Simulation of the fate of co-labeled 13C3-15N-glyphosate in a water-sediment system and formation of biogenic non-extractable residues

Brock, Andreas Libonati; Rein, Arno; Polesel, Fabio; Nowak, Karolina M.; Kästner, Matthias; Trapp, Stefan

Publication date: 2018

Citation (APA):
Simulation of the fate of co-labeled 13C$_3$-15N-glyphosate in a watersediment system and formation of biogenic non-extractable residues

Andreas Libonati Brock1, Arno Rein2, Fabio Polesel1, Karolina Nowak3,4, Matthias Kästner3, Stefan Trapp1,

1Department of Environmental Engineering, Technical University of Denmark, Miljøvej bd. 113, DK-2800 Kgs. Lyngby, Denmark
2Chair of Hydrogeology, Technical University of Munich, Arcisstr. 21, Munich 80333, Germany
3UFZ—Helmholtz-Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
4RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany

The combination of dynamic simulation and stable isotope techniques allows tracking the assimilation of pesticides into biomass [1]. Here, we simulated the fate of co-labeled 13C$_3$-15N-glyphosate in an OECD 308 sediment-water degradation test [2]. The mathematical model used consisted of two compartments for sediment (slow and rapid ad-/desorption), one compartment for dissolved mass, and microbial growth and metabolism. The flow of both 15N and 13C were balanced. The model considers two biodegradation pathways for glyphosate, namely the sarcosine-pathway with complete mineralization, and the incomplete pathway with AMPA as a stable transformation product. Kinetic input parameters were partly estimated from the data, while others were calculated. The microbial growth yield was predicted from the MTB method, using thermodynamics and chemical structure [3]. The model can capture the dynamics of the system, including degradation of glyphosate, formation of AMPA and CO$_2$, formation of living and dead biomass (proteins) and chemical adsorption. At the end of the experiment (80 days), non-extractable residues accounted for 23% of the 15N and 26% of the 13C; 10% of the 13C and 12% of the 15N were recovered from the protein fraction (mostly non-living amino acids), which is equal to the biogenic non-extractable residues (NER). Biogenic NER consist of assimilated 13C/15N and are thus considered to be ‘irreversibly bound’ as proposed in the updated ECHA guideline for PBT/vPvB assessment [4]. This is the first study simulating the formation of biogenic NER using experiments with 15N-labeled molecules.