution of 15:33Hz. Both evalua-
tion points and loudspeakers are positioned 1:6m above
the ground. The ground is considered compacted park
area (Impedance Class E according to Nordtest) with
s = 700kPa �m=s. The speed of sound is c = 343m=s
and air density r = 1:2kg=m3.

The dark zone mean square pressure is bounded to
be less than 60 dB SPL, i.e. D0 = 20 mPa� 1060=10.
The regularization parameter was chosen ad-hoc to
E0 = 50m6s�3, as it leads to reasonable solutions for
this problem. Too much regularization will reduce
the achieved acoustic contrast between sound zones,
while too little regularization will increase the sensi-
tivity of the solution to the errors in the model param-
eters. Choosing the right regularization parameter is
non-trivial and out of the scope of this paper (see e.g.
[17]).

Table 1: Summary of relevant parameters and its cho-
sen values in the setup.

Parameter Value
D0 Max. mean squared pressure in DZ 20 mPa�1060=10

E0 Regularization parameter 50m6s�3

SNR Signal to Noise Ratio 30 dB
- Coordinates Error 15 cm
s True Flow Resistivity 700 kPa�m/s
�s Forward Flow Resistivity 500 kPa�m/s
ec STD Coordinates 30 cm
es STD Flow Resistivity 500 kPa�m/s
ep j STD Sound Pressure U (0; inf)

3.4.1 Noise and Uncertainties

In order to resemble real conditions in the simulations,
measurement noise and uncertainties need to be gener-
ated for the desired parameters. Measured coordinates
of both sources and evaluation points, �r and �s, are af-
fected by 15 cm of deviation. Measured pressure �p is
distorted with 30 dB SNR noise for all the frequencies.

The statistical parameters used during the Bayesian
inference are summarized in Table 1. The deviation
of the coordinates is set to ec = 30 cm in the prior,
accounting for the known and unknown uncertainties
(the known deviation of a common laser meter is less
than 1 cm). The ground is considered park area, so �s is
set as the representative value of the Impedance Class E
in Nordtest �s = 500kPa �m=s. The standard deviation
es = 500kPa �m=s to ensure sampling in the entire
�ow resistivity range of the Impedance Class E. The
variance of the pressure ep j is a uniformly distributed
variable only constrained to be greater than 0.

The frequencies used during the parameter inference
are the center frequencies of the third octave bands
from 50 to 8000Hz. STAN is used as the software
platform to calculate the inference [18]. To compute the
posterior distribution 4 HMC chains of 4000 samples
were run in parallel to reach convergence. Only the
second half of the samples is considered to belong to
the posterior distribution and the �rst half is dropped
as part of the warm up process of the random walk.

4 Results

4.1 Parameter Inference Model and Estimation

Figures 4 to 6 show the prior and the posterior proba-
bility density functions for the �ow resistivity and the
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Fig. 4: Inference of �ow resistivity: prior distribution
p(s) vs. posterior distribution p(s j �p j).

coordinates of 5 sources (the ones in the upper part of
Figure 3) and 3 receivers arbitrarily picked from the
bright zone, respectively. The yellow values, called
forward values, are the noisy parameters. Those are the
ones that may be used in a traditional forward propa-
gation model. The black values are the correct values
(no noise) named true. The median of each posterior
distribution, shown in red, is chosen as the optimized
parameter. The vertical bar plots at the right side of
each graph represent the error from the forward and the
posterior median to the true value respectively.

The posterior distribution of the �ow resistivity
p(s j �p j) is much more narrower than the prior, reduc-
ing the uncertainty to a standard deviation of es j �p j ’
4000kPa �m=s. The forward �s is not considered any-
more as a possible solution (out of the bounds of the
posterior), while the true �ow resistivity of the ground
is. When comparing the optimized �ow resistivity cal-
culated as the median of the posterior with the forward
guess, the error drops from � 28% to less than 1%.

The estimate of the sources and receivers coordinates
have also been improved by the Bayesian inference.
The standard deviation is ecj �p j ’ 7:5 cm, reducing to
half the prior uncertainty. In addition, the error of
choosing the median as point estimate is less than 5 cm
for all the points except one (Receiver 1).

4.2 Sound Field Optimization

The acoustic contrast between dark and bright zones is
de�ned as the mean spatial difference between SPL in

10 12 14 16
y [m]

0

2

4

6

8

10

x 
[m

]

1

2

3

4

5

Source Coordinates

Prior
Posterior
True
Forward
Median

1 2 3 4 5
Source

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
rr

or
 [m

]

Fig. 5: Inference of source coordinates: prior distribu-
tion p(s) vs. posterior distribution p(sj �p j).

0 2 4 6 8 10 12
y [m]

0

2

4

6

8

10

x 
[m

]

1

2

3

Receiver Coordinates

Prior
Posterior
True
Forward
Median

1 2 3
Receiver

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
rr

or
 [m

]

Fig. 6: Inference of receiver coordinates: prior distri-
bution p(r) vs. posterior distribution p(rj �p j).

6



20 50 100 150 200 250
Frequency [Hz]

5

10

15

20

25

30

35

40

A
co

us
tic

 C
on

tr
as

t

true parameters

no SFC

forward parameter

optimized parameter

Fig. 7: Mean acoustic contrast between the bright and
dark zones. The red and blue areas mark the
variation of one standard deviation when using
the uncertain initial and inferred model parame-
ters, respectively.

the two zones, (e.g. [19]),

AC j = 10log10

0

@
1

JBZ
å j2BZ jp

(n)
j j

2

1
JDZ

å j2DZ jp
(n)
j j2

1

A : (7)

Figure 7 compares the acoustic contrast with and with-
out sound �eld control in the cases of true parame-
ters, forward parameters and optimized parameters. No
sound �eld control describes the case where only the
upper loudspeaker array is active with constant source
strengths. That contrast is only due to the distance
of the zones to the sources. Applying the sound �eld
control system improves the acoustic contrast by 17dB-
35dB in the ideal case of true parameters. If the for-
ward parameters are used without inference, the im-
provement reduces considerably to around 10 dB, even
though the uncertainty in the positions is small com-
pared to the wavelength. Using Bayesian inference to
optimize the contrast enhances the improvement again
to 10dB-21dB. The inference improves the contrast
especially in the low frequencies, where the source
strengths are large (not shown) and thus where the re-
sulting sound �eld is sensitive to errors.

The target plane wave and resulting sound �eld in the
bright zone are compared in �gure 8. The plane wave
sound �eld is well reproduced when the distance be-
tween loudspeakers is much smaller than the wave-
length.
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Fig. 8: Comparison of target and resulting sound pres-
sure �eld in the bright zone at two frequencies.
Loudspeaker positions shown as blue dots.
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Figure 9 shows the SPL distribution in the vicinity of
the setup. Notice how the solution creates an acous-
tic shadow or region of destructive interference in the
dark zone and thereby reduces the SPL in that area.
However, just left and right to the dark zone, the SPL
increases drastically (cf. section 5.1).

5 Discussion

The addition of more data is linked to a better Bayesian
inference of the parameters that depend on that new
data. Adding more receivers (J ") means that more
measured data is available to infer source coordinates
and �ow resistivity, calculating a posterior with less
deviation. When adding more sources (I ") but keeping
the number of receivers, the scenario starts to grow
in complexity without having more data that explains
the problem. Convergence in this cases is not always
achieved for every run. However, when it is achieved,
the inference of sigma is less uncertain, because the
solution is satisfying the propagation model for more
source-receiver pairs.

The addition of more measured data is linked to increas-
ing the SNR in the pressure measurements. This effect
can be compared to the averaging technique in order to
reduce the background noise.

To have a closed solution of the transfer-functions,
point estimates need to be calculated. The median
of the posterior density functions is picked as the opti-
mized parameters. The idea is to avoid skewed point
estimates that may appear when using the mean instead.

The setup used in the simulation (�gure 3) is only reduc-
ing the sound pressure level in a speci�c area. Using
more loudspeakers will enable control over a larger
area. To reduce the SPL everywhere outside the bright
zone, Chang and Jacobsen [1] proposed to surround the
bright zone completely with a double layer loudspeaker
array at the expense of a large number of loudspeak-
ers. This solutions becomes infeasible for large scale
application.

It should also be noted that the dark zone in the setup is
inside the near-�eld of the loudspeaker array. The far-
�eld radiation pattern will thus not necessarily have a
minimum in the negative y-direction and the SPL could
therefore increase behind the dark zone.

So far we have only investigated the sound zoning
problem in a 2D plane parallel to the ground. If there

is an uneven terrain or close by buildings, both the
loudspeaker arrays and sound �eld evaluation points
need to be extended in the height dimension to account
for 3D control zones.

5.1 Challenges

The results presented in this paper show how sound
�eld optimization and parameter estimation can be ap-
plied to the noise problem of outdoor concerts. A real
implementation of such a sound �eld control system
will have to cope with a variety of additional issues,
some of which we would like to highlight here.

Filter delays: the frequency domain �lters obtained
through the sound �eld optimization, especially when
real transfer-function data is used, are not necessarily
causal and require a modelling delay of typically half
the �lter length for real time implementation. This can
be a problem for live-music, where the delay between
the musician and the sound reinforcement system must
be small. Simón Galvez et al. [20] have proposed a
time-domain formulation of the sound zone method
used above, which allows for the solution of causally
constrained �lters.

Choice of target sound �eld: in the simulations above,
we used a plane wave as the target �eld in the bright
zone. However, the sound �eld at open air venues is
hardly similar to a plane wave and such a choice is a
strong restriction on solutions of the optimization. Cole-
man et al. [21] have proposed planarity control, which
introduces a controllable degree of freedom in the di-
rection of propagation of the target plane wave at each
frequency, leading to favorable contrast and perceived
audio quality in comparison to pressure matching and
acoustic contrast control in a sound zone setup [22]. To
the knowledge of the authors, quantitative measures for
the perception of low frequency audio quality have not
yet been thoroughly investigated, leaving the optimal
target sound �eld in a perceptive sense still as an open
question.

Increase of sound energy: a classic result of sound
power interaction of coherent sources is that in free
�eld a control source has to be closer than half a wave-
length to a noise source to be able to reduce the total
emitted sound power effectively (see e.g. [23]). A sep-
arate loudspeaker array, like the lower array in �gure
3, will thus not work as an active absorber, but rather
create destructive interference in some area at the ex-
pense of higher sound pressure levels at other positions.

8



Fig. 9: SPL in dB in the vicinity of the simulated venue for the solution with true model parameters.

Care must be taken in designing the loudspeaker arrays
and optimization problem, such that the reduction of
noise levels in the dark zone does not lead to new noise
problems in other areas.

Accuracy of propagation model: Several important phe-
nomena are not included in the model such as tem-
perature, wind effect, scattering, atmospheric absorp-
tion, heterogeneous ground and diffraction [24]. Many
of them generate epistemic (reducible) uncertainties
while others are purely aleatory provoking incoherent
interference between sources [25]. The need of phase
information in the transfer-functions for control pur-
poses makes it necessary to improve the formulation of
traditional outdoor sound propagation models such as
Nord2000.

Wind: If multiple sources create a complex sound �eld
through constructive and destructive interference, the
resulting sound �eld will be sensitive to changes in
the phase relationship between evaluation point and
the sources. Wind effectively changes the speed of
sound and will thus have a strong impact on this phase
relation.

6 Summary

This paper introduces the �rst ideas for a sound �eld
control system for outdoor concerts. We propose
the use of a propagation model for estimation of the
transfer-functions, as a their direct measurement is in-
feasible when controlling large areas. The uncertain
parameters of the propagation model are optimized us-
ing Bayesian inference on the data obtained from a
small set of transfer-function measurements. Through

a simple simulation, we show that this parameter tuning
can improve the acoustic contrast created by the sound
�eld control system in comparison to using traditional
propagation modelling. Finally, some additional chal-
lenges of controlling the sound outdoors in large scale
are highlighted, which will be the focus of future work.
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