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Towards Bayesian-based Trust Management for
Insider Attacks in Healthcare Software-Defined

Networks
Weizhi Meng, Member, IEEE, Kim-Kwang Raymond Choo, Senior

Member, IEEE, Steven Furnell, Athanasios V. Vasilakos, and Christian W. Probst

Abstract—The medical industry is increasingly digitalized and
Internet-connected (e.g., Internet of Medical Things), and when
deployed in an Internet of Medical Things environment, software-
defined networks (SDN) allow the decoupling of network control
from the data plane. There is no debate among security experts
that the security of Internet-enabled medical devices is crucial,
and an ongoing threat vector is insider attacks. In this paper,
we focus on the identification of insider attacks in healthcare
SDNs. Specifically, we survey stakeholders from 12 healthcare
organizations (i.e., two hospitals and two clinics in Hong Kong,
two hospitals and two clinics in Singapore, and two hospitals and
two clinics in China). Based on the survey findings, we develop a
trust-based approach based on Bayesian inference to figure out
malicious devices in a healthcare environment. Experimental re-
sults in either a simulated and a real-world network environment
demonstrate the feasibility and effectiveness of our proposed
approach regarding the detection of malicious healthcare devices,
i.e., our approach could decrease the trust values of malicious
devices faster than similar approaches.

Index Terms—Intrusion Detection, Software-Defined Network-
ing, Trust Computation and Management, Healthcare Network,
Bayesian Inference.

I. INTRODUCTION

W ITH rapid developments in information and commu-
nications technologies (ICT), healthcare organizations

are moving towards employing many of the same infras-
tructure elements, applications, off-the-shelf technologies, and
processes used by organizations in other sectors. This is
not surprisingly, as networked or Internet-connected medical
devices can facilitate more effective management of assets,
electronic health records, communications, etc, which results
in reduced costs (e.g., associated with monitoring and treat-
ments). A report estimated that networked technologies may
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save much money for healthcare organizations for the next few
years, i.e., it can reduce the costs for hospital equipment by a
15-30 percent [11].

While security of devices and systems, and privacy of user
data, are two key considerations in most information systems,
security and privacy are particularly important factors in a
healthcare setting due to the exacting requirements of the
industry (e.g., the Health Insurance Portability and Account-
ability Act of 1996 for U.S.-based healthcare organizations).
Hence, it is of little surprise that a recent McAfee report identi-
fies that networked medical devices may expose security gaps
when the medical industry tried to combine all technology
aspects regarding operational controls and networked infras-
tructure [17]. In addition to the sensitive nature of the data in
healthcare networks, the complexity, number and diversity of
devices, especially networked medical devices (e.g. wireless
pacemakers), that make up this infrastructure expose such
networks to a broader range of security and privacy risks [4],
[12], [41], [47]. For instance, the number of information
security breaches reported by healthcare providers has an
increase by 60 percent in 2014, which is nearly double the
rate found in other domains [15]. As evidenced by the recent
ransomware incidents [5], [20], it is clear that the healthcare
industry is not immune to cyber attacks. The latter could be
due to accidental failures, privacy violations (e.g., leakage or
compromise of sensitive medical records), intentional and/or
widespread disruption (e.g., due to vulnerabilities and/or flaws
in design, implementation and operation).

In recent times, researchers have started exploring the poten-
tial of deploying software-defined networking (SDN) in health-
care organizations, since SDN can abstract network policy
from network devices, eliminate device level configuration and
provide an open networking model for consolidation [33]. In
the context of cyber security in healthcare organizations, SDN
can be used to defend a medical network against a range of
attacks (e.g., denial-of-service and flooding attacks). However,
similar to existing or conventional security solutions such
as intrusion detection and prevention systems or centralized
protection approaches, SDN solutions do not generally protect
the system and data from insider attacks [16], [32], [38]. For
example, 92% healthcare organizations expressed concerns
that their organizations suffered from insider threats and
required suitable protection solutions [43]. This necessitates
the design of effective solutions to mitigate insider threats.

In this work, we target on the detection of insider malicious
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devices in a healthcare SDN. More specially, we survey
stakeholders from 12 healthcare organizations (four located
in Hong Kong, four located in Singapore, and four located
in China) to have a better understanding of the real-world
requirements. Informed by the findings of the survey, we
describe the typical architecture of healthcare SDNs and
develop a detection approach by using Bayesian model to
figure out malicious devices inside such network. Specifically,
in our approach, after identifying malicious devices, the SDN
controller can easily update flow tables and guide traffic to
bypass those malicious points. To the best of our knowledge,
this is one of the earlier work in this area (i.e., identification of
malicious devices for healthcare SDNs). We then evaluate the
proposed approach in either a simulated and a real network
environments (two of the 12 surveyed organizations located in
China) under different scenarios.

We would also clarify that this paper focuses only on the
identification of insider attacks using trust computation, rather
than how we can improve an intrusion detection system (IDS).
However, our proposed approach can be used to complement
existing security solutions. While we use the healthcare orga-
nization as an application domain, the proposed approach can
be applied to a generic SDN-based network.

In Section II, we introduce SDN and related work regarding
trust management in WSNs and distributed IDS networks.
Section III reports on the usage of Internet-enabled devices
in the healthcare sector and introduces the reference SDN
architecture used in this work. In Sections IV and V, we
present our proposed trust-based approach and its evaluation.
Section VI discusses limitations and open challenges in this
field. Finally, Section VII concludes our work.

II. BACKGROUND AND RELATED WORK

In this section, we introduce the background of software-
defined networking and present relevant studies regarding trust
management in various network environments.

A. Background on SDN

A typical SDN is composed of many programmable switch-
es and control entities, with the purpose of migrating network-
ing functionality into a user-definable interface. SDN is an
emerging architecture that provides many demanding features
like dynamics, management, cost-effectiveness and adaption.
Unlike traditional networks, SDN can deploy additional com-
ponents to its architecture, i.e., adding any software that can
work inside a server or a CPU. This allows the migration
of network functionality to a defined software interface. In
other words, the network’s control plane is a kind of software
component [24].

Fig. 1 depicts the three-layer SDN architecture. The first
layer is the application layer, which is responsible for enforc-
ing policies via the northbound APIs supported by the control
layer (the second layer). In comparison, southbound APIs are
used to support the interactions between the control and the
third layer - the infrastructure layer. The SDN controllers
can perform as a strategic control point in the network to
manage flows for switches, applications and policy engines. In

SDN Controller

Southbound APIs
(e.g., OpenFlow)

Application Layer

Business Applications

Network Services

API API

Control Layer

Infrastructure Layer

Network DeviceNetwork Device Network Device

Northbound APIs

Eastbound APIsWestbound APIs

Fig. 1. A three-layer SDN architecture, comprising the application layer, the
control layer and the infrastructure layer.

such a centralized architecture of network management, users
do not need to notice network topology and the underlying
physical network, which can significantly reduce the workload
for designing the whole network including various operations.
With a SDN controller, organizations or users are able to
obtain independent control of the whole network from a single
and logical point.

More specifically, due to the centralized control in SDNs,
users can monitor and manage network events at the applica-
tion layer in real-time, and implement new services (or appli-
cations) in a quick manner. These capabilities can help users
utilize common network services (e.g., routing and multicast)
to achieve their either individual or organizational goals. As an
example, users can deploy related APIs between the controller
and the applications, and then work on the network abstraction
through leveraging network services without the need to be
know the specific implementation details. Therefore, when a
new flow arrives at a switch in SDNs, this switch is able to
know the forwarding path by sending a routing request to the
centralized controller. It is worth noting that the controller
has to generate a routing path and exchange the forwarding
rule, via a secure channel, with all the related switches. After
receiving the rule, all corresponding SDN switches can make
an update to the flow tables.

On the whole, SDN can easily manage the whole network
and offer various benefits like allocating on-demand resources
and providing secure cloud services, because of its global view
and the centralized control. One specific benefit of the SDN
application is to enable network abstraction, which offers an
easy way for users to configure a service without the need to
understand the network complexity. From the view of devices,
they only need to accept instructions from the corresponding
SDN controllers and there is no need to know the thousands of
protocol standards in practice. Furthermore, SDN can provide
more flexibility than the conventional networks. For instance,
SDN controller based on software can be easily modified or re-
configured for better interaction among different components,
as compared with hardware-based devices.
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B. Related Work

The healthcare SDN manages a set of distributed entities,
in which this distributed nature is similar to that structure of
a wireless sensor network (WSN). In literature, there are only
a small number of studies on building trust management in
healthcare SDN to defend against insider attacks. For real-
world implementation, WSNs and healthcare networks may
employ different topologies, while the trusted IDS principles
are still the same. Therefore, this section introduces existing
approaches on how to establish trust management for WSNs
and distributed IDS networks.

Intrusion detection systems (IDSs). These systems are
usually deployed to identify any behavioral anomalies or
policy violations through monitoring the protected networks
and systems. Typically, an IDS can be classified into two
categories: signature-based IDS and anomaly-based IDS. The
former detects attacks by matching network or system events
with available signatures [34], [35]. A signature (or rule) is
a kind of descriptions of a known attack or exploit, which
determines the detection capability in real-world applications
(i.e., its detection accuracy would not be better than its
available signatures). The latter first builds a profile for
typical activities on the target computer and network, and
then identifies potential anomalies if the deviation between
the monitored events and the normal profile exceeds a pre-
defined threshold [10]. Alarms will be generated if anomalies
are discovered. To improve the detection performance, dis-
tributed and collaborative IDSs are often applied in real-world
environments [45], [51].

Trust management for wireless sensor networks. The
notion of trust in computer science derives mainly from
the field of social science, aiming to predict and judge the
situations of an object [9]. In literature, many trust-based
approaches with intrusion detection technology have been
developed and studied, [7].

To establish trust management among WSN nodes, Probst
and Kasera [36] proposed a distributed and statistical trust,
which used a confidence interval to explore the behavior of
sensor nodes. It can be utilized to evaluate the reputation
among many nodes, identify malicious or malfunctioning ones,
and reduce their impact on network performance. Wang et
al. [37] focused on mobile Ad hoc networks (MANET) and
designed a detection approach to look for malicious sensor
nodes. Two trust values were developed for node evaluation:
Evidence Chain (EC) and Trust Fluctuation (TF). Chen et
al. [6] introduced a trust management approach based on
network events, which employed the watchdog method to
monitor nodes events and then broadcast the trust values of
nodes. In particular, their approach assumed that each node
can own more than one trust values and their neighbor nodes
have to store these values for trustworthiness evaluation.

Then Shaikh et al. [39] gave a group-based approach of
evaluating the trustworthiness of nodes organized in a cluster,
which integrated both direct and indirect trust. Their approach
considered two network topologies: one is intragroup topology
which was suitable for distributed trust management; the
other one is intergroup topology which adopts a centralized

trust management approach. Guo et al. [13] presented a trust
management framework to generate trust values by means of
Grey theory and Fuzzy sets. The final trust value in their work
was calculated using relation factors and weights of neighbor
nodes, not just by simply taking an average value.

In addition to direct trust, it is also feasible to leverage
indirect trust information. Zahariadis et al. [49] designed a
routing protocol that identify unusual nodes by means of both
direct and indirect trust. This distributed trust model could
handle different network dimensions via the geographical
routing principle. Zhang et al. [50] introduced a dynamic trust
management method to evaluate trustworthiness for hierarchi-
cal WSNs, through combining both direct and indirect trust.
They also considered the movement of nodes from clusters
and gave a higher weight to the most recent events via a
trust varying function. Bao et al. [2], [3] designed a detection
approach for identifying malicious nodes in hierarchical WSNs
by means of quality of service (QoS) trust and social trust.
The evaluation demonstrated a better detection accuracy and
a lower false positive than conventional IDSs.

Trust management for distributed IDS networks. To
enhance the detection performance of a single IDS, distributed
or collaborative IDS networks have been widely developed
through enabling the information collection and exchange
among a set of IDS nodes [48].

Li et al. [21] figured out that both centralized and dis-
tribution fusion could be unscalable for current distributed
IDSs due to communication issues. To solve this issue, they
constructed a distributed detection system based on decentral-
ized location and routing framework. One weakness of their
approach is that they considered all peers were trusted though
these peers are vulnerable to insider threats. This assumption
makes their system unrealistic in practical scenarios. Targeted
on this issue, Duma et al. [8] acknowledged that not all
nodes are trusted and developed an Overlay IDS, which could
detect malicious nodes via P2P-based intrusion detection.
This system managed trust values (i.e., correlating alarms)
by means of a trust-aware engine and an adaptive approach.
In particular, the engine was able to reduce unwanted alerts
sent by untrusted or low reputation peers, and the adaptive
approach was able to predict peers’ trust values based on their
past experiences.

However, peers’ past experiences should be used in a careful
way, since the older trust information was not beneficial for
predicting a nodes’ trust value. Focused on this issue, Fung
et al. [18] developed a Host-based IDS framework to detect
malicious nodes through a challenge-based trust mechanism,
which allows each node to evaluate the trustworthiness of other
nodes through sending challenges and matching the received
feedback. They also utilized a forgetting parameter to give
more weights on the recent events observed from the target
nodes. They then developed a Dirichlet-based approach to
compute the trust values among a set of nodes based on their
mutual evaluation, which is much scalable in practice and is
robust against insider attacks (i.e., some benign nodes turn to
sending malicious packets suddenly) [19].

Intuitively, each node may have different detection capabil-
ity within a distributed IDS network, due to their deployed
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signatures and detection algorithms. Li et al. [22] advocated
this observation and developed a notion of intrusion sensi-
tivity to model the detection capability of each node. They
then applied this notion for improving the challenge-based
trust mechanism and achieved better results than the original
scheme [23]. They further identified how to allocate the values
of intrusion sensitivity remains a challenge, and proposed an
allocation method by means of machine learning algorithms,
which could greatly reduce human efforts for value assign-
ment [25]. In addition to the challenge-based trust mechanism,
trust management of distributed IDS networks can be also built
by using information theory [42] and game theory [44]. To
further enhance the performance of an IDS, many optimization
approaches have been designed in literature, such as alarm
reduction [26], alarm verification [30], [31] and many filtration
mechanisms (e.g., EFM [29]).

Discussion. IDSs have also been applied for SDN ap-
plications. For example, Ha et al. [14] developed a traffic
sampling strategy to reduce the processing capability of an
IDS in SDN, which samples traffic flows according to defined
sampling rates. AlEroud and Alsmadi [1] proposed a detection
approach to identify DoS attack in a SDN environment, using
an inference mechanism and a packet aggregation technique
to create attack signatures and predict attacks.

As SDN has the potential to improve quality of care and
protect patient data in healthcare domain, there is a need for
healthcare organizations to maintain trust in medical equip-
ment and system. Insider attacks are one of big threats for
healthcare networks [16]. However, there are relatively few
studies on how to build trust management in SDN to detect
insider attacks. Motivated by these, this work focuses on es-
tablishing trust management in a healthcare SDN environment
to defend against insider attacks.

III. HEALTHCARE SDN: SURVEY AND ARCHITECTURE

In this section, we first describe our survey of 12 healthcare
organizations regarding their usage of Internet-enabled de-
vices, prior to presenting the architecture of healthcare SDNs.

A. Internet-Enabled Devices in Healthcare domain

To reduce cost and improve management, medical devices
are increasingly connected to the Internet. In this part, we
summarize the findings of a survey conducted with stake-
holders from four healthcare organizations in Hong Kong
(HK), four healthcare organizations in Singapore (SG), and
four healthcare organizations in China (CN). The survey was
designed to understand the usage of Internet-enabled medical
devices in these organizations, and their requirements. The
choice of the organizations was a pragmatic decision, based on
the authors’ existing contacts and collaborations. Participants
were enlisted via telephone and email contacts, and their
organizations had a significant usage and investment in IT
systems. For privacy reasons, Table I mainly describes the
size of these organizations (hospitals and clinics).

From the findings depicted in Fig. 2, it is clear that the
number of Internet-enabled devices is significant. Reported
usage of these devices are as follows:

TABLE I
PARTICIPATING HEALTHCARE ORGANIZATIONS.

Hospitals Personnel Clinics Number of Personnel
HK Hospital 1 > 300 HK Clinic 1 30-50
HK Hospital 2 200-300 HK Clinic 2 10-30
SG Hospital 1 > 300 SG Clinic 1 40-60
SG Hospital 2 100-200 SG Clinic 2 30-50
CN Hospital 1 200-300 CN Clinic 1 30-50
CN Hospital 2 100-150 CN Clinic 2 10-20

H K  H o s p i t a l  

S G  H o s p i t a l  

C H  H o s p i t a l

H K  C l i n i c

S G  C l i n i c

C H  C l i n i c

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
P e r c e n t  ( % )

Fig. 2. Reported usage of Internet-enabled devices in the participating
healthcare organizations.

• To facilitate record and data management for patients
(e.g., storing of patient healthcare records).

• To communicate with other healthcare personnel (e.g.,
sharing information about surgery time).

• To exchange patient information (e.g., between different
departments for handover in patient care).

During the survey, we also sought to understand the system
requirements. The key observations are described as below,
which are in line with our previous study [32].

• In medical networks, it has to be ensured that all net-
worked devices can operate smoothly. Thus, the adopted
security solutions should be able to detect malicious
devices dynamically and reduce false positive rate.

• The adopted security solution should provide full-time
inspection and management, i.e., monitoring network and
device traffic, enforcing security policies.

• Since most healthcare personnel are not information tech-
nology (IT) experts, it is important to adopt centralized
control (e.g., centralized-decision architecture) in order to
identify and respond to intrusions (e.g., betrayal attacks).
As a result, a hierarchical structure can help handle
intrusions more efficiently.

Furthermore, more than half of these participants reported
that SDN technology could be applied in their organizations
and emphasized that security is a significant consideration in
medical networks.

B. Healthcare SDN Architecture

A critical aspect of healthcare partnership is the capability
to consolidate systems while maintaining seamless commu-
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Fig. 3. A typical architecture of healthcare SDNs. (x IDS means there may
be multiple IDSs)

nication throughout the organization. Traditional networks
are generally difficult to consolidate, as each network de-
vice can contain hundreds of configurations that need to be
changed [33]. Thus, SDN is a viable solution, which provides
the ability to abstract network policy from network devices,
eliminating device level configuration and providing an open
networking model for consolidation.

As an example, SDN could be used to provide patient
data security as well as the agility required to move the
data from endpoint to endpoint [33]. The SDN controller
detects when a patient monitoring endpoint connects to the
network. Forwarding entries are loaded into the network
switches that allow the endpoint to connect only with the
patient monitoring controller. The monitoring endpoint can
be connected anywhere in the SDN switch network, since
the SDN controller will automatically identify the endpoint
and connect the ingress interface to the corresponding virtual
network, providing reliability, mobility, and security.

Fig. 3 depicts a typical architecture of healthcare SDNs,
based on the findings from our survey. Such an architecture
composes of an SDN controller, a set of OpenFlow switches
and a number of medical devices and client devices (e.g.,
mobile devices and personal computers). An OpenFlow switch
separates the data and control functions of networking devices.
The OpenFlow specification provides a standardized way of
implementing an SDN architecture, and the OpenFlow proto-
col can control network switches where to send packets. All
these make the whole network programmed independently of
the individual switches and data center. Therefore, the SDN
controller can collect flow status from each switch and manage
its flows easily. For instance, the controller can configure all
data packets sent by the OpenFlow switches.

IV. OUR PROPOSED APPROACH FOR HEALTHCARE SDN

In this section, we describe how to apply intrusion detection
in a healthcare SDN, and introduce the way of calculating
devices’ trust values and identifying untruthful devices by
mean of a Bayesian inference approach.

TABLE II
KEY TERMS FOR BAYESIAN INFERENCE MODEL.

Terms Meaning
P (ni : normal) = p The probability of the ith packet

is normal
Vi The ith packet is normal

n(N) The number of normal packets

A. Healthcare SDN with IDS deployment

As previously discussed, IDSs are a common security
solution for detecting various network and system anomalies.
In particular, Snort [40] is a lightweight open-source NIDS
with the capability of analyzing traffic in real-time, interpreting
protocol and performing signature matching. As shown in
Fig. 3, an IDS can be deployed in a centralized server within
the healthcare SDN for examining data packets. There are two
common deployment approaches available:

• Single IDS. This deployment uses only one IDS to
control and handle all traffic in healthcare networks, but
requires the deployed IDS to have a strong processing
and communication capability.

• Multiple IDSs. This deployment can use one main ID-
S and a set of IDS agents. In particular, IDS agents
are responsible for handling traffic in SDN/OpenFlow
switches(e.g., inspection and statistic recording), whilst
the main IDS acts as a controller for data aggregation
and communication with the SDN controller.

All these deployment approaches allow switches to send
mirrored packets to IDSs. During our survey, it was found
that the second option of multiple IDSs was preferred by
most participants. This is, perhaps, unsurprising as the second
option is more suitable for a distributed network environment.
Moreover, in our data-intensive society, traffic volumes will
also significant increase. Thus, we focus on the healthcare
SDN with multiple IDSs in the evaluation.

B. Bayesian Inference-based Trust Management

Bayes’ rule is used by Bayesian inference to adjust the
probability for a hypothesis as more evidence turns to be
available [42]. For trust management, it can be helpful for
computing the trustworthiness among network nodes and
deciding malicious ones based on defined rules. This approach
mainly assumed that all packets delivered by a device are
independent from each other. In other words, this assumption
indicates that the probability of a packet being malicious is
1/2. This is a reasonable assumption, as practical attackers
can send malicious packets in many ways (i.e., with either one
or multiple malicious packets). Some key terms relating to the
use of Bayesian inference model are described in Table II.

In terms of the results in previous work [9], [42], it is
reasonable to assume the distribution of observing n(N) = k
is governed by a Binomial distribution. This distribution shows
n successes out of N Bernoulli trials, in which each n has the
same possibility p when the trial is true. Subsequently, if we
observe N packets are delivered by a device, in which k of
them are benign, then we can compute the probability of such
situation as below.
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P (n(N) = k|p) = (Nk )pk(1− p)N−k (1)

The ultimate goal of applying Bayesian inference in this
work is to judge whether the N + 1 packet is benign or not
(denote P (VN+1 = 1|n(N) = k)). This probability obeys the
distribution based on Bayesian theorem as below.

P (VN+1 = 1|n(N) = k) =
P (VN+1 = 1, n(N) = k)

P (n(N) = k)
(2)

Then we can apply the marginal distribution to the above
equation. That is, if X and Y are discrete random variables
and f(x, y) is the value of their joint probability distribution
at (x, y), then the marginal distributions of X and Y can be
given as: Σyf(x, y) and Σxf(x, y), respectively. In this case,
we have the following Equations 3 and 4:

P (n(N) = k) =

∫ 1

0

P (n(N) = k|p)f(p) · dp (3)

P (VN+1 = 1, n(N) = k) =

∫ 1

0

P (n(N) = k|p)f(p)p · dp
(4)

Since we do not have any prior information about p, it is
reasonable to assume that this information is governed by a
uniform prior distribution f(p) = 1, where p ∈ [0, 1]. As a
result, we can derive the following Equation 5 by considering
Equations 1 to 4.

P (VN+1 =1|n(N) = k) =
P (VN+1 = 1, n(N) = k)

P (n(N) = k)

=

∫ 1

0
P (n(N) = k|p)f(p)p · dp∫ 1

0
P (n(N) = k|p)f(p) · dp

=
k + 1

N + 2

(5)

On the whole, Equation 5 shows how to compute trust
values for network devices (or called nodes) in healthcare
SDNs. A key is to observe the total number of packets N and
know how many packets, say k, are benign. The centralized
server can thus establish a map of trust among nodes, and
detect a potential untruthful device if given a proper threshold.
Based on the particular security requirements and settings,
security administrators can adjust the threshold accordingly.

C. Detection Threshold

The studies in [18], [19] showed that recent traffic status
would be more important than some very old experiences,
in the sense of improving detection accuracy and identifica-
tion speed. This observation is also echoed in our previous
study [32]. To meet this requirement, similar to [18], we adopt
a forgetting factor λ, which can allocate less weight to older
statistics (i.e., reducing the impact of old events gradually). As
a result, if given a time period t, a node’s trust value based
on network packets (tpvalue) can be calculated as below.

tpvalue = λ
kpt + 1

Np
t + 2

(6)

As healthcare environments are more sensitive than tradi-
tional networks, some additional signatures, called self-defined
rules, can be developed to identify some sensitive keywords
by security administrators [32]. In this environment, a low
false rate is highly required as any falsely blocked devices
can result in an unexpected accident. For such a trust-based
IDS scheme, a dynamic blacklist can be employed to block
malicious devices. Then, SDN controller can configure data
flow to bypass those malicious locations.

The detailed process of generating a blacklist can be tuned
accordingly in terms of IDS signatures and self-defined sig-
natures.

• If a packet matches an IDS signature, then the node will
be blacklisted instantly.

• If a packet only matches a self-defined signature, then
the node will not be blacklisted at once, but depends on
its trust value and relevant threshold.

Device profile. Malicious traffic is often accompanied by
abnormal behavior. Our survey participants expressed the need
for any security solution to consider the device profile, as
healthcare organizations usually have strict policies on the
use of medical devices. In some countries, medical devices
and their usage are (legally) regulated. Hence, unusual usage
can be considered as abnormal behavior. In this case, it is
not hard to identify unusual devices if any security policy is
given, i.e., a whitelist to define what is good to the network.
Similarly, we can apply Bayesian inference for evaluating the
trustworthiness of devices based on their profile. For a given
period t, a device’s trust value (tdvalue) can be computed as
below.

tdvalue = λ
kdt + 1

Nd
t + 2

(7)

In Equation 7, kdt denotes the normal profile and Nd
t denotes

the total number of profile. In this work, we focus on visited
websites and email address, two key attributes highlighted by
the surveyed participants.

To facilitate trust evaluation, we develop the following
single metric, ttotalvalue:

ttotalvalue = W1 × tpvalue +W2 × tdvalue (8)

In Equation 8, W1 and W2 are weight values and W1 +
W2 = 1. Therefore, a device can be blacklisted as malicious
if the trust values decrease below a threshold of T ∈ [0, 1]. As
the blacklist is dynamic, it has to check tvalue periodically.

• If tvalue ≥ T , then the device in the blacklist should be
deleted.

• If tvalue < T , then the device in the blacklist should be
maintained.

It is worth emphasizing that a device can be put in the
blacklist at once, if it sends only one malicious packet.
However, this strategy may cause a high false positive and
degrade the performance of medical systems in a practical
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Fig. 4. High-level framework for the simulated SDN environment.

healthcare network. This is the main reason why our approach
is dynamic, providing much flexibility of recovering false
detected devices. In practice, this mechanism can evaluate the
trustworthiness of a device based on its long-time behavior
and provide more flexibility for IT administrators to control
and manage the network in the SDN controller.

V. EVALUATION

In this section, we collaborate with practical organizations
in healthcare domains and evaluate the performance of our
mechanism in both simulated and real healthcare SDN envi-
ronments.

A. Methodology and Experimental Results

In the evaluation, we mainly conduct two experiments to
investigate the performance of our approach as follows.

• In the first evaluation, we evaluate our trust-based ap-
proach in a simulated healthcare SDN environment under
both honest and dishonest environments. (see Section
V-A1)

• In the second evaluation, we evaluate our trust-based ap-
proach in a healthcare SDN environment, in collaboration
with a healthcare organization located in China (i.e., one
of the 12 surveyed organizations). (see Section V-A2)

1) Simulated Environment Evaluation: In this evaluation,
we simulated a SDN environment in our lab to explore the
feasibility of our approach. In particular, we used OpenDay-
Ligh (ODL)1 as the SDN controller (on a server with an
Intel(R) Core (TM)2, Quad CPU 2.66GHz), and Open vSwitch
(OVS)2 as SDN-enabled switches. We used the open source
Snort to detect malicious traffic. In other words, the simulated
environment consists of one SDN controller and six SDN
switches. Up to 30 devices were randomly connected to these
switches. Figure 4 depicts the high-level framework for the
simulated SDN environment.

To simulate a healthcare environment, we applied 70 self-
defined rules (suggested by our survey participants) in addi-
tion to Snort signatures for traffic inspection, and developed

1https://www.opendaylight.org/.
2http://openvswitch.org/.

TABLE III
THE SIMULATION SETTINGS IN OUR EVALUATION.

Parameters Value Description
λ 0.9 forgetting factor
Tinitial 0.5 initial trust value
(W1,W2) (0.6, 0.4) weight values
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Fig. 5. Trust values of devices under normal environment.

a whitelist for website browsing and email usage. In this
work, we compared our approach with the challenge-based
intrusion detection mechanism, which focuses on evaluating
the trustworthiness of an IDS node through sending chal-
lenges [18], [19]. To facilitate the comparison with challenge-
based intrusion detection, we set λ = 0.9 and initial trust
value Tinitial = 0.5 (details are available on [18], [19]). The
simulation parameters are described in Table III. As packet
inspection is more intuitive and sensitive, tpvalue has a slightly
higher weight (W1 = 0.6).

Normal scenario. The average trust value of all devices
after launching the network are shown in Fig 5. It is observed
that the average trust value becomes stable after some time,
under the normal traffic environment. This is because the
controller has to gather data from each switch in the network
and build a trust matrix. Fig. 5 also shows the trust values of
two devices, which converged similar to each other. Based on
the trend of trust values, we could select the threshold to 0.9.

Adversarial scenario. We randomly selected two highly
trusted devices to conduct a betrayal attack with malicious
actions, as follows:

• MD-1. This device was configured to send malicious
packets, which can trigger IDS alarms.

• MD-2. This device was configured to both generate ma-
licious traffic and act abnormally, e.g., visiting malicious
website.

To the best of our knowledge, there has been little work in-
vestigating trust management in SDN environments. To make
a comparison, we adopted two trust management approaches
as a baseline, which are most relevant to this work. The first
model was proposed by Duma et al. [8]. They developed
a P2P-based overlay IDS, which attempted to figure out a
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Fig. 6. Trust values of malicious devices of MD-1 and MD-2.

malicious nodes by means of both a trust engine and an
adaptive approach for trust management in a distributed IDS
network. The second model was proposed by Fung et al. [18],
[19]. They designed a challenge-based trust management
model for identifying malicious nodes in a collaborative IDS
network. In the evaluation, we tuned these models to fit a SDN
environment and a centralized server were deployed to gather
data and compute the trustworthiness of devices.

Fig. 6 depicts the trust values of malicious nodes within
the network environment, and we have the following major
observations.

• The figure indicates that the challenge-based model could
reduce the trust values of malicious nodes faster than the
overlay IDS model. This observation is in line with the
results in [18], because challenge-based model employs
forgetting factor that gives more weight to recent experi-
ence.

• For both malicious devices, our approach can decrease
their trust values more quickly than the other two trust
models. This is because our Bayesian model relies mainly
on the evaluation of packet’s status for a period of
time, which can be more sensitive to traffic dynamics
in practice.

• The trust value of MD-2 decreases slightly faster than that
of MD-1 computed by our approach, since MD-2 could
both generate malicious traffic and perform abnormally.
This indicates that profile information has a positive
impact on identifying malicious devices. However, its
trust value was not greatly affected by the other two
models, as they were unable to handle abnormal device
profile.

Overall, these results indicate that our approach is viable.

2) Real-World Evaluation: In this evaluation, we sought
to investigate the performance of our approach in a realistic
environment. We collaborated with one of the 12 healthcare
organizations to implement our approach in their environment.
Due to privacy concerns (e.g., local privacy legislation), we
worked with the IT personnel from the organization to build
a healthcare SDN (to be part of their network) and deploy
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Fig. 7. Trust values of devices under normal traffic in a real-world healthcare
SDN.
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Fig. 8. Trust value of malicious device in a real-world healthcare SDN.

our mechanism in this environment. The healthcare SDN
comprises one SDN controller, eight SDN switches and 20
devices (including personal computers and mobile devices).
The center had a whitelist for normal websites and email
address, and defined up to 245 self-defined rules based on the
previous traffic data, including a number of sensitive keywords
and unwanted IP addresses. The other settings are similar to
Section V-A1.

To determine an appropriate threshold, we run the network
for a period of time. The average trust value is depicted in
Fig. 7. As compared with the simulation result in Fig. 5, it
is found that the trust value in a real environment is more
dynamic, due to the complexity of real traffic. This is not
suprising. Generally, the average value ranged from 0.86 to
0.92. In this case, we selected 0.85 as the detection threshold.

Adversarial scenario. Similar to Section V-A1, we random-
ly selected two devices to conduct malicious actions including
generating of malicious packets and acting abnormally. Fig. 8
presents the average trust value of malicious devices under this
scenario. The observation is similar to Section V-A1. That is,
our Bayesian approach has the capability of reducing the trust
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TABLE IV
CPU WORKLOAD OF CONTROLLER AND SWITCHES UNDER DIFFERENT

SCENARIOS.

Controller Side
Condition Average CPU (%) Max CPU (%)
Normal scenario 15.3 26.7
Adversary scenario 33.7 41.3
Switch Side
Condition Average CPU (%) Max CPU (%)
Normal scenario 6.8 13.7
Adversary scenario 18.4 30.3

value of malicious device more quickly than the challenge-
based approach. The experimental results demonstrated that
our approach is effective in identifying malicious devices in a
healthcare SDN environment.

B. Workload

Intuitively, deploying additional security mechanisms may
result in higher CPU load due to communication and oper-
ations. In this part, we evaluate the additional workload due
to our approach for the main IDS controller (SDN controller
side) and IDS agents (switch side).

On the switch side, many operations can increase the work-
load such as collecting packet and device profile information,
communicating with the controller and so on. On the controller
side, the workload can be caused by gathering statistical
information from switches, calculating trust values, updating
flow tables and enforcing security policies.

Table IV presents the CPU workload on both controller and
switch sides under normal and adversary scenarios in the real-
world healthcare SDN environment. The main observations are
described as below.

• The CPU load on controller side is heavier than that on
switch side. For example, the CPU load is 15.3% and
6.8% for the controller and switch under normal scenario,
respectively. This is because the controller has to collect
information and manage the entire network.

• Generally, the CPU load on both sides would become
significantly heavier in a hostile scenario, as compared
to the normal traffic scenario. For instance, the CPU
increased 33.7% on average under attack as compared
to 15.3% under normal traffic. This is because more
packets would be exchanged and transmitted under the
abnormal traffic scenario (i.e., resulting in an increase
of malicious packets), in addition to the communication
increased between main IDS and IDS agents.

C. Scalability Investigation

In order to validate the performance and explore the scal-
ability of our Bayesian approach in different scenarios (i.e.,
with more devices), we further collaborated with the same
healthcare organization and evaluated our proposed mechanis-
m using 50 devices (with 15 switches) and 70 devices (with
20 switches), respectively. Moreover, we collaborated with
another of the healthcare organizations in China, which has a
similar infrastructure with the first healthcare organization, to

build a healthcare SDN with 100 devices (with 31 switches).
This (second) healthcare organization maintained a whitelist
for normal websites and email address, and had 260 self-
defined rules in relation to sensitive keywords and unwanted
IP addresses.

Fig. 9 shows the average trust values of devices under
these scenarios. It is visible that the average trust values of
devices could gradually converge and ranged from 0.85 to
0.93 regarding different conditions. This observation is similar
to our previous evaluations; hence, we chose 0.85 to be the
detection threshold.
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Fig. 9. Trust values of devices under various normal scenarios.

To validate the performance of our approach against ma-
licious nodes, we randomly selected a ratio of 1/5, 1/4
and 1/3 highly trusted devices to conduct a betrayal attack
(i.e., behaved maliciously suddenly), respectively. Taking the
scenario with 50 devices as an example, there could be 10,
13 and 17 malicious devices accordingly. Fig. 10 depicts
the average trust values of malicious devices under different
adversarial scenarios. The trust values of malicious devices
were observed to decrease rapidly across different scenarios.
Moreover, a faster decrease of average trust values could be
caused by an increase of malicious devices. For instance, under
the scenario with 50 devices, the average trust value of 17
malicious devices could decrease a bit faster than that of 13
malicious devices.

As a comparison, Fig. 11 compares the trust value of
malicious devices between our approach and the challenge-
based trust mechanism. It is found that the trust value under
our approach decreased much faster than those under the
challenge-based approach. This is because our approach is
more sensitive to traffic changes. Fig. 12 then shows the
average trust values of malicious devices with the challenge-
based approach under different adversarial scenarios. Overall,
these results are in line with the observations in the other
evaluations reported above, demonstrating that our Bayesian
approach can work well in detecting malicious devices in a fast
manner and can provide good scalability in distinct scenarios.
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Fig. 10. Trust values of malicious devices with our approach under various
adversarial scenarios.
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Fig. 11. A comparison of trust values under the adversarial scenario.

VI. DISCUSSION AND CHALLENGES

Based on the findings of our survey and the evaluations
reported in the preceding sections, we will now discuss several
limitations and open challenges in securing medical networks.

a) Threshold: In comparison to the threshold in a wired
network (e.g., 0.75 [27]) or a wireless sensor network (e.g.,
0.72 [28]), healthcare networks have a higher threshold.
This indicates that healthcare traffic is not as complex as a
conventional network, because there are only less connected
devices than a convention wired network. On the other hand,
healthcare network would implement a more strict detection
rules. Therefore, in practice, it could be easier to develop
compact and effective security schemes to save energy and
storage in some resource-limited medical devices.

b) Behavioral profile: In this work, we only employed
two most common profile features for device profile based on
the findings from our survey. In practice, more features will
need to be considered in order to establish a more precise
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Fig. 12. Trust values of devices with challenge-based approach under various
adversarial scenarios.

profile. However, there is also a need to develop a robust
security scheme with few features, as a medical network
is extremely sensitive where not all expected features are
available in some cases. This is an open challenge in this area.

c) Large traffic volume: With the advent of big data,
traffic volume will significant increase in medical networks,
particularly in the near future as more medical devices are
Internet-connected. The data could be difficult to be managed
efficiently by on-hand techniques, tools and devices. To mit-
igate this issue, traffic sampling is a potential solution for
deploying IDSs in a large-sized network [14]. In addition,
pre-filtration can be considered to reduce unwanted traffic and
lighten the processing burden [27], [30].

d) IT experts in the healthcare area: It is not surprised
that manufactures handle and maintain the medical devices
and their security in a traditional way. However, more medical
devices are becoming Internet-enabled due to the coming era
of Internet of things (IoT), demanding many IT experts in
setting those medical devices more frequently, i.e., configuring
embedded systems, examining network traffic and potential
security breaches. The lack of IT experts, especially security
experts, in healthcare organizations exposes a big hole for the
security in healthcare domain.

e) Security policy enforcement: Due to the sensitivity of
healthcare networks, there is a great need to apply and enforce
security policies in different network levels, i.e., deploying
access control policy to ensure medical device to be accessed
by only trusted users. This reiterates the need for more cyber
security experts in protecting healthcare environments. Further,
security policies would not be fixed but have to be reconfigured
based on a specific environment. That is, distinct security
policies should be applied in different organizations. Having in
place standards to guide the development of security policies
is another key consideration.

f) Implementation of additional security mechanisms:
Fig. 10 showed that the curves of 100 devices were higher than
the ones for 50 or 70 nodes, though the curves reached the
same point in the end. These may be caused by communication
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delay or other factors. This is an interesting topic that can be
investigated and validated in our future work. For example,
some additional security mechanisms can be implemented to
narrow the curve gap.

VII. CONCLUSION

As healthcare organizations become more connected and
digitized (e.g., digitization of patient records, prescription
ordering, communication between doctors and patients), en-
suring the security of Internet-enabled devices and the system
without compromising performance and usability will also be-
come increasingly challenging. Software-defined networking
(SDN) allows the decoupling of network control from the data
plane, but SDN based solutions are not generally designed to
mitigate against insider threats.

In this paper, we surveyed stakeholders from 12 healthcare
organizations in Hong Kong, Singapore and China to obtain
in-depth understanding of the system design requirements in
medical networks. Motivated by our findings, we focus on
the identification of insider attacks in healthcare SDNs by
proposing a trust-based Bayesian approach for such environ-
ment. Findings from our evaluations in both simulated and
real-world environments (in collaboration with two of the 12
healthcare organizations) demonstrated that the effectiveness
and scalability of our approach in detecting malicious devices
under various conditions. Future work could include investi-
gating how to further improve the detection sensitivity and
validating the performance of our approach in an even larger
environment.
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