

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 18, 2024

FindZebra - using machine learning to aid diagnosis of rare diseases

Svenstrup, Dan Tito

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Svenstrup, D. T. (2018). FindZebra - using machine learning to aid diagnosis of rare diseases. DTU Compute.
DTU Compute PHD-2017 Vol. 463

https://orbit.dtu.dk/en/publications/a664386e-6b86-46d0-ab65-9ab5142dcc36

FindZebra - using machine
learning to aid diagnosis of rare

diseases

Dan Svenstrup

Kongens Lyngby 2017

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

FindZebra is a search engine for rare diseases intended to act as a diagnosis
decision support system (DDSS) capable of assisting the user both during and
after a search. Rare diseases are diseases that affect only a small part of the
population (less than one in two thousand). Currently around seven thousand
rare diseases are known and it is estimated that 6 − 8% of the population will
be affected by a rare disease during their lifetime. Due to their rarity and large
number, diagnosis of rare diseases is difficult and often associated with year long
delays and diagnostic errors. These difficulties with diagnosis have a profound
human and societal cost. This means that even a small increase in success rate
when using a tool such as FindZebra could potentially have a great impact
on society. In this dissertation we explore four lines of research for improving
FindZebra using machine learning methods.

The first line of research is on how to improve the retrieval performance of
FindZebra. By using a combination of improved models, medical databases and
corpus expansion we show that it is possible to obtain a substantial improvement
in retrieval performance compared to current state-of-the-art document retrieval
systems.

Improving retrieval performance is important, but is not the only way of improv-
ing the success rate of a DDSS such as FindZebra. Following an unsuccessful
search, the search engine should assist the user by indicating what information
is likely to be missing. This idea is called Information Completion (IC) and will
be explored in the second line of research.

In order to represent words (and other discrete tokens) in a neural network it

ii

is necessary to transform each word to a vector form. This is typically accom-
plished by using a word embedding, which is an essential component in any word
based neural network. The third line of research is on how to improve this basic
component.

Users of FindZebra who do not have English as their primary language often
have difficulty expressing complex medical queries in English. Optimally, a user
should be able to write a query in his or her native language and the search
engine should then give a suggestion for a differential diagnosis based on all the
information contained in a multilingual corpus, not only in the native corpus.
Methods for performing multilingual search will be the fourth line of research
explored in this dissertation.

Summary (Danish)

FindZebra er en søgemaskine til sjældne sygdomme. Den fungerer som et værk-
tøj til diagnostisk beslutningsstøtte som kan assistere brugeren både under og
efter en søgning. En sjælden sygdom er en sygdom som kun rammer en lille del
af befolkningen (mindre end 1 ud af to tusinde indbyggere). I dag kender vi til
ca. syv tusinde sjældne sygdomme og det estimeres at 6 − 8% af befolkningen
kommer til at lide af en sjælden sygdom på et tidspunkt i deres liv. Sjældne
sygdomme er ofte svære at diagnosticere. Dette resulterer ofte i fejldiagnostice-
ringer, og der kan gå mange år før den korrekte diagnose stilles. Disse problemer
med diagnosticering har en høj pris, både for det enkelte menneske og for sam-
fundet. Dette betyder at selv en lille forbedring i antallet af korrekte diagnoser
ved brug af et værktøj som FindZebra potentielt kan have en stor indvirkning
på samfundet. I denne afhandling vil jeg undersøge fire forskellige områder hvor
FindZebra kan forbedres ved hjælp af kunstig intelligens.

Det første område drejer sig om, hvordan man kan forbedre præcisionen af
søgninger i FindZebra ved at benytte en kombination af forbedrede modeller,
medicinske databaser og korpus udvidelser.

Forbedret præcision af søgninger er vigtigt, men det er ikke den eneste måde man
kan forbedre diagnostisk effektivitet. Efter en fejlet søgning bør søgemaskinen
f.eks. assistere brugeren ved at gøre opmærksom på hvilken information der
kunne mangle. Denne type assistance kaldes Informations Fuldstændiggørelse
og er det andet område, der vil blive undersøgt.

I et neuralt netværk er man nødt til at transformere ord (og andre diskrete
elementer) til en vektor form. Dette gøres traditionelt ved at benytte en ord

iv

indlejring, som er en essentiel komponent i ethvert ord-baseret neuralt netværk.
Det tredie område jeg vil undersøge er, hvordan denne meget vigtige komponent
kan forbedres.

Det er ofte svært for brugere af FindZebra at udtrykke komplekse medicinske
søgestrenge på engelsk. I en optimal verden ville en bruger være i stand til at
udtrykke en søgestreng på sit modersmål og søgemaskinen ville herefter give et
forslag til en differential diagnose baseret på al informationen i det multisprogede
korpus. Det fjerde område jeg vil undersøge er, hvordan man kan udvikle en
metode til multisproget søgning.

Contributions

The thesis will be based on the main contributions listed below:

Main contributions

• Svenstrup, Dan, Jonas Meinertz Hansen, and Ole Winther. “Hash Embed-
dings for Efficient Word Representations.” arXiv preprint arXiv:1709.03933
(2017). Accepted at NIPS 2017. [SHW17a].

• Svenstrup, Dan and Ole Winther. “Performance Optimization for Spe-
cialized Domain Information Retrieval.”, Submitted to Scientific Reports.
[SW17].

• Svenstrup, Dan, Jonas Meinertz Hansen, Mads Emil Matthiesen and Ole
Winther. “Information Completion for Medical Search Assistance.”, Sub-
mitted to Artificial Intelligence in Medicine. [SHMW17].

• Svenstrup, Dan, Jonas Meinertz Hansen, and Ole Winther. “Zero Shot
Cross language Text Classification.”, Submitted to ICLR 2018. [SHW17b].

Other contributions

We wrote one additional article that has not been included in this thesis. It is
a review article where we investigate state-of-the-art medical retrieval. In the

vi

article we compare FindZebra to other search engines such as Google, PubMed
and we try to give an (approximate) comparison with IBM Watson.

• Svenstrup, Dan, Henrik L. Jørgensen, and Ole Winther. “Rare disease
diagnosis: a review of web search, social media and large-scale data-mining
approaches.” Rare Diseases 3.1 (2015): e1083145. [SJW15].

Software

I wrote a Python library that is similar to Scikit-Learn. It has less build-in
features compared to Scikit-Learn but is a bit more flexible.

• Svenstrup, Dan. “Flow framework for text classification”. https://github.com/dsv77/flow,
2017. “Flow Framework for text classification.” [Sve17]

https://github.com/dsv77/flow

Preface

This thesis was prepared at Department for Applied Mathematics and Computer
Science at Technical University of Denmark in fulfillment of the requirements
for acquiring a PhD in Engineering. The work was funded by the Lundbeck
foundation. The PhD was conducted under guidance from the main supervisor
professor Ole Winther, Department for Applied Mathematics and Computer
Science, Technical University of Denmark. The work was carried out between
September 2014 and October 2017.

Lyngby, 31-October-2017

Dan Svenstrup

viii

Acknowledgements

My years as a PhD student has developed me both personally and academically.
It has, however, not always been easy and has sometimes been difficult to get
through. I would like to thank my supervisor professor Ole Winther for letting
me take on this project, for letting me be a part of FindZebra and for some of
the most challenging years of my life. You have encouraged me to look at things
from different perspectives, and I appreciate your advice especially on how to
write academic papers. And thank you for always taking time to give extremely
valuable feedback, no matter how busy your schedule.

I would like to thank Thomas Terney, Jonas Meinertz Hansen, David Kofod
Wind, Kaspar Kristensen and Jonatan Bording for some very interesting project
collaborations and discussions on machine learning and entrepreneurship. Those
discussions have significantly shaped the contents of this thesis.

I would like to thank my colleagues and staff at DTU Compute. Among others I
would like to thank the research group around Ole Winther. Especially I would
like to thank Marco Fraccaro and Camilla Falk Jensen, it was really a pleasure
sharing an office with you. I would also like to thank Wanja Andersen.

I would also like to thank Mads Emil Matthiesen, Tobias Due Munk, Søren
Anker Nielsen and Rudolfs Berzins for their work at FindZebra. Thank you for
a very interesting journey.

I would also like to thank all the students who have written their master thesis,
bachelor thesis and other projects at FindZebra. It has been a pleasure working
with you.

x

I would also like to thank Andreas Jespensgaard, Peter Lucas and Christina
Kildentoft at Hedia for some inspiring company at COBIS.

I would also like to thank my friends and family for supporting me through
three years of considerable amounts of frustration and doubt.

Most importantly, I would like to thank Julie Rønnebæk Kongsbak for moral
support and for proofreading the thesis. Without your support there would be
no thesis. Thank you for being the co-author of my life.

Lastly, I would like to thank the Lundbeck Foundation for supporting this re-
search project.

xi

xii Contents

Contents

Summary (English) i

Summary (Danish) iii

Contributions v

Preface vii

Acknowledgements ix

1 Introduction 1

2 Introduction to FindZebra 5
2.1 The FindZebra search engine . 5
2.2 Structured datasources . 7

2.2.1 The UMLS database . 7
2.2.2 Disgenet . 7
2.2.3 Use of the UMLS/Disgenet databases in FindZebra 8

2.3 The FindZebra corpus . 9
2.4 Validation and test sets . 10
2.5 Prevalence . 11

3 Machine learning theory for NLP 15
3.1 Neural networks . 15

3.1.1 Feed-forward network . 15
3.1.2 Recurrent neural network 16
3.1.3 Training of neural networks 17

3.2 Regularization . 18
3.2.1 Dropout . 19

xiv CONTENTS

3.2.2 Lp regularization . 19

4 Information retrieval optimization 21
4.1 Introduction . 21
4.2 Improved retrieval models and ensembles 22
4.3 Corpus expansion . 23
4.4 Synonym injection . 24
4.5 Concluding remarks . 24

5 Information completion 27
5.1 Introduction . 27
5.2 Article summary . 29
5.3 Alternate methods for training an IC system 30
5.4 Concluding remarks . 32

6 Hash Embeddings 33
6.1 Motivation behind Hash Embeddings 33
6.2 Construction of Hash Embedding vectors 35
6.3 Summary of article results . 36
6.4 Concluding remarks . 37

7 Multilingual text classification 39
7.1 Motivation . 39
7.2 Article summary . 40
7.3 Concluding remarks . 42

8 Discussion and conclusion 43

A Performance Optimization for Specialized Domain Information
Retrieval 49

B Information Completion for Medical Search Assistance 61

C Hash Embeddings for Efficient Word Representations 79

D Zero Shot Cross language Text Classification 89

Bibliography 101

Chapter 1

Introduction

A rare disease is a diseases that affect only a small percentage of the population.
There is no consensus on how small this percentage has to be for a disease to be
classified as a rare disease. In the United States a rare disease is a disease that
affects less than 1 in 1500, in the EU it is a disease that affect less than 1 in 2000.
It is estimated that 6-8% of the European population will be affected by one of
the known 7.000 rare diseases during their lifetime [Rod05]. Due to their rarity,
diagnosis of rare diseases is often associated with yearlong diagnostic delays and
errors [Rod05]. In other words, rare diseases (and their diagnosis) pose a huge
societal problem.

The internet is increasingly being used for diagnosis by medical professionals.
A survey from 2012 among 506 general practitioners (GPs) in the United States
showed that the use of online web tools had become an integral part of the daily
work of medical professionals [Res]. The study showed that doctors use of the
web is dominated by general search engines such as Google, and portal websites
intended for physicians (such as OMIM, PubMed or FindZebra).

Doctors are not the only ones using the internet for diagnostic purposes. A
study from 2013 [Cen] showed that 35% of all American adults had used the
internet specifically for diagnosis within the past year. 77% began the search
for a diagnosis using a search engine such as Google or Yahoo. 13% began at
a website specializing in health information, such as WebMD or FindZebra and

2 Introduction

the remaining 10% started the exploration in other places such as Wikipedia or
Facebook.

FindZebra is an online, publicly accessible web search engine for rare diseases.
It is intended to serve as a diagnosis decision support system (DDSS) capable
of assisting the user both during and after a search.

Due to the high number of persons suffering from a rare disease and due to the
widespread use of online tools for diagnosis, even a modest increase in diagnostic
performance of online tools such as FindZebra can have a huge impact. In this
thesis I will explore three directions for improving the performance of FindZebra
as a DDSS. The first is by improving the retrieval performance, the second is by
assisting the user following an unsuccessful search and the third is by providing
native language support. In addition to these three research directions I will
explore a general method for improving the way words and discrete tokens are
represented in neural models. The outline of the thesis is as follows:

Chapter 2 will contain a short introduction to the FindZebra search engine
and the various forms of data used by the search engine.

Chapter 3 will contain a short introduction to the the most essential machine
learning concepts used in the thesis.

Chapter 4 will give an introduction to the article Performance Optimization
for Specialized Domain Information Retrieval that can be found in Appendix
A. The article describes several methods for improving retrieval performance
through corpus expansion, improved machine learning models, ensembles and
the inclusion of structured data. Using a combination of these methods we were
able to obtain a substantial increase in performance of more than 13% compared
to our baseline model.

Chapter 5: describes the concept of Information Completion (IC) and gives
an introduction to the article Information Completion for Medical Search As-
sistance that can be found in Appendix B. Medical IC is defined as the process
where the search engine asks the user relevant questions with the express pur-
pose of filling out missing or incomplete information that could be important
for finding the correct diagnosis. The article describes a method for training IC
models based on just unstructured medical data and the UMLS database. We
also describe a possible improvement to the presented IC method that is not
described in the article.

Chapter 6 gives a short summary of the article Hash Embeddings for Efficient
Word Representations that can be found in Appendix C. In order to represent
words (and other discrete tokens) in a neural network it is necessary to trans-

3

form each word to a vector form. This is typically accomplished by using an
embedding. The hash embeddings presented in the article are an improvement
to the standard embeddings normally used in NLP models. These embeddings
have been used for word representation in all of the models described in this
thesis (except for the information completion article, which pre-dates the hash
embedding idea).

Chapter 7 gives a short description of the ideas and results from the article
Zero-Shot Cross language Text Classification that can be found in Appendix D.
Medical literature is almost completely dominated by literature in English and
as a consequence, users of a medical search engine must also specify queries in
English. This can be a problem for users not having English as their primary
language. Optimally, a user should be able to write a query in his or her native
language and the search engine should then give a suggestion for a differential
diagnosis based on all the information contained in a multilingual corpus, not
only in the native corpus. The article described in this chapter presents one
possible way of accomplishing this.

Chapter 8 contains the closing remarks and directions for future work.

4 Introduction

Chapter 2

Introduction to FindZebra

This chapter will give a brief introduction to the current FindZebra search en-
gine, which is available online at www.findzebra.com/raredisease. The website
does not yet include any of the improvements to the search engine described in
this thesis. However, it is necessary to know how the website works in order to
understand how to improve it.

2.1 The FindZebra search engine

FindZebra is (primarily) a search engine for rare diseases. It does, however,
contain articles on most diseases including common diseases such as influenza.
The user interface is very simple and can be seen in Figure 2.1. It is based on an
Apache Solr [SPPM15] backend. Solr uses a scoring algorithm that computes
the similarity between a query q and a document d. The scoring formula is given

http://www.findzebra.com/raredisease

6 Introduction to FindZebra

Figure 2.1: The FindZebra website. The figure shows the disease view of the
search results. The middle section are the symptom filters.

by

score(q, d) = LdCq,d

∑

t∈q

√
tf(t, d) · idf(t)2Bt

t, d, q = term,document, query
Ld = “higher score to shorter docs”

Cq,d = fraction of q covered by d
Bt = boost applied to term t

tf(t, d) = #occurrences of term t in d

idf(t) = 1 + log
#docs

1 + #docs containing t

Even though Solr uses a similarity scoring that is (relatively) simple, it is still a
very strong baseline model that often performs surprisingly well in practice. In
[SJW15], for example, it is shown that FindZebra with a Solr backend is more
than twice as likely to have the correct diagnosis in top 20 of the search results
compared to other popular alternatives such as Google or PubMed.

2.2 Structured datasources 7

FindZebra uses a corpus of medical texts as well as two sources of structured
data. These will be described in the following section.

2.2 Structured datasources

2.2.1 The UMLS database

The UMLS database is an ontology of medical concepts. It is currently main-
tained by the National Library of Medicine1. Each word/phrase in the database
is associated with a concept id (CUI). For example influenza, influenzas, flu,
human influenza etc. all share the same CUI since they are all conceptually
equal. Each concept has several important properties:

Semantic type. The semantic type describes what kind of concept it is, such
as Amino Acid Sequence or Congenital Abnormality. This property can for
example be used for identification of symptoms and genes.

Relationships to other concepts. Each concept has relations to other con-
cepts. For example, a concept can be narrower/broader than other concepts.

Classification codes. The most important of these codes are the ICD-10 codes,
which are used in all parts of the American health care system for classification
of diagnosis. The ICD-10 codes are directly translatable to the Danish SKS
codes which are used in the Danish health care system. This means that in
order to able to link a disease to information from the Danish/American health
care system (e.g. disease prevalence information), it is necessary to be able to
map the disease to an ICD-10 code.

2.2.2 Disgenet

Disgenet2 [PBQR+17] is a database consisting of 561k gene-disease associations
between 17.1k genes and 20.4k diseases. These relationships have been extracted
from curated sources such as UNIPROT3 and text mined from sources such as
GAD4. Each disease-gene relationship is given a heuristic score based on the
number of curated sources in which the relationship is described, the number of

1See http://www.nlm.nih.gov/research/umls/
2http://www.disgenet.org
3http://www.uniprot.org/
4https://geneticassociationdb.nih.gov/

http://www.nlm.nih.gov/research/umls/
http://www.disgenet.org
http://www.uniprot.org/
https://geneticassociationdb.nih.gov/

8 Introduction to FindZebra

animal models describing the relationship and the number of literature publica-
tions supporting the relationship5.

2.2.3 Use of the UMLS/Disgenet databases in FindZebra

The UMLS and Disgenet databaeses are used in several places of FindZebra:

• Synonym extraction. By using the semantic types Sign or Symptom
and Finding we can identify symptoms in text. For each disease we have
extracted all the symptoms in documents about that disease. This infor-
mation is for example available through the FindZebra API6.

• Filters. Following a search, a range of symptom suggestions are presented
to the user (see middle part of Figure 2.1). The ordering of the symptom
suggestions is based on a simple score for each symptom s. The score is
calculated by

score(s | query) = idf(s)
∑

doc in corpus

docscore1s∈doc

where 1 denotes an indicator function. Documents not in the search results
will have a score of zero. These filters can be considered a very simple form
of information completion which is the topic of chapter 5.

• Symptom synonyms. Using the semantic types we can identify symp-
toms and using the CUI of a symptom we can get all synonyms of each
symptom. This relationship between symptoms can be incorporated into
the Solr search engine. This is done by normalizing both query and corpus
to the same normalized form where each symptom is replaced by a canoni-
cal form of the symptom. This means that a search for e.g. paradentosis
will also return documents containing periodontosis (as illustrated in
Figure 2.1).

• Gene view. The Disgenet database provides disease-gene relationships
and a score for each such relationship. These gene-disease relationships can
be turned into query-gene relationships by using the (heuristic) formula

score(gene | query) = idf(gene)
∑

doc in corpus

gda(gene, doc)docscore

5see http://www.disgenet.org/web/DisGeNET/menu/dbinfo#gdascore for a full descrip-
tion of the score.

6see http://www.findzebra.com/about for a description of the API.

http://www.disgenet.org/web/DisGeNET/menu/dbinfo#gdascore
http://www.findzebra.com/about

2.3 The FindZebra corpus 9

where gda(gene, doc) is the gene-disease association score between the
gene and the disease described by the document. The genes are then
sorted by score and displayed in the gene view (see Figure 2.2).

Figure 2.2: The FindZebra website. The figure shows the gene view of the
search results

2.3 The FindZebra corpus

The FindZebra corpus was constructed by downloading 21.4k articles on diseases
from the 6 datasources listed in Table 2.1. This resulted in 21.4k articles on
12.5k diseases. These articles are the ones used by the current version of the
website. This dataset is called the full FindZebra corpus.

10 Introduction to FindZebra

From the full FindZebra corpus we selected the 14.3k articles on 8.3k diseases
that could be mapped to ICD-10 codes (not all concepts can be mapped to
ICD-10 codes using the UMLS database). These articles constitute the baseline
corpus which can be seen in Table 2.1. The baseline corpus is of a very high
quality and is the part of the full corpus that we can map to other health system
information (such as prevalence).

2.4 Validation and test sets

In order to estimate performance of different models in a realistic setting we use
a dataset consisting of medical questions from a Jeopardy! like game called Doc-
tor’s dilemma featured by ACP7. The game is also known as Medical Jeopardy.
The initial dataset from ACP consisted of 3000 questions. A large number of
these questions were removed because they were either not related to diagnosis
or required visual inspection of e.g. x-ray images. In addition to these Doctors
Dilemma questions we used a set of 56 questions that had been constructed
manually by a medical professional. In total we created 496 queries, of which
half is used for validation and the rest is used for testing. The test and validation
sets can be found on-line8.

Source Full corpus Baseline corpus
GARD 1.917 1.34
Gene Reviews 638 321
GHR 1.075 738
OMIM 8.062 4.615
Orphanet 4.578 3.376
Wikipedia 5.154 3.870
Total 21.424 14.261

Table 2.1: Overview of the documents in the baseline/full FindZebra corpus.
The full corpus cover 12.5k diseases in total and the baseline corpus
cover 8.3k diseases.

7https://www.acponline.org/membership/residents/competitions-awards/
doctors-dilemmasm

8Test set: http://www.intellifind.dk/article/test_queries.csv. Validation set: http:
//www.intellifind.dk/article/valid_queries.csv

https://www.acponline.org/membership/residents/competitions-awards/doctors-dilemmasm
https://www.acponline.org/membership/residents/competitions-awards/doctors-dilemmasm
http://www.intellifind.dk/article/test_queries.csv
http://www.intellifind.dk/article/valid_queries.csv
http://www.intellifind.dk/article/valid_queries.csv

2.5 Prevalence 11

2.5 Prevalence

Point prevalence is the perhaps most important type of disease metadata. It is
measured as the percentage of the population suffering from a given disease at
a given point in time. I.e. if we select a group of people at random, the point
prevalence is the expected percentage of the group members suffering from the
disease.

The importance of prevalence can be illustrated by an example. Let us assume
that a patient is suffering from a set of symptoms S. He uses a search engine and
is presented with two diseases D1 and D2. He can see that for both of the dis-
eases his symptoms S are almost present (lets say that P (S | D1) = P (S | D2) =
0.99). He can also see that his symptoms are quite rare in general (lets say that
P (S | not D1) = P (S | not D2) = 0.01)). Based on the symptom information
alone, both diseases are equally probable. Without any further information we
can assume that the prevalence of the disease is uniformly distributed between
0 and 1. By using Bayes formula and integrating out the prevalence we get that

P (D1 | S) = P (D2 | S) =
P (S | D1)P (D1)

P (S)

=
P (S | D1)P (D1)

P (S | D1)P (D1) + P (S | not D1)P (not D1)

=
P (S | D1) 1

2

(P (S | D1) + P (S | not D1)) 1
2

= 0.99

This means that based on the symptom information alone, it is very probable
that the patient is suffering from one or both of the diseases. However, let us
furthermore assume that D1 is rare, e.g. P (D1) = 0.0001. We wish to determine
P (D1 | S). According to Bayes formula we have that:

P (D1 | S) =
P (S | D1)P (D1)

P (S)

=
P (S | D1)P (D1)

P (S | D1)P (D1) + P (S | not D1)P (not D1)

=
0.99 ∗ 0.0001

0.99 ∗ 0.0001 + 0.001 ∗ 0.9999
= 0.09

I.e. even considering the overwhelming amount of symptom “evidence”, there is
actually only a very small probability of 9% of the patient actually suffering from
disease D1. In Figure 2.3 we see a plot of what happens with the probability
P (D | S) as a function of prevalence. The point of the figure is to show that

12 Introduction to FindZebra

the inclusion of prevalence information can completely change how probable we
should consider a disease.

As mentioned in the introduction it is quite common for both professionals
and non-professionals alike to use Google and other online tools for diagnosis.
However, the results returned from such tools do not take into account the
prevalence of a disease. This has the undesirable result that a user often finds
a good symptom match with some rare disease and uses this for diagnosis, even
though he has a very low probability of actually suffering from the disease.

Unfortunately, we have not been able to gain access to a suitable prevalence
dataset. We did, however, spend a lot of time trying to obtain such a dataset,
but as of yet our efforts has not been a complete success:

• We succeed in obtaining a dataset from Danmarks Statistik that gave
the number of hospital admittance in a year grouped by SKS codes (the
Danish equivalent of ICD10 codes). Unfortunately, this dataset was not
exactly what we were looking for since it e.g. gave influenza a very low
prevalence (since an influenza patient will typically not go to the hospital)

• We have tried obtaining prevalence data by making a partnerships with a
large private hospital chain (work in progress).

• We entered into a research collaboration with Østerbroundersøgelsen9 at
Frederiksberg Hospital in order to gain access to a longitudinal study on
diseases in the general population.

9Østerbrounderøsgelsen: https://www.frederiksberghospital.dk/afdelinger-og-
klinikker/oesterbroundersoegelsen/om-undersoegelsen/Sider/default.aspx

https://www.frederiksberghospital.dk/afdelinger-og-klinikker/oesterbroundersoegelsen/om-undersoegelsen/Sider/default.aspx
https://www.frederiksberghospital.dk/afdelinger-og-klinikker/oesterbroundersoegelsen/om-undersoegelsen/Sider/default.aspx

2.5 Prevalence 13

1 1/5k 1/10k 1/15k 1/20k 1/25k
0%

10%

25%

50%

75%

100%

P (D)

P
(D
|S

)

P (D | S) as a function of disease prevalence

Figure 2.3: P (D | S) as a function of disease prevalence for the example
in section 2.5. The prevalence to the right of the dashed line
corresponds to rare diseases (prevalence less than 1/2000 in EU)

14 Introduction to FindZebra

Chapter 3
Machine learning theory for

NLP

In this section I will give a short introduction to the most important machine
learning models and concepts used in the thesis. In section 3.1 I will describe
the two types of neural networks used in the thesis and describe how the models
can be trained. In section 3.2 I will describe what overfitting is and how it may
be avoided. Note that the material presented in this section is by no means an
exhaustive treatment of the topic, but it is sufficient for understanding the rest
of the thesis.

3.1 Neural networks

There are many different types of neural networks. The two types used in this
thesis are feed-forward networks and a recurrent neural networks (RNN).

3.1.1 Feed-forward network

An example of a simple feed-forward network is illustrated in Figure 3.1. It
consists of three layers, an input layer, a hidden layer and an output layer. The

16 Machine learning theory for NLP

variables in the center of each node contain the output of the node, i.e. the
output of the three layers is x = [x1, x2, x3, x4], h = [h1, h2, h3] and y = [y1, y2].
Each of the hidden variables hi is defined by an affine transformation of the
outputs of the input layer, followed by a non-linear activation function. I.e.
hi = f(bi + xwi) where wi is a weight vector for node hi and f is a non-linear
transformation. bi is called a bias. Typical examples of activation functions are
hyperbolic tangent (f(x) = tanh(x))), sigmoid (f(x) = 1/(1 + exp(−x)) and
rectifier (f(x) = max(0, x)).

We can of course write the calculation of h in vector notation as h = f(b+xW).
The exact same calculation is repeated between the hidden layer and the output.
I.e.

y = g(boutput + hWoutput)

= g(boutput + f(b+ xW)Woutput)

We see that the output of one layer only depends on the previous layer output:

hlayer = glayer(blayer + hlayer-1Wlayer)

It is therefore straightforward to extend the simple example to a network with
more than one hidden layer.

x1

x2

x3

x4

h1

h2

h3

y1

y2

Hidden
layer

Input
layer

Output
layer

Figure 3.1: A simple feed-forward network.

3.1.2 Recurrent neural network

Recurrent neural networks (RNNs) are used for sequence data such as text. An
example of a so-called unrolled visualization of a recurrent neural network is

3.1 Neural networks 17

Y1 Y2 Y3 Y4 Y5

H1 H2 H3 H4 H5

X1 X2 X3 X4 X5

Figure 3.2: A simple recurrent neural network. Each of the filled rectangles
correspond to a timestep.

shown in Figure 3.2. Hi is calculated by

Hi = f(XT
i W +HT

i−1U + b) (3.1)

where f is an activation function, W,U are weight matrices and b is a bias
term. I.e. Hi is almost calculated as for a feed-forward network, except that
an extra term HT

i−1U has been added such that it depends on both the current
input vector Xi and on the output Ht−1 of the previous timestep. Note that
parameters are shared across timesteps.

3.1.3 Training of neural networks

In order to train a neural network it is necessary to define a loss function. A loss
function quantifies the cost associated with the output of the neural network,
and the goal of training is to minimize this loss. The standard loss function
for classification is the cross-entropy loss (CE loss) and the standard loss for
regression is the mean squared loss (MSE loss):

CE(θ) = − 1

|X|
∑

x∈X
ptx log qx (3.2)

MSE(θ) =
1

|X|
∑

x∈X
||yxtrue − yxest||22 (3.3)

Here px, qx denotes respectively the true and the estimated distribution for the
training sample x. The distribution p is the distribution that puts all probability

18 Machine learning theory for NLP

mass on the correct label (i.e. a one-hot representation). yxtrue and yxest denotes
the true and the estimated vector for the input x.

The training is typically performed using gradient descent where the gradient
of the loss function w.r.t. the network parameters θ is found using backpropa-
gation. Backppropagation sounds fancy, but it is actually just the chain rule of
differentiation applied to the loss function. Typically we do not use the entire
training set X for calculating the loss. Instead we only use a small batch of
samples and use that to approximate the loss. This is called stochastic gradient
descent (SGD).

The vanilla SGD algorithm updates the parameters by using the update rule

θ = θ − η∇L(θ) (3.4)

where η is called the learning rate and L is the loss function. There are several
variants of the SGD algorithm. For training of the models described in this
thesis I typically used Adaptive Moment Estimation Method (ADAM) [KB14].
When using ADAM updates an adaptive learning rate for each parameter is
computed instead of using the same fixed learning rate for all parameters.

Simple recurrent neural networks often have problems with exploding and van-
ishing gradients. These problems are caused by the way gradients are calculated
through backpropagation. In this thesis we avoid such problems by using Long
Short Term Memory units (LSTM) [HS97] or Gated Recurrent Units (GRU)
[CGCB14]. The difference between the simple recurrent networks and these
networks is that the GRU/LSTM networks replace the calculation of the hid-
den nodes by a more complex calculation. This calculation is better suited to
capture long-range dependencies and to avoid exploding/vanishing gradients.
The details of how LSTM/GRU units are implemented will not be described
here.

3.2 Regularization

Loosely speaking, overfitting is what happens when a model learns a multitude
of specific details about the training data instead of some general patterns.
Suppose, for example, that we want to train a network for text classification.
Such a network might notice small details such that the exact phrase “and, but
not exclusively” only occurs in 1 document. In each document we might have one
or more of such unique phrases and the network can learn to recognize these if it
has a sufficient number of parameters. However, such a network will generalize
poorly to new examples. In order to prevent the model from overfitting we use

3.2 Regularization 19

regularization. Two standard methods for regularization will be described in the
following.

3.2.1 Dropout

Dropout [SHK+14] is a method for neural network regularization where units
are dropped from the network with a certain probability. The method is very
effective for preventing overfitting and has become a standard regularization
method for neural networks. In Figure 3.3 we see an example where dropout
has been applied to the hidden layer of a simple feed-forward network. We see
that (for this batch) h2 has been dropped out, effectively resulting in a network
with only two hidden units.

x1

x2

x3

x4

h1

h3

0

y1

y2

Hidden
layer

Input
layer

Output
layer

Figure 3.3: Example of using dropout during training. At each batch update
we train a “new” network where we have randomly deleted some
of the nodes. The figure shows the network in Figure 3.1 with
dropout in the hidden layer.

3.2.2 Lp regularization

Lp regularization is a regularization method where there is a loss penalty for
using large/many weights. It is quite easy to implement Lp regularization for
subset W of the parameters θ. We simply modify the loss function such that

L̂(θ) = L(θ) + γ||W ||pLp
(3.5)

Typically, p = 1 or p = 2 are used. We can also use a combination of e.g. L1 and
L2 regularization in which case the method is called elastic net regularization.

20 Machine learning theory for NLP

Chapter 4

Information retrieval
optimization

The following chapter is based on the article Performance Optimization for Spe-
cialized Domain Information Retrieval in Appendix A. It contains a commented
summary of the main results of the article.

4.1 Introduction

FindZebra is primarily a tool for information retrieval. A lot of my research has
therefore focused on improving retrieval performance. A wide range of models
and methods have been researched and the article gives a summary of the main
findings. The article uses FindZebra as a case study, but the described methods
are quite general and can be used for optimizing performance in other specialized
domain search engines.

The retrieval optimization problem was approached from three directions:

1. Improved retrieval models and ensembles. We explored several dif-
ferent types of neural networks, both on word level and character level. We

22 Information retrieval optimization

furthermore investigated two methods for combining the trained models
in an ensemble.

2. Corpus expansion. The corpus expansion was performed in two ways.
The first was through static expansion and the second was by using a
simple algorithm for inclusion of a collection of case studies.

3. Use of structured data sources. We tried improving performance by
introducing synonym information into the models by using the UMLS
database.

We compared our methods with Apache Solr, which is a state-of-the-art open
software information retrieval system. We showed that using a combination of
the methods above it is possible to obtain an absolute increase in performance
of more than 13%.

Each of the directions for performance optimization will be described briefly in
the following sections.

4.2 Improved retrieval models and ensembles

For each dataset we trained and evaluated performance for five models: a neural
network bag-of-words model, a neural network bag-of-ngrams model, a word
level recurrent neural net, a character recurrent neural net and a tf-idf based
Apache Solr model. We also experimented with using a combination of models in
an ensemble. The models were combined using two different ensemble methods:
one using a soft voting scheme and one using “merge voting”. By using a soft
voting ensemble consisting of two neural BOWmodels where one is trained using
synonym augmentation and one without we obtained a recall@20 performance
of 81.85%. This is 4.4% better than the best single model and 13.3% better
than the baseline model on the baseline corpus.

A medical query is often complex with a lot domain specific words. Such a query
can be difficult to spell, even for a medical professional. Therefore it would be
valuable to have a model that is robust towards spelling errors. Character based
models have the advantage of being very robust to spelling errors since they have
the ability to smooth over spelling mistakes. Figure 4.1 shows how misspellings
affect the performance of a character based model compared to two word based
models. We see that the character based model is much less affected by spelling
errors compared to the word-based models. However, the general performance
of the character based models is far below that of the neural BOW models and

4.3 Corpus expansion 23

therefore the spelling error robustness of the character based model does not give
a real advantage in practice (unless we expect most of the users of FindZebra
to suffer from dyslexia).

4.3 Corpus expansion

Most of the diseases in the baseline corpus are described by only a single doc-
ument. The primary problem with having so few articles on each disease is
that we have no way of determining word importance except by using word fre-
quencies (i.e. a rare word is more discriminative than a common word). Even
though a machine learning model will be able to extract some information from
the baseline corpus, it is necessary to expand the corpus in order to be able to
fully exploit the capabilities of machine learning methods.

The first corpus expansion method was by static expansion. We used the UMLS
database in conjunction with the baseline corpus and a general web search engine
to discover clusters of disease information on the internet. Then we manually
selected the largest clusters and developed regular expressions that could extract
disease information from different parts of each page in a cluster. Using this
approach we were able to increase the number of documents from 14.3k to 143.7k
articles and the number of diseases from 8.3k to 12.5k. As can be seen in Table
4.1, this additional information benefits all models substantially and it causes
the performance of the neural BOW models to exceed the performance of the
Solr model by several percent.

The second method for augmenting the corpus was by incorporating medical case
studies. We extracted 51k case studies from the PubMed Central Open Access
dataset1. In order for our search engine to be able to use these articles, they
had to be labeled somehow. Unfortunately, these case studies are not labeled
with information on the identity of the disease and, to make things worse, a case
study does not even always only describe a single disease. For example, it is a
bit unclear if the case study2 with the title Treatment of Ipilimumab Induced
Graves’ Disease in a Patient with Metastatic Melanoma is about Graves’ disease
or about metastatic melanoma. This ambiguity problem is solved by including
the same case study several times but with different labels (one for each of the
possible diseases). E.g. in the example above we would include a copy of the
case study with the label Graves’ disease and a copy with the label metastatic
melanoma. Even though this method is quite simple, it gave quite a large
performance increase (see Table 4.1).

1https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
2https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737013/

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737013/

24 Information retrieval optimization

Note that it would actually have been quite easy to employ semi-supervised
techniques such as label propagation [ZG02] or co-training [BM98] instead of
using a non-parametric classifier as we did. However, the article already spanned
quite a lot of topics and we decided to keep it simple and focus on the other
aspects of the article.

4.4 Synonym injection

By using the UMLS database we compiled a list of 6200 symptom words corre-
sponding to 2092 distinct symptoms. The list was used for teaching the models
synonym relationships between symptoms. For the Solr model this is done by
normalizing both the corpus and queries to the same canonical form. For the
neural models we replace a symptom with one of its synonyms with a certain
probability (during training).

Surprisingly, the use of synonyms only gave a very small performance increase of
0-1%. For the neural models, part of the explanation can be deduced from Figure
4.2. In the figure we see representations of synonymous words in a neural BOW
model trained without synonym injection (top) and with synonym injection
(bottom). It is quite clear that the model learns synonymous relations even
without being explicitly told. Thus we can expect a neural model to benefit
less from such forms of structured data. Note that our method for synonym
injection actually forces the representation of words in our synonym list to have
the exactly the same representation (even though e.g. “weak” and “weakness”
cannot strictly be considered synonyms since one is a verb and the other is a
noun).

4.5 Concluding remarks

The article mostly present what did eventually work. However, I also believe
that it is quite interesting to know what did not work. First of all, we have
experimented a lot with different neural models such as convolutional neural
networks (both on character level and word level) and convolutional neural
networks and recurrent neural networks in combination. However, the more
sophisticated the model, the worse the performance seemed to become. However,
I strongly believe that this is caused by the lack of data and that once the corpus
has been expanded suitably, such methods will surpass the BOW models by a
wide margin.

4.5 Concluding remarks 25

Table 4.1: Recall@20 [%] for the different models. The best results for each
dataset is bolded.

Baseline Extended Pubmed
Neural BOW (without synonyms) 62.90 70.97 77.42
Neural BOW (with synonyms) 63.31 71.37 77.42
Neural n-gram 48.79 60.48 64.52
Word LSTM 46.97 58.06 66.94
Char LSTM 46.37 64.11 63.71
Solr (with synonyms) 68.55 69.76 76.41
Solr (without synonyms) 68.55 68.75 75.81

0% 5% 10% 15% 20%
0%

25%

50%

75%

100%

Misspelling probability

R
el
at
iv
e
re
ca
ll@

20

Impact of misspelling

Neural BOW
Char model
Solr

Figure 4.1: Impact of misspelling errors on the different models. The figure
shows the recall@20 degradation as a function of misspelling prob-
ability for two word based models and one character based model.
The models have been trained on the Pubmed dataset and the
numbers are relative to model recall@20 when there are no mis-
spellings.

26 Information retrieval optimization

Figure 4.2: T-snee plots of representations of synonymous words. The upper
plot shows the representation of words in a model without syn-
onym injection, and the lower plot shows the representation of
words in a model with synonym injection. The numbers after the
word lists indicate the number of words in the list. The models
used are BOW models trained on the PubMed dataset.

Chapter 5

Information completion

The following chapter is based on the article Information completion for medical
search assistance in Appendix B. In section 5.1 I will give an introduction to
the concept of information completion. In section 5.2 I will briefly describe how
to train and measure performance of IC systems. In section 5.3 I will present
two, perhaps better, methods of training IC systems that were not mentioned
in the article. Finally, I will give some concluding remarks in section 5.4.

5.1 Introduction

An important property of a search engine is to be able to retrieve the most
relevant documents based on a query. However, in order for the search engine
to do this, it needs the query to be sufficiently informative. A query such as
“abdominal pain” could for example correspond to hundreds of diseases, and
based only on the query it is impossible for the search engine to know which
ones are most relevant. I.e. some information seems to be missing from the
query in order for the search engine to be able to retrieve relevant content. In
a clinical setting a doctor would iteratively ask the patient questions based on
a continuously changing differential diagnosis (see Figure 5.1). This process
would continue until the doctor is confident enough to give a final diagnosis.

28 Information completion

The purpose of Information Completion (IC) is to facilitate this dialogue fol-
lowing an unsuccessful search. More precisely, we define medical information
completion as the process of asking a user relevant questions with the express
purpose of filling out missing or incomplete information that could be important
for the diagnosis. This additional information could be in the form of test results
(e.g. blood pressure), other diseases that the user might have (e.g. congenital
abnormalities), or symptoms that the user has not yet supplied to the search
engine (e.g. nausea). In the following I will refer jointly to these different types
of additional information as “symptoms”

Figure 5.1: The diagnostic process, from [Wya91]. A disease causes the pa-
tient to exhibit some symptoms (findings). The patient tells the
doctor about some or all of the symptoms and based on these
complaints and the symptoms/findings of the patient, the doctor
constructs a patient model. Based on the model, the doctor first
compiles a differential hypothesis and then selects a hypothesis.
This hypothesis will either be choosen as the diagnose or the doc-
tor may query the patient for more information in the form of
additional symptoms or run additional tests. Medical informa-
tion completion corresponds to this part of the diagnostic process
(within the ellipsis in the figure).

5.2 Article summary 29

5.2 Article summary

The main obstacle for training an IC model is the lack of a suitable dataset.
Ideally, we would have a data set consisting of a large number of pairs of the
form (search query, missing information) where the missing information
could be a symptom or a test result. Unfortunately such a data set does not
exist. Instead we first defined a list of 2141 target symptoms (by using the
UMLS database). Based on this list we constructed a dataset by extracting a
large number of word sequences with at least 1 symptom in the target symptom
list. From each of these sentences we deleted the target symptom and created
a sample (sentence minus symptom, symptom) for each target symptom in the
sentence. Using this approach we created a dataset consisting of 4.5M samples.
A few examples of such sentences are listed in Table 5.1.

Removed symptom Training set sample
neoplasms ,this has returned different genetic alterations (data

not shown) cdc are generally considered to be aggres-
sive neoplasms

hypophosphatemia of 11 years , at which time laboratory data revealed
hypophosphatemia , elevated vitamin d levels , and
hypercalciuria a

diarrhea infancy two forms are recognized : early-onset mvid
with diarrhea beginning in the neonatal period, and
late-onset, with

Table 5.1: Some samples from the training set. The removed symptom is
crossed out. Note that a “symptom” in this context can mean both
an actual symptom, a test result or a disease.

As can be seen in Table 5.1, the samples in the training set has very little resem-
blance with what we would normally consider a medical query. A performance
estimate based on such sentences would therefore not be very realistic. Instead
we measured how well the IC system can predict withheld symptoms from real
multi-symptom diagnosis queries (Doctors Dilemma questions). I.e. given a
diagnosis query with a withheld target symptom we estimate the probability of
having the withheld symptom in a list of n symptoms (recall@n). Note that this
is a quite conservative measure because it ignores the possibility of the proposed
symptoms being related to the exact match. For example, when withholding the
symptom “high fever” from the query a high fever, runny nose, sore throat, mus-
cle pains, headache, coughing, and feeling tired, we get the proposals [fatigue,
chills, dizziness, fever, nausea]. Considering that the query is a query
for influenza, all of these proposals are probably relevant, but none of them is
the actual withheld symptom.

30 Information completion

We trained several models such as a neural bag of words model, a neural n-gram
model, a neural bag of UMLS terms and a recurrent neural network. The re-
call@n performance of the different models as a function of n is shown in Figure
5.2. We can loosely translate the results to a clinical setting: If a patient queries
the neural BOW IC system and retrieves a list of 10 questions/symptoms, there
is more than 35% probability of uncovering one or more pieces of missing in-
formation. We believe that such a level of performance is sufficiently high for
the system to be usable in practice (especially considering that the performance
estimate is actually only a loose lower bound of the actual performance, as
discussed above).

1 5 10 15 20
0%

10%

20%

30%

40%

50%

n

R
ec
al
l@

n

Recall@n as a function of n

Neural BOW
Neural UMLS BOW
Neural NBOW
RNN
Most frequent

Figure 5.2: Recall@n for the different models as a function of n.

5.3 Alternate methods for training an IC system

In the article we described how to propose new symptoms that might be missing
from a query. However, the effect of the proposed symptoms on the diagnostic

5.3 Alternate methods for training an IC system 31

process was not taken into consideration. I.e. two different symptoms will not
have the same diagnostic value, e.g. “runny nose” might be a more discriminative
feature compared to “headache”. A simple way of ordering the symptoms could
be to multiply the probability of each symptom by a factor indicating how
discriminative it is. For example, we could use the inverse document frequency

idf(symptom) = 1 + log
#docs

1 + #docs containing symptom

and order the symptoms according to idf(symptom) · p(symptom|query), where
p denotes the distribution from the IC system.

Another possibility for training an IC system is the following.

1. Train an IC system as described in the article.

2. Train a neural retrieval model.

3. Extract a set of random sentences V from a corpus of labeled articles. For
each sentence v ∈ V
(a) Determine the most plausible N “missing” symptoms s1, . . . , sN using

the IC system.
(b) For each symptom si determine the ∆ cross-entropy:

∆(si, v) = max(H(p, q|v)−H(p, q|v + si), 0)

Here H(p, q|v) denotes the cross-entropy between the “true” (label)
distribution p of diseases and the distribution estimate q from the
trained retrieval model. ∆(si, v) for all other symptoms is set to e.g.
-1.

4. Train a new IC system Q by using the loss function

L =
1

|V |
∑

v∈V
EQ(s|v)∆(s, v)

=
1

|V |
∑

v∈V
Q(·|v)T ∆(·, v)

Here Q(s|v) denotes the probability of symptom s given the query v.

Using such a method we can start to quantify the diagnostic usefulness of the
IC system in terms of the expected cross-entropy reduction from a symptom
proposal. This will allow us to define e.g. a cut-of point such that the user is
never proposed a symptom if it is only of marginal importance to the diagnostic
process.

32 Information completion

5.4 Concluding remarks

In the article we explain how to train a system for medical information com-
pletion using just unstructured data (and a list of target symptoms). However,
the same idea could be applied to any search engine in order to fill in miss-
ing information following an unsuccessful search. I believe that IC performance
is almost as important as retrieval performance, especially in domains such as
medicine where it can be very difficult to formulate a good query.

I believe that the performance of the IC system presented in the article is suffi-
ciently high in order to be of practical use. Note that it would be quite easy to
implement a user interface for the system by using e.g. filters (see chapter 2).

Chapter 6

Hash Embeddings

The following chapter is based on the article Hash Embeddings for Efficient Word
Representations in Appendix C. I will try to explain the motivation behind hash
embeddings and describe the advantages of using them. For a full description
and analysis of hash embeddings, please see the full article text in the appendix.

6.1 Motivation behind Hash Embeddings

A neural network is almost always trained using some kind of gradient based
method. This means that we need to transform all discrete inputs (such as
words) into continuous vectors. This transformation is typically implemented
by creating a mapping I from the set of discrete inputs T to the set {1, . . . , B}
of integers, and subsequently use the mapping to lookup a (row) vector in a
B × d matrix E. I.e. we represent a discrete token w by the continuous vector
E[I(w), :] ∈ Rn. Each entry in E is a model parameter that can be updated
during training in order to give the best possible representation of each discrete
token.

The index mapping I is typically created before training by enumerating the
tokens in a vocabulary. We will call an embedding created in this way a standard

34 Hash Embeddings

embedding and we call the enumeration a dictionary. In some situations, such
as in online learning, the need for creating a dictionary can be a nuisance. In
such cases we can use feature hashing. When using feature hashing we define I
to be a random hash function that maps a token to a number (called a “bucket”)
in {1, . . . , B}. This typically results in some tokens “colliding” with each other
because they are assigned to the same bucket. The smaller we make B, the
more collisions we will have. When multiple tokens w1, . . . , wn collide, they will
get the same vector representation E[I(w1), :] which prevents the model from
distinguishing between them. Even though some information is lost when tokens
collide, the feature hashing method often works surprisingly well in practice
[WDA+09, JGBM16].

The initial idea behind hash embeddings was to improve the feature hashing
idea. The goal was to create a hash function such that

1. all “unimportant” words were somehow assigned to a “zero bucket” if they
happened to collide with an important word.

2. no “important” words should collide with each other.

What constitutes an important word depends on the purpose of the model. It
is therefore a requirement that we are able to train the hash function jointly
with the rest of the model. Unfortunately we cannot train a hash function
using a gradient based method since it has values in a discrete set. Instead
we introduce a new trainable parameter pw for each word and represent w by
pwE[I(w), :]. This will allow us to (approximately) obtain property 1 above: If
we have a collision between an important word wi and unimportant word wu,
the model can set pi = 1, pu = 0. This will effectively assign wu to a “zero
bucket”. This is the reason why we have given the pw parameters the name
importance parameters.

The second property above can be obtained by using more hash functions: In-
stead of using just one hash function I we can use e.g. two hash functions
I1, I2 and represent w by p1wE[I1(w), :] + p2wE[I2(w), :]. If w1 and w2 are both
important and I1(w1) = I1(w2) we can set p2w1

= p1w2
= 0 and p1w1

= p2w2
= 1.

This would mean that w1 would be represented by E[I1(w1), :] and w2 would
be represented by E[I2(w1), :] which would avoid the collision. Of course, this
can be extended to an arbitrary number of hash functions. However, our ex-
periments have shown that typically nothing is gained by using more than two
hash functions.

Note that we can use B (the number of rows in E) as a regularization parameter
and that we can interpret B as the number of important/discriminative words

6.2 Construction of Hash Embedding vectors 35

in the vocabulary. This interpretation is more intuitive than when using e.g.
L1/L2 regularization. Also note that when using L1/L2 regularization, we first
add “too many” parameters and then we set some of them to zero, which is a
bit wasteful. This is avoided when using hash embeddings since the parameters
do not have to be added in the first place.

In order to use hash embeddings (with two hash functions) we need 2|T |+ |E| =
2|T |+Bd parameters. In a standard embedding we need |T |d parameters. Note,
however, that we only need as many rows B in E as there are “discriminative
words” in the vocabulary. This means that we can often choose B � |T | without
affecting performance, resulting in a huge reduction in parameters.

From the description above we see that the computational overhead of using
hash embeddings compared to a standard embedding is just a matrix multipli-
cation of a 1 × 2 matrix (importance parameters) with a 2 × d matrix (rows
of E). In practice the overhead is not noticeable since the embedding layer is
responsible for only a tiny fraction of the computational complexity of most
models. Therefore using hash embeddings instead of regular embeddings does
not make any real difference in terms of training time.

In the article we generalize the idea above slightly by introducing a two-layer
hashing scheme where a token is first hashed to a large “vocabulary” space
1, . . .K by a hash function hlayer1. The number of collisions in this large space is
typically negligible. Each of these “word” numbers is treated exactly as a regular
word would be (i.e. each number has two associated importance parameters).
The reason for this two layer approach is that it eliminates the need of having
to create a dictionary. However, the price for this is 2T additional parameters.
The first layer hash function has the property that hlayer1(i) = i for i < T which
means that we can still use hash embeddings with a dictionary, if desired. This
is done by simply letting T = |T | and by using the word dictionary indices as
input to the hash embedding.

6.2 Construction of Hash Embedding vectors

A hash vector representation for a token w ∈ T is constructed in two steps. The
steps are also illustrated in Figure 6.1:

1. Use k different functions H1, . . . ,Hk to choose k component vectors for
the token w from a predefined pool of B shared component vectors

2. Combine the chosen component vectors from step 1 as a weighted sum:

36 Hash Embeddings

“horse”

H2(“horse”) =

H1(“horse”) =

...

Hk(“horse”) =

∑

hash functions
component

vectors
importance
parameters

hash vector
ê“horse”

input
token

p1“horse”

p2“horse”

pk“horse”

Figure 6.1: Illustration of how to build the hash vector for the word “horse”.
The size of component vectors in the illustration is d = 4 and we
use k hash functions.

êw =
∑k

i=1 p
i
wHi(w). pw = (p1w, . . . , p

k
w)> ∈ Rk are called the importance

parameters for w.

6.3 Summary of article results

In the article we evaluate hash embeddings on 7 different datasets for various
text classification tasks including topic classification, sentiment analysis, and
news categorization. We show how to use hash embeddings both with and
without a dictionary, and compare hash embeddings to feature hashing. We also
show that we can improve model performance (without increasing the number
of parameters) if we use an ensemble of hash embedding models instead of a
single model with standard embeddings.

One of our main article results is the comparison between feature hashing and
hash embeddings. The feature hashing model uses 107 buckets and an embed-
ding size of d = 20. The hash embedding also uses 107 buckets in the first layer
and 1M component vectors of dimension d = 20. This means that the em-
bedding layer used for feature hashing uses 200M parameters, while the hash
embedding only uses 40M parameters. The results of the comparison can be
seen in Table 6.1. The results shows that there is a clear advantage of using
hash embeddings.

The classification models used in the experiments are chosen to be as simple as

6.4 Concluding remarks 37

possible: The document representation is obtained by simply adding the word
vectors of the document. This representation is then passed through a single
dense layer with a softmax activation.

Table 6.1: Test accuracy (in %) for the selected datasets

Hash embedding Feature hashing
AG 92.4 92.0
Amazon full 60.0 58.3
Dbpedia 98.5 98.6
Yahoo 72.3 72.3
Yelp full 63.8 62.6
Amazon pol 94.4 94.2
Yelp pol 95.9 95.5

6.4 Concluding remarks

Besides the application described in the article, hash embeddings have been used
in various other settings with success. In the article Zero-Shot Cross Language
Text Classification (discussed in the next chapter) for example, hash embed-
dings are used for representing the union of the vocabularies in English, Ger-
man, French and Italian. In the article it is found that the best results are
obtained using an embedding size of 1.500, which would have required more
than a billion parameters using standard embeddings. However, when using
hash embeddings with 25K buckets and two hash functions, we need less than
60M parameters. Also, in the article Performance Optimization for Specialized
Domain Information Retrieval (discussed in chapter 4) hash embeddings are
used in all word-based information retrieval models.

Finally we note that hash embeddings can be used to represent all kinds of
discrete objects, not just words. I strongly believe that there may be other
areas than NLP where hash embeddings will prove useful.

38 Hash Embeddings

Chapter 7

Multilingual text
classification

The following chapter is based on the article Zero-Shot Cross language Text
Classification in Appendix D. I will explain the motivation behind the article
in section 7.1. In section 7.2 I will give a summary of the main findings of the
article. In 7.3 I will give some final remarks.

7.1 Motivation

Users not having English as their primary language often have difficulty ex-
pressing complex medical queries in English. Unfortunately, finding a suitable
corpus on which to base a native language search engine is difficult since medical
literature is almost completely dominated by literature in English.

Our goal with the model described in the article was to construct a search
engine where a user could write a query in his or her native language. Based on
this query the search engine should give a suggestion for a differential diagnosis
based on all the information contained in a multilingual corpus. By adding all
available data in English, French, Italian, Spanish, etc. we hoped to be able to
even increase the performance of the original English search engine.

40 Multilingual text classification

In the article we show how to create an effective native language classifier that
can be trained without any labeled native language samples (i.e. a zero-shot
classifier). However, when adding additional languages beyond the first, perfor-
mance does not increase as we had initially hoped. I am, however, still quite
confident that it can be done by changing the sampling method. Unfortunately
I have not had time for looking more into this.

The intuition behind the idea was that instead of considering each language as
separate, we can consider a language as a “dialect” of the same global language.
I.e. we use an input vocabulary consisting of all words in all the included
languages. We then first train an encoder to produce a language independent
representation of a given text. This representation can in turn be used to train
a single classifier using the entire multilingual corpus as training data.

Note that the approach presented in the article has several advantages compared
to using a collection of “standard” native search engines. When using a collection
of native search engines you would first have to determine the input language
(either by estimation or by input from the user). Then the corresponding native
search engine would have to be queried. Based on the query, native results can
then be returned. When using the method presented in the article the query can
be expressed in any language the encoder has been trained on (and the language
does not have to be specified). Based on the query the search engine can return
results in all languages (not only the native language). E.g. given a query in
Danish, we can return matching medical case studies in English or French.

Of course, the problem of lack of a suitable native language dataset is not
only relevant for medical literature. The model presented in the article is com-
pletely general, and therefore we used a typical classification task (classifica-
tion of Wikipedia articles) as an example instead of specialized domain medical
search.

7.2 Article summary

The cross language text classification model presented in the article consists of
a universal encoder and a classification module. The purpose of the universal
encoder is to transform a text into a language independent representation. This
language independent representation can in turn be used by the classifier in
order to create language independent classifier. The encoder is trained using
the setup in the left side of Figure 7.1. I.e. we draw two random snippets of
text from two different articles (and perhaps in different language) and train
the encoder to be able to tell if the two snippets describe the same topic or not.

7.2 Article summary 41

This distinction is made entirely based on the similarity between the encodings
of the two snippets and this forces the model to give similar representations to
texts about the same topic.

Sample 1

Universal Encoder

Sample 2

Universal Encoder

σ(v1 · v2)

Cross-entropy loss

v1 v2

Sample

Universal Encoder

Classifier

Figure 7.1: Illustration of how the Universal Encoder is trained (left) and
how it is used when training and making predictions using the
classifier (right). All Universal Encoders (gray background) are
exactly identical by sharing architecture and weights

We compare three models:

1. A pure native classifier trained on Italian articles and tested on Italian
articles. The performance of this model can be considered an upper bound
for the performance.

2. Amachine translation model trained on EnglishWikipedia articles and
tested on Italian Wikipedia articles that have been translated to English
using Google translate.

3. Our model. The encoder is trained on Italian plus a subset of English,
German and French Wikipedia articles. The classifier is trained on a
subset of English, German and French articles. I.e. the classifier has
never seen an Italian article.

From the results of the experiments in the article we note several things. We see
that the zero-shot classifier obtains very good results, especially in a bilingual
setting where the largest classifier (embedding size 1500) obtains a very high
accuracy of 78.5%. This is far better than the model based on machine trans-
lation (72.1%) and very close to the upper bound on accuracy of 80.4% (the
native classifier). The performance unfortunately drops to 75.9% and 73.5%
when using three and four languages, respectively. This is, however, still far
better than the machine translation approach.

42 Multilingual text classification

7.3 Concluding remarks

In the article we show how to create a language independent representation that
subsequently can be used for e.g. classification. Note, however, that once we
have trained such a language independent representation it can be used for any
number of applications. For example, we could train a language independent
representation on a corpus of medical texts and subsequently use the represen-
tation for training both an IC system and an information retrieval system.

Even though we obtain really good results in a bilingual setting, it is a bit
unfortunate that the performance seems to decrease as we add more languages.
I do, however, feel confident that this can be solved by using uniform sampling
of language pairs, but I will have to leave this investigation to future work.

Two of our master thesis students, Nicolai Dahl and Christian Andersen, very
recently finished compiling a multilingual corpus. I will leave the development
of a multilingual medical search engine based on this corpus and the zero-shot
classification model be a topic for future work.

Chapter 8

Discussion and conclusion

The work presented in this thesis is a selection of the primary findings and re-
sults from the past three years of my research. The purpose of the research was
to improve FindZebra as a diagnosis decision support system. The results pre-
sented in this thesis describe substantial improvements of FindZebra in almost
all parts of the diagnostic process.

However, for every success there have been many failures. Unfortunately, even
though these failures can be very interesting for other researchers, they rarely
end up in scientific publications. In this chapter I will elaborate on the context
of each of the papers and briefly mention some of the things that did not work.
I will also indicate where I think future research should focus.

Even though this thesis has been a start, there are still enough open research
problems for at least one more thesis. It is my hope that others will finish what
I have started.

Retrieval performance optimization

In the first contribution Performance Optimization for Specialized Domain In-
formation Retrieval we showed that a performance improvement of more than

44 Discussion and conclusion

13% is possible through the use of improved retrieval models, corpus expansion,
ensembles and inclusion of meta-data. This is a huge performance increase, but
I believe that some improvements are still possible through corpus expansion
and improved models.

Some queries are simply not informative enough for making a reliable diagnosis
and therefore there is an upper limit to performance. Once this limit for per-
formance has been reached, there is still room for improvement of performance
through information completion. I.e. we could start to ask the question “how
many questions must the information completion system pose to the patient on
average in order for the retrieval system to have enough information for making
the correct diagnosis?”.

I believe that the most important improvement to search performance would be
through the use of prevalence data. As we saw in Figure 2.3, prevalence infor-
mation is extremely important. Also, in order to assess clinical performance, we
should probably change the performance measure from recall@20 to a prevalence
weighted recall@20.

Interestingly, this article was actually the last that that I finished, even though
performance optimization has been a central research theme for all three years.
During that time I tried a multitude of things such as

1. searching using different variants of Latent Dirichlet Allocation and other
Bayesian Networks.

2. improving performance by including the UMLS hierarchy.

3. improving retrieval performance by using more complex neural networks
both on a character level and on a word level. I tried a multitude of
architectures that combined convolutions, recurrent networks, attention
and other methods.

A lot of these ideas should probably be revisited once the corpus has been
sufficiently expanded, since they have only been tested using the baseline corpus.
Since the goal was to obtain better results than Solr, each of the methods above
was discarded since the performance was always somewhat inferior to that of
Solr. However, as described in the article, this performance superiority of Solr
using the baseline corpus is hardly surprising since we typically only have 1-2
articles on each disease.

I had planned one more article about information retrieval optimization. In the
article I would have shown how to include the case studies using more complex

45

semi-supervised methods. The same method would then have been used for
including articles from the web. Hopefully, this expansion of the corpus would
then result in a “critical mass” of information that would enable the use of more
complex models (preferably character based RNNs).

Information completion

In the article Information completion for medical search assistance we showed
that it is possible to train an information completion system using just an unla-
beled corpus (and the UMLS database for defining symptom targets). We show
that the performance of the trained system is sufficiently high to be usable in
practice. However, I would have liked to implements and test the alternate IC
model described in section 5.3 where only symptoms with the highest diagnostic
value are proposed. But I leave this to future work.

I believe that IC systems will play an important role in the future health care
system, both for reducing the risk of misdiagnosis and for saving time for medical
professionals. In a hard pressed health care system the efforts of nurses and
doctors should focus on caring for patients, not on asking standard questions and
filling out questionnaires. In a stressed and hectic environment people sometimes
make mistakes, even medical professionals. A patient complaining about for
example fever and headache should always be asked about neck stiffness (which
could be a sign of contagious meningitis). In case of neck stiffness the medical
staff could also be made aware of the possibility of meningitis by using e.g.
the information retrieval system described in this thesis. Such a system could
perhaps have prevented several recent errors made by the Danish 1813 hotline
(see for example https://www.regionh.dk/presse-og-nyt/pressemeddelelser-og-
nyheder/Sider/Kritik-af-1813.aspx).

I also believe that IC systems will become much more common in general search
engines. E.g. a search for “Tom Cruise” could for example result in the question
“Are you looking for a film, an actor, or a person related to Tom Cruise?”. For
a huge search engine such as Google it would be trivial to define a couple of
thousand categories and then train a classifier to predict the category of the
selected page based on the query. This classifier could then be used in an IC
system.

https://www.regionh.dk/presse-og-nyt/pressemeddelelser-og-nyheder/Sider/Kritik-af-1813.aspx
https://www.regionh.dk/presse-og-nyt/pressemeddelelser-og-nyheder/Sider/Kritik-af-1813.aspx

46 Discussion and conclusion

Hash Embeddings

In Hash Embeddings for Efficient Word Representations we showed that it is pos-
sible to improve one of the fundamental building blocks in NLP models, namely
the representation of words. For almost two decades it has been standard prac-
tice to represent words and other discrete items by using a simple look-up table.
Hash embeddings improve this method. They can be used wherever a standard
embedding can be used, but provide an intuitive form of regularization and a
reduction in the number of required parameters, especially for large vocabular-
ies or large embedding sizes. The method is furthermore simple and easy to
implement.

I consider hash embeddings to be the primary contribution of this thesis. Since
I came up with the idea I have not used anything but hash embeddings in my
own work. For example, the performance obtained in Zero-Shot Cross language
Text Classification would not have been possible to achieve (at least not easily)
without hash embeddings due to the the vast number of parameters required
for word representations.

I feel confident that there are applications of hash embeddings besides repre-
sentation of words. Astronomers, for example, might use hash embeddings to
represent stars by giving similar representations to stars with similar proper-
ties. Even before releasing the final code for the hash embeddings we received
numerous requests for access to the code by researches who did not work in the
area of NLP. This makes me think that there probably is a lot of applications of
hash embeddings that we did not think of and it will be interesting to see what
these applications might be.

Multilingual search

In the article Zero-Shot Cross language Text Classification we show that it is
possible to create an effective classifier for a task in a language Lt for which
there exists no labeled dataset. The only pre-requisite is that there exists a
comparable corpus in the languages Lt and Ls and that there exist a labeled
dataset for the task in language Ls.

The idea for the article grew out of an actual demand. During the development
of a chat system for a Danish private hospital chain we ran into problems caused
by the lack of a suitable Danish medical corpus. The solution was to re-visit
one of our old ideas for information retrieval where we pooled all languages
and trained a retrieval model on top of this vocabulary union. Unfortunately,

47

this idea did not work since we just ended up with a “parallel” classifier for
each language. The solution was to let the final part of the encoder be totally
dependent on the similarity between representations and this gave us what we
wanted, namely a language independent text representation.

48 Discussion and conclusion

Appendix A

Performance Optimization
for Specialized Domain
Information Retrieval

Performance Optimization for Specialized Domain
Information Retrieval
Dan Svenstrup1,* and Ole Winther1

1DTU Compute, Danish Technical University, Lyngby, 2800, Denmark
*dsve@dtu.dk

ABSTRACT

In this article we explore several methods for improving retrieval performance for specialized domain search engines. As a
case study we use a specialized search engine for rare diseases called FindZebra.
We approach the retrieval optimization problem from four directions. The first direction is by means of using improved retrieval
models based on machine learning. The second direction is through the use of ensembles. The third direction is through
corpus expansion. The fourth direction is by incorporating structured data sources.
Specialized domain search engines are often faced with the problem of a small amount of data. This aggravates the risk of
over-fitting. We propose a regularization method that greatly reduces the risk of over-fitting. The method can be considered a
very aggressive form of input dropout and enables use of complex models even when only a small amount of data is available.
We compare our methods with Apache Solr, which is a state-of-the-art open software information retrieval system. By using a
combination of a neural word based model, corpus expansion, ensembles and synonym injection we show that an absolute
performance increase of more than 13% can be obtained.

1 Introduction

Specialized domain search engines1 are very common. For example, most companies and educational institutions have a
custom search engine for their internal data collection. Each item in the data collection typically consists of a text and some
meta-data which is often very specific to the domain. For example, a bookstore might have a description of each book along
with its category, author, title and ISBN number. Or a medical search engine might have a unique identifier of the disease
described by each document along with meta-data on common symptoms, relation to genes etc.

Open source software packages such as Apache Solr1, Elastic Search2 or Indri3 offers easy access to creating specialized
domain search engines. They are very fast, fault tolerant, easy to use, and typically provide good performance. However, they
rely on very simple document retrieval models based on word frequencies and such retrieval models may not be optimal for all
purposes. Consider, for example, the case where we have several documents describing aspects of the same object. In such
a case there is information lost by treating each document as separate, as is e.g. done in a typical word based model such
as the one used by Solr. To give a concrete example, we may have several articles describing the same disease in a medical
corpus. Similarities between texts describing the same disease will give information about which features (e.g. symptoms) are
considered important.

In this article we will explore several directions for improving retrieval performance for specialized domain search engines
using the rare disease2 search engine FindZebra3 as a case study. Even though some of the methods used will be specific to
FindZebra, the general ideas and findings will be applicable to other specialized search engines.

The rest of the article is organized as follows: We give an introduction to the FindZebra search engine in section 2. In
section 3 we will describe the different models used in our proposed methods. In section 4 we will investigate two methods for
corpus expansion, one by manual expansion rules and one by using a very simple semi-supervised algorithm for inclusion
of case studies. In section 5 we will take a look at how to incorporate meta-data into the search engine. In section 6 we will
present the results from using the described methods for optimization of retrieval performance. In section 7 we will take a look
at some possible improvements and future directions for the methods. Finally, we conclude the article in section 8.

1Also called vertical search engines, see https://en.wikipedia.org/wiki/Vertical search
2A rare disease is a disease that affect a small percentage of the population. There is no consensus on how small this percentage has to be for the disease to

be considered rare. In the United States a rare disease is defined as a disease that affects less than 1 in 1500.
3See http://www.findzebra.com

2 The FindZebra search engine
FindZebra is primarily a search engine for rare diseases. It does, however, also contain articles on more common diseases such
as influenza. It uses a Solr backend and the baseline corpus is based on a high quality corpus of medical texts consisting of
14.261 articles from the 6 sources shown in Table 1. Besides from this corpus, FindZebra uses a couple of databases on genes
and disease-gene relationships. Theses databases will neither be described nor used in this article. The by far most important
source of structured information used by FindZebra is the UMLS database.

The baseline FindZebra corpus
Source #documents
GARD 1.341
Gene Reviews 321
GHR 738
OMIM 4.615
Orphanet 3.376
Wikipedia 3.870
Total 14.261

Table 1. Overview of the documents in the baseline FindZebra corpus. The articles cover 8.280 diseases in total.

2.1 The UMLS database
The UMLS database is an ontology of medical concepts. It is currently maintained by the National Library of Medicine4. Each
word/phrase in the database is associated with a concept id (CUI). For example influenza, influenzas, flu, human influenza etc.
all share the same CUI since they are all conceptually equal. This relation between synonymous words/phrases is very useful
and is used in several parts of FindZebra. In the following we describe how the UMLS database is used for symptom extraction
and for mapping of articles to diseases IDs.

2.1.1 Mapping of symptoms using UMLS
Each concept in the UMLS database has an associated semantic type such as Amino Acid Sequence or Congenital Abnormality.
This taxonomy makes it possible to identify symptom terms and synonyms of these. By extracting the concepts with the
semantic types Sign or Symptom and Finding we compiled a list of 6200 symptom words corresponding to 2092 distinct
symptoms. This symptom list is used various places in FindZebra. For example it is used for boosting symptom terms in
queries, for symptom synonym detection in text and queries and for symptom extraction from articles. In this article though, we
will only use the synonym list for teaching the models symptom synonym relationships (section 5).

2.1.2 Mapping of articles to disease IDs using UMLS
Each article in the corpus has a title consisting of the disease name. These disease names can be mapped to a CUI. However,
just as a word such as “jaguar” can have different meanings depending on the context, so can UMLS concepts. In order to map
an ambiguous article title, we use the concept with a semantic type of Disease or Syndrome. By using this mapping we can
group articles describing the same disease in the search results and thereby change FindZebra from being a simple document
search engine to a diagnostic hypothesis engine.

3 Models
3.1 Neural models
We compare three different types of neural model architecture. The architectures all consist of a text encoder module and a
classification module. The classification module is the same for all three architectures and can be seen in Figure 1. It consists of
three dense layers with 2000 units in each and relu activation. Between the layers we use batch normalization4. After the three
layers we have a dense output layer with a softmax activation. The full architecture for for each of the models will be described
separately in the following.

3.1.1 Neural BOW model
The architecture of the neural bag of words (BOW) model can be seen in Figure 2. It takes a set of words as input. These words
are transformed to embedding vectors by using a hash embedding5 with 35k buckets and two hash functions. The word vectors
are subsequently summed in order to create a single vector representation of the text.

4See http://www.nlm.nih.gov/research/umls/

2/11

Fully Connected

Fully Connected

Fully Connected

Fully Connected

2,000
ReLU

2,000
ReLU

2,000
ReLU

Num classes
Softmax

Classification module

Figure 1. The architecture of the classification module (last four layers) of the neural models. The numbers to the right of
each layer is the activation function of the layer (above) and the number of units (below). The blue dots represent batch
normalization.

Embedding Layer

Sum

Classification module

1,000

1,000

Figure 2. The architecture of the neural BOW network. The numbers to the right of each layer indicates the number of units
in the layer.

A BOW model does not use the ordering of words in a sentence. This has the undesirable consequence that two sentences
with a very different meaning such as

• the patient suffered from a rash on the stomach and pain in the hand

• the patient suffered from pain in the stomach and a rash on the hand

are considered as equal by a bag of words model. Note that not even very local sequence information is preserved, e.g. the
BOW model does not consider “abdominal pain” to be a single concept but as two separate words.

It is, however, possible to incorporate local sequence information into a BOW model by using n-grams. In an n-gram
model sequences of up to n words are used as input features instead of single words. For example, the first sentence above
could be transformed to the patient suffered from a rash on the stomach and pain in the hand in an n-gram model. In that
way all essential sequence information can be preserved. However, it can be difficult to determine the best transformation of
unigrams to n-grams. E.g. should the sentence the patient suffered from be transformed to the patient suffered from or to the
patient suffered from? There are two methods of transforming a sentence into a bag of n-grams. The first method is based on
corpus statistics. It compares the frequency of e.g. the sequence abdominal pain with the frequencies of each of the words
abdominal and pain. More precisely, it identifies n-grams by scoring each sequence of two (n-1)-grams by

score(wi,w j) =
#wiw j−δ

#wi#w j

Here #wiw j denotes the number of occurrences of the bi-gram wiw j and #wi, denotes the number of occurrences of the word wi.
If score(wi,w j) is above a given threshold, we consider wi w j to be an n-gram. The method can be applied iteratively in order
to identify higher order n-grams (see6 for details). The second method is simply to use all possible n-grams of a sentence as

3/11

input and let the model figure out which ones to use. We will use this second method for transforming a sentence into a bag of
n-grams, for n≤ 2. The architecture of the neural bag of n-grams is the same as the architecture of the BOW model.

3.1.2 Word recurrent neural network
A recurrent neural network has the capability of understanding the sequence structure of a sentence and is able to relate different
parts of the sentence to each other. A sentence such as the patient denied that he had abdominal pain but not that he had a
headache would be impossible for a BOW/n-gram model to understand correctly, but it could be understood by a recurrent
model. The architecture of the word based recurrent network is shown in Figure 3. The input layer is the same as for the BOW
model, i.e. we use a hash embedding layer with 35k buckets and two hash functions. Following the embedding layer, the word
vectors are feed through two bidirectional LSTM7 layers. After each of the LSTM layers there is a linear transformation with a
relu activation (applied at each timestep).

We tried several different variants of the architecture, including architectures with/without the time distributed layer, with
one/two bidirectional layers, with/without activation after the sum layer and architectures with residual connections8. The
architecture in fig 3 was, however, the architecture with the by far lowest validation error.

Embedding Layer

Bidirectional LSTM

Time distributed

Bidirectional LSTM

Time distributed

Sum

Classification module

250

512

512

512

512
relu

512
relu

Figure 3. The architecture of the word based recurrent network. The numbers to the right of each layer denote the activation
function of the layer (above) and the number of units (below). The outputs of the forward and backward LSTM layers are
concatenated for each timestep and the number next to the LSTM layer indicate the total number of units in the two layers. The
time distributed layer consists of a linear transformation applied a each timestep, followed by a relu activation.

3.2 Character recurrent neural network
Character level recurrent models are models that consider a text as a sequence of characters instead of a sequence of words.
Character level models can be quite difficult and time consuming to train, but they also have several advantages:

1. they can easily handle all words (including for example proper names), and do not require a dictionary.

2. they can more easily learn similar representations for similarly spelled words (such as the same word in singularis and
pluralis).

3. they are very robust to spelling errors since such models typically can smooth over spelling mistakes (see section 6.6).

A word based model, on the other hand, is very vulnerable to spelling errors since just a small spelling error will alter the
information content of a word completely. This problem of word based models can be alleviated somewhat by using Levenshtein
distance9 to correct misspellings. Levenshtein distance is also sometimes called edit distance since the distance between two
words in this metric is equal to the minimum number of single character edits required in order to turn one word into the other.

4/11

When encountering a word not in our dictionary, we can thus choose one of the closest words as a correction. However, such
methods are far from perfect and typically the user will have to verify the correction.

The architecture of the character based model used in the experiments is show in Figure 4. It uses a standard embedding in
the input layer. After the embedding layer we have two bidirectional LSTM layers with batch normalization in between. The
characters used by the model consist of digits, letters, punctuation and whitespace letters.

Embedding Layer

Bidirectional LSTM

Bidirectional LSTM

Classification module

250

512

1024

Figure 4. The architecture of the character based recurrent network. The blue dots represent batch normalization. The
outputs of the forward and backward LSTM layers are concatenated for each time step. The number next to the LSTM layer
indicate the total number of the units in the two layers. We use the output from the last time step as output for the final
bidirectional LSTM layer.

3.3 Baseline retrieval model
The baseline retrieval model consists of an Apache Solr database with the default similarity scoring. This scoring algorithm
computes the similarity between a query q and a document d. The scoring formula is given by

score(q,d) = LdCq,d ∑
t∈q

√
tf(t,d) · idf(t)2Bt

t,d,q = term,document,query
Ld = “higher score to shorter docs”

Cq,d = fraction of q covered by d
Bt = boost applied to term t

tf(t, d) = #occurrences of term t in d

idf(t) = 1+ log
#docs

1+#docs containing t

Note that scores cannot be compared across queries. I.e. the fact that score(q1, d) > score(q2, d) does not imply that q1 matches
d better than q2. However, in order to be able to (approximately) compare scores between queries, Solr normalizes queries by a
normalization factor. A more thorough description of how Solr ranks documents for a query can be found in10.

Even though Solr uses a similarity scoring that is (relatively) simple, it is still a very strong baseline model that often
performs surprisingly well in practice. In11, for example, it is shown that FindZebra with a Solr backend is more than twice as
likely to have the correct diagnosis in top 20 of the search results compared to other popular alternatives such as Google or
PubMed.

3.4 Ensembles
The models described above are very different. There is especially a large difference between the frequency based Solr model
and the neural models. Diversity is often considered key for obtaining performance improvements when using ensemble
models12. We try two different types of ensembles:

1. Majority voting (soft voting) In soft voting each classifier Ci in the ensemble cast their vote in the form of a probability
distribution Pi = (p1, . . . , pN) over the N target classes. We then use the element-wise average P = 1

N ∑i Pi for ranking.
Note that this method cannot be used with a Solr model in the ensemble since the ranking scores of Solr do not translate
to probabilities in any meaningful way.

5/11

2. Merge voting When using this method each model iteratively proposes its most confident target prediction. I.e. we make
a list by starting with the most confident prediction from each of the models, then adding the second most confident
predictions, etc. When using this simple ensemble scheme, we can use any model that can be used for ranking (including
a Solr model).

4 Corpus expansion
The baseline FindZebra corpus consists of 14.3k articles from the datasources listed in table 1. 62.7% of the 8280 diseases in
the corpus are described by a single document, 20.5% by two documents, and only 16.9% are described by three documents
or more. This means that the by far the largest part of this baseline corpus is described by only one or two documents. The
primary problem with having so few articles on each disease is that we have no way of determining word importance except by
using word frequencies (i.e. a rare word is more discriminative than a common word). However, a machine learning model
will be able to use other kinds of important information contained in the corpus. For example, a machine learning model can
learn information about synonyms. This is because the meaning of a word is determined by its context (the distributional
hypothesis13), and such patterns are identifiable by a machine learning model. Such information can help increase generalization
performance. We will investigate this property further in section 5. Thus even though our machine learning models will be able
to extract some information from the baseline corpus, it is necessary to expand the corpus in order to be able to fully exploit the
capabilities of machine learning methods.

In the following we will describe two methods for corpus expansion, one by static expansion and one using semi-supervised
learning for inclusion of case studies.

4.1 Corpus bootstrapping by static expansion
This corpus expansion method bootstraps a new corpus by using the disease ids already present in the baseline corpus, a general
search engine, the UMLS database and a collection of regular expressions. The approach was as follows:

1. Compile a list of diseases from the baseline FindZebra corpus and determine all known aliases for each disease name
using the UMLS database.

2. For each of theses disease alias, search the internet using a general purpose search engine (we used DuckDuckGo) and
save all search result links.

3. Sort the web domains by number of hits

4. Most of the domains in the top domains turned out to be disease databases such as Webmd or Disease Info Search, that
are not in the baseline FindZebra corpus. We chose 12 of these disease databases.

5. For each domain, we created 2-4 regular expressions capable of extracting the core information from their disease pages.
These regular expressions are not bulletproof and were constructed to include too much rather than too little.

6. For each of the saved links belonging to one of the selected domain, we then used one or more of the regular expressions
to extract the relevant text. These new articles were then added to the FindZebra corpus.

Using this approach we were able to increase the number of documents from 14.3k to 136.6 articles and the number of diseases
from 8.280 to 12.537. Even thought the quality of these new articles is not as good as those in the baseline corpus, they are still
of very high quality. In addition to the new articles we also included 7.1k articles from the baseline sources that had previously
been excluded from the baseline corpus because they could not be mapped to ICD-10 codes. The total number of articles in the
expanded corpus is thus 143.7k articles.

The disadvantage of this static approach to corpus expansion is that it does not scale well and that it uses only a fraction of
the information available. I.e. we retrieve 75 links for each disease alias, but we use only 12 of these at most.

4.1.1 Semi-supervised case study labeling
The PubMed Central Open Access dataset5 is a publicly available dataset consisting of more than 1 million biomedical articles
covering a wide range of subject areas. Most of these categories are irrelevant to diagnosis. However, one of the categories
is case studies and articles under that category could have a high diagnostic value since they typically describe signs and
symptoms not included in standard textbook material. We extracted 51k case studies from the total dataset. In order for our
search engine to be able to use these articles, they must be labeled somehow. Unfortunately, these case studies are not labeled
with information on the identity of the disease. A case study does furthermore not even always describe a single disease. For

5https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/

6/11

example, it is a bit unclear if the case study6 with the title Treatment of Ipilimumab Induced Graves’ Disease in a Patient with
Metastatic Melanoma is about Graves’ disease or about metastatic melanoma. Clearly, our labeling should take this ambiguous
nature of case reports into account.

We use a non-parametric classifier c for labeling the case studies. The classifier gives equal probability to each disease
that has an alias of the disease name occurring in the case study title. The ambiguity problem is solved by including the same
case study several times but with different labels (one for each of the possible diseases). E.g. in the example above we would
include a copy of the case study with the label Graves’ disease and a copy with the label metastatic melanoma. Even though
this method is quite simple, it gives very good results (as we will see in section 6.5).

5 Synonym injection
There are several potential ways to use the synonym list described in section 2.1.1. We could for example identify all symptoms
in a text and then augment the text with a list of all known synonyms for these symptoms. However, the most natural way of
including symptom synonyms is by using them where they occur. We do this a bit differently in the Solr model and in the
neural models, since we have more flexibility when training the neural models.

1. Solr model. When indexing the Solr database we replace each symptom with a canonical form. The same is done with a
query. I.e we normalize the corpus and queries to the same canonical form.

2. Neural models It is reasonable to hypothesize that the most natural form of a symptom is the one already occurring in
the text. When creating a text sample for the neural models we therefore only select a synonym for replacement with 50%
probability. In case of replacement, we choose a replacement between all known synonyms (including the one occurring
in the text). I.e. the probability of replacing a symptom with one of its n−1 synonyms is 0.5 n−1

n . There are of course
several potential variations of this method. For example we could use the corpus word distribution and use this to choose
a synonym replacement (i.e. the probability of choosing a given synonym would be proportional to its corpus frequency).

6 Experiments
6.1 Choice of performance metric
FindZebra is intended to be a diagnosis decision support tool. Given a query, the search engine returns a list of possible diseases.
We can view these returned search results as an automatically generated differential diagnosis. The probability of having the
correct diagnosis in this automatically generated differential diagnosis is therefore a reasonable performance metric. This
performance metric is called recall@k, and is an estimate of how frequent the correct diagnosis appear among the first k search
results. In this paper we use recall@20 as a performance metric.

When training using the baseline corpus, there are 8.3k disease classes, but when training using the expanded corpus there
are 12.5k disease classes. In order to be able to compare performance between the models, we therefore evaluate performance
using only the classes in the baseline corpus. I.e. when evaluating performance for the models trained on the extended corpus,
we filter out disease results that are not in the baseline corpus.

6.2 Training of machine learning models using the FindZebra corpus
The purpose of FindZebra is to rank diseases based on a medical query. We would therefore like to have a large dataset
consisting of medical queries with a “known” diagnosis. Unfortunately, such a dataset does not exist. Instead we use each
article as a proxy of a medical query and hope that the learned knowledge of article text - disease relationships can be transfered
to medical query - disease relationships. Note that there are several differences between an article text and a medical query.
First of all a typical query is rarely more than a list of symptoms, which is different from an article sentence (which is typically
expressed in syntactically correct natural language). Also, a typical medical query only consists of a couple of sentences
whereas an article is typically much longer. Using an article text as a proxy for a medical query poses another problem: If we
use the entire text as input, a machine learning method will typically learn primarily to identify features such as the title of
the document (i.e. the disease name), or to identify document id numbers. This has the consequence that the model will not
generalize very well to new medical queries. In order to force a machine learning method to put emphasis on other features
(such as symptoms), we will use a method that we call snippet sampling. Snippet sampling consists in using a small snippet
of text sampled from a random part of the document as a sample instead of using the entire document. The method can be
considered a very aggressive form of input dropout where we dropout everything but a small fraction of each text. Snippet
sampling can therefore be considered to be a regularization method. As we will see, this regularization method will enable us to
train complex machine learning models even in cases where we typically only have a single article on each disease.

6https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737013/

7/11

6.3 Validation and test sets
As mentioned in section 6.2 we use snippets of text from the documents in the corpus for training. However, such snippets
are not representative of a typical search query. In order to estimate model performance in a realistic setting we use a dataset
consisting of medical questions from a Jeopardy! like game called Doctor’s dilemma featured by ACP7. The game is also
known as Medical Jeopardy. The initial dataset from ACP consisted of 3000 questions. A large number of these questions were
removed because they were ether not related to diagnosis or required visual inspection of e.g. x-ray images. In addition to these
Doctors Dilemma questions we used a set of 56 questions that had been constructed manually by a medical professional. In
total we created 496 queries, of which half is used for validation and the rest is used for testing. The test and validation sets can
be found on-line8.

6.4 Training details
All neural models were trained by minimizing the cross entropy error using the stochastic gradient descent-based Adam
method14 with default parameters. Besides using batch normalization, we did not use l2 or similar methods of general
regularization.

The Keras15 library (with a tensorflow16 backend) was used for implementing and training the neural models. The models
were trained on a GeForce GTX TITAN X with 12 GB of memory.

The training time for the models varied from 1-2 days for the word based models to about 2-4 days for the character based
models.

6.5 Results

Table 2. Recall@20 [%] for the different models. The best results for each dataset is bolded.

Baseline Extended Pubmed
Neural BOW (without synonyms) 62.90 70.97 77.42
Neural BOW (with synonyms) 63.31 71.37 77.42
Neural n-gram 48.79 60.48 64.52
Word LSTM 46.97 58.06 66.94
Char LSTM 46.37 64.11 63.71
Solr (with synonyms) 68.55 69.76 76.41
Solr (without synonyms) 68.55 68.75 75.81

6.5.1 Single model results
The results for the single model setups is shown in Table 2. We note several things from the results on each dataset:

Baseline dataset: We see that the neural models do not perform better than the Solr baseline model on this dataset. This is
not surprising considering that we only have very few samples per disease in this corpus. The recurrent models and n-gram
models do not perform very well using this dataset. However, considering that a typical disease is only represented by 1-2
articles, it is actually quite remarkable that a complex model such as a deep recurrent net can be trained at all without severe
overfitting.

Extended dataset. Using the extended dataset for training gives a huge performance increase for all the neural models, and
a minor performance increase for the Solr model. We also see that the inclusion of more examples pr. disease makes the neural
BOW models perform better than the Solr baseline.

Pubmed dataset. We see that the performance of all models (except the character based model) increases substantially
when the Pubmed case studies are added to the extended dataset.

6.5.2 Synonym injection results
We see that using synonym injection only gives small performance increase of about 0-1%. For the neural models this is not
surprising since synonym information is actually learned in an unsupervised manner by these models. Figure 5 displays a t-SNE
plot17 of word representations (i.e. output of the embedding layer). The upper plot shows word representations for the neural
BOW model trained on the Pubmed dataset. We see that synonymous words are represented with almost identical vectors. This
means that the model does not discern between e.g “tumor”, “neoplasms” or “tumors”. In the lower half of Figure 5 we see

7https://www.acponline.org/membership/residents/competitions-awards/doctors-dilemmasm
8Test set: http://www.intellifind.dk/article/test_queries.csv. Validation set: http://www.intellifind.dk/article/

valid_queries.csv

8/11

the same model trained with synonym injection. We see clearly that the model has learned to give identical representations to
synonyms based on the synonym replacements. I.e. by using the synonym injection method we can force the model to give
identical representations to words/phrases that we know are the same. The method can of course also be used to give identical
representation to e.g. gene aliases.

Figure 5. T-snee plots of representations of synonymous words. The upper plot shows the representation of words in a model
without synonym injection, and the lower plot shows the representation of words in a model with synonym injection. The
numbers after the word lists indicate the number of words in the list. The models used are BOW models trained on the PubMed
dataset.

6.5.3 Ensemble results
We explore two kinds of ensemble:

• The first ensemble is a soft voting ensemble consisting of two neural BOW models trained on the Pubmed dataset. We
use a model trained using synonym expansion and one trained without. Even though the models are quite similar, we
obtain a recall@20 of 81.85% which is much better than the best single model recall of 77.42%.

• The second ensemble is a merge voting ensemble consisting of a neural BOW model trained on the Pubmed dataset with
synonym expansion and the Solr model. Using this ensemble we obtain a recall@20 of 81.05%.

6.6 Misspellings
As noted in section 3.2, the character based models are much more robust towards spelling errors. In order to quantify this
we introduce artificial spelling errors and measure the decrease in performance for both word based models and character

9/11

based models. We define a spelling error to be either a deletion, an insertion or an addition of a new character. A new query is
created by iterating over the characters in a query and introducing a misspelling with a given probability at each character. For
example, a 10% misspelling probability could turn the query “ataxia, confusion, insomnia, death” into the misspelled query
“atxia,RconfuHsion, intonia, death”. In Figure 6 we see the recall@20 performance degradation of three different models as a
function of the misspelling probability. We see that the performance degradation of the two word based models are almost
identical and quite severe. The character based model on the other hand is not affected nearly as much by misspellings.

0% 5% 10% 15% 20%
0%

25%

50%

75%

100%

Misspelling probability

R
el

at
iv

e
re

ca
ll@

20
Impact of misspelling

Neural BOW
Char model
Solr

Figure 6. Impact of misspelling errors on the different models. The figure shows the recall@20 degradation as a function of
misspelling probability for two word based models and one character based model. The models have been trained on the
Pubmed dataset and the numbers are relative to model recall@20 when there are no misspellings.

7 Future Work
There are several possible directions for future work. We saw that the inclusion of additional data in the corpus gave a large
increase in performance. Two interesting directions for future work could therefore be to:

• investigate methods for incorporating the Pubmed case studies by using more sophisticated semi-supervised methods
such as label propagation18 or co-training19 instead of using a non-parametric classifier as we did.

• investigate methods for incorporating even more data. For example, a web crawler could easily collect a huge amount of
data by using a web search engine and this data could be added in the same way as the case studies.

We saw that a character model is very resilient toward spelling errors. We believe that introduction of misspellings when
training will make the model more or less immune to spelling errors and provide a degree of regularization that might even
increase the overall performance.

It could also be interesting to investigate other methods for inclusion of structured meta-data. E.g. we could use structured
data such as ICD-10 codes, gene synonyms or databases of gene-disease relationships.

Since each of the models described in this article is quite time-consuming to train, we have only performed a crude
investigation of model hyper parameters in order to determine the best architectures. It will probably be possible to improve
performance somewhat by fine-tuning the model hyper parameters.

The more complex recurrent models did not perform as well as we had expected. This is probably caused by insufficient
training data. We might be able to obtain better results by pre-training the models in an unsupervised manner on unlabeled data.

8 Conclusion
In this article we have shown how to improve the performance of a specialized domain search engine using various methods
such as corpus expansion, synonym injection, improved neural retrieval models and ensembles. The combination of these

10/11

methods yielded a substantial absolute increase in performance of 13.3% compared with the baseline Solr model using the
baseline corpus. The bulk of this performance increase seems to come from the corpus expansion and use of ensembles.

The results indicate that a certain amount of data is necessary in order to obtain better performance using a neural model
compared to a frequency based model such as the one used by Solr. This seemed to be especially true for the more complex
models such as the recurrent nets and n-gram models.

We showed that the snippet sampling regularization method allows us to train extremely complex models even when only
very few samples of each class is available.

We saw that inclusion of meta-data such as symptoms has a very limited impact of performance, especially for the neural
models since these models implicitly learn such relationships during training.

We believe that the findings in this article may prove useful in other specialized search engines.

Acknowledgments
The authors wish to thank the Lundbeck Foundation for supporting this research project and ACP for use of the Doctors
dilemma questions.

References
1. Smiley, D., Pugh, E., Parisa, K. & Mitchell, M. Apache Solr enterprise search server (Packt Publishing Ltd, 2015).

2. Gormley, C. & Tong, Z. Elasticsearch: The Definitive Guide: A Distributed Real-Time Search and Analytics Engine (”
O’Reilly Media, Inc.”, 2015).

3. Strohman, T., Metzler, D., Turtle, H. & Croft, W. B. Indri: A language model-based search engine for complex queries. In
Proceedings of the International Conference on Intelligent Analysis, vol. 2, 2–6 (Amherst, MA, USA, 2005).

4. Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift.
CoRR abs/1502.03167 (2015). URL http://arxiv.org/abs/1502.03167.

5. Svenstrup, D., Hansen, J. M. & Winther, O. Hash embeddings for efficient word representations. arXiv preprint
arXiv:1709.03933 (2017).

6. Le, Q. V. & Mikolov, T. Distributed representations of sentences and documents. In ICML, vol. 14, 1188–1196 (2014).

7. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural computation 9, 1735–1780 (1997).

8. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 770–778 (2016).

9. Levenshtein, V. I. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics doklady, vol. 10,
707–710 (1966).

10. Grainger, T., Potter, T. & Seeley, Y. Solr in action (Manning Cherry Hill, 2014).

11. Svenstrup, D., Jørgensen, H. L. & Winther, O. Rare disease diagnosis: a review of web search, social media and large-scale
data-mining approaches. Rare Dis. 3, e1083145 (2015).

12. Brown, G., Wyatt, J., Harris, R. & Yao, X. Diversity creation methods: a survey and categorisation. Inf. Fusion 6, 5–20
(2005).

13. Harris, Z. S. Distributional structure. Word 10, 146–162 (1954).

14. Kingma, D. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).

15. Chollet, F. et al. Keras (2015).

16. Abadi, M. et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467 (2016).

17. Maaten, L. v. d. & Hinton, G. Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008).

18. Zhu, X. & Ghahramani, Z. Learning from labeled and unlabeled data with label propagation. (2002).

19. Blum, A. & Mitchell, T. Combining labeled and unlabeled data with co-training. In Proceedings of the eleventh annual
conference on Computational learning theory, 92–100 (ACM, 1998).

11/11

Appendix B

Information Completion for
Medical Search Assistance

Information completion for medical search
assistance

Dan Svenstrup, Jonas Meinertz Hansen, Mads Emil
Matthiesen and Ole Winther

Abstract: We present a method for performing information completion
(IC) in the context of medical search assistance. Medical IC is defined as
the process where the search engine queries the user for additional infor-
mation with the purpose of finding the correct diagnosis. This additional
information could be in the form of test results (e.g. blood pressure),
other diseases that the user might have (e.g. congenital abnormalities),
or symptoms that the user has not yet supplied to the search engine
(e.g. abdominal pain). We show that it is possible to train an IC sys-
tem using only a corpus of unstructured medical texts and the UMLS
database. The performance of the system is measured by its ability to
predict withheld symptoms from multi-symptom diagnosis queries. This
is a quite conservative measure because it ignores the possibility of the
proposed symptoms being related to the exact match. Since we usually
expect that the user will only have short time to solve the task, the IC
system is limited to ask the user a very limited number of questions.
Our main metric for evaluating performance is therefore recall@k where
k ≤ 10. Recall@k is defined as the probability of a relevant question be-
ing among the top k questions. In order to obtain a good baseline level
of performance for future IC systems, we have trained several different
deep neural models and have achieved a recall@10 of more than 35%
using our best model on a test set of medical questions. This level of
performance makes the IC system usable in practice, especially consid-
ering that this recall estimate is a very loose lower bound.

Keywords and phrases: Deep learning, information completion (IC)
systems, information retrieval, medical search, symptom checker.

1. Introduction

Medical search is one of the major usages of the internet. Each year approx-
imately 35% of all adult Americans use the internet for diagnosis, and most
(77%) of all the searches began at a standard search engine such as Google
or Bing [Pro13]. This is also reflected in the fact that a staggering 1% of all
Google searches are health related [blo16]. In [Dra+13] it was shown that
a specialized search engine for rare diseases can actually give more precise
results compared to standard web search such as Google search (measured

1

/ 2

by recall@k). This was shown to be caused by the nature of the ranking algo-
rithm (a standard search engine is in a way weighing the document matches
against the “popularity” of the document, instead of finding the best symp-
tom match combined with prevalence information). On top of providing an
improved recall, a specialized search engine can also assist the user in im-
portant ways both before and after the search:

• Before the search. At this stage the search engine can help the user
construct a good search query, e.g. by providing a clickable avatar
that can help the user specify the correct body part of an ailment, if
applicable.
• After the search

– If the search has been successful, the search engine should help
the user by providing more information on the disease. This in-
formation could be in the form of links to case reports and other
textual information about the disease, addresses to the nearest
expert centers and so on.

– If the search has not been successful, the search engine can still
provide important feedback by e.g. asking relevant questions about
other diseases/symptoms that the user might have, or suggest ad-
ditional medical tests. We will refer to this interactive procedure
following an unsuccessful search as medical information com-
pletion (IC). More precisely we will define medical IC as the
process of asking a user relevant questions with the express pur-
pose of filling out missing or incomplete information that could
be important for the diagnosis.

In the rest of this article we will describe a quantitative method for evalu-
ating the performance of medical IC systems. I.e. we will quantify how well
the model “finds the missing information” and use the method to evaluate
the performance of several deep neural network models trained for IC.

The rest of the article will be structured as follows: In section 2 we will
take a look at some methods that are similar to the those proposed in this
paper in the sense that they can be used to find information related to a given
text string. In section 3 we will describe how the collection of possible IC
questions (in the form of symptoms, test results and diseases) was selected.
Once such a list of questions has been compiled, the next problem is how to
create test and training/validation sets. This will be described in section 4.
In section 5 we will describe the architectures of the different used IC models.
In section 6 we will explain why the reported performance of the IC models

/ 3

can only be considered a lower bound, and we will report the performance
(measured by recall@k) of the different models. Finally, in section 7 we will
discuss other, and perhaps better, ways of performing medical IC.

2. Related work

To our knowledge, no previous work has been done specifically on medical
information completion. However, there are several closely related areas that
have been treated in the literature.

Arriving at a diagnosis based on a series of queries may be considered a
medical sequential decision problem that can be approached by reinforce-
ment learning techniques [Poo03]. The approach taken in this paper may be
seen as a greedy approximation to a full reinforcement learning approach.
The main reason for this is that the data required for setting the problem
up as reinforcement learning is not easily available, see the section 4.

Textual information completion in general can be thought of as the process
of finding information related to the semantic content of a string or group of
strings, with the express purpose of finding the answer to a specific question.
One way of finding information related to the semantic content of a group of
strings is by Latent Dirichlet Allocation (LDA) [BNJ03]. In LDA a document
is generated by:

1. choosing a topic distribution φ for the entire document.
2. for each word we wish to generate, we first draw a word topic θ from φ,

and then draw a word from the conditional word distribution P (w | θ).
Once such a model has been trained we can draw words related to the query
headache, abdominal pain by first estimating the document topic distribu-
tion, draw a topic from this topic distribution and finally draw a word from
the conditional word distribution. Using an LDA model in this way will gen-
erate words that are related to the query string in the sense that “in this
kind of document we see these kinds of words”. This could seem like a good
idea, but the proposed words will not bring us closer to the answer that we
seek. The reason for this is best illustrated by an example: suppose we wish
to build an information completion system for movies (i.e. a system that,
based on an input query, asks the user questions with the express purpose
of finding the movie title that the user is looking for). This system would
take as input some information about the movie e.g. “the lead actor was
Tom Cruise and it was produced in the 80’s”. Based on this information the
system should try asking the user questions like: “Was Val Kilmer also in

/ 4

the movie?”1. However, if you give this information to an LDA model, it will
typically just propose random male actors from the 80s. This is of course
also related to the query string, but the proposed questions will not help us
get closer to the name of the movie. Thus, LDA fails to meet the second
requirement of an IC system.

Information completion is also related to auto-completion as found in e.g.
web browser search fields. However, the purpose of auto-complete is finding
a syntactical completion of a query sentence (and not a semantic completion
as is the case with IC models).

Filters on web search pages is another form of information completion.
A filter is a way of indicating the category of the search. For example, an
internet store might have a general search field for the initial search and then
allow the user to filter out everything except results about books, guitars,
food etc. Something similar to information completion can also be found on
many medical search sites. For example, WebMD uses an avatar (a clickable
miniature body) that you can click on in order to narrow down the region
of the possible input symptoms. This, however, is not IC since you click on
the avatar before you enter the text query (i.e. you do not really complete
anything).

All but one of the medical IC models that we are presenting in this paper
estimates a target symptom from its context bag-of-words. Such a model can
be considered an advanced form of correlation analysis, where we use a deep
neural network to estimate how much a group of words “correlate” with a
given symptom. The multiple correlation coefficient measures the Pearson
correlation between a true target value and a target value predicted by a
linear model. The quantification method used to evaluate performance of
the models presented in this paper can thus be seen as an extension of the
multiple correlation coefficient, where we use a deep neural network instead
of a linear model, and recall@k instead of correlation.

3. Symptom selection and extraction

In the rest of the article, the word symptom will be used for both test
results (e.g. low blood pressure), actual symptoms (e.g. abdominal pain)
and diseases (e.g. skin cancer). A necessary pre-requisite of being able to
propose or identify symptoms in text, is of course a list of symptoms. The
list of symptoms was created in a multi-stage filtering process:

1The movie Top Gun featured Tom Cruise and Val Kilmer in the lead roles.

/ 5

1. First a raw symptom list was created, consisting of all UMLS2 terms
with a semantic type of Acquired Abnormality, Anatomical Abnormal-
ity, Cell or Molecular Dysfunction, Congenital Abnormality, Disease
or Syndrome, Experimental Model of Disease, Finding, Injury or Poi-
soning, Mental or Behavioral Dysfunction, Sign or Symptom, Neo-
plastic Process, or Pathologic Function. These semantic types cover all
diseases, signs and symptoms.

2. Then all symptoms that we had no information about were removed,
i.e. symptoms that do not occur in the corpus (see Section 4 for the
contents of the corpus).

3. Then all but the most frequent 3000 symptoms were removed.
4. Each symptom on the symptom list was then reviewed and we manu-

ally removed 859 concepts that should not be posed as a question to a
user, e.g. “room air”, “administered intravenously”, “very limited” or
“male predominance”. This left us with a final list of 2141 symptoms.
The list can be found on-line3.

85% of all symptom occurrences in the FindZebra corpus are symptoms that
occur in our curated list. Furthermore, most of the symptoms in the Find-
Zebra corpus that are not in the list seem to consist mainly of specialized
versions of symptoms in our list e.g. severe abdominal pain instead of ab-
dominal pain. The curated list of symptoms can therefore be considered to
provide relatively good coverage of all symptoms in the UMLS database.

4. Data

4.1. Training set

Ideally, we would have liked to have a data set consisting of a large number
of pairs of the form (search query, missing information) where the
missing information could be a symptom or a test result. Unfortunately such
a data set does not exist. Instead we constructed a data set by extracting
a large number of word sequences with at least 1 symptom from our target
symptom list. Each sequence consisted of up to 20 words. From each sentence
we iteratively removed one target symptom and used the pair (modified
sentence, target symptom) as a sample. The sequence length was chosen
based on a rough estimate of the average sentence length.

2the UMLS database is a database describing the properties and relations between
medical concepts. It is maintained by National Library of Medicine. See www.nlm.nih.
gov/research/umls/

3http://www.intellifind.dk/article/symptom_list_curated.txt

/ 6

The corpus used for extraction of sentences was an extended version of
the corpus used by our rare disease search engine FindZebra (see Table 1).
As mentioned above, we iteratively deleted one of the symptoms/test results
from each of the extracted sequences. E.g. the sentence The patient suffered
from abdominal pain, fever and headache was transformed into the 3 samples

• The patient suffered from fever and headache.
• The patient suffered from abdominal pain and headache.
• The patient suffered from fever and headache.

This resulted in a data set consisting of approximately 4.5 million samples.
Of course, a data set created in this way will be quite noisy (see Table 2 for
some samples from the data set). Often there is only a small resemblance
between a typical query (which is often just a list of symptoms) and sam-
ples in the training set. Therefore there is no guarantee beforehand that a
trained model will generalize well to typical queries. From Table 2 it is also
worth noticing that the UMLS database is not quite complete. For exam-
ple we should have matched intra-abdominal carcinomatosis instead of just
carcinomatosis in the last sample.

The core FindZebra corpus
Source Number of documents Data quality
GARD 1917 Very high
Gene Reviews 638 Very high
GHR 1075 Very high
Omim 8062 Very high
Orphanet 4578 Very high
Wikipedia 5154 Very high
Bootstrapped data set 122300 Good

Table 1
Overview of the number and quality of documents in the FindZebra corpus. The

bootstrapped data set was created by searching the internet for articles about each of the
diseases in the core FindZebra data set.

4.2. Validation and test sets

Normally the data set would be split into a training set, a validation set
and a test set and the generalization performance of the different models
would be measured on the test set. However, as mentioned above, many of
the samples in the training set have little resemblance with a typical query.
In order to test the model in a realistic setting we therefore used a data
set consisting of actual medical questions/queries. The questions used were

/ 7

Removed symptom Training set sample
neoplasms , this has returned different genetic alterations (data

not shown) cdc are generally considered to be aggressive
neoplasms

fever mds is discovered only incidentally on routine blood
counts previous chemotherapy or radiation exposure is
an important historic fact fever

diarrhea infancy two forms are recognized : early-onset mvid with
diarrhea beginning in the neonatal period , and late-onset
, with

hypophosphatemia of 11 years , at which time laboratory data revealed
hypophosphatemia , elevated vitamin d levels , and hy-
percalciuria a

hypercalciuria of 11 years , at which time laboratory data revealed
hypophosphatemia , elevated vitamin d levels , and
hypercalciuria a

lesions sekeres ma , theil ks , maciejewski jp chromosomal and
uniparental lesions disomy detected by snp arrays in mds
,

ehlers-danlos syndrome mitral valve prolapse , ehlers-danlos syndrome and other
diseases that present with aortic aneurysm such as loeys-
dietz syndrome (see

carcinomatosis one with possible early stromal invasion two of the five
patients who developed intra-abdominal carcinomatosis
were among 78 patients in

Table 2
Some samples from the training set. The removed symptom is crossed out. Note that a
“symptom” in this context can mean both an actual symptom, a test result or a disease.

/ 8

from a Jeopardy! like game called Doctor’s dilemma featured by ACP4. The
game is also known as Medical Jeopardy, and is held once a year at the
scientific Internal Medicine Meeting where up to 50 teams of residents from
all over the world compete for the title of national champion. We obtained
a data set from ACP consisting of 3000 questions. A large number of these
questions were removed because:

1. The question was not related to diagnosis (i.e. it was not found in the
FindZebra database). The FindZebra database both contains most
of the known rare diseases and the more common diseases found on
Wikipedia.

2. The question required visual inspection of e.g. x-ray images.
3. The question text did not contain a target symptom from our list of

2141 symptoms.

The test and validation sets can be found on-line5. From these data sets we
then created samples in the same way as we created the training set: by
iteratively removing a symptom from the question (see Table 3 for a few
examples). This left us with a total of 477 validation samples and 473 test
samples.

5. Description of models

In this section we will describe several models for performing information
completion:

1. A model that always predicts the most frequent symptoms.
2. Deep bag of words model (Section 5.1): A basic network with three

hidden layers and a softmax output, using words as input.
3. Deep bag of UMLS terms model (Section 5.2): The same as the words

model above, except that it uses only symptom/gene UMLS terms as
input tokens.

4. Deep bag of n-grams model (Section 5.3): The same model as above,
except that it uses n-grams as features.

5. Deep recurrent model (Section 5.4): A deep, bidirectional recurrent
network with GRU units, with words as input.

4https://www.acponline.org/membership/residents/competitions-awards/
doctors-dilemmasm

5Test set: http://www.intellifind.dk/article/test_queries.csv.
Validation set: http://www.intellifind.dk/article/valid_queries.csv

/ 9

5.1. Deep bag of words model

The deep bag of words model uses the most frequent 20.000 words in our
corpus as features. The number of words was chosen by cross-validation.
The model used embeddings of size 1000, followed by a sum layer over the
time dimension. On top of the sum layer we placed three hidden layers with
2000 units each, and a softmax output layer. We used batch normalization
[IS15] between each of the hidden layers.

As can be seen in table 4 this model actually achieves the best overall per-
formance among all of the used models. Some examples of query completions
proposed by this model can be seen in table 3.

As with all bag of words models, this model has two serious drawbacks:

1. Word ordering: a bag of words model does not take the word ordering
into account. This means that two widely different sentences such as
the patient suffered from a rash on the stomach and pain in the left foot
and the patient suffered from pain in the stomach and a rash on the left
foot are considered as equal by a bag of words model. Also, “abdominal
pain” is not considered a single concept but as two separate words.

2. Feature selection: when using a bag of words model it is necessary
to choose a subset of the words in the corpus as features, and this
subset might not be optimal. E.g. in our case we choose the most
frequent 20.000 words, and even though a lot of these words will be
important, we probably also exclude some other important words, such
as specialized medical terms.

In the following we will describe several models that in one way or another
try solve the two problems above.

5.2. Deep bag of UMLS terms

The deep bag of UMLS terms model tries to solve the feature selection
problem by focusing exclusively on medical (UMLS) terms. There are almost
50.000 symptom UMLS terms and based on cross-validation we choose the
most frequent 25.000 of these. One of the largest advantages when using
the UMLS database is that we can collapse n-grams such as “abdominal
pain” into a single feature instead of two single word features, and that
synonyms can be mapped to the same feature. That is, “stomach ache” is
the same feature as “tommy ache” and “belly ache”. However, even though
there are advantages to using the UMLS database compared to using just
raw word features, there is also a big problem due to the high variability

/ 10

on how medical terms are written. For example, “abdominal pain” could
be written as “pain in the stomach”, “stomach pains” etc. and even though
the UMLS database is very detailed, it is not complete. Furthermore, there
might also be a lot of information in non-symptom features (for example the
word “eat” should probably increase the probability of symptoms related to
food poisoning or diabetes). This non-symptom related information is of
course lost when considering only UMLS terms.

The architecture of the deep bag of UMLS terms is identical to the bag
of words model described above, except that it takes UMLS terms as input.

5.3. Deep bag of n-grams

The deep bag of n-grams uses n-grams instead of words as input features. It
has the potential to overcome the incompleteness problem with the UMLS
database and the problem that there might be important information in non-
symptom words. The method identifies n-grams by giving each sequence of
two (n-1)-grams a score given by

score(wi, wj) = count(wi, wj)− δ
count(wi) ∗ count(wj) (1)

If the score is above a given threshold, the sequence of (n-1)-grams will be
considered an n-gram. Thus, by iteratively calculating the score we can iden-
tify higher order n-grams (see [LM14] for details). However, in this article
we only consider n-grams for n=1-2.

Even though the n-gram model is more nuanced compared to the basic
UMLS model, we still have the problem that the choice of n-grams might be
suboptimal, and we still have not solved the word ordering problem, except
for small word sequences of length less than 3.

The architecture of the deep bag of n-grams is identical to the bag of
words model described above, except that it takes n-grams as input.

5.4. Deep recurrent network

A sequence model such as a recurrent network has the potential to over-
come both of the problems of a bag of words model. Since we are basically
classifying sequences, such a model would normally be our model of choice.
However, there are two potential problems when using a sequence based
model for this particular task:

/ 11

• when removing a symptom from a training sample we are disrupting
the syntactical structure of the sentence.
• the syntactical form of a typical training set sample (natural language)

is often different from the syntactical form of a typical query (typically
not much more than a list of symptoms and test results).

Both of these problems occur because the syntactic structure of a sentence
is (to some degree) learned by a sequence model and used when predicting
the missing piece of information. I.e. the syntactic structure of a sentence is
considered as a feature for such a model. Differences between the syntactical
structure in the train and test set might therefore increase the generalization
error.

We trained the recurrent net on top of a word embedding of size 1000,
with vectors for the most frequent 10.000 words. We used two layers of
bidirectional gated recurrent layers GRU[Chu+14]. The first layer had 256
units, the second had 512. The outputs of the two bi-directional layers were
joined by a sum layer in order to get one representation of the entire sentence.
The sentence representation was finally channeled through two hidden layers
with 2000 units each, terminating in a softmax layer.

6. Results

6.1. Tightness of the performance bound

As described earlier, we test performance on a test set of 473 questions.
It should be noted, however, that measuring the recall performance on the
test set will only give us a very loose lower bound on the performance.
This is due to the fact that the performance evaluation is automatized such
that only prediction of the removed symptom counts as correct, but other
symptoms might also be relevant. I.e. a deleted symptom is automatically
relevant, but other symptoms might also be relevant. For example, when
removing the symptom “high fever” from the query a high fever, runny
nose, sore throat, muscle pains, headache, coughing, and feeling tired, we get
the proposals [fatigue, chills, dizziness, fever, nausea]. Considering that the
query is a query for influenza, all of these proposals are probably relevant,
but none of them is the actual deleted symptom. Other examples of this
can be found among many of the queries in table 3. Also, since we allow the
missing information to be a disease, the correct diagnosis can be among the
proposed symptoms, but even this will typically also count as an error.

When measuring performance we use all queries containing a target symp-
tom. However, there are several arguments why it would also have been rea-

/ 12

Diagnosis Removed
symptom

Test set sample Rank Proposals

Meniere’s
disease

hearing loss syndrome characterized by
tinnitus, hearing loss, ver-
tigo, and aural fullness

1 hearing loss, hearing, sen-
sorineural deafness, deaf-
ness, dizziness

Lemierre Syn-
drome

sore throat syndrome of sore throat,
fever, sepsis, and unilateral
neck swelling

5 headache, chills, lym-
phadenopathy, cough, sore
throat

Tuberculosis hemoptysis infection characterized
by productive cough,
hemoptysis, and cavitary
pulmonary lesion in a
patient with pulmonary
silicosis

3 dyspnea, pneumonia, nod-
ules

Klinefelter syn-
drome

gynecomastia syndrome of gynecomastia,
small testes, and hyperg-
onadotropic hypogonadism

5 cryptorchidism, infertility,
delayed puberty, primary
amenorrhea, gynecomastia

Frontotemporal
dementia

personality
change

dementia associated with
prominent disinhibition and
personality change

10 depression, memory, cogni-
tive impairment, psychosis,
apathy

Eosinophilic
esophagitis

plaques diagnosis for atopy, recur-
rent food impaction and
esophageal rings, furrows,
plaques, or strictures

360 gastroesophageal reflux,
foreign body, dysphagia,
asthma, swallowing

Autoimmune
hepatitis

type 2 dia-
betes

liver disease associated with
type 1 diabetes, thyroiditis,
and celiac sprue

2 autoimmune diseases, type
1 diabetes, thyroid dis-
ease, rheumatoid arthritis,
endocrinopathy

Metabolic syn-
drome

hyper-
triglyceridemia

diagnosis associated
with abdominal obesity,
hypertriglyceridemia, low
hdl, hypertension, and
elevated glucose

5 diabetes, diabetes mellitus,
dyslipidemia, hypercholes-
terolemia, hypertriglyc-
eridemia

Asthma wheezing common syndrome of cough,
reversible wheezing , and pe-
ripheral blood eosinophilia

2 dyspnea, wheezing, chest
pain, asthma, pulmonary in-
filtrates

Table 3
Samples from the test set. The removed symptom is crossed out. The proposals in the last

column are generated by the deep bag of words model described in section 5.1

/ 13

sonable to include only those queries with 2 or more symptoms in the query
text:
• The system is an information completion system. This means that it

is intended to be used when the user has already entered a couple of
symptoms.
• For some queries the target symptom is more or less the only infor-

mation content in the string. Therefore it does not seem reasonable
to expect a model to be able to predict the target symptom from the
modified query. For example, the query schober test is associated with
this condition would become a test sample with text is associated with
this condition and target schober test.

Using only queries with 2 or more symptoms in the query text would lead
to higher reported performance. However, we have chosen not to do this,
since the main purpose of the performance measurement is to enable us to
compare different IC models. In any case, no matter how we decided to
choose the test set, the bound would still be very loose due to the other
problems discussed above.

6.2. Recall@k performance

The recall@k performance for the different models is shown in Figure 1. In
table 4 the recall performance for some selected n is given. The inferior per-
formance of the UMLS model could indicate that either the UMLS database
is not complete enough for this task or that non-symptom words are actu-
ally important. Using learned n-grams does not improve the results, and
actually the opposite happens. This could be caused by the fact that even
though the n-gram adds sequence information to the query, it also takes
away information on the individual words that make up the query. Using
n-grams also makes the query much more specific. For example, reducing
abdominal pain to abdominal_pain is similar to replacing an OR operator
with an AND operator in the query.

The recurrent model performs just as well as the deep bag of words model,
but is much more complex. All in all it seems that the deep bag of words
model is the best choice among the four models.

7. Discussion and further work

In this article we have described a framework for training and evaluating IC
systems. That is, we have shown how we can find missing information in a

/ 14

1 5 10 15 200%

10%

20%

30%

40%

50%

n

R
ec
al
l@

n

Recall@n as a function of n

Neural BOW
Neural UMLS BOW
Neural NBOW
RNN
Most frequent

Fig 1. Recall@n for the different models as a function of n.

search query, how we can compare different IC systems, and how we can get
an estimate of a lower bound on the performance of the system.

What we have actually not shown is how we can integrate this informa-
tion in the best way possible into the diagnostic process. I.e. instead of just
showing the user the symptoms that fits best in the current search query
context, we should propose the symptoms that gives most value to the fol-
lowing diagnostic process. This could be done in several different ways. One
method could be fitting a random forest to the list of possible diseases (found
by standard search), using the top n symptom proposals plus the query as
features. Based on the feature importance we would then obtain a ranking
of the proposed symptoms based on their diagnostic usefulness. However,
it is difficult to objectively measure the performance of such a system, and
this task will be left for future work.

The information completion system described in this article is already
being tested in two FindZebra applications. The first application is a pre-

REFERENCES/REFERENCES 15

Model r@1 r@3 r@5 r@10 r@20
Most frequent symptoms 0.00 0.01 0.03 0.09 0.13
Deep bag of words 0.10 0.18 0.25 0.36 0.49
Deep bag of UMLS terms 0.08 0.13 0.21 0.29 0.39
Deep bag of n-gram 0.04 0.11 0.16 0.25 0.36
Deep recurrent net 0.10 0.19 0.25 0.35 0.46

Table 4
Recall performance for the different architectures.

consultation app (chat bot) that performs information completion using a
mix of static and model generated questions. The purpose of the app is to
gather information on a patient in a pre-consultation session before the ac-
tual consultation with medical professionals begins. The second application
is on findzebra.com where the system will be used for improving the filters
shown following a search.

In this article we have defined the missing information as either a symp-
tom, a disease or a test result. But many other types of information could be
useful. For example, assume that a patient is suffering from a known disease
and that there exists a drug for the disease that has an adverse effect. If the
patient is suffering from the adverse effect it would be valuable information
to know if the patient is actually taking that drug.

8. Acknowledgements

The authors wish to thank the Lundbeck Foundation for supporting the
FindZebra research project and ACP for use of the Doctors dilemma ques-
tions.

References

[BNJ03] David M Blei, Andrew Y Ng, and Michael I Jordan. “Latent
dirichlet allocation”. In: Journal of machine Learning research
3.Jan (2003), pp. 993–1022.

[Poo03] Radhika Poolla. “A reinforcement learning approach to obtain
treatment strategies in sequential medical decision problems”.
PhD thesis. University of South Florida, 2003.

[Dra+13] Radu Dragusin et al. “FindZebra: A search engine for rare dis-
eases”. In: International journal of medical informatics 82.6 (2013),
pp. 528–538.

REFERENCES/REFERENCES 16

[Pro13] Pew Internet Project. Health Online 2013. 2013. url: http :
//www.pewinternet.org/~/media//Files/Reports/PIP_
HealthOnline.pdf.

[Chu+14] Junyoung Chung et al. “Empirical evaluation of gated recurrent
neural networks on sequence modeling”. In: arXiv preprint arXiv:1412.3555
(2014). url: https://arxiv.org/abs/1412.3555.

[LM14] Quoc V Le and Tomas Mikolov. “Distributed Representations of
Sentences and Documents.” In: ICML. Vol. 14. 2014, pp. 1188–
1196.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Ac-
celerating Deep Network Training by Reducing Internal Covari-
ate Shift”. In: CoRR abs/1502.03167 (2015). url: http : / /
arxiv.org/abs/1502.03167.

[blo16] Google official blog. I’m Feeling Yucky :(Searching for symptoms on Google.
2016. url: https : / / blog . google / products / search / im -
feeling-yucky-searching-for-symptoms/.

78 Information Completion for Medical Search Assistance

Appendix C

Hash Embeddings for
Efficient Word

Representations

Hash Embeddings for Efficient Word Representations

Dan Svenstrup
Department for Applied Mathematics and Computer Science

Technical University of Denmark (DTU)
2800 Lyngby, Denmark

dsve@dtu.dk

Jonas Meinertz Hansen
FindZebra

Copenhagen, Denmark
jonas@findzebra.com

Ole Winther
Department for Applied Mathematics and Computer Science

Technical University of Denmark (DTU)
2800 Lyngby, Denmark

olwi@dtu.dk

Abstract

We present hash embeddings, an efficient method for representing words in a
continuous vector form. A hash embedding may be seen as an interpolation between
a standard word embedding and a word embedding created using a random hash
function (the hashing trick). In hash embeddings each token is represented by
k d-dimensional embeddings vectors and one k dimensional weight vector. The
final d dimensional representation of the token is the product of the two. Rather
than fitting the embedding vectors for each token these are selected by the hashing
trick from a shared pool of B embedding vectors. Our experiments show that
hash embeddings can easily deal with huge vocabularies consisting of millions
of tokens. When using a hash embedding there is no need to create a dictionary
before training nor to perform any kind of vocabulary pruning after training. We
show that models trained using hash embeddings exhibit at least the same level
of performance as models trained using regular embeddings across a wide range
of tasks. Furthermore, the number of parameters needed by such an embedding
is only a fraction of what is required by a regular embedding. Since standard
embeddings and embeddings constructed using the hashing trick are actually just
special cases of a hash embedding, hash embeddings can be considered an extension
and improvement over the existing regular embedding types.

1 Introduction

Contemporary neural networks rely on loss functions that are continuous in the model’s parameters
in order to be able to compute gradients for training. For this reason, any data that we wish to feed
through the network, even data that is of a discrete nature in its original form will be translated into a
continuous form. For textual input it often makes sense to represent each distinct word or phrase with
a dense real-valued vector in Rn. These word vectors are trained either jointly with the rest of the
model, or pre-trained on a large corpus beforehand.

For large datasets the size of the vocabulary can easily be in the order of hundreds of thousands,
adding millions or even billions of parameters to the model. This problem can be especially severe
when n-grams are allowed as tokens in the vocabulary. For example, the pre-trained Word2Vec
vectors from Google (Miháltz, 2016) has a vocabulary consisting of 3 million words and phrases.
This means that even though the embedding size is moderately small (300 dimensions), the total
number of parameters is close to one billion.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

The embedding size problem caused by a large vocabulary can be solved in several ways. Each of the
methods have some advantages and some drawbacks:

1. Ignore infrequent words. In many cases, the majority of a text is made up of a small subset
of the vocabulary, and most words will only appear very few times (Zipf’s law (Manning
et al., 1999)).
By ignoring anything but most frequent words, and sometimes stop words as well, it is
possible to preserve most of the text while drastically reducing the number of embedding
vectors and parameters. However, for any given task, there is a risk of removing too much
or to little. Many frequent words (besides stop words) are unimportant and sometimes even
stop words can be of value for a particular task (e.g. a typical stop word such as “and” when
training a model on a corpus of texts about logic). Conversely, for some problems (e.g.
specialized domains such as medical search) rare words might be very important.

2. Remove non-discriminative tokens after training. For some models it is possible to
perform efficient feature pruning based on e.g. entropy (Stolcke, 2000) or by only retaining
the K tokens with highest norm (Joulin et al., 2016a). This reduction in vocabulary size can
lead to a decrease in performance, but in some cases it actually avoids some over-fitting
and increases performance (Stolcke, 2000). For many models, however, such pruning is not
possible (e.g. for on-line training algorithms).

3. Compress the embedding vectors. Lossy compression techniques can be employed to
reduce the amount of memory needed to store embedding vectors. One such method is
quantization, where each vector is replaced by an approximation which is constructed as a
sum of vectors from a previously determined set of centroids (Joulin et al., 2016a; Jegou
et al., 2011; Gray and Neuhoff, 1998).

For some problems, such as online learning, the need for creating a dictionary before training can be
a nuisance. This is often solved with feature hashing, where a hash function is used to assign each
token w ∈ T to one of a fixed set of “buckets” {1, 2, . . . B}, each of which has its own embedding
vector. Since the goal of hashing is to reduce the dimensionality of the token space T , we normally
have that B � |T |. This results in many tokens “colliding” with each other because they are assigned
to the same bucket. When multiple tokens collide, they will get the same vector representation which
prevents the model from distinguishing between the tokens. Even though some information is lost
when tokens collide, the method often works surprisingly well in practice (Weinberger et al., 2009).

One obvious improvement to the feature hashing method described above would be to learn an
optimal hash function where important tokens do not collide. However, since a hash function has
a discrete codomain, it is not easy to optimize using e.g. gradient based methods used for training
neural networks (Kulis and Darrell, 2009).

The method proposed in this article is an extension of feature hashing where we use k hash functions
instead of a single hash function, and then use k trainable parameters for each word in order to choose
the “best” hash function for the tokens (or actually the best combination of hash functions). We call
the resulting embedding hash embedding. As we explain in section 3, embeddings constructed by
both feature hashing and standard embeddings can be considered special cases of hash embeddings.

A hash embedding is an efficient hybrid between a standard embedding and an embedding created
using feature hashing, i.e. a hash embedding has all of the advantages of the methods described
above, but none of the disadvantages:

• When using hash embeddings there is no need for creating a dictionary beforehand and the
method can handle a dynamically expanding vocabulary.

• A hash embedding has a mechanism capable of implicit vocabulary pruning.
• Hash embeddings are based on hashing but has a trainable mechanism that can handle

problematic collisions.
• Hash embeddings perform something similar to product quantization. But instead of all of

the tokens sharing a single small codebook, each token has access to a few elements in a
very large codebook.

Using a hash embedding typically results in a reduction of parameters of several orders of magnitude.
Since the bulk of the model parameters often resides in the embedding layer, this reduction of

2

“horse”

H2(“horse”) =

H1(“horse”) =

...

Hk(“horse”) =

∑

hash functions
component

vectors
importance
parameters

hash vector
ê“horse”

input
token

p1“horse”

p2“horse”

pk“horse”

Figure 1: Illustration of how to build the hash vector for the word “horse”. The optional step of
concatenating the vector of importance parameters to ê“horse” has been omitted. The size of component
vectors in the illustration is d = 4.

parameters opens up for e.g. a wider use of e.g. ensemble methods or large dimensionality of word
vectors.

2 Related Work

Argerich et al. (2016) proposed a type of embedding that is based on hashing and word co-occurrence
and demonstrates that correlations between those embedding vectors correspond to the subjective
judgement of word similarity by humans. Ultimately, it is a clever reduction in the embedding sizes
of word co-occurrence based embeddings.

Reisinger and Mooney (2010) and since then Huang et al. (2012) have used multiple different word
embeddings (prototypes) for the same words for representing different possible meanings of the same
words. Conversely, Bai et al. (2009) have experimented with hashing and treating words that co-occur
frequently as the same feature in order to reduce dimensionality.

Huang et al. (2013) have used bags of either bi-grams or tri-grams of letters of input words to create
feature vectors that are somewhat robust to new words and minor spelling differences.

Another approach employed by Zhang et al. (2015); Xiao and Cho (2016); Conneau et al. (2016)
is to use inputs that represent sub-word units such as syllables or individual characters rather than
words. This generally moves the task of finding meaningful representations of the text from the
input embeddings into the model itself and increases the computational cost of running the models
(Johnson and Zhang, 2016). Johansen et al. (2016) used a hierarchical encoding technique to do
machine translation with character inputs while keeping computational costs low.

3 Hash Embeddings

In the following we will go through the step by step construction of a vector representation for a
token w ∈ T using hash embeddings. The following steps are also illustrated in fig. 1:

1. Use k different functionsH1, . . . ,Hk to choose k component vectors for the token w from
a predefined pool of B shared component vectors

2. Combine the chosen component vectors from step 1 as a weighted sum: êw =∑k
i=1 p

i
wHi(w). pw = (p1w, . . . , p

k
w)
> ∈ Rk are called the importance parameters for

w.

3. Optional: The vector of importance parameters for the token pw can be concatenated with
êw in order to construct the final hash vector ew.

3

The full translation of a token to a hash vector can be written in vector notation (⊕ denotes the
concatenation operator):

cw = (H1(w),H2(w), . . . ,Hk(w))
>

pw = (p1w, . . . , p
k
w)
>

êw = p>wcw

e>w = ê>w ⊕ p>w(optional)

The token to component vector functionsHi are implemented byHi(w) = ED2(D1(w)), where

• D1 : T → {1, . . .K} is a token to id function.

• D2 : {1, . . . ,K} → {1, . . . B} is an id to bucket (hash) function.

• E is a B × d matrix.

If creating a dictionary beforehand is not a problem, we can use an enumeration (dictionary) of the
tokens as D1. If, on the other hand, it is inconvenient (or impossible) to use a dictionary because of
the size of T , we can simply use a hash function D1 : T → {1, . . .K}.
The importance parameter vectors pw are represented as rows in a K × k matrix P , and the token to
importance vector mapping is implemented by w → PD̂(w). D̂(w) can be either equal to D1, or we

can use a different hash function. In the rest of the article we will use D̂ = D1, and leave the case
where D̂ 6= D1 to future work.

Based on the description above we see that the construction of hash embeddings requires the
following:

1. A trainable embedding matrix E of size B × d, where each of the B rows is a component
vector of length d.

2. A trainable matrix P of importance parameters of size K × k where each of the K rows is a
vector of k scalar importance parameters.

3. k different hash functionsH1, . . . ,Hk that each uniformly assigns one of the B component
vectors to each token w ∈ T .

The total number of trainable parameters in a hash embedding is thus equal to B · d+K · k, which
should be compared to a standard embedding where the number of trainable parameters is K · d. The
number of hash functions k and buckets B can typically be chosen quite small without degrading
performance, and this is what can give a huge reduction in the number of parameters (we typically
use k = 2 and choose K and B s.t. K > 10 ·B).

From the description above we also see that the computational overhead of using hash embeddings in-
stead of standard embeddings is just a matrix multiplication of a 1×k matrix (importance parameters)
with a k × d matrix (component vectors). When using small values of k, the computational overhead
is therefore negligible. In our experiments, hash embeddings were actually marginally faster to train
than standard embedding types for large vocabulary problems1. However, since the embedding layer
is responsible for only a negligible fraction of the computational complexity of most models, using
hash embeddings instead of regular embeddings should not make any difference for most models.
Furthermore, when using hash embeddings it is not necessary to create a dictionary before training
nor to perform vocabulary pruning after training. This can also reduce the total training time.

Note that in the special case where the number of hash functions is k = 1, and all importance
parameters are fixed to p1w = 1 for all tokens w ∈ T , hash embeddings are equivalent to using
the hashing trick. If furthermore the number of component vectors is set to B = |T | and the hash
function h1(w) is the identity function, hash embeddings are equivalent to standard embeddings.

1the small performance difference was observed when using Keras with a Tensorflow backend on a GeForce
GTX TITAN X with 12 GB of memory and a Nvidia GeForce GTX 660 with 2GB memory. The performance
penalty when using standard embeddings for large vocabulary problems can possibly be avoided by using a
custom embedding layer, but we have not pursued this further.

4

4 Hashing theory

Theorem 4.1. Let h : T → {0, . . . ,K} be a hash function. Then the probability pcol that w0 ∈ T
collides with one or more other tokens is given by

pcol = 1− (1− 1/K)|T |−1 . (1)

For large K we have the approximation

pcol ≈ 1− e− |T |
K . (2)

The expected number of tokens in collision Ctot is given by

Ctot = |T |pcol . (3)

Proof. This is a simple variation of the “birthday problem”.

When using hashing for dimensionality reduction, collisions are unavoidable, which is the main
disadvantage for feature hashing. This is counteracted by hash embeddings in two ways:

First of all, for choosing the component vectors for a token w ∈ T , hash embeddings use k
independent uniform hash functions hi : T → {1, . . . , B} for i = 1, . . . , k. The combination
of multiple hash functions approximates a single hash function with much larger range h : T →
{1, . . . , Bk}, which drastically reduces the risk of total collisions. With a vocabulary of |T | = 100M,
B = 1M different component vectors and just k = 2 instead of 1, the chance of a given token colliding
with at least one other token in the vocabulary is reduced from approximately 1−exp

(
−108/106

)
≈ 1

to approximately 1− exp
(
−108/1012

)
≈ 0.0001. Using more hash functions will further reduce

the number of collisions.

Second, only a small number of the tokens in the vocabulary are usually important for the task at
hand. The purpose of the importance parameters is to implicitly prune unimportant words by setting
their importance parameters close to 0. This would reduce the expected number of collisions to
|Timp| · exp

(
− |Timp|

B

)
where Timp ⊂ T is the set of important words for the given task. The weighting

with the component vector will further be able to separate the colliding tokens in the k dimensional
subspace spanned by their k d dimensional embedding vectors.

Note that hash embeddings consist of two layers of hashing. In the first layer each token is simply
translated to an integer in {1, . . . ,K} by a dictionary or a hash function D1. If D1 is a dictionary,
there will of course not be any collisions in the first layer. If D1 is a random hash function then
the expected number of tokens in collision will be given by equation 3. These collisions cannot be
avoided, and the expected number of collisions can only be decreased by increasingK. Increasing the
vocabulary size by 1 introduces d parameters in standard embeddings and only k in hash embeddings.
The typical d ranges from 10 to 300, and k is in the range 1-3. This means that even when the
embedding size is kept small, the parameter savings can be huge. In (Joulin et al., 2016b) for example,
the embedding size is chosen to be as small as 10. In order to go from a bi-gram model to a general
n-gram model the number of buckets is increased from K = 107 to K = 108. This increase of
buckets requires an additional 900 million parameters when using standard embeddings, but less than
200 million when using hash embeddings with the default of k = 2 hash functions. I.e. even when
the embedding size is kept extremely small, the parameter savings can be huge.

5 Experiments

We benchmark hash embeddings with and without dictionaries on text classification tasks.

5.1 Data and preprocessing

We evaluate hash embeddings on 7 different datasets in the form introduced by Zhang et al. (2015)
for various text classification tasks including topic classification, sentiment analysis, and news
categorization. All of the datasets are balanced so the samples are distributed evenly among the

5

classes. An overview of the datasets can be seen in table 1. Significant previous results are listed in
table 2. We use the same experimental protocol as in (Zhang et al., 2015).

We do not perform any preprocessing besides removing punctuation. The models are trained on
snippets of text that are created by first converting each text to a sequence of n-grams, and from this
list a training sample is created by randomly selecting between 4 and 100 consecutive n-grams as
input. This may be seen as input drop-out and helps the model avoid overfitting. When testing we use
the entire document as input. The snippet/document-level embedding is obtained by simply adding
up the word-level embeddings.

Table 1: Datasets used in the experiments, See (Zhang et al., 2015) for a complete description.
#Train #Test #Classes Task

AG’s news 120k 7.6k 4 English news categorization
DBPedia 450k 70k 14 Ontology classification
Yelp Review Polarity 560k 38k 2 Sentiment analysis
Yelp Review Full 560k 50k 5 Sentiment analysis
Yahoo! Answers 650k 60k 10 Topic classification
Amazon Review Full 3000k 650k 5 Sentiment analysis
Amazon Review Polarity 3600k 400k 2 Sentiment analysis

5.2 Training

All the models are trained by minimizing the cross entropy using the stochastic gradient descent-
based Adam method (Kingma and Ba, 2014) with a learning rate set to α = 0.001. We use early
stopping with a patience of 10, and use 5% of the training data as validation data. All models
were implemented using Keras with TensorFlow backend. The training was performed on a Nvidia
GeForce GTX TITAN X with 12 GB of memory.

5.3 Hash embeddings without a dictionary

In this experiment we compare the use of a standard hashing trick embedding with a hash embedding.
The hash embeddings use K = 10M different importance parameter vectors, k = 2 hash functions,
and B = 1M component vectors of dimension d = 20. This adds up to 40M parameters for the hash
embeddings. For the standard hashing trick embeddings, we use an architecture almost identical to
the one used in (Joulin et al., 2016b). As in (Joulin et al., 2016b) we only consider bi-grams. We use
one layer of hashing with 10M buckets and an embeddings size of 20. This requires 200M parameters.
The document-level embedding input is passed through a single fully connected layer with softmax
activation.

The performance of the model when using each of the two embedding types can be seen in the left
side of table 2. We see that even though hash embeddings require 5 times less parameters compared to
standard embeddings, they perform at least as well as standard embeddings across all of the datasets,
except for DBPedia where standard embeddings perform a tiny bit better.

5.4 Hash embeddings using a dictionary

In this experiment we limit the vocabulary to the 1M most frequent n-grams for n < 10. Most of the
tokens are uni-grams and bi-grams, but also many tokens of higher order are present in the vocabulary.
We use embedding vectors of size d = 200. The hash embeddings use k = 2 hash functions and the
bucket size B is chosen by cross-validation among [500, 10K, 50K, 100K, 150K]. The maximum
number of words for the standard embeddings is chosen by cross-validation among [10K, 25K, 50K,
300K, 500K, 1M]. We use a more complex architecture than in the experiment above, consisting of
an embedding layer (standard or hash) followed by three dense layers with 1000 hidden units and
ReLU activations, ending in a softmax layer. We use batch normalization (Ioffe and Szegedy, 2015)
as regularization between all of the layers.

The parameter savings for this problem are not as great as in the experiment without a dictionary, but
the hash embeddings still use 3 times less parameters on average compared to a standard embedding.

6

As can be seen in table 2 the more complex models actually achieve a worse result than the simple
model described above. This could be caused by either an insufficient number of words in the
vocabulary or by overfitting. Note however, that the two models have access to the same vocabulary,
and the vocabulary can therefore only explain the general drop in performance, not the performance
difference between the two types of embedding. This seems to suggest that using hash embeddings
have a regularizing effect on performance.

When using a dictionary in the first layer of hashing, each vector of importance parameters will corre-
spond directly to a unique phrase. In table 4 we see the phrases corresponding to the largest/smallest
(absolute) importance values. As we would expect, large absolute values of the importance parameters
correspond to important phrases. Also note that some of the n-grams contain information that e.g.
the bi-gram model above would not be able to capture. For example, the bi-gram model would not be
able to tell whether 4 or 5 stars had been given on behalf of the sentence “I gave it 4 stars instead of
5 stars”, but the general n-gram model would.

5.5 Ensemble of hash embeddings

The number of buckets for a hash embedding can be chosen quite small without severely affecting
performance. B = 500 − 10.000 buckets is typically sufficient in order to obtain a performance
almost at par with the best results. In the experiments using a dictionary only about 3M parameters
are required in the layers on top of the embedding, while kK +Bd = 2M +B × 200 are required
in the embedding itself. This means that we can choose to train an ensemble of models with small
bucket sizes instead of a large model, while at the same time use the same amount of parameters (and
the same training time since models can be trained in parallel). Using an ensemble is particularly
useful for hash embeddings: even though collisions are handled effectively by the word importance
parameters, there is still a possibility that a few of the important words have to use suboptimal
embedding vectors. When using several models in an ensemble this can more or less be avoided since
different hash functions can be chosen for each hash embedding in the ensemble.

We use an ensemble consisting of 10 models and combine the models using soft voting. Each model
use B = 50.000 and d = 200. The architecture is the same as in the previous section except that
models with one to three hidden layers are used instead of just ten models with three hidden layers.
This was done in order to diversify the models. The total number of parameters in the ensemble is
approximately 150M. This should be compared to both the standard embedding model in section 5.3
and the standard embedding model in section 5.4 (when using the full vocabulary), both of which
require ≈ 200M parameters.

Table 2: Test accuracy (in %) for the selected datasets
Without dictionary With dictionary

Shallow network (section 5.3) Deep network (section 5.4)
Hash emb. Std emb Hash emb. Std. emb. Ensemble

AG 92.4 92.0 91.5 91.7 92.0
Amazon full 60.0 58.3 59.4 58.5 60.5
Dbpedia 98.5 98.6 98.7 98.6 98.8
Yahoo 72.3 72.3 71.3 65.8 72.9
Yelp full 63.8 62.6 62.6 61.4 62.9
Amazon pol 94.4 94.2 94.7 93.6 94.7
Yelp pol 95.9 95.5 95.8 95.0 95.7

6 Future Work

Hash embeddings are complementary to other state-of-the-art methods as it addresses the problem
of large vocabularies. An attractive possibility is to use hash-embeddings to create a word-level
embedding to be used in a context sensitive model such as wordCNN.

As noted in section 3, we have used the same token to id function D1 for both the component vectors
and the importance parameters. This means that words that hash to the same bucket in the first layer
get both identical component vectors and importance parameters. This effectively means that those
words become indistinguishable to the model. If we instead use a different token to id function D̂ for

7

Table 3: State-of-the-art test accuracy in %. The table is split between BOW embedding approaches
(bottom) and more complex rnn/cnn approaches (top). The best result in each category for each
dataset is bolded.

AG DBP Yelp P Yelp F Yah A Amz F Amz P
char-CNN (Zhang et al., 2015) 87.2 98.3 94.7 62.0 71.2 59.5 94.5
char-CRNN (Xiao and Cho, 2016) 91.4 98.6 94.5 61.8 71.7 59.2 94.1
VDCNN (Conneau et al., 2016) 91.3 98.7 95.7 64.7 73.4 63.0 95.7
wordCNN (Johnson and Zhang, 2016) 93.4 99.2 97.1 67.6 75.2 63.8 96.2
Discr. LSTM (Yogatama et al., 2017) 92.1 98.7 92.6 59.6 73.7
Virt. adv. net. (Miyato et al., 2016) 99.2
fastText (Joulin et al., 2016b) 92.5 98.6 95.7 63.9 72.3 60.2 94.6
BoW (Zhang et al., 2015) 88.8 96.6 92.2 58.0 68.9 54.6 90.4
n-grams (Zhang et al., 2015) 92.0 98.6 95.6 56.3 68.5 54.3 92.0
n-grams TFIDF (Zhang et al., 2015) 92.4 98.7 95.4 54.8 68.5 52.4 91.5
Hash embeddings (no dict.) 92.4 98.5 95.9 63.8 72.3 60.0 94.4
Hash embeddings (dict.) 91.5 98.7 95.8 62.5 71.9 59.4 94.7
Hash embeddings (dict., ensemble) 92.0 98.8 95.7 62.9 72.9 60.5 94.7

Table 4: Words in the vocabulary with the highest/lowest importance parameters.
Yelp polarity Amazon full

Important tokens
What_a_joke, not_a_good_experience,
Great_experience, wanted_to_love,
and_lacking, Awful, by_far_the_worst,

gave_it_4, it_two_stars_because,
4_stars_instead_of_5, 4_stars,
four_stars, gave_it_two_stars

Unimportant tokens
The_service_was, got_a_cinnamon,
15_you_can, while_touching,
and_that_table, style_There_is

that_my_wife_and_I, the_state_I,
power_back_on, years_and_though,
you_want_a_real_good

the importance parameters, we severely reduce the chance of "total collisions". Our initial findings
indicate that using a different hash function for the index of the importance parameters gives a small
but consistent improvement compared to using the same hash function.

In this article we have represented word vector using a weighed sum of component vectors. However,
other aggregation methods are possible. One such method is simply to concatenate the (weighed)
component vectors. The resulting kd-dimensional vector is then equivalent to a weighed sum of
orthogonal vectors in Rkd.

Finally, it might be interesting to experiment with pre-training lean, high-quality hash vectors that
could be distributed as an alternative to word2vec vectors, which require around 3.5 GB of space for
almost a billion parameters.

7 Conclusion

We have described an extension and improvement to standard word embeddings and made an
empirical comparisons between hash embeddings and standard embeddings across a wide range of
classification tasks. Our experiments show that the performance of hash embeddings is always at par
with using standard embeddings, and in most cases better.

We have shown that hash embeddings can easily deal with huge vocabularies, and we have shown
that hash embeddings can be used both with and without a dictionary. This is particularly useful for
problems such as online learning where a dictionary cannot be constructed before training.

Our experiments also suggest that hash embeddings have an inherent regularizing effect on perfor-
mance. When using a standard method of regularization (such as L1 or L2 regularization), we start
with the full parameter space and regularize parameters by pushing some of them closer to 0. This
is in contrast to regularization using hash embeddings where the number of parameters (number of
buckets) determines the degree of regularization. Thus parameters not needed by the model will not
have to be added in the first place.

The hash embedding models used in this article achieve equal or better performance than previous
bag-of-words models using standard embeddings. Furthermore, in 5 of 7 datasets, the performance of
hash embeddings is in top 3 of state-of-the art.

8

References
Argerich, L., Zaffaroni, J. T., and Cano, M. J. (2016). Hash2vec, feature hashing for word embeddings. CoRR,

abs/1608.08940.

Bai, B., Weston, J., Grangier, D., Collobert, R., Sadamasa, K., Qi, Y., Chapelle, O., and Weinberger, K. (2009).
Supervised semantic indexing. In Proceedings of the 18th ACM conference on Information and knowledge
management, pages 187–196. ACM.

Conneau, A., Schwenk, H., Barrault, L., and LeCun, Y. (2016). Very deep convolutional networks for natural
language processing. CoRR, abs/1606.01781.

Gray, R. M. and Neuhoff, D. L. (1998). Quantization. IEEE Trans. Inf. Theor., 44(6):2325–2383.

Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y. (2012). Improving word representations via global
context and multiple word prototypes. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Long Papers - Volume 1, ACL ’12, pages 873–882, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., and Heck, L. (2013). Learning deep structured semantic
models for web search using clickthrough data. In Proceedings of the 22nd ACM International Conference on
Information and Knowledge Management (CIKM), pages 2333–2338.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal
covariate shift. CoRR, abs/1502.03167.

Jegou, H., Douze, M., and Schmid, C. (2011). Product quantization for nearest neighbor search. IEEE Trans.
Pattern Anal. Mach. Intell., 33(1):117–128.

Johansen, A. R., Hansen, J. M., Obeid, E. K., Sønderby, C. K., and Winther, O. (2016). Neural machine
translation with characters and hierarchical encoding. CoRR, abs/1610.06550.

Johnson, R. and Zhang, T. (2016). Convolutional neural networks for text categorization: Shallow word-level vs.
deep character-level. CoRR, abs/1609.00718.

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., and Mikolov, T. (2016a). Fasttext.zip: Compressing
text classification models. CoRR, abs/1612.03651.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2016b). Bag of tricks for efficient text classification.
CoRR, abs/1607.01759.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR, abs/1412.6980.

Kulis, B. and Darrell, T. (2009). Learning to hash with binary reconstructive embeddings. In Bengio, Y.,
Schuurmans, D., Lafferty, J. D., Williams, C. K. I., and Culotta, A., editors, Advances in Neural Information
Processing Systems 22, pages 1042–1050. Curran Associates, Inc.

Manning, C. D., Schütze, H., et al. (1999). Foundations of statistical natural language processing, volume 999.
MIT Press.

Miháltz, M. (2016). Google’s trained word2vec model in python. https://github.com/mmihaltz/
word2vec-GoogleNews-vectors. Accessed: 2017-02-08.

Miyato, T., Dai, A. M., and Goodfellow, I. (2016). Virtual adversarial training for semi-supervised text
classification. stat, 1050:25.

Reisinger, J. and Mooney, R. J. (2010). Multi-prototype vector-space models of word meaning. In Human
Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for
Computational Linguistics, HLT ’10, pages 109–117, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Stolcke, A. (2000). Entropy-based pruning of backoff language models. CoRR, cs.CL/0006025.

Weinberger, K. Q., Dasgupta, A., Attenberg, J., Langford, J., and Smola, A. J. (2009). Feature hashing for large
scale multitask learning. CoRR, abs/0902.2206.

Xiao, Y. and Cho, K. (2016). Efficient character-level document classification by combining convolution and
recurrent layers. CoRR, abs/1602.00367.

Yogatama, D., Dyer, C., Ling, W., and Blunsom, P. (2017). Generative and discriminative text classification with
recurrent neural networks. arXiv preprint arXiv:1703.01898.

Zhang, X., Zhao, J. J., and LeCun, Y. (2015). Character-level convolutional networks for text classification.
CoRR, abs/1509.01626.

9

Appendix D

Zero Shot Cross language
Text Classification

Under review as a conference paper at ICLR 2018

ZERO-SHOT CROSS LANGUAGE TEXT CLASSIFICA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Labeled text classification datasets are typically only available in a few select lan-
guages. In order to train a model for e.g news categorization in a language Lt

without a suitable text classification dataset there are two options. The first option
is to create a new labeled dataset by hand, and the second option is to transfer label
information from an existing labeled dataset in a source language Ls to the target
language Lt. In this paper we propose a method for sharing label information
across languages by means of a language independent text encoder. The encoder
will give almost identical representations to multilingual versions of the same text.
This means that labeled data in one language can be used to train a classifier that
works for the rest of the languages. The encoder is trained independently of any
concrete classification task and can therefore subsequently be used for any classi-
fication task. We show that it is possible to obtain good performance even in the
case where only a comparable corpus of texts is available.

1 INTRODUCTION

Automatic systems that can classify documents quickly and precisely are useful for a wide range of
practical applications. For example, organizations may be interested in using sentiment analysis of
opinion posts such as tweets that mention their products and services. By classifying the sentiment
of each post (e.g. positive, neutral, or negative), the organization can for example learn which parts
of a product should be improved.

Creating a suitable, large labeled dataset for training a classification model requires a lot of effort
and available public datasets are typically only available in the most common languages. In order
to train a classification model for a languages Lt without a suitable text classification dataset there
are two options: The first option is of course to create a new labeled dataset from scratch, and the
second option is to use the label information in existing labeled datasets in a language Ls and then
transfer this label information to Lt. The first option usually requires a great amount of work and is
typically not a viable solution. The second option is called cross-language text classification (CLTC)
(Wan, 2009).

In this article we present a method for performing CLTC by means of a universal encoder. The
method consists of two steps. In the first step, a universal encoder is trained to give similar repre-
sentations to texts that describe the same topic, even if the texts are in different languages. In the
second step, a classification module uses the language-independent representations from the univer-
sal encoder as inputs and is trained to predict which category each document belongs to. Compared
to previous work, this method has several advantages:

1. The universal encoder can be trained using just a comparable corpus. A comparable corpus
is a corpus where the multilingual versions of a document are not necessarily translations
of each other, but merely about the same topic.

2. It enables zero-shot classification. I.e. if we have a comparable corpus in French-Spanish,
we can build a classifier for Spanish by using a labeled dataset in English.

3. The universal encoder does not rely on single word translations, but rather on encoding
entire contexts. This can help alleviate ambiguity problems caused by polysemy.

4. The input language does not have to be specified at test time.

1

Under review as a conference paper at ICLR 2018

Sample 1

Universal Encoder

Sample 2

Universal Encoder

σ(v1 · v2)

Cross-entropy loss

v1 v2

Sample

Universal Encoder

Classifier

Figure 1: Illustration of how the Universal Encoder is trained (left) and how it is used when training
and making predictions using the classifier (right). All Universal Encoders (gray background) are
exactly identical by sharing architecture and weights

The method presented in this article is conceptually similar in spirit to Google’s zero-shot machine
translation model (Johnson et al., 2016), which is used in the Google translate API. That model also
uses a shared vocabulary and a language independent encoder. It does, however, require a large cor-
pus of aligned sentences for training. Additionally, translating a text is a much harder problem than
merely extracting discriminative features since it requires encoding of e.g. syntactic information
that is not necessary for text classification. Therefore such a model is much more complex than it
needs to be, and a more parsimonious model is therefore preferable. We will compare our zero-shot
classification model with an equivalent model based on the zero-shot translation model in section 3.

The rest of the article is organized as follows: We present our CLTC model in section 2. Experi-
ments, data and results are presented in section 3. In section 4 we review previous approaches to
cross-lingual text classification. In section 5 we will take a look at some possible improvements and
future directions for the method. Finally, we conclude the article in section 6.

2 ALIGNMENT OF DOCUMENT REPRESENTATIONS

The zero-shot classification model consists of two independent components, a universal encoder and
a classifier module. The two components will be described in the following.

2.1 UNIVERSAL ENCODER

The universal encoder provides a language independent encoding of all information useful in order
to identify a text. If the language independent representation is very close for comparable texts, a
classifier for representations in one language should be usable across all languages.

The universal encoder transforms the input text by using a function Fu. The mapping Fu could for
example consist of a word embedding followed by a recurrent layer, or a sum of word embedding
vectors. Or it could be the LSA representation of the input text followed by a dense layer.

To create a training sample for the encoder, a pair of texts are drawn from the corpus. Half of the
pairs will consist of two texts on the same topic (but in different languages) and half the pairs will
consist of two texts on different topics (and possibly different languages). The encoder is trained
(using cross-entropy error) to be able to predict whether two texts s1 and s2 are comparable (i.e.
about the same topic) based on the inner product Fu(s1) ·Fu(s2) between their representations. The
encoder training setup is illustrated on the left side of fig. 1.

2.2 CLASSIFIER

The output of the universal encoder is a language independent representation of a text. Training a
classifier based on the universal encoder will give a universal classifier that can be used to classify
text in any language that the encoder has been trained on. The universal classifier is depicted on the
right hand side of fig. 1.

2

Under review as a conference paper at ICLR 2018

3 EXPERIMENTS

We compare our zero-shot classification model with two other models on the task of predicting the
category of Italian Wikipedia articles.

• A monolingual classifier. The performance of this model can be considered an upper
bound for the performance. However, in a realistic scenario we would only have a very
limited number of native samples available. We therefore train the model several times
using a varying number of native samples from as little as 5k to more than a hundred
thousand. This will give the performance of the native classifier as a function of number of
available native samples, and will enable us to tell how many native samples are required
in order to obtain a performance equivalent to the that of the CLTC models.

• A model based on machine trainslation. As mentioned, Google’s zero-shot translation
model is conceptually similar to our model. It is therefore natural to compare a model
based on that model with the zero-shot classification model presented in this paper.

3.1 DATA

We evaluate the universal encoder using Wikipedia article abstracts in Italian, German, French and
English. Wikipedia inter-language links are used to relate articles in different languages about the
same topic (such as “Tom Cruise”). We use DBPedia mapping-based properties1 to assign each
topic to a category (such as Person or City). For pages with multiple categories we select one at
random. We restrict the number of classes to the 200 most frequent ones. The number of articles in
each language can be seen in table 1. We don’t do any pre-processing besides removing punctuation
characters (such as .,:|-_/"*’=) and tokenizing the text.

Table 1: Number of articles in different languages in the dataset. There are on average 2.3 articles
for each Wikipedia topic.

Italian 493k
German 675k
French 796k
English 1457k

The dataset is split evenly into an encoder dataset and a classification dataset. The encoder dataset
is used to train the universal encoder and the classification dataset is used to train the different
classification models. When training the encoder, we sample uniformly between pairs of articles
with the same topic and pairs of articles with different topic. In the first column of table 2 we see
the number of training pairs for the encoder for the different language sets. Column two shows the
number of samples in the classifier training set for the different language pairs (i.e. the number of
non-Italian articles in the classification dataset). Column three shows the number of samples in the
classifier test set for the different language sets (i.e. the number of Italian articles in the classifier
dataset). Topics with only one article are removed, and so are topics not belonging to one of the 200
target classes.

It is important to note that the classification training dataset for our classification model does not
include any Italian samples.

Table 2: Number of samples for the different language sets. The number of training samples for the
encoder denotes the number of pairs of articles about the same topic but in different languages.

Encoder train pairs Classifier train samples Classifier test samples
It-En 245k 163k 167k
It-En-Fr 813k 864k 167k
It-En-Fr-De 1500k 1305k 167k

The Wikipedia articles are by no means translations of each other. Typically the English articles are
much longer compared to articles in other languages and the content is often quite different. We

1See http://wiki.dbpedia.org/services-resources/datasets/dbpedia-datasets#h434-10 for a description.

3

Under review as a conference paper at ICLR 2018

Embedding Layer

Sum

Dense layer

Encoder module

(a) The architecture of the encoder.

Dense

Dense

Dense

Dense

2,000
ReLU

2,000
ReLU

2,000
ReLU

200
Softmax

Classification module

(b) The architecture of the classification module
of the neural models. The numbers to the right
of each layer is the activation function of the layer
(above) and the number of units (below). The blue
dots represent dropout layers with 50% dropout
probability.

therefore use the heuristic that the essence of an article is contained in its beginning. As a conse-
quence, the semantic content of the beginnings of the articles in different languages is hopefully
more similar than the entire texts. For this reason we use only the first 200 words of each article.

We do not use the entire remaining article text as input samples. Instead we draw a random snippet
from the text. A snippet from a text document is a small sequence of random length consisting
of 3-200 tokens. Note that the snippet idea can be seen as an extreme form of input dropout (we
dropout everything but a small fraction of the text). That is, the snippet sampling provides a degree
of regularization.

3.2 MODELS

The architectures of the three models have been kept as similar as possible in order to provide the
most fair comparison. We use Adam updates (Kingma & Ba, 2014) with default parameters (except
for a learning rate set to 10−4) for training of all of the models. The architectures of the different
models will be described in the following.

3.2.1 ZERO-SHOT CLASSIFICATION MODEL

The architecture of the universal encoder can be seen in fig. 2a. The embedding layer is shared
among all input languages and therefore the vocabulary can become quite large. As we will see in
section 3.3, it is beneficial to choose the embedding vector size as large as possible. We therefore
use a word based hash embedding in the input layer (Svenstrup et al., 2017). A hash embedding is
a recently proposed improvement to a regular embedding that requires far less parameters for large
vocabulary problems or problems with large embedding sizes. It is thus perfect for our purpose. We
use a hash embedding with 25k buckets and two hash functions for all experiments. The embedding
vector size is varied between 250 and 1500 in the experiments.

Following the embedding layer we have a sum layer where the coordinate-wise sum of all word
vectors is computed. On top of the sum layer we use a dense layer with twice the number of units
as the embedding vector size.

Once the encoder has been trained we freeze the parameters and use the universal encoder as input
to the classification module (see right side of fig. 1). The architecture of the classification module
is illustrated in fig. 2b. It is a neural network consisting of three dense layers with 2000 units with
rectified linear units activation, followed by a dense layer with 200 units (number of classes) with

4

Under review as a conference paper at ICLR 2018

softmax activation. We use dropout (Srivastava et al., 2014) with a 50% dropout probability as
regularization between all the layers.

3.2.2 NATIVE CLASSIFIER

The architecture of the native classifier is identical to the architecture of the universal encoder + clas-
sifier described above. The differences are that we train the encoder and classifier simultaneously,
and that the model is both trained and tested on Italian samples. It is trained on 3.5k, 17k, 34k, 68k,
137k and 158k samples. It is tested on 8k Italian samples.

3.2.3 CLASSIFIER BASED ON MACHINE TRANSLATION

The architecture of this model is identical to the architecture of the native classifier. The differences
are that we first train on all English samples in the classification dataset and then test on a testset of
Italian samples translated to English by using Google translate.

3.3 RESULTS

3.3.1 THE UNIVERSAL ENCODER

(a) t-SNE plot of universal representations of articles
about persons. The articles are from the classifier
dataset so the encoder has not been trained on the ar-
ticles.

(b) t-SNE plot of universal representations of multilin-
gual articles of different categories. The articles are
from the classifier dataset and the encoder has therefore
never seen the the documents before. The plot shows
good separation between the categories.

The purpose of the universal encoder is to provide representations for articles such that articles about
different topics are distant from each other, while articles on the same topic are almost identical, even
if the articles are in different languages. Figure 3a displays a t-SNE plot (Maaten & Hinton, 2008)
of the universal representations of a few articles about persons. The plot shows good separation
between articles on different people, and a low separation between articles about the same person in
different languages.

The t-SNE plot in fig. 3b shows universal representations of articles from multiple different lan-
guages and categories. Even though the encoder wasn’t ever explicitly trained for that purpose,
it easy to see the articles from different categories are nicely separated even though some of the
categories are very similar.

3.4 CLASSIFICATION RESULTS

We report the accuracy for the different models in table 3. We see that the zero-shot classifier obtains
very good results, especially in a bilingual setting where the largest classifier (embedding size 1500)

5

Under review as a conference paper at ICLR 2018

obtains a very high accuracy of 78.5%. This is far better than the model based on machine translation
(72.1%) and very close to the upper bound on accuracy of 80.4% (the native classifier).

In fig. 4a we see accuracy as a function of the embedding size for the different language sets. We note
that the accuracy increases monotonically with the embedding size for all language sets. However,
this increase seems to be less pronounced for larger embedding sizes. We also note that the accuracy
unfortunately decreases with the number of languages. The reason for this decrease in performance
is less clear and does not seem to be caused by lack of capacity in the encoder. We believe that it
may be caused by the sampling method used. We sample uniformly from topics and then select a
random language pair. Since there are much more articles in English, French and German than in
Italian (see table 1), there will be many more sampled pairs from these languages. This may cause
the encoder to favour these languages. We have, however, not investigated this further.

Table 3: Test accuracy [%] of the different classification models. ZSC denotes our zero-shot classi-
fication model. All results are with an embedding size of 1500. Since the dataset is not balanced we
have included a largest class classifier in the results.

Model Accuracy
ZSC (It-En) 78.5
ZSC (It-En-Fr) 75.9
ZSC (It-En-Fr-De) 73.5
Machine translation 72.1
Native classifier 80.4
Largest class 9.0

A typical (realistic) scenario for use of CLTC methods is where a small amount of native, labeled
data is available, but where a large comparable corpus is available. In that case our zero-shot classi-
fication model will have a higher performance compared to the monolingual native classifier. As we
see in fig. 4b the native monolingual classifier needs about 100k native samples in order to obtain a
higher performance compared to our zero-shot classification model.

0 250 500 750 1,000 1,500
70.0%

72.5%

75.0%

77.5%

80.0%

Embedding size

Z
er

o-
sh

ot
ac

cu
ra

cy

Acc. as a function of embedding size

en
en+fr
en+fr+de

(a) Accuracy as a function of embedding size for the
different language sets.

5k 25k 50k 100k 175k

65%

70%

75%

80%

Training samples in target language

A
cc

ur
ac

y

Supervised training on target language

Supervised
Best zero-shot
MT baseline

(b) Accuracy as a function of training samples in tar-
get language (Italian) for a native classifier

4 RELATED WORK

Several strategies for multilingual text classifications have previously been proposed. The different
strategies can be grouped into three groups according to whether they require a corpus of aligned
sentences (a parallel corpus), a comparable corpus or just a dictionary. The different approaches will
be described in the following.

6

Under review as a conference paper at ICLR 2018

4.1 APPROACHES REQUIRING A PARALLEL CORPUS

The main problem with these methods is of course that an aligned corpus is typically only available
for a handful of language pairs. One such corpus is the Europarl dataset for machine translation
(Koehn, 2005), which is available in 21 European languages.

4.1.1 MULTILINGUAL WORD EMBEDDINGS

A word embedding is a mapping from a set of words to a set of dense real-valued vectors. Such
representations of words have proven to be very useful in many monolingual natural language pro-
cessing problems. By exploiting that words occurring in the same type of context have similar
meaning, it is possible to perform unsupervised training of word embeddings such that words with
the same meaning have similar vector representation (Bengio et al., 2003). In (Klementiev et al.,
2012; Chandar et al., 2014), this property is extended to a multilingual setting such that words with
the same meaning, but possibly in different languages, have similar representation. Klementiev et al.
(2012) uses a multitask learning algorithm for training the embeddings, and Chandar et al. (2014)
uses a method based on autoencoding.

Once created, the multilingual word embeddings can be used to perform cross-lingual text classifi-
cation. Note that just as the universal encoder introduced in this article, the word embeddings are
not trained with any specific classification task in mind. I.e. the word embeddings can be trained
once and subsequently be used in a variety of classification tasks.

Multilingual word embeddings can also be trained using only a dictionary, see below.

4.1.2 APPROACHES BASED ON MACHINE TRANSLATION

A lot of work in cross-language text classification has relied on the availability of machine translation
models. Most of the methods use a two step process where features are either extracted and then
translated (Shi et al., 2010; Montalvo et al., 2007; Wei & Pal, 2010), or are extracted from the
translated text (Wan, 2009; Ling et al., 2008; Rigutini et al., 2005).

Methods based on machine translation are attractive because they are typically intuitive and easy
to understand. Unfortunately, the machine translation step introduces a lot of noise in the form of
information loss, translation error and noise due to the discrepancy between data distributions of
the different languages. Several methods have been proposed in order to reduce the performance
penalty induced by the translation step. These methods include model translation based on the EM
algorithm (Rigutini et al., 2005; Shi et al., 2010), and methods based on domain adaption (Wei &
Pal, 2010; Blitzer et al., 2006)

4.2 APPROACHES REQUIRING A COMPARABLE CORPUS

A comparable corpus is typically much easier to obtain than a parallel corpus since it merely requires
that the topic of a text is known across languages. For example, news articles are typically tagged
with categories such as finance or sports and these categories can be used to create a comparable
corpus for news classification. Wikipedia is another very good example of a comparable corpus.

4.2.1 LDA APPROACHES

Latent Dirichlet Allocation (LDA) is a Bayesian Network model where each document is assumed
to have a latent topic distribution. For each topic there is a corresponding word distribution. In
order to create a document of N words, we first draw a topic distribution Td for the document.
Each of the N words in the document is then generated by first drawing a word topic from Td,
and then use the word distribution corresponding to the topic to generate the word. This can easily
be extended to a multilingual setting by letting documents with the same content (but in different
languages) share the same topic distribution. The topic distribution of a document can then be
estimated after training. Documents with similar topic distribution will tend to be semantically
similar. This property can be used to train cross-lingual classifiers. Multilingual LDA approaches to
cross-language text classification have been explored in (De Smet et al., 2011; Ni et al., 2011).

7

Under review as a conference paper at ICLR 2018

4.2.2 MULTI-VIEW LEARNING

In multi-view learning it is assumed that different language versions of a document describe the
same data object. The representation of the views should therefore be similar. There are several
variants of the multi-view learning method but typically the method consists in optimizing a set of
monolingual classifiers subject to the constraint that the representation of the views should be similar
(Amini & Goutte, 2010; Wan, 2009; Guo & Xiao, 2012). The different views are often constructed
using machine translation, however.

4.3 APPROACHES REQUIRING ONLY A DICTIONARY

These approaches are attractive due to the low requirement on data alignment. However, such meth-
ods have an inherent problem with poly-synonymous words since they rely on single word transla-
tions that ignore the context.

4.3.1 STRUCTURAL CORRESPONDENCE LEARNING

In structural correspondence learning (SCL) (Blitzer et al., 2006; Prettenhofer & Stein, 2010) a set
of discriminative words called pivots are identified in a source language and translated to a target
language. Each pivot (and its translation) will induce a bisection of the union of the texts in target
and source languages. For each pivot a simple linear classifier is trained to predict if a text (with all
occurrences of the pivot deleted) contains the pivot. The information contained in the parameters
of all of the classifiers are then used to create a bilingual classifier. SCL can be trained using just
a corpus of labeled data in a source language, translations of the pivots and an unlabeled corpus
for the target language. SCL has shown a performance equal to that of models based on machine
translation (Blitzer et al., 2006).

4.3.2 MULTILINGUAL WORD EMBEDDINGS

Multilingual word embeddings can also be trained using only a dictionary and unlabeled text (Wick
et al., 2016). This can be done by switching words with the same meaning in different languages.
E.g. the sentence The red hand could be modified to The rojo hand using a dictionary. These
artificially modified sentences can then be used to train multilingual word embeddings by using e.g.
a CBOW (Mikolov et al., 2013) model. There are some challenges to using this kind of model,
however. For example, the method relies on the fact that the meaning of a word is determined by
its context (the distributional hypothesis). But in the example above readers familiar with Spanish
grammar rules will know that rojo and hand would not belong to the same context (but roja and hand
would).

5 FUTURE WORK

There are several interesting directions for future work. First of all, it would be interesting to exper-
iment with more complex versions of Fu such as recurrent nets.

In the experiments presented in the article we only did a small amount of experimentation with e.g.
the size of the embedding layer and the transformation to a language independent representation.
We believe that even better results may be obtained by hyper-parameter optimization.

In this article we used Wikipedia both when training the encoder and the classifier. However, if the
discriminative features in the encoder corpus is sufficiently close to the discriminative features in the
classifier corpus it is perhaps possible to use an encoder corpus that is different from the classifier
corpus. E.g. we could train the encoder on Wikipedia articles and then use the encoding to classify
news articles.

Our results show that performance decreases with the number of languages. As mentioned in sec-
tion 3.3, this might be caused by the sampling method. It would be interesting to test this hypothesis
by super sampling the smaller languages.

8

Under review as a conference paper at ICLR 2018

Finally, hinge loss would probably have been a more natural loss function for the encoder instead of
cross-entropy loss. It could be interesting to see if performance could be improved by changing the
loss function.

6 CONCLUSION

In this article we have shown how to create a language independent representation using only a
corpus of comparable texts. The language independent representation can subsequently be used for
zero-shot classification.

We show that it is possible to obtain very good performance even when only a comparable corpus
of texts is available.

The unsupervised classifier of course does not perform better than a supervised classifier trained on
the same number of samples. It is, however, equal in performance to a native language supervised
classifier trained on about hundred thousand samples. This means that if the number of native
samples is limited and a large comparable corpus is available, the performance of our zero-shot
classification can be better than that of a monolingual classifier.

Our results show that even though it is possible to obtain good results using several languages at
once, the best performance is obtained by using only two languages. Our results furthermore show
that it is necessary to use a very large embedding size in order to obtain the best possible perfor-
mance.

REFERENCES

Massih-Reza Amini and Cyril Goutte. A co-classification approach to learning from multilingual
corpora. Machine learning, 79(1-2):105–121, 2010.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

John Blitzer, Ryan McDonald, and Fernando Pereira. Domain adaptation with structural correspon-
dence learning. In Proceedings of the 2006 conference on empirical methods in natural language
processing, pp. 120–128. Association for Computational Linguistics, 2006.

A P Sarath Chandar, Stanislas Lauly, Hugo Larochelle, Mitesh M Khapra, Balaraman Ravindran,
Vikas Raykar, and Amrita Saha. An autoencoder approach to learning bilingual word repre-
sentations. In Proceedings of the 27th International Conference on Neural Information Pro-
cessing Systems, NIPS’14, pp. 1853–1861, Cambridge, MA, USA, 2014. MIT Press. URL
http://dl.acm.org/citation.cfm?id=2969033.2969034.

Wim De Smet, Jie Tang, and Marie-Francine Moens. Knowledge transfer across multilingual cor-
pora via latent topics. Advances in Knowledge Discovery and Data Mining, pp. 549–560, 2011.

Yuhong Guo and Min Xiao. Cross language text classification via subspace co-regularized multi-
view learning. arXiv preprint arXiv:1206.6481, 2012.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil
Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al. Google’s multilingual neural
machine translation system: enabling zero-shot translation. arXiv preprint arXiv:1611.04558,
2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Alexandre Klementiev, Ivan Titov, and Binod Bhattarai. Inducing crosslingual distributed represen-
tations of words. Proceedings of COLING 2012, pp. 1459–1474, 2012.

Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. In MT summit,
volume 5, pp. 79–86, 2005.

9

Under review as a conference paper at ICLR 2018

Xiao Ling, Gui-Rong Xue, Wenyuan Dai, Yun Jiang, Qiang Yang, and Yong Yu. Can chinese web
pages be classified with english data source? In Proceedings of the 17th international conference
on World Wide Web, pp. 969–978. ACM, 2008.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(Nov):2579–2605, 2008.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Soto Montalvo, R Martı́nez, Arantza Casillas, and Vı́ctor Fresno. Multilingual news clustering:
Feature translation vs. identification of cognate named entities. Pattern Recognition Letters, 28
(16):2305–2311, 2007.

Xiaochuan Ni, Jian-Tao Sun, Jian Hu, and Zheng Chen. Cross lingual text classification by mining
multilingual topics from wikipedia. In Proceedings of the fourth ACM international conference
on Web search and data mining, pp. 375–384. ACM, 2011.

Peter Prettenhofer and Benno Stein. Cross-language text classification using structural correspon-
dence learning. In Proceedings of the 48th annual meeting of the association for computational
linguistics, pp. 1118–1127. Association for Computational Linguistics, 2010.

Leonardo Rigutini, Marco Maggini, and Bing Liu. An em based training algorithm for cross-
language text categorization. In Proceedings of the 2005 IEEE/WIC/ACM International Con-
ference on Web Intelligence, pp. 529–535. IEEE Computer Society, 2005.

Lei Shi, Rada Mihalcea, and Mingjun Tian. Cross language text classification by model translation
and semi-supervised learning. In Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing, pp. 1057–1067. Association for Computational Linguistics, 2010.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

Dan Svenstrup, Jonas Meinertz Hansen, and Ole Winther. Hash embeddings for efficient word
representations. In Proceedings of the Advances in Neural Information Processing Systems 30
(NIPS 2017), 2017.

Xiaojun Wan. Co-training for cross-lingual sentiment classification. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume 1-volume 1, pp. 235–243. Association for
Computational Linguistics, 2009.

Bin Wei and Christopher Pal. Cross lingual adaptation: an experiment on sentiment classifications.
In Proceedings of the ACL 2010 conference short papers, pp. 258–262. Association for Compu-
tational Linguistics, 2010.

Michael Wick, Pallika Kanani, and Adam Pocock. Minimally-constrained multilingual embed-
dings via artificial code-switching. In Proceedings of the Thirtieth AAAI Conference on Artifi-
cial Intelligence, AAAI’16, pp. 2849–2855. AAAI Press, 2016. URL http://dl.acm.org/
citation.cfm?id=3016100.3016300.

10

100 Zero Shot Cross language Text Classification

Bibliography

[BM98] Avrim Blum and Tom Mitchell. Combining labeled and unla-
beled data with co-training. In Proceedings of the eleventh annual
conference on Computational learning theory, pages 92–100. ACM,
1998.

[Cen] Pew Research Center. Health online 2013.

[CGCB14] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua
Bengio. Empirical evaluation of gated recurrent neural networks
on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Lstm can solve hard
long time lag problems. In Advances in neural information
processing systems, pages 473–479, 1997.

[JGBM16] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas
Mikolov. Bag of tricks for efficient text classification. CoRR,
abs/1607.01759, 2016.

[KB14] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[PBQR+17] Janet Piñero, Àlex Bravo, Núria Queralt-Rosinach, Alba Gutiérrez-
Sacristán, Jordi Deu-Pons, Emilio Centeno, Javier García-García,
Ferran Sanz, and Laura I Furlong. Disgenet: a comprehensive plat-
form integrating information on human disease-associated genes
and variants. Nucleic acids research, 45(D1):D833–D839, 2017.

[Res] Google/Manhattan Research. The doctor’s digital path to treat-
ment.

102 BIBLIOGRAPHY

[Rod05] Joachim Rode. Rare diseases: understanding this public health
priority, 2005.

[SHK+14] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. Journal of machine
learning research, 15(1):1929–1958, 2014.

[SHMW17] Dan Svenstrup, Jonas Meinertz Hansen, Mads Emil Matthiesen,
and Ole Winther. Information completion for medical search assis-
tance. Submitted to Journal of Artificial Intelligence, 2017.

[SHW17a] Dan Svenstrup, Jonas Meinertz Hansen, and Ole Winther. Hash
embeddings for efficient word representations. arXiv preprint
arXiv:1709.03933, 2017.

[SHW17b] Dan Svenstrup, Jonas Meinertz Hansen, and Ole Winther. Zero-
shot cross language text classification. Submitted to ICLR 2018,
2017.

[SJW15] Dan Svenstrup, Henrik L Jørgensen, and Ole Winther. Rare disease
diagnosis: a review of web search, social media and large-scale data-
mining approaches. Rare Diseases, 3(1):e1083145, 2015.

[SPPM15] David Smiley, Eric Pugh, Kranti Parisa, and Matt Mitchell. Apache
Solr enterprise search server. Packt Publishing Ltd, 2015.

[Sve17] Dan Svenstrup. Flow framework for text classification. https:
//github.com/dsv77/flow, 2017.

[SW17] Dan Svenstrup and Ole Winther. Performance optimization for
specialized domain information retrieval. Submitted to Scientific
Reports, 2017.

[WDA+09] Kilian Q. Weinberger, Anirban Dasgupta, Josh Attenberg, John
Langford, and Alexander J. Smola. Feature hashing for large scale
multitask learning. CoRR, abs/0902.2206, 2009.

[Wya91] Jeremy Wyatt. Information for clinicians: use and sources of med-
ical knowledge. The Lancet, 338(8779):1368–1373, 1991.

[ZG02] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and
unlabeled data with label propagation. 2002.

https://github.com/dsv77/flow
https://github.com/dsv77/flow

	Summary (English)
	Summary (Danish)
	Contributions
	Preface
	Acknowledgements
	Contents
	1 Introduction
	2 Introduction to FindZebra
	2.1 The FindZebra search engine
	2.2 Structured datasources
	2.2.1 The UMLS database
	2.2.2 Disgenet
	2.2.3 Use of the UMLS/Disgenet databases in FindZebra

	2.3 The FindZebra corpus
	2.4 Validation and test sets
	2.5 Prevalence

	3 Machine learning theory for NLP
	3.1 Neural networks
	3.1.1 Feed-forward network
	3.1.2 Recurrent neural network
	3.1.3 Training of neural networks

	3.2 Regularization
	3.2.1 Dropout
	3.2.2 Lp regularization

	4 Information retrieval optimization
	4.1 Introduction
	4.2 Improved retrieval models and ensembles
	4.3 Corpus expansion
	4.4 Synonym injection
	4.5 Concluding remarks

	5 Information completion
	5.1 Introduction
	5.2 Article summary
	5.3 Alternate methods for training an IC system
	5.4 Concluding remarks

	6 Hash Embeddings
	6.1 Motivation behind Hash Embeddings
	6.2 Construction of Hash Embedding vectors
	6.3 Summary of article results
	6.4 Concluding remarks

	7 Multilingual text classification
	7.1 Motivation
	7.2 Article summary
	7.3 Concluding remarks

	8 Discussion and conclusion
	A Performance Optimization for Specialized Domain Information Retrieval
	B Information Completion for Medical Search Assistance
	C Hash Embeddings for Efficient Word Representations
	D Zero Shot Cross language Text Classification
	Bibliography

