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Abstract 
From its birth, microfluidics has been referenced as a revolutionary technology and the 

solution to long standing technological and sociological issues, such as detection of dilute 

compounds and personalized healthcare. Microfluidics has for example been envisioned as: (1) 

being capable of miniaturizing industrial production plants, thereby increasing their 

automation and operational safety at low cost; (2) being able to identify rare diseases by 

running bioanalytics directly on the patient’s skin; (3) allowing health diagnostics in point-of-

care sites through cheap lab-on-a-chip devices. However, the current state of microfluidics, 

although technologically advanced, has so far failed to reach the originally promised 

widespread use.  

In this paper, some of the aspects are identified and discussed that have prevented 

microfluidics from reaching its full potential, especially in the chemical engineering and 

biotechnology fields, focusing mainly on the specialization on a single target of most 

microfluidic devices and offering a perspective on the alternate, multi -use, “plug and play” 

approach. Increasing the flexibility of microfluidic platforms, by increasing their compatibility 

with different substrates, reactions and operation conditions, and other microfluidic systems is 

indeed of surmount importance and current academic and industrial approaches to modular 

microfluidics are presented. Furthermore, two views on the commercialization of plug-and-

play microfluidics systems, leading towards improved acceptance and more widespread use, 

are introduced. A brief review of the main materials and fabrication strategies used in these 

fields, is also presented. Finally, a step-wise guide towards the development of microfluidic 

systems is introduced with special focus on the integration of sensors in microfluidics. The 

proposed guidelines are then applied for the development of two different example platforms, 

and to three examples taken from literature.  

With this work, we aim to provide an interesting perspective on the field of microfluidics 

when applied to chemical engineering and biotechnology studies, as well as to contribute with 

potential solutions to some of its current challenges.  

Keywords: microfluidics, biotechnology, plug-and-play, sensor integration, platform 

development guide, modular microfluidics 
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1. Introduction 
Nowadays, the use of micro- or nanofluidics is quite wide-spread across several academic 

fields, from proteomics and drug discovery to waste management and point-of-care (POC) 

diagnostics (Becker, 2009), (Mark et al., 2010),(Chiu et al., 2017). Since the first proof-of-

concept (Terry et al., 1979), the rapidly increasing interest in the micro- or nanofluidics 

technology can be associated with its advantages, such as the low manufacturing cost, reduced 

usage of reagents during operation and the possibility for parallelization and automation  

(McDonald et al., 2000), (Erickson and Li, 2004). These characteristics along with a highly 

automated control of the fluidic flow, an easy tuning of temperature and concentration 

diffusion gradients, as well as the available semiconductor technology, have pushed the 

interest towards miniaturization of unit operations, together with development of suitable 

analytical devices and techniques. This subsequently led to an effort towards the integration 

of these miniaturized units in a single device. 

Microfluidics has contributed to the advancement of science by, for example, allowing the 

fabrication of (new) functional materials (e.g. nanofibers, liposomes) (Daniele et al., 2015), 

(Han et al., 2017), the isolation and use of unstable or short-life compounds (Yoshida, 2010), 

(Hessel et al., 2013), single cell monitoring and analysis (Zare and Kim, 2010), (Grünberger et 

al., 2014), membrane free fuel cells (Wang et al., 2014), all of which are based on phenomena 

achievable only with microfluidics. More specifically, the accurate control of fluid(s) shape and 

velocity achievable with the existing diversity of microchannel geometries (e.g. concentric flow, 

3D hydrodynamic focusing) has enabled the emergence of microfluidic fiber fabrication 

towards novel fiber constructs that better mimic human tissue (Daniele et al., 2015). In flow 

chemistry, the significant reduction of reaction residence time (to the s or ms order of 

magnitude) due to the attainable decreased dimensions allow the use of highly instable 

compounds in organic reactions that are performed more safely in this way (e.g. Swern-Moffat 

oxidation at ambient temperature (Yoshida, 2010)) . In both these applications, the ability to 

control diffusion has had a significant influence, but in the case of microfuel cells it removes 

the need for integrated membranes thus increasing the fuel/media flexibility (Wang et al., 

2014). 

However, few of these unique applications of microfluidics have been applied to or been 

used in commercial systems. The characteristics that were once so appealing in microfluidics, 

are now more critically analyzed and the application of microfluidics depends on whether 

those characteristics can provide better performance, usability or information than 

conventional technologies (Chiu et al., 2017). 

 

1.1 Microfluidics and the chemical engineering and biotechnological market 

Initially, the research and development activities in the microfluidics field focused on 

areas where the highest potential for short-term commercial success was expected (Erickson 

and Li, 2004). For example, pharmaceutical companies started performing initial screening 

tests in lab-on-a-chip devices since these presented less false positives and thus higher quality 

results (Haber, 2006). Despite the obvious potential, microfluidics has still a very small impact 

in the biotechnological/analytical market today (Mark et al., 2010),(Chiu et al., 2017). Current 

fields of commercial application of microfluidics mostly involve in vitro diagnostics (e.g. 
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DNA/RNA hybridization and PCR) (Chin et al., 2012), (Ishii et al., 2013), (Volpatti and 

Yetisen, 2014), pharmaceutical applications (such as drug discovery and screening, as well as 

drug delivery) (KANG et al., 2008), (Neuži et al., 2012), bio-based production processes (e.g. on 

and in-line process monitoring of fermentations and biocatalytic reactions) (Fernandes, 2010), 

(Hegab et al., 2013), (Žnidaršič-Plazl, 2017), and ecology (e.g. water quality assessment and 

biological threat detection) (Mairhofer et al., 2009), (Bridle et al., 2014). Even though a few 

microfluidic-based technologies or solutions that include microfluidic parts are available in the 

market (Bieringer et al., 2013), (Sharma et al., 2015), they are mainly used in research 

laboratories (Chiu et al., 2017). It is therefore important to reflect on the reason for this 

relatively low impact, which stands in sharp contrast with the original sky-high ambitions for 

this field.  

When investigating the scientific literature, it is mentioned that this relatively low 

impact is due to the systems complexity, frequently observed repeatability issues of the 

existing platforms and the low application flexibility of the majority of the developed 

microfluidic systems. As discussed by Sackmann et al. (2014) for the chemotaxis field, the low 

adoption of microfluidics by non-specialists (e.g. biologists) has been related with the lack of 

fluid handling expertise and infrastructures required for their fabrication and/or operation 

(Sackmann et al., 2014). Also, in some fields, current microfluidic devices may not offer 

sufficient new or improved capabilities to motivate a change from the field’s standards to 

microfluidic-based assays (Sackmann et al., 2014). For example, the current lifetime of a 

microfluidic device or microfluidic-based platform, due to debris accumulation, trapped air and 

biofouling, is too short, compared with standard benchtop equipment, to be economically or 

technically attractive to non-microfluidic experts (Shields et al., 2017). In a field such as 

analytics, the main driver towards the use of microfluidic or microstructured systems, will be 

the possibility of achieving a significantly lower limit of detection. This is especially relevant 

when the need for such a low limit (e.g. early disease detection, environmental detection of 

hazardous compounds or microorganisms) is more pertinent than potential reproducibility 

issues or difficulty in operation. Another barrier to microfluidic systems commercialization 

may be the required level of investment in order to change the current infrastructure of the 

target industries (Shields et al., 2017), meaning the adoption of new standards and 

substitution of equipment. Shields et al (2017) present a good overview on the barriers to 

commercialization and clinical translation, such as the need for use of intellectual property 

licensing agreements which limits operability and discourages investment, found in the cell 

separation microfluidic field (Shields et al., 2017). The manufacturing costs and the required 

initial investment, which translate into high costs of the final devices, lead to a specific and 

closed company-customer based business model, instead of a general model relying on publicly 

available and well described systems that can be combined in order to address a wide range of 

specific customer needs (Mark et al., 2010). As found by Panikowska et al. (2016) in an 

extensive survey to microfluidic developers both in academia and in industry, there are five 

basic models for microfluidic system design and development, where prototype development is 

crucial, but fluidic simulations may be used for design optimization and testing. The 

microfluidic design is technology based, mostly guided by the available fabrication 

technologies, but also by the specific application required by the client (Panikowska et al., 

2016). Panikowska et al. (2016) also found that the view on design flexibility and 
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customization varies greatly between microfluidic developers, from selection from pre-existing 

modules to device design from scratch, and that connectivity and interface design is in most 

cases not addressed properly (Panikowska et al., 2016). However, a more structured and 

methodic approach to microfluidic structures and modules’ design, where microfluidics 

functions as a service or tool instead of the product, and interface design is taken into account 

from the start, can lead to a more successful integration in the  chemical engineering and 

biotechnological market. Furthermore, the provision of microfluidic related services, such as 

add-ons to existing devices (facilitated in a modular approach), software support, device 

maintenance, collection and disposal of used devices or cartridges (in the case of disposable 

and/or medical systems), would significantly improve profits and customer retention 

(Panikowska et al., 2016).  

 

In this respect, the solution to the low market spread might be found in the development 

of simpler devices which are easier to (inter)connect, whether in plug-and-play approaches 

(the so called modular microfluidics approach) or to already existing external analytical 

equipment. Changing the focus from finding the “killer application” (Blow, 2007), (Au et al., 

2016), to designing and manufacturing more flexible devices in terms of connectivity and 

applicability (Morgan et al., 2016), will significantly expand the range of possible applications 

(Haber, 2006), (Mark et al., 2010), (Wu and Gu, 2011a) of microfluidic systems. A generic 

platform, capable of facilitating operation, as well as the integration of multiple unit 

operations and their associated fluid handling, would undoubtedly boost the microfluidic 

field’s influence in the global market (Mark et al., 2010), (Sabourin et al., 2013) and its 

acceptance by non-microfluidic experts. It is important to note here that the wide-spread 

application of microfluidics is bound by the costs of the final device, the complexity of 

operation and the dependency on external equipment as previously mentioned (Sia and 

Kricka, 2008), (Sackmann et al., 2014), but also on the development of more adequate business 

models (Mukhopadhyay, 2007). Such models may involve the focus on a single and highly 

required application (the yet to be found “killer application” , offering a targeted answer to a 

specific question (Sackmann et al., 2014)), the focus on an application field (e.g. diagnostics 

(Erickson and Wilding, 1993), (Sharma et al., 2015)), the miniaturization of existing 

equipment (e.g. flow chemistry (Adamo et al., 2016)) or processes or the development of the 

microfluidic tools applied in academia and/or industry in different fields (Blow, 2007). In this 

sense, better data gathering and analysis tools can provide more insight on supplier/consumer 

chain management, market growth and business risk assessment, and in turn result in better 

market forecasts and prediction of technology acceptance. There is currently a lack of studies 

on the technology acceptance of microfluidics, which is for other technologies (e.g. smart -

watches and wearable technologies (Kim and Shin, 2015)) helping to guide their development 

towards more marketable products (Turner et al., 2010), (Marangunić and Granić, 2015). 

These tools are also required to increase the commercialization potential of microfluidic 

devices (Gärtner, 2017). For example, the EU project “FlowMap” identified the main market 

drivers and key aspects of economic development within microfluidics by interviewing 150 

experts in the field and was thus capable of providing a relevant guide towards more informed 

business decisions by microfluidic-based companies (Ducrée and Zengerle, 2004). 
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Some companies have already started commercializing microfluidic systems as tools that 

can be applied in academia or in research environments, thus following one of the possible 

business markets mentioned above. The ones mentioned here have also focused on the end-

user, thus developing systems with a simplified use. Nanogen’s (Nanogen, Inc., San Diego, US) 

electronic addressing technology (NanoChip® Electronic Microarray) allows capturing DNA 

probes in specific locations towards detection of single-base-pair differences, in a “blank slate” 

platform where the users can define their own assay (Huang et al., 2006). This system 

however, as other similar devices, requires a bulky benchtop workstation for microfluidic 

device operation, such as the use of robotic liquid handling instruments for liquid handling 

automation in microfluidic systems (Haber, 2006). Epigem (Redcar, United Kingdom) designs 

and fabricates devices for specific applications, while also providing their own strategy for 

fluidic connection and gaskets for reversible encapsulation, as well as embedded circuit layers. 

However, there is no standardization, since the systems are either application or client 

specific. Other commercial producers, such as Micronit Microtechnologies (Enschede, the 

Netherlands), Microfluidic ChipShop (Jena, Germany) and ThinXXS Microtechnology 

(Zweibrücken, Germany) also strive towards multiple application systems by having developed 

standard chips for certain unit operations (capillary electrophoresis, reactors, mixers, etc.) 

(Blow, 2007). They also manufacture chips with standardized sizes (for instance microscopy 

slides and microtiter plates) and microfluidic connections, providing even stages for easy 

fluidic connection. Connectivity between their own chips is facilitated, while the connectivity 

with chips from other manufacturers or developed in house by the end user is not easily 

achieved. Dolomite microfluidics (Royston, UK), which also provides several microfluidic chips, 

mostly for droplet, particle and emulsion generation, has embraced modular microfluidics and 

provides with the Telos® system a platform for straightforward process scale -up through 

parallelization (Han et al., 2017), (Microfluidics, 2017). In terms of connectivity, they have 

developed a specific approach based on standard sized tubing and connectors customized to 

dolomite platforms. However, again, the challenges related to easy connectivity to other chips 

or equipment have not been solved. Some academic groups have also tackled this issue of 

inter-chip connectivity with interesting approaches based on the LEGO® (Billund, Denmark) 

“plug and play” concept (Pepper et al., 2007), (Yuen, 2008), (Rhee and Burns, 2008), (Yuen et 

al., 2009), (Lim et al., 2014), (Morgan et al., 2016) or even using LEGO® components 

(Langelier et al., 2011), (Sabourin et al., 2013), (Vittayarukskul and Lee, 2017). There exists 

also a commercial prototyping system called The LabMatrixTM that provides a set of standard 

modular chips for molecular studies that can be assembled on a microfluidic breadboard. The 

set includes microvalves, syringe pumps, stereomicroscope, UV detection and NanoFlow flow 

cells (Zhou et al., 2003).  

 

In terms of the fields where microfluidics has had or has the potential to have the 

highest impact, biomedicine, diagnostics, the chemical industry and biotechnology seem the 

most relevant. 

Health and biomedical applications have been in the focus of many research efforts in 

microfluidics, especially for applications in point-of-care (POC) diagnostics which represent 

around a third of the microfluidics overall market (Gärtner, 2017). Thus, most microfluidic 

systems available on the market serve a diagnostic or health monitoring purpose. The 
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compactness of microfluidic devices, low reagent consumption, rapid result turn-around time, 

coupled with disposability, requirement of small sample volumes and the possibility for on-

chip storage of the required reagents, is seen as the solution to the majority of the hurdles 

related with diagnostics and treatment in remote or poorly-equipped locations (Sia and 

Kricka, 2008). POC diagnostics are also the microfluidic platforms that have most to gain from 

the development of fully self-contained or standalone (including result analysis) systems 

(Boyd-Moss et al., 2016). The most successful example of a microfluidic-based POC device is 

the i-STATTM Portable Clinical Analyzer system from Abbot diagnostics. It is a handheld 

device that performs quantification of biological parameters in blood, based on microfluidic 

disposable cartridges with integrated electrochemical sensors, each cartridge fabricated for 

the quantification of a specific parameter or a set of parameters (Erickson and Wilding, 1993). 

This device revolutionized POC diagnostics by significantly reducing the time between 

sampling and result to around 5 minutes, thus enabling a fast action from health 

professionals. Furthermore, by performing the analytics automatically with self-calibration 

procedures and removing the need for sample pre-treatment, it can be used reliably by non-

trained personnel, removing the risk of operator error affecting data quality and widening the 

settings on which such device can be applied to emergency rooms, disaster areas, family doctor 

offices, field research, etc. (Erickson and Wilding, 1993). The range of parameters it can 

quantify has expanded from blood electrolytes and hematocrit in the 1990s (Erickson and 

Wilding, 1993), (Jacobs et al., 1993), pH, blood gases, lactate (Bingham et al., 1999), 

(Dascombe et al., 2007) and cardiac troponin I (Apple et al., 2004) in the 2000s to total β-

human chorionic gonadotropin immunoassay (Sowder et al., 2015), activated clotting time and 

measurements from intraosseous samples in the 2010s (Veldhoen et al., 2014). The device has 

even been applied to animals, such as horses, dogs (Verwaerde et al., 2002), sharks (Harter et 

al., 2015) and cattle (Yildirim et al., 2015). By targeting a set of relevant parameters, the i-

STAT found its “killer application”, but due to the flexibility of the sensing system 

(electrochemical sensors) it has been able to expand its range of applications (e.g. developing 

new cartridges). The portability, reliability, self-calibration procedures, internal error 

detection system (indicating low or too high sample volume or hardware fault), simple sample 

introduction method and low sample volume required together with the variety of parameters 

measurable (depending on the cartridge use) has rendered the i-STAT an invaluable tool in 

healthcare settings by meeting the needs for relative low price, fast and near patient testing in 

hospitals (Bingham et al., 1999), that also embodies all the desired characteristics of a POC 

microfluidic device. Other commercially available microfluidic-based FDA-approved POC 

diagnostics are presented in Sharma et al. (2015), such as The Piccolo® from Abaxis (also for 

blood chemistry), Simplexa from Focus Dx, Quest (for flu A/B detection from nasopharyngeal 

swabs) and the BD MAXTM GBS Assay IDI-Strep B assay from HandyLab, BD (for detection 

of Group B Streptococcus from vaginal and rectal swab samples) (Sharma et al., 2015). 

The specific needs of POC testing, especially simplicity of use and minimal requirement 

for auxiliary equipment, meet in part the aim of a plug-and-play approach, but also pinpoint 

the downside of this approach: the dependence on fluid handling equipment and limited 

sample (pre-)treatment units (Sia and Kricka, 2008). 
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Modular microfluidics is not the ideal solution for POC diagnostics, where a single all-

round disposable platform is preferable to several multi-purpose chips in order to simplify use 

(by non-trained personnel), reduce contamination risk, use of unprocessed specimens and 

allow long-term storage of reagents in non-refrigerated settings, enabling an automated 

analysis. However, modular microfluidics seems extremely relevant to most other applications 

of microfluidics. Multi-purpose devices, especially reusable ones, enable to: (i) lower the cost of 

the method(s) used; (ii) increase the diversity of tests that can be performed, as well as the 

diversity of samples that can be handled; and, (iii) probably allow for  a higher degree of 

comparison between samples, since the same devices can be used even if assembled 

differently.  

An extremely relevant market for modular microfluidics has been synthetic chemistry 

and the production of valuable chemicals (Hessel et al., 2013), such as positron emission 

tomography (PET) tracers, active pharmaceutical ingredients (API) (Chiu et al., 2017), natural 

products (Pastre et al., 2013), fine and bulk chemicals, particle synthesis, pigments (Elvira et 

al., 2013), among others. Microfluidics provides valuable advantages in chemistry such as 

improved selectivity and process safety, smaller footprint, acceleration of mass-transfer 

limited reactions, increase in production rates through a scale-out approach and the intrinsic 

continuous, rather than batch, production (Chiu et al., 2017). Hartman et al. (2011) provide a 

good analysis of flow chemistry vs. batch reactors (Hartman et al., 2011). Microfluidics, 

especially based on droplet generation, is enabling the production of new microparticles and 

nanomaterials (Chiu et al., 2017), but there are already examples of modular-based flow 

chemistry being applied to industrial sized production (Elvira et al., 2013). Kockmann et al. 

(2011) discuss one of the first examples of a modular microreactor applied to chemical 

production, the Lonza reactor (Kockmann et al., 2011). They observed that the plate approach 

enabled great versatility in terms of the types of reactions it was capable of carrying out. This 

occurred since plates with different sizes and or geometries could be combined as a plate stack 

reactor and thus be easily adapted to the constraints/conditions of the reaction in question 

(Kockmann et al., 2011). Moreover, Mardani et al. (2017) describe the development of a micro-

plant from the separate characterization of the reactor and distillation modules to their joint 

application. Interestingly, they further tested the micro-plant in the case of failure to feed one 

of the substrates, and were capable of observing phenomena that are usually only visible at 

pilot scale (Mardani et al., 2017). Also, Adamo et al. (2016) presented a module-based 

continuous manufacturing platform capable of combining both synthesis and formulation of 

several pharmaceutical compounds. As proof-of-principle, they produced four different 

compounds at a gram-per-hour scale. The use of such flexible, reliable and compact 

manufacturing platforms could simplify formulation of compounds with short shelf-life as well 

as lower the price of pharmaceuticals for small patient populations (Adamo et al., 2016). They 

can also allow the simultaneous test of potentially new compounds by using several micro-

plants to replicate the process conditions (Mardani et al., 2017). Modular based small 

production plants may also facilitate adaptation to a rapidly changing market, thus reducing 

investment risk, by considerably decreasing lead time from lab investigations to production 

scale, as well as reducing planning efforts (Buchholz, 2010), (Bramsiepe et al., 2014). As 

discussed by Bramsiepe et al. (2014) the impact of modular-based production plants is 

especially relevant when testing failure tolerances, as well as automation and control 
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strategies by enabling the use of similar equipment across all the process development scales 

(Bramsiepe et al., 2014). The same strategy can as well be applied for microfluidic-based 

modular plants, especially in the production of pharmaceuticals as previously exemplified by 

(Adamo et al., 2016).  

The potential of modular platforms is currently applied to biotechnology by taking 

advantage of novel approaches to synthesis, developed in flow chemistry (Bolivar et al., 2011), 

(Wohlgemuth et al., 2015). The physical separation of the reactions in a multi-enzyme cascade 

system can allow a better control of the overall reaction, especially if the product acts as an 

inhibitor on the following reaction or promotes undesired side reactions (Gruber et al., 2017). 

Physical separation may also enable a better quantification of generated compounds (Bi et al., 

2015), as well as the separate characterization of the different enzymes involved in a 

metabolic pathway (Kampe et al., 2014). Furthermore, connection of the reactor modules with 

chiral columns, solvent extraction modules, filtration and separation systems, allows the 

exchange of solvents or buffers between reactor modules, as well as removing enzymes and/or 

products that might affect the next reaction in the sequence, and thus greatly improve the 

overall yield and productivity (Asanomi et al., 2011), (Gruber et al., 2017), (Žnidaršič-Plazl, 

2017). By using a modular approach, a complex reaction system can be more rapidly optimized 

and downstream sample processing easily modified if a new product becomes more interesting. 

Furthermore, a similar module-based scale-up strategy to the one presented by Han et al. 

(2017) for functional materials (Han et al., 2017), could be used to increase productivity. The 

use of modules, each containing either a few channels or a vertical stack of microfluidic chips, 

also seems to be a viable solution to imbalances in fluid distribution in scale-out approaches 

(Wang et al., 2014), (Han et al., 2017). Žnidaršič-Plazl (2017) presents some recent examples of 

the applications of modular microfluidics for industrially relevant biotransformations and 

biocatalytic reactions, as well as an interesting perspective on the contributions of 

microfluidics to the biotechnological field (Žnidaršič-Plazl, 2017). 

Another relevant example of the potential of modular platforms is the “body-on-a-chip” 

or “human-on-a-chip” concept. Here, each organ or tissue relevant to the physiological function 

being studied, or in the drug metabolism being tested, is mimicked in a microfluidic system 

and interconnected for an overview of the human biological mechanisms underlying the 

targeted morphogenetic and/or pathogenetic process (Perestrelo et al., 2015). The separation of 

the physiological systems in different chips allows for the use of optimized conditions for the 

on-chip differentiation or maturation of the different cell types during organ and/or tissue 

growth in the microfluidic platform (Loskill et al., 2015). It further allows minimizing the 

effect of variability between cell batches and cell lines on the overall human-on-a-chip 

observed when the several cell compartments are permanently connected (Loskill et al., 2015). 

The use of the modular human-on-a-chip approach also enables, by adding redundant single 

organ units, to bypass malfunctioning units without losing the multi-organ functionality 

(Loskill et al., 2015). Huh et al. (2013) developed a microfluidic chip for tissue-tissue 

interaction in organ-on-a-chip applications which can be used to grow and mimic different 

human tissues (e.g. lung alveoli, intestinal wall, kidney glomerulus) (Huh et al., 2013). The 

ATHENA (Advanced Tissue-engineered Human Ectypal Network Analyzer) platform, or 

“Homo Minutus”, is a project that aims to interconnect, through an artificial circulatory 

system, four human organ constructs (liver, heart, lung and kidney) (Dance, 2015). Loskill et 
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al (2015) (Loskill et al., 2015) developed the µOrgano, a customizable Lego®-based modular 

multi-organ system, that enables initial cell culture in individual organ chips, followed by 

their interconnection to achieve a microphysiological multi-organ system (Loskill et al., 2015). 

The combination between different organs is in this case performed with a toolbox of simple 

connectors (Loskill et al., 2015). Another project, the HeLiVa platform, aims at integrating 

three organ constructs (heart, liver and vascular systems) on a chip with the necessary assay, 

labelling and analytical procedures for detailed analysis (Vunjak-Novakovic et al., 2013). And 

recently, Edington et al. (2018) have developed a microfluidic system that integrates up to 10 

microphysiological systems in a single chip (Edington et al., 2018). Such “human-on-a-chip” 

systems can accelerate drug development by enabling trials in human tissues, as well as 

facilitate the study of certain diseases (e.g. cancer). Moreover, InSphero AG is a Swiss 

company developing organ models based on cellular spheroids floating in wells and connected 

by microchannels. They commercialize liver, pancreas, tumour and skin 3D cell cultures, 

already prepared for in vitro  toxicology and drug discovery assays, as well as assay kits 

(Perestrelo et al., 2015), (InSphero, 2017).  

 

Figure 1 shows examples of some of the mentioned applications of modular microfluidics, 

such as the chemical industry (e.g. production of APIs), biotechnology (e.g. biocatalytic 

process) and “body-on-a-chip” (e.g. “heart-on-a-chip”). 

 
Figure 1 – Examples of microfluidic platforms and applications of microfluidics: (a) modular-based biocatalytic 

process integrating a cascade reaction with in-situ substrate supply and product removal (Gruber et al., 2017) 

(image reproduced from Gruber et al. 2017 with permission from Biotechnology Journal); (b) modular-based 

continuous production (“A”) and downstream process (“B”) of APIs (Adamo et al., 2016); (c) modular-based 

microfluidics for assembly of “body-on-a-chip” representing in “a” general procedure of culture and assembly of such 
device, and in “b” and “c” staining of cultured cells and beating motion of the formed cardiac tissue (Loskill et al., 

2015) (image reproduced from Loskill et al. 2015 with permission of PLoS ONE); 

 

Despite such tremendous advances in microfluidic technology and its applications, most 

of the major developments in the microfluidics field foreseen in 2004 by Erickson and Li 

(Erickson and Li, 2004), such as decreased dependence on external equipment towards higher 

portability, and an increased use of simulation and modelling for device design optimization in 

the initial stages of device development, still remain to be achieved. Even though a decreased 

reliance on external equipment was obtained for some applications, most systems still rely on 

external pumps, potentiostats, manual/automatic external sample pre-treatment, microscopes, 

power sources, etc. The integration of light sources in a planar format, such as organic light-

emitting diodes (OLEDS) (Lefèvre et al., 2015), is the example of an approach towards a 

decreased reliance on auxiliary equipment through its miniaturization and integration.  

Also, a higher number of fabricated microfluidic devices are currently being studied by 

means of mathematical and numerical tools, such as Matlab® (Schäpper et al., 2011) and 

computational fluid dynamics (CFD) (Rosinha Grundtvig et al., 2017), with the aim of 

reducing development time. These software tools have contributed to a considerable progress 

in recent years in accommodating the faced challenges when modelling at this scale. However, 

the lack of standard analytical tools at microscale often hampers the experimental validation 

of the numerically predicted phenomena. Thus, without proper experimental validation, it is 
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often difficult to convince the user of microfluidic devices of the legitimacy of simulation 

results. An example of such experimental validation can be found in Hoffman et al (2018) 

(Hoffmann et al., 2018). 

 

2. The challenge of integration 
As discussed in the previous section, the market presence of microfluidic or 

microstructured devices is still limited. This limitation is partly related to poor acceptance of 

such devices by the final users (usually non-microfluidic experts), their limited range of 

applications (focus on a specific target application) and the cost of their introduction as the 

new standard in a given field. Easily exchangeable and interconnectable modules might 

resolve these constraints. The challenge of achieving such modules thus relies on their 

integration and use as a single platform. 

 

The integration of several unit operations at microscale was initiated together with the 

microfluidic fabrication field at the end of the 1980’s (e.g. fluid displacement (van Lintel et al., 

1988), sensing and separation (Manz et al., 1990), (Manz et al., 1992), (Mark et al., 2010)). The 

semiconductor industry investigated the development of monolithic miniaturized components 

called micro-electro-mechanical systems (MEMS), such as sensors, valves, separators and 

mixers, due to the discovery of a suitable material, silicon (Petersen, 1982). The development 

of MEMS systems was further enabled by the outsourcing of the semiconductor production to 

the upcoming Asian countries, which allowed to free the existing semiconductor production 

capacities for research purposes (Bryzek, 1996). Miniaturized components based on polymeric 

materials were also developed, with the appearance of soft-lithography methods (Duffy et al., 

1998), (Duffy et al., 1999). The coupling of several of these components proved however to be 

technically complicated. The main reason behind this was the choice in fabrication 

technologies of the individual components, which were usually incompatible (Mark et al., 

2010), as well as the design of both the channels with different dimensions (leading for 

example to disparate required flow rates for different components) and connections between 

platforms (mostly un-standardized). Therefore, simpler approaches, applying bench scale 

equipment (external pumps, microscopes, etc.) were pursued to facilitate the development of 

individual unit operations (Wu and Gu, 2011b). Consequently, in order to reduce the 

dependency on external devices, the effort towards the development of standalone 

microfabricated devices has recently increased. Boyd-Moss and co-workers have recently 

published an excellent review on standalone or self-contained microfluidic systems for 

biomedical diagnostics, where a thorough analysis of their main concepts, operating 

mechanism (passive, such as capillary action; hand-powered, such as by pulling a syringe; or 

active) and output is performed (Boyd-Moss et al., 2016). The constant miniaturization of 

electronic components is mentioned as a relevant driver in achieving self-contained operation 

(e.g. portable power supply, piezoelectric pumps) and sorting (e.g. d ielectro- and acousto-

phoresis) (Boyd-Moss et al., 2016). A standalone device is one type of microfluidic system or 

platform.  

A microfluidic platform consists of a set of microfluidic elements, each previously and 

individually validated, capable of performing a given fluid handling or sample 
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treatment/measuring step (unit operation). Ideally, these unit operations should be capable of 

being combined and assembled differently depending on the final application (Mark et al., 

2010). The integration of various unit operations on a single device requires a holistic 

understanding of the characteristics of the substrate materials, the available or possible 

fabrication technologies, the characteristics of the target sample, the devices’s final 

application and the environment in which it will be applied.  

The material(s) composition of a microfluidic system is chosen according to the platform’s 

required function, degree of integration and application (Nge et al., 2013). Characteristics 

such as air permeability, biocompatibility, nonspecific adsorption, surface functionalization, 

optical transparency, flexibility, solvent compatibility, electrical compatibility, and 

opportunity for sterilization are considered when choosing a material for a specific application. 

The robust and leakage free integration of different materials in the same platform is a 

further challenge (Mariella, 2008). The most frequently used materials can be divided in three 

categories: inorganic, polymeric, and paper. A summary of their characteristics is presented in 

Table 2. 

The selection of the fabrication technique is dependent on the choice of materials, the 

final application of the device, how robust it needs to be and whether or not reusability is 

required. The choice is also dependent on the type of end user (experienced or not), location of 

use (point-of-care vs. research laboratory, for example), and the time between fabrication and 

use (is storage required?). Material properties also influence the minimum attainable feature 

dimension (Becker, H., Beckert, E., Gärtner, 2009). These characteristics will guide the choice 

of the fabrication methods, from a wide variety available for the production of microfluidic 

devices. These include prototyping techniques (such as hot embossing, injection molding and 

soft lithography) and direct fabrication techniques (such as thin film deposition, laser 

photoablation, photolithography/optical lithography, etching and 3D printing). Furthermore, 

the choice of a fabrication method takes into account the desired minimum feature 

dimensions, surface roughness and aspect ratio of the channels, as well as the tolerances and 

reproducibility of the method, the selected chip material and the final application. For more 

complex applications, compatibility between different fabrication methods should also be 

considered during the selection. Heckele et al. (2003) (Heckele and Schomburg, 2003), Ziaie et 

al. (2004) (Ziaie et al., 2004), Becker and Gärtner (2008) (Becker and Gärtner, 2008), Wu and 

Gu (2011) (Wu and Gu, 2011a), Iliescu et a.l (2012) (Iliescu et al., 2012), Cheng et al. (2012) 

(Cheng et al., 2012), Li, et al. (2012) (Li et al., 2012), Ho et al. (2015) (Ho et al., 2015) and Au  

et al. (2016) (Au et al., 2016) present a good overview of past and current fabrication 

techniques, and also discuss the main considerations for the selection of the different methods. 

Along with the choice of the material and the fabrication technique, the type of 

microfluidic platform needs to be considered in advance, such as: single or multiple unit 

operations on the same chip; single platform or part of a platform; integrated quantification 

and fluidic handling or connection with external equipment; and, importantly, also how to 

perform data and signal acquisition and treatment. When considering connectivity of the 

microfluidic chip, several other aspects should also be taken into account: (i) disposability of 

the device; (ii) to which devices it will connect; (iii) inlets positioned in-plane or perpendicular 

to the chip; (iv) should it be application-specific; (v) area occupied by connections; (vi) 

fabrication process; (vii) pressure and temperature tolerance; (viii) compatibility between 
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materials used (e.g. solvents as target detection solutions); (ix) dead volume generated in the 

connections; (x) sterility; (xi) permeability; (xii) type of sample; and, (xiii) price (Iliescu et al., 

2012). Some of the aspects mentioned were also presented in the material and fabrication 

selection section above. However, it is relevant to mention them again since their selection 

may be different depending on whether inter-chip connectivity is considered or not. 

Microfluidic interconnections need to provide a low pressure drop and dead volume and 

hermetic seal, coupled with a reliable performance under multiple uses (Perozziello et al., 

2008). Manually fabricated connections may not be built reproducibly, and are thus adding 

variability to the flow or the operation of the system. The adoption of a standard size inlet 

diameter, that allows the use of finger tight fittings and standard tubing, facilitates 

interconnection with other platforms using the same type of connectors, as well as connectivity 

to most external equipment (HPLC devices and mass spectrometers (Kirby and Wheeler, 

2013) or Raman spectrophotometers (Perozziello et al., 2016) as well as syringe pumps).  

However, as stated in Wu and Gu (2011) (Wu and Gu, 2011b) microfluidic platforms are 

usually developed with a specific or a small range of applications in mind. This often requires 

a re-design when a modification, addition of another function or integration with other 

systems or platforms is needed. In Hlawatsch et al (2012) (Hlawatsch et al., 2012), different 

process modules, previously optimized for a target application (Gartner and Becker, 2008), 

were left separated and used in series (“plug-and-play”) in order to provide more flexibility in 

terms of application of the final microfluidic setup. For each application, different modules or 

the same modules, but in a different order, can be used. Thus, the development of unit 

operation modules can widen the applicability of a microfluidic system, as well as reduce the 

time spent in designing and optimizing a system for a given application. 

 

Figure 2 presents a simplified representation of the different modes of use and approach 

to microfluidics mentioned thus far: standalone vs. dependent on external equipment, and 

multi-unit operations in a single chip vs. “plug-and-play” approach.  

 
Figure 2 – Simplified representation of different types of microfluidic systems or platforms: (a) standalone 

platform (that contains all the components required to carry out the target process or assay) exemplified by the i 
STATTM Portable Clinical Analyzer system; (b) standard microfluidic system (that depends on certain external 

equipment such as pumps and analytical devices to carry out the target process or assay) ; (c) Conventional 

approach to microfluidic platforms (miniaturization and integration of all the necessary unit operations in the same 

chip), exemplified by an image taken from Boyd-Moss et al. (2016) (Boyd-Moss et al., 2016) with permission of the 

Royal Society of Chemistry; and (d) modular approach to microfluidic platforms (integration of all the required unit 
operations as separate miniaturized unit operations that are interchangeable and replaceable by new units if 

needed). 

 

2.1 Available unit operations in microfluidic chips 

To guarantee a wide applicability of modular microfluidic platforms it is essential that 

the relevant unit operations to most applications are available, and exist or can rapidly be 

made in such a format. In general, a “plug-and-play” system should contain the following 

elements: 

- Fluid handling unit: Such a unit could function as a pump, allowing appropriate 

flow of the sample in the system, with good control of flowrate and type of flow, 

ideally allowing a range of possible flow velocities. Another important fluid handling 
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function is a valve system, especially a multi-port valve that enables the control of 

the entrance, mixing or even the path inside the system of different fluids. Sabourin 

et al (2013) (Sabourin et al., 2013) developed a very interesting system where liquid 

handling is automatically achieved with miniaturized and integrated pumps. Other 

groups decided on a simpler approach such as a magnetically actuated stirrer-based 

micropump (Kimura et al., 2015), valves actuated by tightening a screw (Zheng et al., 

2009) or using a Braille display (Gu et al., 2007), or even capillary forces (Madadi et 

al., 2015). Oh et al. (2012) presented an interesting guide on design of microfluidic 

networks to ease fluid handling (Oh et al., 2012). Electroosmotic flow (EOF) offers an 

interesting alternative to pressure driven flow, where the flow front has a flat profile, 

being capable of generating high flowrates without moving parts (Gao and Gui, 

2016). It has been widely applied in bioassays, drug delivery, fuel cells, sludge 

treatment and microelectronic chip cooling (Gao and Gui, 2016), (Lim et al., 2017). 

Passive approaches to valves can also use capillary bursts, and stimuli-responsive 

hydrogels (Wang et al., 2005) (Boyd-Moss et al., 2016). It is also relevant to develop 

integrated systems that are able to validate and measure the generated flow inside 

microfluidic networks, as well as being able to determine backpressure. A simple 

system, based on luminescent optical sensors, as presented by Hoera et al. (2017), is 

an attractive possibility (Hoera et al., 2017) and enables the simultaneous 

measurement of temperature and oxygen concentration. 

 
Figure 3 – Braille display developed by Gu et al. (2007) as a fluid handling unit. Figure adapted from (Gu et al., 

2007). 

- Mixing/dilution unit: Mixing is an extremely important function when performing 

reactions or studying the influence of certain compounds, since it needs to occur 

faster than the reaction effect being studied in order not to significantly influence the 

outcome (Liau et al., 2005). At microscale, mixing occurs mainly through diffusion, 

but certain strategies can be applied to improve mixing efficiency. Significant mixing 

strategies involve passive approaches which are based on the generation of chaotic 

mixing with channel bends or topology in the channel (Liau et al., 2005), or on 

increasing the contact area between samples via lamination or intersecting channels 

(Lee et al., 2011). A novel approach to passive control over mixing uses stimuli-

responsive hydrogels (Prettyman and Eddington, 2011). Diverse active mixing 

strategies, such as acoustically-induced microstreams, dielectrophoretic micromixers, 

electrokinetic actuation (Gao and Gui, 2016), velocity pulsing and magneto-

hydrodynamic flow have also been thoroughly developed and applied (Lee et al., 

2011). 

Mixing can also be performed in order to achieve gradients of certain components 

through dilution. Niu et al (2011) developed a droplet-based platform capable of 

performing dilutions within a range of four orders of magnitude by splitting and 

(re)merging droplets to create reagent gradients (Niu et al., 2011). Rho et al  (2016) 

used peristaltic mixing in controlled volume microreactors to generate stepwise 

concentration gradients of two reagents (Rho et al., 2016). The induction of 
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convective mixing is also very relevant in liquid-liquid extraction, especially in slug, 

droplet and dispersed flow (for details, see (Kurt et al., 2016)). 

- Sample concentration unit: This is especially critical for applications that involve 

extremely diluted samples (Mariella, 2008), which can range from water quality 

testing to detection of cancer cells or viruses in blood. Also, in the human body the 

physiological concentration of considerable compounds is in the order of nM or lower, 

thus requiring pre-concentration units for allowing detection. Several strategies 

involve adhesion of the molecules or cells to the channel walls, which can be 

functionalized (Stott et al., 2010) or not (Jing et al., 2013), using chaotic flow 

induction to increase enrichment performance. Recently, Pereiro et al (2017) 

developed a fluidized bed microreactor capable of capturing bacteria from liquid raw 

samples (e.g. milk) using functionalized magnetic beads (Pereiro et al., 2017). 

 
Figure 4 - Fluidized bed microreactor developed by Pereiro et al. (2017) (Pereiro et al., 2017). The figure presents 

the magnetic field gradient with magnetic forced oriented towards the chamber inlet (a) and the influence of flow 
on the packed magnetic beads (b). Image reprinted with permission from I. Pereiro, A. Bendali, S. Tabnaoui, L. 

Alexandre, J. Srbova, Z. Bilkova, S. Deegan, L. Joshi, J.-L. Viovy, L. Malaquin, B. Dupuy, S. Descroix, A new 

microfluidic approach for the one-step capture, amplification and label-free quantification of bacteria from raw 
samples, Chem. Sci. 8 (2017) 1329–1336. doi:10.1039/C6SC03880H – Published by The Royal Society of Chemistry. 

- Filtration/ purification unit: Units capable of removing contaminants, or 

separating cell debris or types of cells from the sample are highly valuable as sample 

treatment units. Strategies applied to sample filtration/ purification use differences 

in (i) size (e.g. using capillary forces in a microchannel integrated micropillars 

(MIMPs) chip to separate plasma from blood (Madadi et al., 2015) or simultaneous 

isolation of multiple antibodies from serum and multiple cell types from blood using 

microbeads (Sarkar et al., 2016)), (ii) functionalization of channel surface (e.g. with 

avidin and treated with antibodies conjugated with biotinylated photocleavable 

crosslinkers with a specific 19-mer DNA sequence to capture cancer biomarkers 

directly from whole blood (Stern et al., 2010)), (iii) immunomagnetic separation (e.g. 

immunomagnetic beads and a micro-aperture chip to separate circulating tumour 

cells (CTC) from whole blood samples (Chang et al., 2015)), (iv) adhesion to silica (e.g. 

extraction of RNA from prepared rat tissue samples using a porous silica monolith 

column (Shaw et al., 2013)), and (v) solid-phase extraction (e.g. using cation exchange 

resins (Park et al., 2015)). 

Concentration and filtration/purification units often function as the same unit, since by 

isolating or separating a target cell/particle/molecule, its concentration from the initial sample 

is achieved. In chemical engineering, separators are often more relevant than filtration, for 

downstream concentration/ purification of the target compound. Separators allow the recovery 

of the target compound after liquid-liquid extraction. Gürsel et al. (2017) present a good 

overview of current modular microfluidic approaches both to liquid-liquid extraction (usually 

mixers for immiscible liquids) and separation units, focusing in the latter case on counter-

current-flow approaches. Some of the separator modules described present similar approaches 

to the filtration / purification units described above (e.g. surface treatment, membranes, 

micropillars). Gürsel et al. (2017) further discuss in detail the impact of the type of flow regime 

(parallel, slug and dispersed flow) on extraction performance and simplicity of separation 
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operation. They also provide an interesting perspective on the role microfluidics plays in 

achieving end-to-end continuous manufacturing (Gürsel et al., 2017). 

- Sorting unit: Besides the ability to isolate a target molecule or cell from a complex 

sample, it might also be required to differentiate among the purified molecules or 

cells for a certain characteristic, for which sorters can be used. This is especially 

relevant when establishing protein or genetic libraries or developing mutants.  

Sorting of molecules, cells, particles or droplets can be performed using electrostatic 

actuation (such as, dielectrophoresis (Niu et al., 2007), (Adam R Abate et al., 2010), 

(Frenzel and Merten, 2017) or electrostatic charging (Link et al., 2006)), optical 

approaches (such as optical tweezers or traps (Wang et al., 2011) or fluorescent 

activated cell sorting (FACS)), mechanical approaches (e.g. with membrane valves 

(Adam R. Abate et al., 2010)), acoustic approaches (e.g. surface acoustic waves (Wang 

and Zhe, 2011)), magnetic approaches (e.g. magnetophoresis or magnetic activated 

cell sorting (MACS)), channel topography (Hsu et al., 2008),  inertial or 

hydrodynamic focusing or affinity approaches (Z. T. F. Yu et al., 2014). 

- Sample amplification: Such a unit may enable working around the issue of highly 

diluted samples, allowing to replicate the target molecules (e.g. DNA or mRNA) 

(Mariella, 2008). However, the issue of retaining or capturing such molecules 

remains. Most amplification units perform polymerase chain reaction (PCR) either in 

chambers (e.g. reverse transcription PCR (RT-PCR) using a thermoelectric Peltier 

element for temperature control during amplification (Shaw et al., 2013)) or 

continuously in channels (e.g. real-time PCR of single-DNA per droplet in a circular 

channel design with zones at different temperatures (Schaerli et al., 2009)). Other 

amplification techniques such as multiple annealing and looping-based amplification 

cycles (MALBAC) (Z. Yu et al., 2014)  and nucleic acid sequence-based amplification 

(NASBA) (Dimov et al., 2008) have also been miniaturized in microfluidic devices. 

 
Figure 5 - Multiple annealing and looping-based amplification cycles (MALBAC) developed by Yu et al. (2014) (Z. 

Yu et al., 2014). The figure shows the schematics of the device (a) with the microfluidic channels in purple and the 

control channels in magenta, the different MALBAC reactions (b), the thermocycler used for temperature control (c) 
and the scattering of a single cell on the chip (d). Image reprinted with permission from Z. Yu, S. Lu, Y. Huang, 

Microfluidic Whole Genome Amplification Device for Single Cell Sequencing, Anal. Chem. 86 (2014) 9386–9390. 

doi:10.1021/ac5032176. Copyright 2014 American Chemical Society. 

- Incubation unit: Such a unit can either work as a reactor, allowing for a certain 

reaction to occur for a defined residence time, a labelling unit, or even as an 

incubation chamber, allowing for growth of organisms. This type of unit requires an 

excellent control of volume and residence time, and has been extensively used 

together with droplet microfluidics or single-cell platforms. Several droplet 

microfluidic platforms present incubation units, which are chambers where the cells 

or droplets are stored (Mary et al., 2011), (Theberge et al., 2012) or long channels 

that allow for a tight control of incubation (residence) time (Adam R Abate et al., 

2010). 

Strategies for other sample pre-treatment units are presented by de Mello and Beard 

(2003) (e.g. liquid-liquid and solid-phase extraction, isotachophoresis, cell lysis) (de Mello and 

Beard, 2003), Chen and Cui (2009) (e.g. dielectrophoresis, magnetic activated cell separation, 
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DNA purification) (Chen and Cui, 2009) and Huang et al (2002) (e.g. nucleic acid amplification 

and purification, microfiltration) (Huang et al., 2002). 

- Detection unit: Quantitation of target compounds is one of the major functions and 

advantages of microfluidics, due to the variety of sensors available, which offers a 

possibility for real-time and continuous monitoring and proximity to the samples. An 

overview of the different types of available sensors for microfluidic applications is 

presented later in the text, but the variety of available sensors ranges from electrical 

(such as, dielectric determination of size, shape and composition of droplets at high 

speed (Niu et al., 2007), or following changes in cell size, capacitance and liquid 

exchange by electrical impedance spectroscopy (Bürgel et al., 2015)) to optical (e.g. 

recent application of stroboscopic epifluorescence imaging to hundreds of droplets 

simultaneously (Hess et al., 2015), surface-enhanced Raman scattering (SERS) 

detection of hazardous materials (Quang et al., 2008), the use of Fourier Transform 

Infrared (FT-IR) microscopy in studying enzyme kinetics (Polshin et al., 2014), or the 

application of optoelectronic devices, such as organic photodetectors (Lefèvre et al., 

2015)) and even nano-wires (e.g. nanoribbons capable of performing the detection of 

multiple biomarkers simultaneously (Stern et al., 2010)). An effort towards the 

development of multiple application sensors or sensors capable of measuring more 

than one component or parameter simultaneously would also greatly contribute 

towards more flexible modular systems. The integration of the sensing units in the 

microfluidic platform is a major step in microfluidic design and different approaches 

have been used, from irreversible integration (e.g. sensor layer deposition prior to 

sealing channel (Nirschl et al., 2011), (Fernandes et al., 2014), (Lefèvre et al., 2015), 

during channel fabrication (Yuen, 2016a), (Gaal et al., 2017) or after channel sealing 

(Frey et al., 2010)) to reversible integration (e.g. through threaded ports (Erkal et al., 

2014) or with chip holders (Tkachenko et al., 2009), (Wilhelm et al., 2013)). 

 
Figure 6 – On-chip electroporation and impedance spectroscopy device developed by Bürgel et al. (2015) (Bürgel et 

al., 2015). The figure shows a cross-sectional schematic of the device’s active area, showing both the impedance 

spectroscopy measurement and cell electroporation after measurement (a) and a photograph of the microfluidic chip 
(b). 

The presented list of existing microfluidic chips (summarized in Table 1), capable of 

performing the most relevant and essential unit operations in any screening, optimization or 

development study is not exhaustive. Boyd-Moss et al. (2016) present a more complete list of 

the common mechanisms used in microfluidic systems to achieve flow driving and control, 

mixing, sorting, amplification and target detection (Boyd-Moss et al., 2016). They also 

highlight the dependence of some of these mechanisms on external equipment. There is a 

multitude of approaches for solving pre-treatment and sample concentration issues for 

example, that with little or no modification could be coupled together and/or integrated in a 

modular platform (e.g. on-chip single cell electroporation (Bürgel et al., 2015)). The common 

approach however, especially towards achieving standalone systems, is the integration of all 

the unit operations on the same chip to simplify usage and guarantee accuracy of the data 

(Boyd-Moss et al., 2016). 
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Notwithstanding, we believe that by combining the different presented microfluidic 

systems, most processes in the biotechnological and health fields could be studied on-chip in a 

flexible “plug-and-play” approach. 

 

Table 1 – Summary of the presented unit operations currently available for microfluidic chips. 

 

2.2 A perspective on modular microfluidics 

A modular approach to microfluidics provides specific advantages, such as the increased 

operation flexibility by facilitating the microchannel or microfluidic system reconfiguration, 

where a certain unit operation can be easily substituted or the order of different unit 

operations in a process can be changed (Bhargava et al., 2014). Furthermore, by using 

connected discrete components, the same unit operations can be applied to different 

analytical, reaction or downstream purposes, thereby lowering the cost of the final setup. 

Additionally, by re-using the discrete components, the assembly and planning of different 

setups is facilitated, since each system can be previously characterized (Bhargava et al., 2014). 

A wide application of microfluidics can be achieved if not only modularization, but also 

standardization of connectors is achieved. Connectivity between the above units could be 

attained with some of the connectors and interconnectivity ports presented in Figure 7, such 

as the one from Pepper et al. (2007) (Pepper et al., 2007) (Figure 7 (a)), where “click on” 

connectors to standard tubing sizes were developed, and Sabourin et al (2013) (Sabourin et al., 

2013) (Figure 7 (b)), who developed multi-connector ports. Connectivity to electrical interfaces 

could also be carried out as presented in Yuen et al  (2008) (Yuen, 2008) (Figure 7 (c)), who 

based their design of fluidic and electrical connections on an electrical breadboard. Yuen 

(2016) has also developed stick-and-play connectors using magnets (Yuen, 2016b). 

 

Figure 7 – Schematics of the connectivity approaches presented by Pepper et al (2007) (Pepper et al., 2007) (a), 
Sabourin et al (2013) (Sabourin et al., 2013) (b) and Yuen et al  (2008) (Yuen, 2008) (c). Images adapted from: (a) 

Pepper, M., Palsandram, N.S., Zhang, P., Lee, M., Cho, H.J., 2007. Interconnecting fluidic packages and interfaces 

for micromachined sensors. Sensors Actuators, A Phys. 134, 278–285; (b) Sabourin, D., Skafte-Pedersen, P., Søe, 

M.J., Hemmingsen, M., Alberti, M., Coman, V., Petersen, J., Emnéus, J., Kutter, J.P., Snakenborg, D., Jørgensen, 

F., Clausen, C., Holmstrøm, K., Dufva, M., 2013. The MainSTREAM component platform: a holistic a pproach to 

microfluidic system design. J. Lab. Autom. 18, 212–228; (c) Yuen, P.K., 2008. ”SmartBuild-a truly plug-n-play 
modular microfluidic system". Lab Chip 8, 1374–1378 

Adaptation of the units presented in section 2.1 to the building block concept introduced 

by Rhee and Burns (2008) (Rhee and Burns, 2008), Langelier et al  (2011) (Langelier et al., 

2011) and Vittayarukskul and Lee (2017) (Vittayarukskul and Lee, 2017) would further 

increase the flexibility and potential of the modules as part of a multi-use “plug-and-play” 

platform. Figure 8 presents another example of a modular microfluidic concept [Bhargava, et 

al. (2015) (Bhargava et al., 2015)], based on 3D printed modules, which is compatible with a 

non-planar microfluidic circuit assembly (Bhargava et al., 2014). Another 3D printed modular-

based microfluidic platform has been developed by Morgan et al. (2016) (Morgan et al., 2016). 

 
Figure 8 – Example of what a modular-based microfluidic device may look like. The figure, from Bhargava, K. C. et 

al (2015) (Bhargava et al., 2015), presents a circuit diagram (a) of a hydraulic circuit with two inputs (b) with 

syringe attached (c) for withdrawing fluids. Image used with permission from (Bhargava et al., 2015) under a 

Creative Commons Attribution 4.0 International License. 
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A set of mass-produced building blocks that can be arranged in a multitude of different 

channels and even 3D shapes could be acquired by every research institute , company or 

diagnostics center, for easy assembly towards their target research. The building blocks could 

be available together with a simple set of miniaturized electronic components (e.g. pump, 

charge-coupled device (CCD) imaging technology, potentiostat, etc.) that function both as part 

of the fluidic and detection units, but also as user-friendly validation units of the assembly. An 

example of a miniaturized detection system for such a toolbox is the reconfigurable Photonic 

lab on a chip (PhLoC) developed by Ackermann et al. (2016) (Ackermann et al., 2016). A true 

easy-assembly microfluidic toolbox could thus be accessible to everyone, allowing for a wide-

spread use of microfluidics, much like Raspberry Pi or Arduino has taken individual 

programming and building of electric circuits to a new level. Another approach to the 

development of such microfluidic toolbox could involve the use of home-made or economically 

accessible three-dimensional printing devices, coupled with a database of designs of 

microfluidic platforms. Such database could be developed as an extra effort towards the 

standardization of the designs of microfluidic modules (Erkal et al., 2014), similar to current 

attempts at sharing and/or facilitating access to developed mathematical and mechanistic 

models (Kent, 2002), (Argent, 2004), (Wolkenhauer et al., 2014), (King et al., 2016). For the 

latter, this has resulted in effortless incorporation and application of different models, even 

when developed in different computational languages. The use of 3D printing technology, due 

to its simplicity of use, fast replication of intricate designs and variety of available materials 

would increase microfluidics accessibility to non-experts (Gaal et al., 2017). Furthermore, the 

fast replication abilities would enable a short design-to-product time, accelerating the 

development and improvement of existing modular fluidic and/or connection designs, or even 

promoting the rapid testing and sharing of new designs (Gaal et al., 2017). A modular 

approach, in general, facilitates the substitution of any given part towards the optimization of 

the overall process without disrupting the entire setup or altering too much the system 

characterization performed thus far (Bhargava et al., 2014). Figure 9 presents a more detailed 

overview of the two paths towards standardized modular microfluidic systems that have been 

discussed. 

Furthermore, as already proven for flow chemistry and small-scale chemical production, 

the use of modules and their selection from a module database, results in a significant lead 

time reduction (Bramsiepe et al., 2014). Two European projects, F3 Factory (Buchholz, 2010) 

and CoPIRIDE (Löb, 2013) were especially relevant in proving the usefulness of modular 

micro-structured equipment to process intensification and reduction of development time in 

the chemical industry (Bramsiepe et al., 2014). F3 Factory has resulted in the adaptation of 

several industrial batch processes to continuous production through application of modular 

micro-structured technology, with examples that can be consulted on the project’s website 

(www.f3factory.com) and in (Bieringer et al., 2016). A very detailed discussion on the role that 

modularization (at all scales) will have in “Industry 4.0”, by increasing production plant 

flexibility in terms of capacity and type of feedstock, as well as shorter delivery and 

development types, is also presented in (Bieringer et al., 2016). In the white paper by 

Bieringer et al.  (2016) the main challenges related to such an approach to continuous 

manufacturing are also discussed (e.g. in terms of logistics and regulation standards), and 

possible business models for its market integration (e.g. rental equipment, special 
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maintenance services, remote operation of small-scale plants or production at the customer 

site) are presented (Bieringer et al., 2016). Even though not all the conclusions presented by 

Bieringer et al. (2016) can be applied to microfluidic-based modules, they offer a good guidance 

for the considerations to be made when commercializing microfluidic modules and micro -

plants. 

 
Figure 9 – Summary of envisioned approaches for the use of standardized microfluidic modules and modular 
platforms. 

However, unlike mathematical models, the outcome and combination of microfluidic 

designs can vary greatly with the fabrication technique, especially its resolution, and/or 

materials available. Hence, careful selection of the fabrication technology and assembly 

method has to be made in order to ease device validation and modular application. Krtschil et 

al. (2013) present some novel mass-production approaches for modular microstructured 

reactors for production scale, such as roll embossing technique (Krtschil et al., 2013).  

 

It is also important to consider that when selecting a module from a database such as 

the one described above, the system selected will be able to operate at the desired process 

conditions, but may not be the best system for the case-study in mind, as was also discussed in 

more detail by Bieringer et al. (2016) (Bieringer et al., 2016). For applications that require a 

higher degree of validation, such as biomedical applications, more complete individual unit 

blocks could be used. In such blocks, as previously mentioned, each building block would be 

validated separately, assuring leakage free and robust assembly and performance by using 

one of the connection strategies described above. The concept of an easily assembled, 

standalone “plug-and-play” microfluidic device for multiple applications will thus be made 

possible in the near future.  

 

A concern in the use of a modular approach is the accumulation of fluidic resistance with 

each module that is added, which can affect flow (and thus downstream) performance and lead 

to the loss of reagents or involved particles/cells (Chiu et al., 2017). The achievement of 

consistent and reliable assembly and disassembly of the modules is a significant concern 

(Yuen, 2016b), which the connectivity approaches presented previously try to address and 

solve. In addition, depending on the chosen connectivity strategy, large dead volumes may 

occur between the modules and affect system performance, especially concentration and 

detection operations, but lead as well to a significant increase in pressure drop (Chiu et al., 

2017). However, there are several strategies available to reduce pressure drops (e.g. division of 

flow in different channels (Jensen, 2001)) and fluidic resistance (e.g. surface modification, 

towards high hydrophilicity). Furthermore, as mentioned previously, flow uniformity in 

parallel channels can be controlled using serpentine structures as fluid resistors, positioned 

before the chip’s active area (Wang et al., 2014), (Han et al., 2017). Likewise, diverse flow 

generating strategies (e.g. electroosmotic or capillary flow) could be applied in combination 

with pressure-driven flow. Additionally, modules to control backpressure in the pumps, or 

allowing pressure equalization along the module assembly can be integrated. Moreover, as 

demonstrated by Bhargava et al. (2014) (Bhargava et al., 2014) and Bhargava et al. (2015) 

(Bhargava et al., 2015), for most current applications in microfluidics (incompressible flows 
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and low Reynolds numbers), the hydraulic characteristics (especially pressure loss and 

obtained flow rates) of a given system can be estimated using the Kirchoff’s Laws which are 

usually applied to electronic circuits. Coupling the electronic circuit analogy with statistical 

analysis methods, different fluidic networks were simulated where an expected manufacturing 

variation from design (calculated from knowledge both on the fabrication technique and 

hydraulic resistance tolerances of the developed modules) was taken into account for each of 

the different discrete passive elements developed by Bhargava et al. (Bhargava et al., 2015).  

 

In this sense, it is also relevant to highlight the importance of applying mathematical 

modeling and fluid dynamic simulation to the first stage of development of individual fluidic 

parts (Wu and Gu, 2011b). Such tools, that can integrate hydraulic characteristic estimation 

as described above or more complex fluidic descriptions, can help boost the development 

progress of microfluidic platforms (Ungerböck et al., 2013). This can be achieved, namely, by 

aiding in geometry optimization, evaluation of transport phenomena, determination and 

prediction of reaction (kinetic) parameters and mechanisms, and in analyzing experimental 

data (Ungerböck et al., 2013). Modelling provides a more targeted and therefore often more 

efficient strategy of device development and sensor design, which can result in faster, less 

wasteful, and more economical device development processes (Rosinha Grundtvig et al., 2017), 

(Gärtner, 2017). It also provides information for evaluation and choice of materials (either by 

modeling interaction between materials, absorption of molecules on the surface or elucidating 

the influence of properties such as, for example, thermal coefficients). The development of 

numerical simulation tools with a simple user interface might also contribute to spreading the 

use of microfluidics to other fields (e.g. environmental sampling, resource recovery, structural 

analysis of soils or buildings, etc.), including transferring their use to non-microfabrication 

specialists (Wu and Gu, 2011b), such as also proposed for 3D printing technologies. As 

suggested by Chiu et al. (2017), the assembly of the building blocks of a modular microfluidic 

system could be guided by software, taking into consideration both the requirements of the 

specific application as well as the characteristics of the building blocks available (Chiu et al., 

2017). Bramsiepe et al. (2014) have suggested a process planning tool based on a systematic 

computer-aided and user-guided 5-step approach to evaluate the feasibility of microreactors 

for a given chemical process (Bramsiepe et al., 2014), which could also be applied to module 

selection in biotechnology by adopting different performance indicators that are relevant for 

biotechnological applications. 

 

In Figure 9, two approaches towards widening the access to modular microfluidics are 

presented. As explained in this section of the paper, these two views are not only based on the 

availability of modular microfluidic unit operations but also on their standardization in terms 

of connectivity. This could significantly speed up the development of new diagnostic systems, 

the set up and fast optimization of a biocatalytic or synthesis multi-step reaction or the use in 

real applications of new sensors, by providing already proven and validated microfluidic 

system components. Furthermore, the use of standardized modules would facilitate the 

comparison of results attained between different groups since the same or similar modular 

platforms could be used to perform the assay. Moreover, in sharing optimized designs with the 

scientific community a faster advancement of the field itself could be obtained.  
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However, as also discussed in this section, a modular approach has some challenges 

which need to be tackled before either of the two approaches presented in Figure 9 can be 

attained. It is also important to highlight that modular microfluidics may not provide the best 

platform for a final device in some applications, where a higher degree of accuracy is required 

(e.g. with respect to analytics) or when contamination issues are a concern (e.g. medical 

devices, biological sample handling, diagnostics). Even though we assume that the user of 

such platform would be highly skilled, whether in academia or industry, we believe that the 

access to such systems (in the form of Microfluidic Modular Toolboxes) for the general public 

would contribute to a better awareness of microfluidics and its potential contributions to 

society, and thus higher acceptance of its use in diagnostics, biomedicine, food safety, etc. 

 

2.3 Other considerations 

Polymeric materials seem to provide the necessary characteristics, such as flexibility 

(both in terms of design and fabrication, as well as the final application) to benchmark 

microfluidics as the wide-range tool it was always intended to be.  

One of the attractive features of polymeric materials for diagnostic platforms used in 

biomedical and clinical applications is their disposability due to their low fabrication cost (Wu 

and Gu, 2011b). These attributes decrease the risk of user contamination when handling 

potentially dangerous samples or of substances being analysed erroneously due to sample 

carry-over. However, for most applications in other fields, where contamination issues can be 

easily solved or are less critical, the use of disposable devices will lead to the generation of 

unnecessary and possibly difficult to handle waste (most materials used in microfluidic 

platforms and microsensors are not biodegradable (Luecha et al., 2011)). Furthermore, most 

microfluidic platforms consist of a variety of materials (including e.g. heavy metals and other 

compounds potentially toxic to the environment) assembled in an irreversible way, or at least 

in such a way that the different fractions are difficult to separate, thus increasing the 

difficulty in disposing of such devices in an environmentally sustainable way. The academic 

community should probably seek to develop multiple use platforms in such situations, as well 

as invest in biodegradable or transformable/reusable materials, especially when many 

microfluidic platforms may be used (e.g. screening of enzymes or process parameters). Zein (a 

prolamin protein from corn), poly (lactic acid) (PLA) (Mills et al., 2006), silk fibroin and gelatin 

are examples of biodegradable materials that can be used to fabricate microfluidic devices 

(Luecha et al., 2011). Zein has great potential as plastic substitute (Luecha et al., 2011), 

(Corradini et al., 2014), (Kokini et al., 2015), (Gezer et al., 2016), since it is biodegradable and 

can be produced from excess in the corn industry, adding value to a traditional bioethanol 

production process and also reducing waste in industry (Lawton, 2002). Zein is typically used 

mixed with other components (such as polyethylene, starch, antimicrobial agents, 

glutaraldehyde, formaldehyde, aliphatic alcohols), whose influence in terms of toxicity and 

biodegradability has not yet been studied extensively (Corradini et al., 2014). PMMA is 

another promising material to obtain “green microchips” since it can be reused after 

decomposition to methyl methacrylate (MMA) at high temperatures (Chen et al., 2008). 

To conclude, besides the effort to use alternative, more environmentally friendly and/or 

reusable materials, the microfluidic community should strive towards building devices that 

can be disassembled easily. This would facilitate the reuse or disposal of the different parts of 
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microdevices, and thereby decrease the possible environmental impact that an intense use of 

this technology might bring. 

 
Table 2 –Materials used for microfluidic platforms and their main characteristics (Mark et al., 2010),(Wu and Gu, 

2011a),(Nge et al., 2013),(Iliescu et al., 2012),(Li et al., 2012),(Kangning Ren, Jianhua Zhou, 2013),(Gärtner et al., 

2007),(Martinez et al., 2010),(Liana et al., 2012),(Yetisen et al., 2013),(Xia et al., 2016). 

 

3. Towards a guide to development of standalone platforms 
In order to develop a standalone multi-unit operations microfluidic platform, compatible 

with a wide range of applications, several considerations should be made. To illustrate the 

complexity of such endeavor, a guide for the development of a single  unit operation 

microfluidic system is presented here.  

In this work, the chosen unit operation is sensing, focusing on biomolecules and/or 

biological components, due to its relevance and variety of detection techniques. If microfluidic 

platforms are to be used widely, the integration of sensors and their validation as quantitative 

detection systems is of major importance. There are three main detection methods used in 

microfluidics: optical methods, electrochemical methods and mass spectrometry methods, of 

which optical and electrochemical methods are the most applied due to their selectivity and 

sensitivity. Other methods involve techniques such as nuclear magnetic resonance (NMR) 

spectroscopy and mechanical detection (e.g. quartz crystal microbalance (QCM) sensors or 

microcantilevers) (Wu and Gu, 2011b). Within each detection method there are several 

techniques, whose usefulness or applicability is highly dependent on the desired function of 

the device and where it will be integrated. Table 2 presents a summary of the main 

characteristics to consider when selecting a detection method for integration in a microfluidic 

platform. 

Table 3 – Summary of the leading detection systems available for microfluidic applications. 

Integration capability is here assumed as the ease of miniaturization of the sensing system itself in 

order to be integrated inside any or most microfluidic structures. Portability relates to the 

miniaturization of required auxiliary equipment to perform the measurement (e.g. potentiometer, 

microscope, etc.). 

Recently, even though new sensing technologies are discovered every year, there has 

been a shift in sensing research towards more efficient and hybrid integration of the sensing 

approaches by further developing already existing and validated sensors (Duval and Lechuga, 

2013). The combination of different sensing technologies on the same device will widen its 

application, by increasing the number of targets it can monitor and/or quantify 

simultaneously. 

 

The scheme in Figure 10 illustrates the major steps to be considered during the 

development of a new system for sensor integration. This scheme is divided in 3 steps:  

 Step I - development of the system’s concept: It is addressing a current need (of a 

potential client, a clinically relevant analytical device, isolation of an unstable compound 

or a research project) and involves the preliminary design, literature research for current 

technology, and preliminary concept tests in the laboratory. The concept of the device 
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should be concurrent with existing regulations in the field of application, especially when 

food or health related applications are planned (e.g. highly regulated by the Food and 

Drug Administration [FDA] and European Medicines Agency [EMA]). Further 

regulatory issues will not be considered here due to the complexity and variety of the 

subject. It should also take into consideration the end-users and their requirements for 

the device, as mentioned in more detail in (Bridgelal Ram et al., 2008) and (Shah et al., 

2009). The more general the “need” identified, the more challenging the design of the 

system, but a wider use microfluidic chip might be achieved. In Figure 10 we use two 

specific, but hypothetical, examples (monitoring of blood glucose levels in real-time and 

inline monitoring of glucose concentration in a reactor), but a more generic need could be 

the development of a system that is adaptable for the on-line monitoring of several 

components;  

 Step II – Sensor choice and fabrication: It includes an iterative choice and test of the 

sensor approach (and design) that is best matching the need defined in Step I, as well as 

the selection of chip material and fabrication method. These choices are often limited by 

the available or accessible technology and materials, as well as their cost of operation 

and use. 

 Step III – Sensor integration: It involves the assembly of the final system for integration 

of the chosen sensors, based on the desired final application and type of device operation. 

The type of integration strategy should be defined from the concept step (step I), since it 

can limit the used materials or fabrication methods. At this point, further improvement 

or alterations of the components (developed during step II) of the prototype might be 

required. Since the final goal is the commercialization or wide use of the device, scaling 

of fabrication towards mass production should also be considered during development of 

the prototype. 

 

In this work, we intend to provide a simple and useful guide to sensor integration in 

microfluidic systems. Furthermore, we would like to highlight the importance of taking a 

holistic approach to device design, as well as the relevance of thinking about connectivity to 

other systems during the design phase. When developing a multi-unit operation platform or a 

system compatible with other multi-unit operation platforms, these steps should be followed 

first for each unit operation, and then for their consecutive integration with each other, until 

the whole-platform integration is achieved. All the time, one should keep all the 

considerations presented in Figure 10 (e.g. final user, type of sample, location, etc.) in mind. 

  

Figure 10 – Decision analysis cycle scheme for developing microfluidic systems for sensor integration, and its 
application to two hypothetical case studies: (i) a hypothetical portable glucose electrochemical sensing device and 

(ii) a hypothetical inline glucose monitoring device.  

 

3.1 Application of the decision analysis cycle scheme: forward application to two 

hypothetical case-studies and retrospect application to three literature case-

studies 

The developed decision analysis cycle scheme (see Figure 10) proceeds from the 

identified need, market niche or target application, across the different steps of prototype 
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development until a satisfactory device is obtained. It is focused on sensor integration, since it 

is a common challenge within microfluidic applications, but it could also be applied to the 

development of other types of systems. Taking as example a few of the unit operations 

provided in Table 1, if a mixing or fluid handling unit is being developed, the first choice to 

make in Step II would be the type of mixing (e.g. magnetic) or type of pump (e.g. 

electroosmotic) that is more appropriate towards fulfilling the identified need (in Step I). The 

type of mixing or pump chosen would in turn constrain the materials and fabrication 

techniques that can potentially be applied. On the other hand, if the intention is the 

concentration or purification of a target compound, then material (due to compatibi lity to the 

solvent or functionalization to the biological element) and channel design (to achieve the 

concentration or purification) are the first priorities in Step II. Fabrication can be highly 

relevant in sorting applications when channel topography and/or hydrodynamic focusing are 

used. Thus, even though the order of the different elements referred to in Step II may vary 

depending on the need when sensing is not the targeted unit operation, these elements are 

still among the first considerations to be made.  

Step III involves the holistic analysis of the choices made in the previous steps but also 

the application of the device developed in a real setting. Step III involves the holistic analysis 

of the choices made in the previous steps but also its application in a real setting. Failure at 

this step will result in the alteration of one or several of the choices previously made, be it the 

type of sensor, the channel design, the type of connectors, the assembly strategy, the chosen 

mode of use or the fabrication strategy. Failure due to insufficient detection ability or a too 

high detection limit will imply an optimization of the sensor used (if possible), the  use of 

different sensing layers or sensor geometry or the application of an entirely different sensing 

strategy, which can result in a re-design of the device. Failure due to leakage, velocity lower 

than desired or poor mixing will result in an improvement of the channel assembly, connector 

design or size, better or different pump, or different channel design. By defining proper goals 

for device performance, its characteristics can be iteratively improved through a step-wise 

analysis and optimization of its components, as presented in the feedback loop in Figure 10. 

However, the re-definition of the microfluidic platform may even require a re-analysis or 

re-consideration of the final use or type of sample defined in Step I. For example, an added 

sample dilution may be considered necessary to facilitate flow or quantification of the target 

compound thus adding one more unit operation to the platform. Another example in involves 

the choice of an altogether different sample to facilitate quantification of the target compound. 

For example, instead of saliva, particles in the breath may be considered more appropriate.  

The latter would then imply a complete re-design of the platform, even if material, sensor and 

fabrication strategy are kept. This indicates, as mentioned previously, that Step I, where the 

system’s concept is defined, is often the most complex and crucial of all the steps. 

 

3.1.1 Forward application to two hypothetical case-studies 

The application of the provided guide is performed for two hypothetical case studies: (i) a 

portable glucose electrochemical sensing device; and, (ii) an inline glucose monitoring device. 

For each case study, the conclusion of the considerations presented at each step is shown in 

Figure 10.  
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For case study (i), in Step I, the key concept to address is the need of monitoring glucose 

in blood. This is achieved by defining a device capable of performing measurements in real-

time that should be portable and able to draw samples subcutaneously. This concept is 

achieved by considering the patient as the end user, the importance of constant monitoring of 

glucose levels in diabetic patients, and therewith of portability, and the best sample format as 

blood. In Step II, the development of such a device begins by choosing the best sensing 

approach, and the appropriate materials and fabrication methods. In the chosen example, an 

electrochemical sensor is selected due to its ease of miniaturization and the extensive 

available knowledge on applications of electrochemical sensors for glucose monitoring. Then, 

considering that the device will be in close and continuous contact with the patient’s skin, a 

biocompatible material was chosen (PDMS). Furthermore, when using some biomolecules, 

such as the enzyme glucose oxidase (if certain mediators are used), oxygen is required for the 

reaction and can also be used as a target analyte. Therefore, the use of PDMS is further 

highlighted due to its permeability to oxygen. The choice of material and the dimensions of the 

device (also defined in Step I) would then limit the choice of fabrication methods, together 

with the available methods for the device developer. Finally, in Step III, the combination of 

the different already described parts (through the use of a casing, for example, for easier re-

use or substitution of sensors or channels) and the test of the prototype occur. This will 

provide a validation on whether further development or alteration of one or more of the 

described parts is required, before the final device is obtained.  

For case study (ii), the key notion guiding the concept development is the continuous 

monitoring of glucose in an outlet stream of a lab scale fermenter. Thus, the device needs to be 

robust, withstand relatively high pressures/flowrates, and be easily used by an operator. 

Furthermore, since the samples contain a complex matrix (media) with organisms, the system 

needs to be able to withstand sterilization and be connected to a sample pre-treatment device, 

where biomass is removed to minimize fouling of the sensors. In Step II, an electrochemical 

sensor is selected due to its price (in case substitution is required due to fouling) and 

straightforward connectivity and monitoring with electrical interfaces. Then, due to the 

required robustness of the device and compatibility with cleaning-in-place procedures, 

stainless steel is chosen as the platform’s material. This limits the available fabrication 

techniques, of which milling offers a relatively lower cost and device completion time. In Step 

III, the combination of the different components is achieved, with the test on the device’s 

robustness, the influence of biofouling on sensor performance, as well as the capability of 

sample pre-treatment to reduce this effect. Validation of device performance is achieved and 

the need for alterations assessed, as described in Figure 10. 

 

3.1.2 Retrospect application to three literature case-studies 

To further demonstrate the universality of the developed decision analysis cycle scheme, 

three devices developed by other research groups were interpreted based on the published 

results following the guide in Figure 10. The chosen devices below are at different stages of 

development and from diverse scientific fields. 

Example 1: Babikian et al. (2015) developed a wearable device capable of performing 

isotachophoresis (ITP), which encompasses an electrochemical assay capable of isolating and 

purifying small biomolecules in low abundance from biological samples (Figure 11) (Babikian 
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et al., 2015). The objective was to develop an integrated bioflexible electronic device (IBED) 

that can be worn on the body, to address the current need for “low cost and high-quality health 

care that can be provided at the point of care”. Thus, the device should: (i) allow access to 

communication networks (e.g. wireless, Bluetooth, internet) to “provide health care to remote 

or poor areas”; (ii) be compatible with large-scale production techniques to enable a low cost 

per device; (iii) integrate several components capable of performing the target bioanalysis; 

and, (iv) be biocompatible, flexible and thin so it can be worn on the skin. Therefore, the 

characteristics required for the design of the device in Step I were thus defined. Within Step 

II, the materials and fabrication techniques that best fitted the requirements established in 

Step I were chosen. In this case, Babikian et al. selected two polymers as the main components 

of the device: polyester, as the device support material, and PDMS, as the biocompatible 

material that forms the microchannel in contact with the biological sample. Both polymers can 

be coupled even if fabricated with different techniques, and can be made with a small 

thickness. To achieve the target analysis, both electronic and optical components were 

required, so aluminum electric trace, which is robust when subjected to bending, was chosen 

as the material for the contacts. Two blue LEDs and electrodes were also integrated as 

excitation elements and electric field generators. In Step III, the overall performance of the 

device was adequate, but the need for a different electrode material, more resistant to 

electrolysis effects (e.g. platinum instead of aluminum) was identified. Also, in the next 

iteration of the development of the device the authors would like to implement detection on 

the chip by integration of optical detectors and optimizing the on-chip optics of the device. 

 

Figure 11 - Bioflexible electronic device developed by Babikian et al. (2015) (Babikian et al., 2015). The figure 
presents the device with integrated electronics and microfluidics (A) worn on the body (B). 

Example 2: Moon et al. (2007) developed a disposable somatic cell counter for quality 

assessment in raw milk (Figure 12) (Moon et al., 2007). The reference method for determining 

somatic cell count (SCC) is direct microscopic analysis, which requires sampling, sample 

transport to a laboratory facility and then analysis by trained personnel, increasing the time 

between sampling and result availability, as well as errors associated with the operator. Thus, 

a standalone, disposable and automatic system that enabled operator independent analysis 

was highly desirable. In order to achieve this, in Step II, PMMA, a biocompatible polymeric 

material, was chosen for the microfluidic chip, which was designed and modified with gas 

plasma in order to allow capillarity as the sample loading method, to facilitate fluid handling 

during analysis. As sensing element, a CCD camera coupled to an image analysis program, a 

laser and a light source were used. Using an optical detection close to the reference  method 

facilitates validation and comparison with the standard method as well as acceptance by the 

end-users. By using a white light and a laser, both cell morphology and the stain for cell DNA 

were observed, so a more comprehensive analysis of the sample was achieved. In Step III, the 

optical components and a personal computer (PC) were integrated in an easily transportable 

casing with integrated LCD screen for easy operation of the device. The final measurement 

apparatus presented a reproducible performance, with accuracy within the range for the 

standard method and similar performance to other conventional automatic instruments. A 

next iteration of such device could include a miniaturization of the optical components of the 
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device towards a truly portable piece of equipment that could enable on-site counting of 

somatic cells. 

 

Figure 12 – Disposable somatic cell counter for quality assessment in raw milk developed by Moon et al. (2007) 
(Moon et al., 2007). The figure presents the portable C-reader (A) and two disposable microfluidic chips, one for 

loading of a single sample (with one channel) (B) and another for 2 sample loading (with two channels) (C).  Image 

reprinted and modified from J. Dairy Sci. 90, J.S. Moon, H.C. Koo, Y.S. Joo, S.H. Jeon, D.S. Hur, C.I. Chung, H.S. 
Jo, Y.H. Park, “Application of a New Portable Microscopic Somatic Cell Counter with Disposable Plastic Chip for 

Milk Analysis”, p. 2253–2259, copyright 2007 with permission from Elsevier. 

Example 3: Zou et al. (2016) developed a microfluidic device capable of monitoring the 

ethanol concentration in fermentation processes (Figure 13) (Zou et al., 2016). Ethanol above 

certain concentrations is harmful for microorganisms (e.g. inactivating the yeast used for 

ethanol production at values above 10% (v/v)), so its control within a certain range is essential 

for efficient production. Standard methods for ethanol quantification are based on bulky 

equipment, with long offline analysis times and it requires specialized personnel. Therefore, in 

Step I, the authors identified as a target the development of a fast, on-line, low-cost and 

simple-to-use device. Furthermore, since already existing analytical devices (e.g. biosensors 

based on enzymatic reactions) are limited to certain temperature and pH ranges, small 

ethanol concentrations or shorter operation times, Zou et al. also intended to develop a device 

capable of operating in a wide range of process conditions. To achieve this, in Step II, they 

selected a functional membrane (made of poly(N-isopropylacrylamide) nanogels in 

polyethersulfone), which is responsive to ethanol, as the sensing element. This membrane 

presents a different permeability at different ethanol concentrations, increasing the flux of 

solution through the membrane with increasing ethanol concentrations. This flux change is 

then used as a visual detection of the ethanol concentration. Since the membrane requires 

constant immersion in aqueous solutions during storage and to facilitate monitoring of 

fermentation broth, the authors encapsulated the membrane in a microfluidic channel made of 

PDMS. In Step III, the assembled device was tested with solutions with known concentrations 

of ethanol, increasing concentrations of ethanol and ethanol production fermentation broths. 

In the latter, the performance was very similar to the one of a gas chromatograph (GC). Since 

PDMS is highly flexible, bending of the assembled device might lead to tearing of the 

functional membrane, so in a next iteration it might be interesting to place the device in a 

rigid casing or build the microfluidics platform from a more robust material (e.g. 

polycarbonate, or even steel). Using another material for the microfluidics would also 

eliminate concerns with regards to the PDMS permeability to ethanol, which is known to 

occur. Furthermore, the membrane performance is temperature dependent, which might not 

be a problem when monitoring a fermentation process due to the similarity between the 

optimal membrane temperature and fermentation temperature. But this could be further 

improved, as the authors also mentioned, by modifying the membrane with hydrophilic or 

hydrophobic co-polymers.  Also, detection of flux is performed visually, which might lead to 

inaccuracies, so coupling this device with a flowmeter might increase its performance. 

 

Figure 13 – Setup for monitoring ethanol concentration developed by Zou et al. (2016) (Zou et al., 2016). The figure 

presents the circulation loop flow diagram (a), a photograph of the actual setup (b) and a magnified photograph of 

the microfluidic membrane device (c). Image reproduced from Zou et al. (2016) (Zou et al., 2016) with permission of 
the Royal Society of Chemistry. 
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3.2  Further considerations 

The discussed case studies allow a clear presentation of the suggested guidelines. 

However, they are a simplification of the real applications of the described devices.  

In reality, the extremely strict regulations involving health applications would further 

limit the types of structures, materials and fabrication methods that can be applied in the case 

of case-study (i). A close collaboration between microfluidic developers, physicians and health 

regulation agencies could be established (such as ISO 13485:2016 for Medical Devices) in 

order to satisfy demands related to both health & safety and the patients’ quality of life.  

PDMS as a biocompatible, optically transparent, gas permeable and easy to mould 

material has been for many years the perfect low-cost prototyping medium at the academic 

level (Whitesides, 2006), (Johnston et al., 2014). It allows a great flexibility of channel and 

unit operation design and can bond with glass or silicon surfaces under mild conditions (thus 

not affecting deposited sensors performance) (McDonald et al., 2000). Its surface can also be 

functionalized easily (Zhou et al., 2012), further increasing  applicability in testing new ideas, 

sample processing techniques or detection methods, especially in bio-oriented research. It was 

thus chosen as a well-known example of a biocompatible polymer material, already used in 

some commercial devices (e.g. I-Stat and Fluidigm’s Topaz chip (Carlborg et al., 2011)) to 

illustrate the guide’s application in case-study (i). However, its low fabrication reproducibility, 

reduced hardness (cannot sustain high pressure conditions and is susceptible to structure 

deformation (Johnston et al., 2014)) and poor compatibility with organic solvents (swelling in 

the presence of e.g. ethanol and isopropanol (Whitesides, 2006)) render it less desirable for 

commercial applications that need to be highly robust and compatible with mass production 

methods. Another issue with PDMS is the dissolution of small organic analytes in the bulk 

PDMS, which can lead to sample loss and modification of PDMS with time (McDonald et al., 

2000). For commercial applications, thermoplastics, such as Poly(methyl methacrylate) 

(PMMA), Polycarbonate (PC), Polystyrene (PS) and Cyclic Olefin Copolymer (COC), are 

usually used since they are compatible with high-throughput prototyping techniques such as 

injection moulding and hot embossing (Sollier et al., 2011), which in turn enable to greatly 

decrease the cost of microfluidic devices and thus increase their commercialization (Gärtner, 

2017). Polystyrene is especially relevant in cell biology, since it has been used for a long time 

already at laboratory scale (Sackmann et al., 2014). However, their fabrication techniques are 

usually more expensive and slower than polymer casting (usually applied to PDMS) and 

bonding strategies to other materials are also not as varied. New non-lithographic mould 

fabrication approaches to PDMS (e.g. Print and Peel (PAP), xurography, direct laser plotting) 

have also been developed which can increase its fabrication compatibility with mass 

production, but can only achieve micrometer-sized structures (Faustino et al., 2016). 

Alternatives to PMDS as a prototype material that are also applicable in academia include 

Thermoset Polyester (TPE), Polyurethane Methacrylate (PUMA) and Norland Adhesive 81 

(NOA81) (Sollier et al., 2011). These materials require a two-step cure, the first involving UV 

exposure, but result in highly reproducible structures with optical transparency and better 

solvent compatibility than PDMS. They also enable high bonding strengths to a wider variety 

of materials, such as dielectric and metallic mirrors (Sollier et al., 2011). TPE, PUMA and 

NOA81 also become hard after curing thus being applicable under high pressure conditions 

and more compatible with commercial high-throughput techniques. However, they cannot be 
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applied to pneumatic valves and moving parts due to lack of elasticity. In terms of 

biocompatibility, PUMA and NOA81 exhibit higher cell viability than PDMS (Sollier et al., 

2011). Off-stoichiometry thiol-enes (OSTEs) present characteristics in between PDMS and 

commercial thermoplastics, allowing for higher control of surface modifications and tuning of 

mechanical properties of the final structure in a scalable fabrication process (Carlborg et al., 

2011). OSTEs thiol-ene ratios can also be tuned to allow fabrication of flexible devices and 

thus produce mechanically actuated components (Carlborg et al., 2011). Other materials, 

intended as a bridge between PDMS and thermoplastics in terms of high-throughput 

fabrication and material characteristics, are styrene-ethylene-butylene-styrene (SEBS) block 

copolymers (Domansky et al., 2017). For biomedical applications, the focus has shifted from 

PDMS-like materials towards bio-based materials such as silk and hydrogels, due to their 

biodegradability and surface and topographical properties (Konwarh et al., 2016), (Zhao et al., 

2016). These materials, however, require different fabrication approaches, which are not 

easily scalable (Konwarh et al., 2016), (Zhao et al., 2016). 

 

Regarding case-study (ii), the integration of such a device might be easy to implement 

into a laboratory scale reactor, as presented, but the final goal would always be its use in pilot 

or industrial scale reactors. For such larger scale reactors, once again, tighter regulations 

exist, mainly related with the existing inlets for the reactors and the costs associated with the 

potentially necessary modifications. These more rigid regulations would very likely add more 

iteration steps in the development of the platforms. 

The presented examples of published microfluidic devices enabled a more concrete 

implementation of the different steps proposed in the developed guide (see Figure 10). 

However, not all the reasoning guiding the selection of the used components or materials is 

presented in the articles. These design choices are often ruled by the available options in the 

research facility, especially in proof-of-principle systems, rather than by the end application, 

as mentioned in the stepwise guide. Moreover, since the next iterative steps in device 

development were not always clearly presented in the articles consulted for this manuscript, 

we suggested some alternatives that seemed feasible, but might not be the most appropriate 

for the field of application in question. 

Furthermore, simply fabricating devices that can be connected more easily might not be 

enough to increase their use in the market. As previously mentioned, device validation with 

currently used analytical methods, which can vary greatly across fields, is of upmost 

importance to gain trust from the stakeholders (the final customers and/or investors). A 

broadly applicable or multi-use device would have to be validated by all analytical methods 

commonly used in each specific field, which due to its characteristics, namely dimensions, 

might be challenging to achieve, and should therefore also be considered as a main objective 

from Step I. Once validated, such device could in turn become a reference analytical tool of the 

field, with a simpler application and a lower price. Microfluidics can become an interesting 

analytical tool, more accessible to the general public, both in terms of cost, portability, and 

space used, but also in terms of simplicity of use. 

 

Additionally, it is relevant to highlight the importance of the end-user in the 

development of microfluidic platforms. When the final user of the platform is a patient or 
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someone with little or no training in the technology or field in question, the final device needs 

to be not only easy to assemble, but “fail-proof”. This means it should have a robust operation 

in order to withstand possible operation errors, such as wrong types of samples, labels or 

reagent concentrations, and present a higher number of redundancies and security protocols, 

being at a high level of developmental maturity. Such a device should provide limited options 

in terms of operation and minimize required external input (so to minimize errors from the 

operator), and provide sufficient and detailed protocols and operation guides. Moreover, if 

samples from the patient are needed (e.g. in the case of diagnostic devices), the sampling 

procedure should preferably be non-invasive or at least reduce invasive sampling as much as 

possible, and avoid sample cross-contamination (if measurements of multiple samples are 

required for monitoring of a disease status for example). Such a platform should also provide 

already treated data, and if possible guidelines of steps to proceed or suggestions of what the 

data might signify (Martin et al., 2000). Patients and non-specialized personnel would 

probably prefer a standalone platform relative to several modules that require assembly. On 

the other hand, if the end-user belongs to a research or medical laboratory, or industry, 

although the same requirements in terms of validation and safety are expected, the flexibility 

in terms of operation modes and assembly structures is higher. Also, additional analytical 

components and a lower or no data processing effort are expected. 

 

We would also like to emphasize that, in this interdisciplinary field, the solution to a 

given “need” might be found in a seemingly un-related field or approach. Thus, collaboration 

and communication between disciplines is also crucial, if microfluidics is to become a more 

widely used technology (Sackmann et al., 2014). 

 

Finally, even though this has not been discussed in detail here, it is also important that 

scale-up of the developed modular microfluidic platforms is considered during development. As 

mentioned, modular-based platforms offered as a toolbox can provide an excellent basis for 

optimization studies, but the transfer of the knowledge obtained with such platforms to a 

larger scale is not linear. In this sense, and in the case of small-scale productions (e.g. 

production of certain APIs) it may be easier to scale-up the developed platform, than to 

transfer the gathered properties into batch, be it a pilot or production scale reactor. Studies 

such as the one presented in (Kockmann et al., 2011) for a single channel microreactor provide 

a good direction on reaction and fluidic characteristics that are relevant to consider when 

scaling and also explain the effect of scale on reactor performance, since scaling-out may not 

always be the best approach in terms of platform robustness. In Bieringer et al. (2016) 

(Bieringer et al., 2016), an overview of the relevant characteristics and corresponding 

measurable parameters during scale-up of unit operations is also discussed and presented. 

 

4 Future perspectives 
Modular approaches have the potential to revolutionize how research and industrial 

production are performed, as demonstrated by the increasing investment in module 

manufacturing projects (e.g. AIChe Rapid Advancement in Process Intensification Deployment 

(RAPID) Institute in US, F3 Factory project in Europe). Furthermore, several companies, such 

as Novartis, have begun switching from batch to continuous production, or begun providing 
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equipment to enable that switch, such as GEA and Siemens (Gürsel et al., 2017).  This 

institutional change towards continuous processes will result in an increasing use and 

demand for microfluidic-based reactors, separators, mixers and entire fluidic networks. In the 

biotechnology field, the technology is not yet ready for application in small-scale plants, but 

some European projects have developed interesting devices for application at the screening 

phase in the laboratory (e.g. BIOINTENSE - Mastering bioprocess Integration and 

intensification across scales, EUROMBR - Application of microbioreactors (MBR) in bioprocess 

development, MICROBUILDER - An integrated modular service for microfluidics). The 

potential for microfluidic and microstructured based modules is thus becoming noticeable and 

is expected to grow considerably in the next 5 years. 

 

The use of modular-based microfluidic platforms would greatly benefit from the 

establishment of design databases and wide agreement within the community of using similar 

or compatible connector approaches. An increase in the communication between individual 

groups would also enable a better compatibility in terms of operating flows and conditions, as 

well as to accelerate the testing of a given device with diverse samples, points of use, operating 

conditions or final users. This would in turn thus decrease the time to market of useful and 

necessary devices. This seems to be the current direction in flow chemistry, where there have 

been several efforts in terms of developing modular-based reactors and miniaturized 

downstream unit operations towards the small-scale production of fine chemicals and 

pharmaceutical compounds (Buchholz, 2010), (Löb, 2013), (Bramsiepe et al., 2014), (Adamo et 

al., 2016), (Mardani et al., 2017). The further development of modular-based process planning 

software to include a database of the previously mentioned modular unit operations, is already 

under way in the chemical industry (Bramsiepe et al., 2014). This will further contribute to 

the acceptance of microfluidic modules for laboratory studies and small-scale production and 

in turn to its marketability as a process optimization and production tool . The change to 

modular-based production enables an easy switch to continuous manufacture, which is one of 

the current challenges in the chemical and biotechnological industries. In this sense, the Food 

and Drug Administration (FDA) has recently approved continuous manufacturing of 

pharmaceutical compounds, such as the HIV drug Prezista (Gürsel et al., 2017).  

The further miniaturization of electronic components (especially, power sources, data 

acquisition systems, but also analytics such as Raman spectroscopy and NMR) and fluidic 

components will also contribute significantly to an easier commercialization and acceptance of 

microfluidic devices, with a significant impact on field analysis. Additive manufacturing, as 

previously discussed, will also transform the approach to microfluidic device development by 

enabling new 3D structures, and a more immediate connection between fluidic and 

mathematical simulations. As 3D manufacturing equipment becomes more affordable and its 

use more widespread, the existence of open-access module design databases will become more 

relevant. This will in turn further promote collaborative development of modular-based 

platforms, since they can be easily reproduced in distant laboratories, institutes, companies 

and eventually households.  

Fluidic and mathematical modeling will also play a bigger role in the development and 

application of modular platforms, which will be facilitated through the access to online 

databases on device design and available experimental measurements. 
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Certain fields, such as genomics, proteomics, single cell manipulation and analysis, 

microphysiological system on a chip (e.g. “organ-on-a-chip”), rare species detection and 

diagnostics, flow chemistry, for which microfluidics provides the perfect too l due to its 

inherent characteristics, will continue to grow in terms of use of microfluidic platforms in 

fundamental research, as stated by (Chiu et al., 2017). We envision that, as previously 

occurred for DNA sequencing, and recently for flow chemistry (small production plants), more 

and more of the microfluidic-based systems used in the laboratory will be transformed into 

commercially available platforms. This will encompass, as previously discussed, the 

development of simple to operate platforms, whose application to a given research project (e.g. 

drug discovery and drug clinical trials) or process (e.g. in situ production of personalized 

medicine) surpasses other technologies in terms of attainable outcome. For these areas, the 

small volumes and controlled fluid velocities associated with mass transport dominated by 

diffusion translate into highly defined sample volumes, reaction times, residence time and 

gradients. As such, the technology is extremely useful for analytical quantification, clinical 

chemistry and bio-assays (e.g. cell or antibody-based assays), especially in situations where 

analytes are highly diluted or only available in a small sample volume (Chiu et al., 2017). The 

small dimensions and gradient generation enable accurate control and study of the 

environment of single or small populations of cells (Zare and Kim, 2010). The possibility of 

defining compartments with controlled environments in even smaller volumes such as 

droplets and their rapid sorting and analysis allows for a fast study of mutagenic variants, or 

to perform a  high number of genetic mutations to achieve, for example, better biocatalysts 

(Kintses et al., 2012). Also, as mentioned already, the high degree of fluidic control and fast 

heat transfer, enables producing compounds that are otherwise extremely hard or dangerous 

to obtain, as well as to operate at well-controlled conditions (Hessel et al., 2013). 

For other areas, such as for example, environmental monitoring, where samples can 

contain a large variety of particles and biocompounds, as well as present a diverse range of 

viscosities, new technologies or strategies for sample preparation must be developed. The 

development of standalone modular microfluidics may be a way of dealing with the diversity of 

samples such platforms need to be able to handle. For example, a modular microfluidic field 

toolbox could include unit operations specifically developed to deal with higher viscosity or 

solid samples. To guarantee reliable results, such a field investigation toolbox could also entail 

a rigid casing inside which the different modules could be assembled and protected from 

harsher environmental conditions and thus increase robustness of the final chosen module 

assembly. We believe that the current need for more field monitoring approaches coupled with 

the potential portability of microfluidic platforms will drive such development in the next 10 

years. 

 

5 Conclusion 
In this work, we propose a step-wise guide to develop standalone microfluidic platforms. 

Its application to two case studies focusing on sensor integration, as well as the analysis of 

three published microfluidic systems, are presented, as examples of the usefulness of the 

method. The guide highlights the main considerations to take into account when 

conceptualizing such a platform, as well as the precautions to take during fabrication. 
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Limitations regarding country or field regulations, as well as in terms of materials and 

methods available to the researcher are also considered. Furthermore, a short review of the 

various materials used in microfluidic platforms and the main fabrication techniques for each 

material are also included. This review was introduced in order to offer further 

recommendations when performing some of the described choices in the presented decision 

analysis cycle scheme in Figure 10.  

Moreover, we describe some of the characteristics that have hampered the growth of 

microfluidic applications in the market, especially in terms of translation into final products, 

such as the complexity of operation, the low adoption by non-microfluidic specialists and the 

current commercial development and business models. Additionally, we offer and discuss 

potential solutions to one of the main identified challenges, low platform flexibility, such as 

the diversification of the purpose of each platform, and increase of the connectivity of 

microfluidic components to other systems through standard connections. In this regard, we 

propose two models for commercialization of modular microfluidic systems intended to cause 

their more widespread acceptance by non-specialists and increase their use and flexibility in 

academia. We also suggest that the key solution to some of the challenges identified in 

microfluidics can be resolved by applying techniques inspired by other fields or solutions found 

for different types of problems. 

All in all, with this review, we intend to provide a brief overview of microfluidics as a tool 

to promote technological advances (enabling technology) and the possible impact on society, by 

highlighting some of the main challenges the adoption of microfluidics technology faces and its 

current place in the market. Moreover, we present a simple, clear and detailed approach 

towards developing microfluidic platforms that we believe may be useful for increasing the 

future impact of microfluidics on society. The proposed approach can also serve as a starter 

guide to researchers that are new to the field.  
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Table 1 – Summary of the presented unit operations currently available for microfluidic chips. 

Unit 

operation 
Function Examples 

Fluid 

handling 

Flow definition and 

control 

 Miniaturized and integrated pumps (Sabourin et al., 2013); 
  Magnetically actuated stirrer-based micropump (Kimura et al., 2015); 

 Electroosmotic-based pump(Gao and Gui, 2016); 

 Screw-actuated valves (Zheng et al., 2009); 
 Braille display actuated valves (Gu et al., 2007); 

 Capillary-based valves (Madadi et al., 2015), (Boyd-Moss et al., 2016); 

 Hydrogel-based valves (Wang et al., 2005), (Ter Schiphorst et al., 2015), 

(Boyd-Moss et al., 2016);  

Mixing 

Combination or 

blending of two or 

more substances or 

compounds 

 Passive mixing, such as channel topology (Liau et al., 2005), contact 

area increase (Lee et al., 2011), lamination (Gürsel et al., 2017), coiled 

flow inverter (Klutz et al., 2015) or stimuli-responsive hydrogels 

(Prettyman and Eddington, 2011); 

 Active mixing, such as acoustically-induced microstreams, 

dielectrophoretic micromixers, electrokinetic actuation (Gao and Gui, 
2016), velocity pulsing and magneto-hydrodynamic flow have also been 

thoroughly developed and applied (Lee et al., 2011) 

Dilutions 

Definition of 

gradients of a target 

substance 

 Droplet-based (Niu et al., 2011); 
 Peristaltic mixing (Rho et al., 2016); 

Sample 

concentration 

Increase the amount 

of a substance or 

quantity of a 

particle per volume 

of solvent or media 

 Adhesion to the channel walls (Stott et al., 2010), (Jing et al., 2013); 

 Functionalized magnetic beads (Pereiro et al., 2017); 

Filtration/ 

purification 

Removal of 

contaminants or 

separation of target 

compound/particle 

from solvent or 

media 

 Size-based (Madadi et al., 2015), (Sarkar et al., 2016); 

 Channel functionalization (Stern et al., 2010); 
 Immunomagnetic separation (Chang et al., 2015); 

 Adhesion to silica (Shaw et al., 2013); 

 Solid-phase extraction (Park et al., 2015); 

 Liquid-liquid extraction (Gürsel et al., 2017); 

Sorting 
Isolation of target 

compound/particle 

 Dielectrophoresis (Niu et al., 2007), (Adam R Abate et al., 2010), 

(Frenzel and Merten, 2017); 
 Electrostatic charging (Link et al., 2006); 

 Optical tweezers or traps (Wang et al., 2011); 

 Fluorescent activated cell sorting (FACS); 
 Membrane valves (Adam R. Abate et al., 2010); 

 Surface acoustic waves (Wang and Zhe, 2011); 
 Magnetophoresis or magnetic activated cell sorting (MACS); 

 Channel topography (Hsu et al., 2008); 

 Inertial or hydrodynamic focusing or affinity approaches (Z. T. F. Yu et 
al., 2014); 

Sample 

amplification 

Replication and 

increasing quantity 

of target molecule 

 Micro PCR (Schaerli et al., 2009), (Shaw et al., 2013); 

 Micro MALBAC (Z. Yu et al., 2014); 

 Micro NASBA (Dimov et al., 2008); 

Incubation 

Extended residence 

time for reaction, 

labelling or cell 

growth 

 Droplets in chambers (Theberge et al., 2012), (Mary et al., 2011); 

 Long channels (Adam R Abate et al., 2010); 
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Detection 

Identification and 

quantification of the 

target compound 

 Dielectric (Niu et al., 2007); 

 Size changes (e.g. cells); 
 Capacitance changes (Bürgel et al., 2015); 

 Stroboscopic epifluorescence imaging (Hess et al., 2015); 

 SERS (Quang et al., 2008); 
 FT-IR microscopy (Polshin et al., 2014); 

 Organic photodetectors (Lefèvre et al., 2015); 

 Nano-wires (Stern et al., 2010); 
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Table 2 –Materials used for microfluidic platforms and their main characteristics (Mark et al., 2010),(Wu and Gu, 

2011a),(Nge et al., 2013),(Iliescu et al., 2012),(Li et al., 2012),(Kangning Ren, Jianhua Zhou, 2013),(Gärtner et al., 
2007),(Martinez et al., 2010),(Liana et al., 2012),(Yetisen et al., 2013),(Xia et al., 2016). 

Material 

Inorganic Polymer Paper 

e.g. Silicon, glass, low-

temperature co-fired 
ceramics (LTCC) 

e.g. Polydimethylsiloxane 
(PDMS), Polyfluoropolyethers, 

Poly(methyl methacrylate) 
(PMMA), Polystyrene (PS), 

Cyclic-olefin copolymer (COC), 

SU-8 

e.g. Whatman no. 1 

Fabrication 

strategies 
Batch Batch or continuous Batch 

Fabrication 

techniques 

Semiconductor industry 

techniques (etching, 

lithography, bonding, powder 
blasting and chemical or 

physical vapor deposition) 

Hot embossing, injection 

molding, soft lithography, 

thermoforming, laser ablation, 
micromachining and 

photolithography 

Inkjet and solid wax 

printing obtaining 

hydrophilic channels bound 

by hydrophobic barriers 

and either sealed with thin 

polymer sheets or left open 

Smallest 

dimension 
< 100 nm < 1 µm ~200 µm 

Material cost High Low Low 

Fabrication cost 
High (during development) 

Low (during mass 
production) 

Low (except for prototyping in 
the case of injection molding and 

thermoforming) 
Low 

Channel 

characteristics 

Hydrophilic, charge stable, 
defined walls, limited 3D 

capability 

Generally hydrophobic, channel 
definition dependent on polymer 

and fabrication strategy, 

moderate to high 3D capability 

Amphiphilic, not very 
defined channels, moderate 

3D capability 

Surface 

functionalization 
Yes Yes Yes 

Integration 

With electronic systems (e.g. 

for data acquisition) or 

electrodes (for detection) 

With electrodes (by deposition 
onto polymer) 

With electronic and 

magnetic systems, and 
electrodes (by containing 

electrical conducting inks) 

Combination 
with other 

materials 

Glass and polymers 

(transparent materials) 
Glass, silicon, other polymers 

Electrical conducting inks, 
carbon or metals (silver, 

gold, etc.) 

Functional 
elements (e.g. 

valves and 
pumps) 

Yes (complex fabrication) 
Yes (simple to complex 

fabrication depending on 

technique) 

Yes 

Advantages 

High chemical stability, 

known surface and 
insulating properties, high 
thermoconductivity, high 

aspect ratio channels 

More resistant to mechanical 

shock, high to low oxygen 
permeability, easy bonding 

strategies, less stringent 
cleaning techniques, 

disposability, biocompatibility, 
transparency to most 

wavelengths 

Highly porous matrix, fluid 

flow through wicking, low 
cost, easy reagent storage 

on channel (by dried spots), 
easy assembly of multiple 

operation units (e.g. sample 

metering, filtering and 
separation), disposability, 

visual readout 

Limitations 

High cost of development 
and fabrication, fragile, low 

oxygen permeability, 
requires annealing at high 

temperatures 

Low to high resistance to organic 
solvents, water evaporation 

Challenging precise liquid 
handling, sample retention 

during transport, relatively 
high limit of detection 

(LOD), limited detection 

techniques 

Commercial 

availability 
Yes 

Yes (genetic and molecular 

biology analysis, protein 

crystallization, immunoassays) 

Yes (qualitative output) 
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Table 3 – Summary of the leading detection systems available for microfluidic applications. Integration 

capability is here assumed as the ease of miniaturization of the sensing system itself in order to be 

integrated inside any or most microfluidic structures. Portability relates to the miniaturization of 

required auxiliary equipment to perform the measurement (e.g. potentiometer, microscope, etc.).  

Detection 

method 
Advantages Challenges 

Integration 

capability 
Portability 

Optical 

Fast response; High sensitivity; 

Compact; Usually contactless; 

can allow for real-time 
monitoring and spatially 

resolved imaging; 

Usually dependent on 

microscopy equipment; 
May require labelling; 

High 

Usually low, but 

can be high if 

CCD cameras or 
mobile phones 

are used 

Electrochemical 

Can allow for real-time 
monitoring; can be applied to 

most biological and chemical 
samples; potentially low costs 

in terms of fabrication; 

Requires the presence or 
generation of an 

electroactive species; 
difficult miniaturization of 

measurement equipment; 
short shelf life of most 
biosensors; requires 

control of ionic 
concentrations pre-

experiment; 

High 

Medium, if 

measurement 
systems are 
miniaturized 

Mass 

Spectrometry 

High sensitivity and selectivity; 
very low detection limits; can be 

label-free; requires low 
electrical operation power; 

Long analysis time; bulky 
detection equipment; 

extensive sample 
preparation; 

Low Very low 

Magnetic 

Highly specific (reduced sources 

of magnetic behaviour in 
nature, for magneto-resistive 

sensors); allows for studying 

behaviour of atoms and 
molecules (in the case of NMR); 

No need for optical accessibility 
(in the case of NMR);  

Requires labelling of the 

target samples and/or 
very strong magnets; 

requires expensive 
fabrication methods; 

limited reaction time scale 

(for NMR); 

High 

High, if 
measurement 

systems are 
miniaturized 

(Lee et al., 2008) 

Mechanical 
Usually label-free detection; 
sensor integration performed 

during fabrication (monolithic); 

Sensitive to damping 

effects in the presence of 
liquid; long detection 

times; Complex 

fabrication 

High 

Medium to high, 

if measurement 
systems are 

miniaturized 
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Glossary 

Glossary 

Microfluidics 

“The science and technology of systems that process or manipulate small (10–9 to 10–18 litres) 

amounts of fluids, using channels with dimensions of tens to hundreds of micrometres.” 
(Whitesides, 2006). In this paper, we do not focus on paper microfluidics, which presents 

some specific characteristics which are out of the scope of this review, due to the difficulty of 

integrating paper-based microfluidics which other types of microfluidic systems. 

Unit operation 

Basic step in a process that entails a physical change, a chemical transformation or 

quantification/detection of one or more components involved in the process. The definition 

used here is different than the one usually applied in the chemical engineering field, where a 

unit operation only involves a physical change, while a unit process involves the chemical 

transformation. Using unit operation to address both unit operation and unit process as well 
as monitoring enables a simplification in the text of this manuscript when describing 

different microfluidic systems. 

Microfluidic 

system, 
microsystem or 

chip 

Single microfluidic design with or without sensors, capable of performing one unit operation. 

Microfluidic 
platform 

Single microfluidic design or combination of several systems with or without sensors, capable 
of performing more than one operation. 

Prototype 
System or platform, with or without sensors, at the end of Step III (see Figure 10) that may 

require further adjustments. 

Microfluidic 
device or 

microdevice 

Complete microfluidic system or platform (developed prototype). 

Lab on a Chip 
A  device  that  integrates  one  or  several  laboratory  functions  on  a single  chip,  while  

transporting  and  manipulating  minute amounts  of  fluids (Wohlgemuth et al., 2015) at  

microliter  scale. 

Microstructured 
unit operation or 

system 

Single unit operation that contains features with dimensions in the order of a micron. 

‘Self-contained’ 
or standalone 

microfluidic 
system 

Microfluidic system or platform that contains all the necessary components to facilitate a 

complete assay (from (Boyd-Moss et al., 2016)). 

Modularization 
“Designing with standardized units, dimensions or interfaces, which can be easily 

assembled, maintained as well as flexibly arranged and operated” (Weber, 2016). 

Modular 
microfluidic 

system or 
microfluidic 

module 

Microfluidic system that can be used as one part (module) of a microfluidic platform. Ideally, 

modular microfluidic systems present connectors that are compatible with many different 
other modules and also external equipment. 

Modular 

microfluidic 

platform 

Microfluidic platform that is composed of interchangeable microfluidic modules. The 

different modules may have different functions (act as different unit operations), but can be 

connected in any given order being compatible with other modules belonging to the same 

platform.  

“Plug-and-play” 
microfluidic 

system 

Modular microfluidic system with connectors enabling its easy connection with other 
modules (inspired by Lego® concept). 

Multi-use or 
multi-purpose 

microfluidic 
system 

Microfluidic system that may be used for different applications and/or different substrates 
and reaction conditions (e.g. with different samples, same sample but with a different 

purpose, with various flowrates, with various sensor strategies, etc.). 

Multi-unit 

operation 
platform or 

device 

Platform capable of performing more than one unit operation. 

Process 
intensification 

Process engineering approaches that result in a substantially smaller, cleaner, safer and 
more efficient technology (from (Buchholz, 2010)). 

Scale-up Increase of the overall dimensions of the unit operation or device by scaling its characteristic 
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dimensions. 

Parallelization or 

scale-out 
approach 

Simultaneous operation of several chips of the same microfluidic system or platform in a 

parallel network. 

Automation 
Application of technology that allows the automatic operation and control, meaning with or 

without minimal human control, of a process. 

Target analyte 
Analyte (such as chemicals, biomolecules [e.g. DNA, proteins], whole cells, virus, particles 
[e.g. magnetic particles, dust, pollen]) present in the sample, that will be monitored in the 
system by the integrated sensor. 

“Killer 
application” 

“(…) product which has such highly desirable properties that it generates very large 
revenues with attractive margins in a comparatively short amount of time” (Becker, 2009). 

Micro-plant or 

small-scale 
chemical 

production 

Production process based on microfluidic or microstructured unit operations capable of 
producing compounds in the g per hour scale. 

Industrial 

production plant 
or industrial 

production 

Chemical or bio-based processes capable of producing and purifying a target compound in the 
multi-ton or several m3 per hour scale. 

Industry 4.0 

Fourth industrial revolution focused on achieving smart industry and quality-by-design 
through integration of Internet of Things (IoT), in-house online data analytics and Big Data, 

more data and information exchange among stakeholders and plant-wide automation 

(Shrouf et al., 2014), (Hermann et al., 2016), (Stock and Seliger, 2016), (Weber, 2016), 

(Hofmann and Rüsch, 2017). 

Enabling 
technology 

Technology “that is used as a tool to solve a specific application problem” (Becker, 2009). 
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Highlights 

 Overview of the current position of microfluidics in the chemical process and biotechnology market 

and discussion of some of the identified issues preventing its wider application. 

 Presentation of a detailed guide to the development of microfluidic platforms, with its application 

in two hypothetical cases and three examples taken from literature. 

 Short review on sensor technologies, materials and fabrication techniques used in microf luidics. 

 Short review of essential modules for the development of modular microfluidics, and examples of 
developed microfluidic systems that can be used as such modules. 

 Presentation of two models for commercialization of modular microfluidic platforms tow ards a 
wider acceptance and applicability. 
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