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Abstract 

Pseudomonas putida has gained much interest among metabolic engineers as a workhorse for 

producing valuable natural products. While a few gene knockout tools for P. putida have been 

reported, integration of heterologous genes into the chromosome of P. putida, an essential 

strategy to develop stable industrial strains producing heterologous bioproducts, requires 

development of a more efficient method. Current methods rely on time-consuming 

homologous recombination techniques and transposon-mediated random insertions. Here we 

report a RecET recombineering system for markerless integration of heterologous genes into 

the P. putida chromosome. The efficiency and capacity of the recombineering system were 

first demonstrated by knocking out various genetic loci on the P. putida chromosome with 

knockout lengths widely spanning 0.6 to 101.7 kb. The RecET recombineering system 

developed here allowed successful integration of biosynthetic gene clusters for four proof-of-

concept bioproducts, including protein, polyketide, isoprenoid, and amino acid derivative, 

into the target genetic locus of P. putida chromosome. The markerless recombineering system 

was completed by combining Cre/lox system and developing efficient plasmid curing systems, 

generating final strains free of antibiotic markers and plasmids. This markerless 

recombineering system for efficient gene knockout and integration will expedite metabolic 

engineering of P. putida, a bacterial host strain of increasing academic and industrial interest. 

 

 

 

Graphical abstract 
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enhance the efficiency of genome editing in P. putida (Aparicio et al., 2017; Cook et al., 2018; 

Sun et al., 2018). However, very few studies reported deletions of large genomic fragments 

(Aparicio et al., 2017; Martinez-Garcia et al., 2014), while reduced genome size of P. putida 

improves its performance as a heterologous expression host (Lieder et al., 2015). More 

importantly, the integration of heterologous genes into the P. putida chromosome still relies 

on the outdated homologous recombination using selection markers (Cao et al., 2012; Gong 

et al., 2016; Gross et al., 2006; Wenzel et al., 2005) and random insertion using transposon 

(Chai et al., 2012; Domrose et al., 2015; Domrose et al., 2017; Glandorf et al., 2001; 

Loeschcke et al., 2013) after conjugation, while the reconstruction of the heterologous BGCs 

in E. coli cloning hosts itself has been facilitated by recombineering strategies including 

Red/ET cloning. 

Plasmid-borne expression of heterologous biosynthetic genes have a potential risk of 

strain instability during fermentation processes in the bioindustry (Lee and Kim, 2015). 

Furthermore, the addition of antibiotics often employed to maintain plasmids during 

fermentation complicates the downstream purification processes, particularly for the 

production of value-added natural products for human uses. Thus, the construction of marker- 

and plasmid-free metabolically engineered host for the production of heterologous natural 

products is important, especially for recombinant P. putida KT2440 strains of which the 

advantage of use comes from being their GRAS status. However, the majority of 

heterologous natural products requires biosynthetic gene clusters (BGCs) larger than 6 kb 

(Loeschcke and Thies, 2015), complicating integration of the BGCs to the chromosome using 

current recombineering tools. Thus, we exploited new recombineering strategies to substitute 

the traditional homologous recombination/transposon-based methods coupled with 
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pBBR1TacKI0. 

To minimize leaky expression, a tightly regulable expression vector pBBR1mKS-

MCS harboring Pm/XylS promoter/regulator system in P. putida was constructed. Pm and xylS 

genes were amplified from genomic DNA (gDNA) of P. putida mt-2 harboring plasmid 

pWW0 with primer sets P9/P10 and P11/P12, respectively. The two fragments were 

assembled into a single DNA fragment by overlapping PCR with primers P10/P12 using a 

mixture of the two DNA fragments as templates. The amplified product was assembled by 

Gibson assembly together with a DNA fragment amplified from plasmid pBBR1TacKI0 

using primers P13/P14, constructing plasmid pBBR1mKS-MCS. 

 To construct a plasmid expressing E. coli K-12 MG1655 recET genes, under the 

regulation of Pm/XylS system in P. putida, the recET genes were amplified from gDNA of E. 

coli MG1655 using primers P15/P16. The amplified product was assembled with plasmid 

pBBR1mKS-MCS digested with NdeI and HindIII by Gibson assembly (Gibson et al., 2009), 

constructing plasmid pBBR1mKS-recET. 

To construct a more stable RecET vector, the recET genes amplified from the gDNA 

of E. coli MG1655 with primers P15/P17 was assembled with another DNA fragment 

amplified from plasmid pJB658 with primers P10/P18 by Gibson assembly (Gibson et al., 

2009), constructing plasmid pJB658-recET. Similarly, the recE and recT genes were 

amplified from the gDNA of E. coli MG1655 with primers P19/P20 and P21/P22, 

respectively. The amplified DNA fragments were assembled with the DNA fragment 

amplified from plasmid pJB658 with primers P10/P18 by Gibson assembly (Gibson et al., 

2009), constructing plasmid pJB658-recTE. 

 To construct a temperature-sensitive RecET vector, the trfAts gene was amplified 
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strains from the master plate without antibiotic were streaked on another fresh LB-agar plate 

without antibiotic and incubated at 37°C to generate single colonies. Curing of the RecET 

and Cre vectors were examined by sequentially streaking the resulting single colonies on 

three LB-agar plates supplemented with Ap, Km, and no antibiotic, respectively, and 

observing the antibiotic susceptibility of the strains after overnight incubation at 30°C. 

 

2.10 Motility test 

To examine the motility of mutant P. putida KT2440 strains with the deletion of 

69.3-kb or 101.7-kb region including the flagellar gene cluster, the wild-type and the mutant 

P. putida KT2440 strains were inoculated into 5 mL LB (5 g/L NaCl) medium and incubated 

at 30°C with 200 rpm of shaking for overnight. LB (5 g/L NaCl)-agar plate containing 0.3% 

(w/v) agar was inoculated with the overnight culture using sterile toothpick and incubated at 

30°C after sealing the plate to prevent dehydration. The spread of the colonies on the plate 

were observed to measure the motility of each strain. 

 

2.11 Scanning electron microscopy 

The morphological change of the mutant strains were observed by scanning electron 

microscopy. To prepare samples, P. putida strains were cultured in LB (5 g/L NaCl) for 

overnight, washed with distilled water, and resuspended in distilled water. The cell 

suspension was dried onto silicon wafer and shadowed with osmium at an angle of 20° before 

examination with FEI Magellan 400 scanning electron microscope (FEI company, USA). 
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constructed (Fig. 1b and Table S1) in effort to further enhance the expression level of the recT 

gene. After transforming P. putida KT2440 with the two new plasmids, significant expression 

of the RecT protein was observed in both of the strains upon induction with m-toluic acid 

(Fig. 1c). Unexpectedly, however, the reordering of the recT gene before the recE gene had 

no positive effect on the expression level of the recT gene; rather, the original recET operon 

resulted in slightly higher expression of the RecT protein. Thus, the plasmid pJB658-recET 

was chosen for the following test for the recombineering in P. putida KT2440. In addition, 

the knockout of the pvdD gene with plasmid pJB658-recET was reproducible in subsequent 

trials, supporting our assumption that the high level of recombinase expression is critical in 

recombineeing. 

 

3.2 Optimization of the RecET recombineering system 

The efficiency of integrating heterologous genes into the chromosome by 

recombineering has been reported to decrease as the size of the DNA insertion increases 

(Kuhlman and Cox, 2010). Therefore, parameters for high recombineering efficiency need 

evaluation to develop a highly efficient recombineering system applicable for large BGC 

integration. To screen the optimal inducer concentration and cell harvest time point after 

induction, the recombinant KT2440-recET strain harboring the plasmid pJB658-recET (Table 

S1) was sampled at multiple time points (measured by OD600) during the cultivation in 50 mL 

LB (5 g/L NaCl) medium supplemented with 0, 2, and 5 mM m-toluic acid (Fig. S1c-e). 

Protein expression profiles of the sampled cells showed significant overexpression of the 

RecT protein upon the addition of the inducer (Fig. S1c-e), yet no significant differences 

were observed between the cells induced with 2 and 5 mM m-toluic acid (Fig. S1f). Thus, 5 
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the colonies formed after recombineering harbored positive mutations on the pvdD gene. In 

summary, 5 mM m-toluic acid was used to induce RecET-expressing P. putida strains, the 

cells were harvested at OD600 ~ 2 to prepare competent cells, and the cells were recovered at 

30°C after electroporation for subsequent recombineering experiments. 

 

3.3 Establishing a strategy for RecET vector curing  

The RecET vector should be eliminated after completing the recombineering to 

maintain the engineered genome stable, to remove any marker used to select for the plasmids, 

and to allow the introduction of other plasmids for next round engineering without any 

interference with the RecET vector. To convert the plasmid pJB658-recET into a curable 

RecET vector, the trfA gene responsible for the replication initiation from the RK2 origin of 

replication was substituted with the temperature-sensitive trfAts gene (Datta et al., 2006; 

Roberts et al., 1990), constructing plasmid pJB658ts-recET (Table S1). Replication from the 

RK2 origin in the presence of the trfAts gene has been reported to be stable, less stable (about 

half), marginal, and absent at 30, 33, 37, and 42°C, respectively (Roberts et al., 1990). Once 

the recombinant P. putida KT2440 strain harboring plasmid pJB658ts-recET was streaked on 

LB-agar plate without Ap and incubated at 37°C to cure the plasmid, four out of 16 randomly 

selected single colonies were sensitive to Ap, inferring successful curing of the plasmid 

pJB658ts-recET (Table 1). The non-permissive temperature 42°C could not be used to cure 

the plasmid as the colonies of P. putida KT2440 strains did not grow at this temperature. 

Unexpectedly, switching the plasmid pJB658-recET to the plasmid pJB658ts-recET 

dramatically dropped the efficiency of the pvdD gene knockout by more than 10-fold (Fig. 

2c). The recombineering efficiency could not be improved even after preparing the 
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recombineering competent cells at OD600 above 2 (Fig. 2d). 

 As the efficiency of the recombineering using the temperature-sensitive plasmid 

pJB658ts-recET was exceedingly low, a method to cure plasmid pJB658-recET with high 

recombineering efficiency guaranteed was explored. Surprisingly, streaking the KT2440-

recET strain harboring plasmid pJB658-recET on LB plate followed by incubation at 37°C 

was enough to cure the plasmid from all 12 colonies randomly selected (Table 1). To examine 

whether the curing of plasmid pJB658-recET due to an unreported temperature sensitivity of 

RK2 origin, the recombinant KT2440-recET strain was streaked on LB-agar plate without Ap 

and incubated at 30°C, which is a permissive temperature for most temperature-sensitive 

plasmids. Antibiotic sensitivity analysis on the colonies revealed all 16 colonies randomly 

selected are sensitive to Ap, inferring instability of the plasmid pJB658-recET rather than 

temperature sensitivity leads to the plasmid curing (Table 1). Thus, the curable plasmid 

pJB658-recET was used in the following recombineering experiments. 

 

3.4 Integration of Cre/lox system for markerless recombineering 

To remove the antibiotic marker inserted into the target chromosomal locus after 

recombineering, the Cre/lox system was combined to the RecET recombineering system. 

Briefly, antibiotic markers flanked by mutant lox sites (e.g. lox71 and lox61) (Fig. 3c) and 

introduced to the chromosome by RecET recombineering system can be easily excised out 

upon the expression of Cre protein (Palmeros et al., 2000). To construct a Cre vector curable 

after eliminating the integrated antibiotic marker, plasmid pCreRK2A was constructed by 

recombining the lacI-cre genes from plasmid pJW168 and the replicon of plasmid pJB658 

(Fig. 3a and Table S1), as the plasmid pJB658-recET has been demonstrated to be readily 
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mutant P. putida strain harboring the lox71-tetA(C)-lox66 cassette on the pvdD gene with the 

plasmid pRK2Cre followed by incubation on LB-agar plate supplemented with IPTG. 

Assessment of the knockout site on the pvdD gene indicated successful elimination of the 

tetA(C) gene from 15 out of 16 colonies randomly selected. Subsequent streaking of one 

random positive mutant on LB-agar plate without antibiotic supplementation followed by 

incubation at 30 and 37°C resulted in 9 and 11 colonies sensitive to Km out of each of the 16 

colonies randomly selected, confirming efficient curing of plasmid pRK2Cre (Table 1). 

 

3.5 Assessment of the recombineering capacity by gene knockout 

To examine the recombineering capacity of the RecET system developed in this 

study, multiple genomic loci throughout the chromosome of P. putida KT2440 were selected 

for markerless gene knockout (Fig. 3d). For genomic loci including the pvdD genes, 10 

different contiguous regions of which length range from 1 to 70 kb were successfully 

knocked out using a series of donor dsDNAs with a pair of 100-bp homology arms (Fig. 4b, 

S2, and Table 2). Similarly, deletion of two different contiguous regions (69.3 and 101.7 kb) 

around the flagellar gene cluster was demonstrated (Fig. 4b, S2, and Table 2). It should be 

noted that 1.1 and 1.6% (69.3 and 101.7 kb, respectively) of the chromosomal DNA of P. 

putida KT2440 (6181.9 kb) could be deleted by a single round of gene knockout. In addition, 

four additional loci located throughout the genome of P. putida KT2440, including the eda, 

edd, dsbA, and zwf genes, were successfully knocked out, proving the capacity and the 

efficiency of the RecET recombineering system (Fig. 4b, S2, and Table 2). Throughout the 

knockout experiments, the success rates of gene knockout, marker excision, and plasmid 

curing reached almost 100% for each colony formed (Table 2). 
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the established plasmid curing systems, the recombineering system developed here is 

evidently capable of iterative recombineering for the extensive engineering of P. putida 

strains (Fig. 3c). The markerless recombineering tool developed in this study will expedite 

metabolic engineering of P. putida for the production of valuable chemicals, including those 

requiring large heterologous gene clusters. 
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