Copper Sulfide nanocrystals for efficient photothermal ablation of tumor cells

Zheng, Zhiyong; Lee, Li; Yu, Ping; Ma, Lixin; Engelbrekt, Christian; Zhang, Jingdong

Published in:
Journal of Material Science & Engineering

Link to article, DOI:
10.4172/2169-0022-C5-105

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Copper Sulfide nanocrystals for efficient photothermal ablation of tumor cells
Zhiyong Zheng, ME, Department of Chemistry, Technical University of Denmark, Denmark
Li Lee, MS, Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA
Ping Yu, PhD, Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA
Lixin Ma, PhD, Department of Radiology, University of Missouri, Columbia, MO, USA
Christian Engelbrekt, PhD, Department of Chemistry, Technical University of Denmark, Denmark
Jingdong Zhang, PhD, Department of Chemistry, Technical University of Denmark, Denmark

Abstract
The unique properties of nanomaterials (e.g., novel optical, electronic and structural properties) provide new opportunities to approach current obstacles in medicine. One of the key aspects of the ‘nanophenomenon’ that potentially benefits biomedical research and nanomedicine is quantum size confinement, by which the absorption coefficient can be improved and absorption band can be selected at nanoscales. Nanomaterials as photothermal ablation (PTA) agents, which convert optical energy into thermal energy, are desired for cancer therapy especially at near-infrared (NIR, $\lambda = 700–1100$ nm) wavelength. In this study, we developed a process for rapid synthesis of CuS nanocrystals coated with starch for PTA. The thickness and width of nanocrystals were controlled by synthesis temperature, concentration of the precursors, i.e. CuCl$_2$ and (NH$_4$)$_2$S. Typically, the CuS nanocrystal is 1 nm in thickness, 10 nm in width and the starch coating of 1 nm (measured by atomic force microscopy and transmission electron microscopy). The starch acted as a protecting agent, preventing the aggregation and providing reaction sites for following modification of specific recognition agents. At low concentration of precursors, uniform nanocrystals were hardly achieved even with excess of starch (CuS_LPHS, Figure 1a). In contrast, monodispersed nanocrystals were obtained when the concentration of precursors increased (CuS_HPLS, Figure 1b). Moreover, with a same concentration of copper ions, CuS_HPLS has higher absorptions in NIR region owing to the smaller average size of CuS_HPLS than CuS_LPHS (Figure 1c). Treated with CuS_HPLS (conc. =4.4 µg/ml) and a 808-nm NIR laser at 38 W/cm2 for 2 minutes, human prostate cancer PC-3 cells showed a 36% inhibition of growth compared to those without CuS_HPLS ($n=3$, $p=0.03$). Owing to the unique optical properties, small size, low cost of production and low cytotoxicity, CuS nanocrystals are a promising nanomaterial for cancer PTA therapy.

Image
Figure 1 Atomic force microscopy image of CuS_LPHS (a) and CuS_HPLS (b) and corresponding UV-Vis spectroscopy at same Copper ion concentration (c). Unit: nm.

Recent Publications

Biography
Zhiyong Zheng is a PhD student at NanoChemistry group, Department of Chemistry, Technical University of Denmark. He specializes in the electrochemical analysis, nanochemistry, and materials characterization, for example, atomic force microscope, scanning electron microscope, transmission electron microscope, X-ray powder diffraction. With the background of environment science, he is focusing on the extracellular electron transfer, the application of nanomaterials in environment, medicine and energy.

Email: zhizhe@kemi.dtu.dk

Notes/Comments: