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Highlights 19 

- Extensive range of environmental impacts is rarely considered in decision analysis. 20 
- LCA can provide sophisticated environmental profiles of decision alternatives.  21 
- LCA and other decision analysis tools have different goals, principles and systems. 22 
- Consistency of study system between LCA and other tools is the key for integration.  23 

Abstract 24 

Decision analysis is often used to help decision makers choose among alternatives, based on the 25 
expected utility associated to each alternative as function of its consequences and potential impacts. 26 
Environmental impacts are not always among the prioritized concerns of traditional decision making. 27 
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This has fostered the development of several environmental problems and is nowadays a reason of 28 
concern. Life Cycle Assessment (LCA) can assess an extensive range of environmental impacts 29 
associated with a product or service system and supports a life cycle perspective on the alternative 30 
products or service systems, revealing potential problem shifting between life cycle stages. Through 31 
the integration with traditional risk based decision analysis, LCA may thus facilitate a better informed 32 
decision process. In this study we explore how environmental impacts are taken into account in 33 
different fields of interest for decision makers to identify the need, potential and obstacles for 34 
integrating LCA into conventional approaches to decision problems. Three application areas are used 35 
as examples: transportation, flood management, and food production and consumption. The analysis 36 
of these cases shows that environmental impacts are considered only to a limited extent in traditional 37 
evaluation of transport and food projects. They are rarely, if at all, addressed in flood risk management. 38 
Hence, in each of the three cases studied, there is a clear need for the inclusion of a better and 39 
systematic assessment of environmental impacts. Some LCA studies have been conducted in all three 40 
research areas, mainly on infrastructure and production systems. The three cases show the potential 41 
of integrating LCA into existing decision analysis by providing the environmental profiles of the 42 
alternatives. However, due to different goals and scopes of LCA and other decision analysis 43 
approaches, there is a general lack of consistency in study system scoping in terms of considered 44 
elements and boundaries, in uncertainty treatment, and in applied metrics. In the present paper, we 45 
discuss the obstacles arising when trying to integrate LCA with conventional evaluation tools and we 46 
propose a research agenda to eventually make such integration feasible and consistent.         47 

Keywords 48 

Decision analysis, Life cycle assessment, Cost benefit analysis, Risk assessment, Decision support 49 

1.   Introduction 50 
Decision support systems are often used to guide decision makers towards the best decision. Decision 51 
theory as mathematical basis of decision making under uncertainty was formulated in the 20th century. 52 
Following a structured methodology, it aims at selecting one out of different available alternatives, 53 
based on the consequences associated to each alternative. Due to different context of application in 54 
several scientific disciplines, different approaches may be used in the specific field of application. 55 
Risk-based decision making, as one of the widely used approaches, has been used to address the 56 
concern for human, societal, economy and ecosystem health when exposed to unfavorable events, e.g. 57 
natural hazards, contamination etc. (Klüppelberg et al., 2014). Cost benefit analysis (CBA) is another 58 
approach, used to identify the alternative that can achieve a particular goal with lowest cost (Mishan 59 
and Quah, 2007). In parallel or in combination with CBA, Multi-criteria analysis (MCA) is often used 60 
to evaluate the alternatives based on a set of measurable criteria (Figueira et al., 2005). These 61 
approaches are broadly used in both public and private sectors with a particular aim: to help decision 62 
makers choose the most appropriate alternative to achieve their goals, according to a certain set of 63 
criteria.  64 

Among these concerns and criteria, environmental problems are not well represented. This has caused 65 
tremendous problems in the past, examples being the London fog in last century and acid rains. The 66 
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former one is a result of burning soft coal for heating, while the later one comes from the excessive 67 
emission of SO2 and NOX mainly from the burning of fossil fuels. These phenomenon happen because 68 
there is not enough awareness of the potential damages, which leads to the lack of relevant control 69 
measures. These environmental problems could have been avoided if the life cycle perspective of 70 
environmental impacts associated with the energy product use are considered beforehand. To reduce 71 
the occurrence of similar events, many regulations and proposals have appeared afterwards (Kahn, 72 
2007), acting towards precautionary purposes, with different environmental focus and decision 73 
analysis prospective in specific sectors. For example, noise problems have traditionally been 74 
considered in transportation decision analysis (European Commission, 2014). Pathogen and chemical 75 
impacts on human health have conventionally been taken into account in food safety decisions (FAO 76 
and WHO, 2005). Impacts on climate change have recently been considered in decision analysis for 77 
e.g. flood management, and transportation planning. Note that a wide range of environmental impacts 78 
may arise as a consequence of man-made activities (e.g. climate change, eutrophication, acidification, 79 
etc.). For the sectors mentioned above and the majority of other sectors, focus has been on a rather 80 
limited selection of environmental impact categories following regulations and proposals. Some 81 
attempts exist on accounting for a broader selection of environmental impact categories, via 82 
approaches such as MCA (Halsnæs et al., 2015; Munda, 2005). However, it is not common to see a 83 
decision analysis that covers an extensive set of environmental impacts for the alternatives, which 84 
can sometimes lead to controversial results. For example, when facing several alternatives in a 85 
transport project, the best alternative according to CBA may not have the best environmental 86 
performance, due to e.g. neglecting environmental impacts from the life span of vehicles and 87 
infrastructures (Chester and Horvath, 2009). Were these to be included through taking a life cycle 88 
perspective, the preferred alternative may turn out to cause more damages on ecosystems, and the 89 
cost for amending such damages may be more than the savings on the infrastructures. Without having 90 
proper environmental impact assessment in decision analysis, such information cannot be revealed 91 
and the decision making will be misguided. The lack of such practice may be ascribed to the lack of 92 
a common understanding of the needs and of the possible ways to integrate the relevant environmental 93 
impacts into existing decision analysis tools. 94 

Many methods and tools were developed or adapted to assess environmental impacts, including e.g. 95 
Environmental Impact Assessment, Life Cycle Assessment (LCA), input-output analysis, etc. Zijp et 96 
al. (2017) summarized the methods available for assessing environmental sustainability and provides 97 
a model for the selection of suitable method corresponds to the decision context. LCA standards out 98 
for its inclusive of cradle to grave perspective, flexibly in spatial scale, and its feasibility of 99 
application during product development and commercial stages. With its life cycle-based systems 100 
perspective and broad coverage of environmental impacts, LCA is indeed a promising tool for 101 
assessing environmental sustainability (Sala et al., 2013). It quantifies resource use and environmental 102 
impacts that are associated with a product or service into an extensive set of impact categories (EC-103 
JRC, 2010). LCA is currently the most mature with its basic principles laid down in an international 104 
set of standards (ISO 14040/14044) (Kloepffer, 2008). It has been adopted by public sectors for e.g. 105 
prioritizing research in energy sector in USA (Bosso et al., 2012) and implementing sustainable 106 
strategies in EU (European Commission, 2016). Private sectors also use LCA frequently for choosing 107 
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the environmentally friendly alternatives, materials and services and for communicating via 108 
environmental product declarations or ecolabels. However, LCA is not a legal requirement in any 109 
regulatory context (Bosso et al., 2012; European Commission, 2016). It has the potential to give a 110 
good overview of environmental impacts related to each decision alternative, to be taken into account 111 
in decisions.  112 

Taking some specific research disciplines as example, the aim of this study is to: 1) explore how 113 
environmental impacts are taken into account in the current decision analysis approaches; 2) review 114 
the application of LCA in those fields and 3) explore the need, obstacles and potential for integrating 115 
LCA into decision analysis. First, decision analysis theory and LCA will be introduced. Then we will 116 
look into three specific research disciplines, namely flood management, transport projects and food 117 
production and consumption to address the aim of the study. These three research fields have high 118 
societal relevance, and there is a strong need for considering environmental perspectives in their 119 
decision analysis. They have different conventional decision analysis approaches that represent a 120 
variety of challenges for the integration of LCA.   121 

2.   Decision analysis 122 
The ultimate goal of decision making is to select one out of different available alternatives, which 123 
most likely leads to the most favorable outcome. Due to the uncertainty, we cannot identify the 124 
optimal choice by means of deterministic values (Faber, 2008). Therefore, decision analysis aims at 125 
evaluating alternatives based on the changes that they operate on expected utility associated to the 126 
performance of system, i.e. the benefits and the consequences. This facilitates objective and informed 127 
decisions by enclosing the decision process into a structured methodology, giving a mathematical 128 
representation to the evaluation process aiming at identifying the most favorable outcome with respect 129 
to possible alternatives. 130 

According to Keeney (1982), any decision problem can be structured following four main steps as 131 
shown in Figure 1. The first step - scope definition of the decision problem - is of key importance, 132 
because choices and assumptions made in this phase will influence the entire decision process. 133 
Therefore, it is important to get a clear definition of the decision problem, the expected improvement 134 
(objectives) from the Decision Maker (DM) and the identification of the feasible and affordable 135 
alternatives out of all possible ones. The scenario identification phase (phase two) includes 136 
forecasting of the impact of each alternative on the performance of the system (though modelling 137 
and/or data collection and analysis) and the uncertainty characterization, quantification and 138 
propagation. The third phase refers to the quantification of DM’s preferences. Preferences represent 139 
how attractive, valuable, convenient and favourable the DM judges the alternatives to be with respect 140 
to their impact on the system (Raiffa and Schlaifer, 1961). This value trade-off and risk attitude of 141 
the DM is translated into an objective function (utility function) representing a weighted average of 142 
the utility associated to all possible outcomes (French and Rios Insua, 2000; Raiffa and Schlaifer, 143 
1961). The optimal alternative will be the one maximizing the expected value of the utility function. 144 
Phase four, deals with the optimization of the utility function and sensitivity analysis to assure 145 
robustness and consistency of the solution. The four steps in Keeney (1982) represent, however, a 146 
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very general decision problem paradigm. In real decision analyses, feedback loops and iterations are 147 
required as will also be shown in Figure 2.  148 

 149 

Figure 1. Steps of the Decision Making Process, adapted from Keeney (1982)  150 

Uncertainty, which refers to the incompleteness of knowledge or the lack of understanding, affects 151 
largely the decision process. Variability, i.e. aleatory uncertainty, describes the inherent variations 152 
and randomness of the quantity, process or system of interest and it cannot be eliminated. Temporal, 153 
spatial or inter-object variations are some of the -not mutually exclusive- categories of variability. 154 
Epistemic uncertainty is caused by lack of knowledge and can be reduced e.g. by means of further 155 
measurement or study of the quantity, process or system. Where epistemic uncertainty and variability 156 
occur may vary, but two types are widely mentioned: model uncertainty and parameter uncertainty. 157 
Model uncertainty captures the imperfect representability of the true processes and systems. 158 
Parameter uncertainty refers to the lack of knowledge of the exact parameter value in a model. Other 159 
classifications and terminologies of uncertainty exist (e.g. Faber, 2012; Funtowicz and Ravertz, 1990; 160 
Kiureghian and Ditlevsen, 2009; Walker et al., 2003), that we do not further discuss in the paper. 161 
These include statistical uncertainty and scenario uncertainty, while errors, e.g. measurement and 162 
human errors, are often considered as uncertainty sources. Regardless of location and source, 163 
epistemic uncertainty and variability need to be properly treated throughout an analysis and 164 
communicated.  165 

2.1 Risk-based decision analysis 166 
Risk arises whenever there is uncertainty on potentially adverse events causing unfavourable 167 
consequences, within a specific time frame (JCSS, 2008). Risk-based decision making is a widely 168 
used tool to assess performance and evaluate policies for complex systems and services where 169 
potential risks exist. For instance, it is often applied to answer the decision problem such as choice of 170 
mitigation policies against natural disasters (earthquakes, floods etc.) and evaluation of food safety.  171 

There are various definitions of risk, which may be defined as “combination of the consequences of 172 
an event (including changes in circumstances) and the associated likelihood of occurrence”, following 173 
ISO31000:2009. The evaluation of the risk can be formalized in different procedures according to the 174 
specific field of application. The ISO31000:2009 represents the general reference framework for risk 175 
management in industrial applications while ISO2394:2015 is the reference standard for both 176 
reliability and risk based decision making concerning design and assessment of structural systems. 177 
Figure 2 shows the two ISO standard frameworks, where ISO2394:2015 provides a more detailed 178 
description of the assessment procedure. The evaluation of risk analysis results, with respect to 179 
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acceptance risk criteria defined by current regulations - e.g. Seveso III (European Union, 2012), 180 
REACH (EU, 2006), EUROCODE0-to-8 (CEN 1990:2002) etc.- or in some cases by engineering 181 
judgment, is an important phase in identifying the mitigation strategy based on the possible 182 
alternatives. Risk assessment can be conducted in a qualitative way, semi-quantitative or quantitative 183 
way. Uncertainty is widely analyzed in quantitative risk-based decision analysis (Bedford and Cooke, 184 
2001; Klüppelberg et al., 2014) but less or not at all analyzed in qualitative and semi-quantitative risk 185 
assessment.  186 

 187 

Figure 2. Parallel between Risk Management Framework adapted from ISO 31000:2009 and 188 
Assessment Framework adapted from ISO2394:2015 189 

2.2 Cost-benefit analysis 190 
Cost-benefit analysis (CBA) has been widely used to rank alternatives when the decision problem is 191 
structured in deterministic terms. CBA assumes that for each alternative, a specific consequence can 192 
be assigned in terms of cost and different benefits. In addition, we can assume that the measures of 193 
the different benefits are of such nature that they cannot be simply summed up and that the DM puts 194 
a limitation to the available budget to achieve a certain improvement. The best alternative will be the 195 
one whose cost does not exceed the available budget and whose benefits fulfil minimum “aspiration 196 
levels” (Keeney and Raiffa, 1993). By applying CBA, the benefits are converted into one metric using 197 
conversion factors, so that they can be summed up in one equivalent benefit. The alternatives are then 198 
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ranked according to e.g. benefit-cost ratio and net present value. It is intuitive that CBA simplifies 199 
the evaluation of alternatives, especially considering that sometimes the conversion of the benefits 200 
into one measure can be very difficult to perform in rigorous terms. Additional limitations arise since 201 
both costs and benefits are often monetarized in CBA by deterministic values, where uncertainty of 202 
those values are not always available. CBA has been used in combination with risk management 203 
especially in flood management, where the probability distribution of the consequences associated 204 
with each alternative are identified by risk-based methods and the ranking of alternatives is conducted 205 
via CBA. However, CBA has also been applied in decision problems where no risk assessment is 206 
necessary such as improvement of the mobility of a region. Here the consequences are identified via 207 
a set of criteria assessed by mobility performance indicators, where CBA is applied for ranking. 208 
Discounting of costs and benefits over time is always applied in CBA, to actualize the future 209 
monetarized value of costs and benefits.   210 

2.3 Life Cycle Assessment 211 
LCA is applied in various cases to: 1) identify the environmental hotspots in the studied system or/and 212 
2) compare the environmental impacts of different alternatives that can be applied in the studied 213 
system to achieve the same function. The system is  analyzed over the whole life cycle of “goods or 214 
services (“products”)” (EC-JRC, 2010). According to ISO 14040 and 14044, there are four phases to 215 
conduct an LCA (Figure 3). The first phase formulates the question to be answered and defines the 216 
studied system. It first identifies the function to be provided by the product or service and describes 217 
it quantitatively and qualitatively in the form of functional unit, e.g. transport a certain number of 218 
people from one location to another over a certain number of years. Afterwards relevant elements that 219 
are needed to fulfill the functional unit is defined, e.g. two buses with capacity of 50 people. In the 220 
next phase, all relevant input and output in the form of resource consumption and emissions 221 
associated with the system’s delivery of the functional unit are quantified in an inventory. Here the 222 
data is collected for all life stages of the product or service, i.e. raw material, manufacturing, use and 223 
end-of-life stages. In the third phase, the environmental impacts caused by the flows listed in the 224 
inventory are quantified.  For each flow in the inventory, there is a cause-effect chain that describes 225 
the relationship between the flow and the damages on an area of protection (natural environment, 226 
human health or resources). Depending on the location of indicators in the cause-effect chain, the 227 
impacts can be characterized either at midpoint level with relevant indicators and metrics (e.g. kg 228 
CO2 equivalent for climate change, kg SO2 equivalent for acidification, kg CFC-11 equivalent for 229 
ozone depletion, kg P or N equivalent for eutrophication, kg NMVOC for photochemical oxidant 230 
formation, etc.), or at endpoint level (i.e. human health damages described in disability-adjusted life 231 
years (DALY), ecotoxicity damage described in Potential Disappeared Fraction of natural species in 232 
the ecosystem (PDF) or resource depletion described in monetary terms) (Hauschild et al., 2013). It’s 233 
also possible to integrate the result into one single score, using weighting factors. In the fourth and 234 
final phase the outcomes are interpreted to answer the question that was posed in the goal definition, 235 
i.e. which product performs better or where is the hotspot? The interpretation can be performed either 236 
on the midpoint scores, endpoint scores, or on the single score, depending on the goal and 237 
stakeholder’s preference. 238 
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 240 

Figure 3. Steps of LCA, adapted from ISO 14040:2006.  241 

Note that in addition to the conventional environmental LCA, social LCA (sLCA) and life cycle 242 
costing (LCC) also exist. They share the same principle as the conventional LCA, but looking at 243 
social impacts and cost flows respectively. Norris et al. (2001) proposed to use LCC for accounting 244 
economical cost and discussed two approaches for combining LCA and LCC for providing 245 
sustainability decision support. Hoogmartens et al. (2014) argue that LCA, sLCA and LCC together, 246 
the so-called life cycle sustainability assessment (LCSA), can well deliver a sustainability decision 247 
support. So far, sLCA, LCC and LCSA are used to a lesser extent due to the less mature methodology.  248 

Uncertainty in LCA is addressed primarily on the input parameters by the practitioners, whereas the 249 
uncertainty on the impact assessment and model itself is rarely considered in current LCA practice, 250 
but mainly confined to academic applications (e.g. van Zelm and Huijbregts, 2013). 251 

2.4 Summary 252 
Decision analysis allows to rank available alternatives based on their consequences (e.g. in terms of 253 
human health impacts and economic benefit/loss), where environmental impacts are barely 254 
considered. LCA has the potential to fill this gap. It can be applied to analyze the environmental 255 
impacts associated with each alternative allowing their consideration together with the other 256 
conventional consequences for optimization. To identify the status and challenges involved in such 257 
combination, we look at application in three different research areas in the following sections.  258 

3.   Decision analysis in three research fields 259 
In this section, we look into three research domains, namely flood management, transport and food 260 
production and consumption. We discuss and propose possible directions for integrating LCA-based 261 
environmental impacts into existing approaches used for decision support. 262 

3.1 Decision analysis in flood management 263 
Flood management is a fundamental societal service as it greatly increases the space where society 264 
can evolve and flourish. Protecting society is really protecting people and their assets from natural 265 
extremes, and since natural processes cannot be prevented, what is done is flood risk management 266 
rather than managing the floods; i.e. making sure that the risk of flood is acceptable from a societal 267 
point of view. 268 
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The frequently asked questions by the decision makers are “which technical solutions” will provide 269 
“which degree of protection” and “at what cost”. To answer these questions, traditionally risk 270 
assessment in combination with CBA is used as the decision analysis tool. In practice, risk assessment 271 
is translated into risk (cost) curves as illustrated by Zhou et al. (2012) and Halsnæs et al. (2015). Here 272 
the probability of scenarios are equal to the rarity of the natural phenomena causing the floods. The 273 
consequence is a complex product based on GIS analysis of which assets are actually affected by the 274 
flood and to what degree. Besides this, potential health issues stemming from the investigated flood 275 
problems are also considered in the consequences (as in e.g. Halsnæs et al., 2015). After an evaluation 276 
of the consequences in terms of monetary cost/benefit, CBA can be made and an optimal state where 277 
the risk (cost) of flooding is balanced against the cost of the technical solutions set in place to protect 278 
assets against flooding. Flood risk management is normally done on water catchment scale, either 279 
locally or regionally, depending on the natural of the risk in a given catchment. Uncertainty exists on 280 
input parameters of the consequence modelling, e.g. the variability of flood hazard occurrence rate 281 
and the “range of climate change risk estimates”, and costing (Halsnæs et al., 2015). Those parameter 282 
uncertainties are often quantified, but the underlying model uncertainty is rarely treated explicitly. 283 

Even though risk assessment in combination with CBA is a mainstream decision analysis tool in flood 284 
management, it is generally agreed that in its most widely used form, it excludes important relevant 285 
aspects in decision making if they are difficult to monetarize (Merz et al., 2014). Or the conclusions 286 
are made mainly dependent on the chosen prizing of the non-structural values (e.g amenity and health) 287 
(Halsnæs et al., 2015; Zhou et al., 2012). Thus, MCA is sometimes used instead of CBA to include 288 
consequences at different levels, including e.g. technical, hydraulic, environmental, sociological, 289 
economic, planning, operation and maintenance aspects (Martin et al., 2007), sustainability (Lai et 290 
al., 2008), and  non-stationarity, i.e. and when in time to optimally invest in protection for systems 291 
undergoing climate change (Åström et al., 2014). 292 

How are environmental aspects considered? 293 

As stated in the EU flood risk management directive, “ It is feasible and desirable to reduce the risks 294 
of adverse consequences, especially for human health and life, the environment, cultural heritage, 295 
economic activity and infrastructure associated with floods” (European Commission, 2007). This 296 
clearly indicate that environmental impacts are desirable, but not mandatory to be included in flood 297 
risk management. As a consequence, it has “rarely been included in cost assessments up to now” 298 
(Meyer et al., 2013). Some studies have made the effort. For example, health costs was accounted  in 299 
the case of Odense urban flooding management (Halsnæs et al., 2015). Another example is the 300 
inclusion of “greening” of cities in urban water management, such as green roof and green areas, is 301 
considered as the main sustainable measures (Belmeziti et al., 2015; Zhou et al., 2012). Nevertheless, 302 
methods have been tested to assess environmental impacts of infrastructure systems, mainly using 303 
LCA-based methods. But unfortunately only on cases that have come out of existing flood risk 304 
practice for further qualification of decision (e.g. Brudler et al., 2016), and not as input to decision 305 
regarding acceptable flood risk.   306 
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When facing several alternatives for urban water management strategies (e.g. “green” or “grey” 307 
infrastructure), LCA is a good tool for accounting resource consumption and environmental impacts 308 
for the whole life cycle of the strategy as demonstrated by Brudler et al. (2016), De Sousa et al. (2012) 309 
and Spatari et al. (2011). LCA has also been conducted on smaller scales of infrastructure, e.g. 310 
stormwater treatment devices (Andrew and Vesely, 2008) and bio-infiltration rain gardens (Flynn and 311 
Traver, 2013). The results indicate that sometimes the apparent “green” strategy does not necessarily 312 
perform better in environmental impacts (De Sousa et al., 2012). Hence, it introduced important 313 
insight into the environmental impacts and it is worthwhile to integrate LCA into the current decision 314 
analysis for flood management. The provided environmental profile of the alternatives may have an 315 
impact on the stakeholder’s decision. To achieve this, a possible approach is to assess the 316 
environmental impacts of each alternative and monetarize it as one cost/benefit in the traditional CBA, 317 
which will be further discussed in section 4.  318 

3.2 Decision analysis in transport projects 319 
The primary aim of transport projects is to improve the mobility of persons and goods, often on local 320 
or regional level. This aim can be achieved in different ways, such as building a new infrastructure to 321 
increase the access to a specific location or providing a new public transport service. However, often 322 
several alternatives are at hand and a decision has to be taken in order to decide which one to 323 
implement. Traditionally, the decision analysis for transport projects is based on CBA. It facilitates 324 
the decision makers to choose the preferred alternatives based on a number of socio-economic 325 
budgets. In transport CBA some of the key variables are the output of transport demand models, such 326 
as travel time savings and vehicle kilometers travelled, while others are derived from such output, 327 
like number of accidents, noise and emissions, the so called “external costs”. A challenge is to address 328 
the uncertainty inherent in the variables included in CBA and how it propagates to the final results. 329 
This issue has not been included in the standard CBA for transport until recently, although literature 330 
reports on investigations of how to quantify parameter uncertainty in both transport models (de Jong 331 
et al., 2007; Rasouli and Timmermans, 2012) and CBA (Fagnant and Kockelman, 2012; Salling and 332 
Leleur, 2015). In this respect, uncertainty in transport projects is commonly treated through stochastic 333 
simulations techniques such as Monte Carlo Simulation, and scenario analysis, in both scientific 334 
literature (de Jong et al., 2007) and practice (European Commission, 2014).  335 

Transport CBA is usually complemented by other evaluation methods to cover more impacts. 336 
Particularly relevant is the assessment of the so called wider economic impacts of the (transport) 337 
project, such as the agglomeration impacts and the effects on the labor market (Eddington, 2006), 338 
although some criticism has been raised with respect to the possibility of including them as part of 339 
standard transport evaluation frameworks (Gibbons and Overman, 2009). Besides, traditional CBA 340 
is sometimes replaced, combined or conducted in parallel with MCA. Nevertheless, some impacts 341 
remain difficult, if at all possible, to quantify through standard transport decision support methods, 342 
such as long term environmental impacts (Engelbrecht, 2009).     343 

How are environmental aspects considered?  344 



11 
 

With respect to the appraisal of the environmental impacts deriving from transport projects, as 345 
mentioned in the above paragraph, the assessment of some of the environmental costs, such as air 346 
pollution and noise from vehicle operation, are normally included in standard CBA frameworks, 347 
following the EU guideline on CBA (European Commission, 2014). To calculate the costs related to 348 
noise and air pollution a bottom-up approach is commonly used. First, the amount of noise and 349 
pollution is quantified based on the estimated volumes of traffic, expressed in terms of vehicle 350 
kilometers (passenger vehicles) or ton kilometers (freight vehicles) travelled. Then, the estimated 351 
quantities are translated into monetary terms, based on available values from national and 352 
international guidelines.  353 

However, some environmental costs related to the entire life-span of the project, such as the resource 354 
use, and some impacts on ecosystem and human health, are not covered. In addition, impacts 355 
associated with vehicles and infrastructures manufacturing and maintenance are usually not 356 
considered either. For instance, the Danish CBA guidelines (Danish Ministry of Transport, 2015) 357 
requires the inclusion in transport CBA of the monetary impacts of CO2, NOx, HC, CO, PM2.5 and 358 
SO2 deriving from vehicles emissions but not from e.g. the construction of the infrastructure or the 359 
maintenance of the vehicles. Consistently, transport CBA projects only addresses vehicles emissions 360 
as reviewed by Annema et al. (2017).  361 

In order to include the project life-span environmental costs into quantitative decision analysis for 362 
transport projects, some studies have applied LCA in evaluations. The existing literature can broadly 363 
be divided in two topic areas. The first, identifies the missing elements in the environmental impacts 364 
embedded in current decision analysis (Chester and Horvath, 2009) and points to hotspots where 365 
environmental improvement can be made, e.g. passengers and household behavior (Chester et al., 366 
2010; Kimball et al., 2013). The second research area focuses instead on using LCA to quantify the 367 
environmental impacts of single elements in transport system, such as railway infrastructure 368 
(Linneberg et al., 2014), bridges (Hammervold et al., 2013), vehicles driven by different fuels or 369 
electricity (Bohnes et al., 2017; Garcia and Freire, 2017; Lombardi et al., 2017) and different mobility 370 
modes such as public bus and trucks (Ercan et al., 2015; Sen et al., 2017). 371 

Despite the proven importance and possibility of assessing a broader range of environmental impacts, 372 
LCA is commonly not included within standard transport projects assessment frameworks. A feasible 373 
way for integrating LCA into current decision analysis for transport might be to monetarize 374 
environmental impacts assessed in the LCA, catering to their inclusion into standard CBA. Manzo 375 
and Salling (2016) practiced the proposal. The result shows that the inclusion of environmental 376 
impacts assessed by LCA indeed affecting the final project evaluation, while modifying the 377 
contribution from different components in the system. However, a better guideline for practice is 378 
needed for a better integration, which will be further discussed in section 4.  379 

3.3 Decision support in food production and consumption 380 
The decisions made within the food production and consumption are largely aimed at assuring food 381 
safety and food security: prevent foodborne illness and guarantee its availability and good quality for 382 
the whole population. For this purpose, risk management (also called food safety risk analysis) is the 383 
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most common used decision analysis tool in the field as illustrated in Section 2. A hazard in this 384 
context is defined as “a biological, chemical, or physical agent in or property of food that may have 385 
an adverse health effect” (WHO, 1995). After identifying the potential hazards, a full profile of the 386 
associated adverse effects on health is characterized, quantitatively or qualitatively. Exposure 387 
assessment is applied to find the amount and likelihood of intake. Which is then applied in a dose-388 
response relationship to estimate the risk of disease, i.e. the probability and severity of health effects 389 
that is caused by the hazard investigated (FAO and WHO, 2005). Food risk management can be 390 
operated on all geographical scales, including local, regional and global.  391 

There are two major types of food risk assessment, according to the hazard property: microbial and 392 
chemical risk assessments. The major challenge for microbial risk assessment is to estimate the 393 
ingested dose, which is often done using stochastic modelling. Uncertainty on our knowledge of e.g. 394 
foods items contamination, pathogen survival and growth in the food product, and the probability of 395 
disease given a certain dose are often taken into account. The focus of chemical risk assessment is on 396 
the presence of potential harmful chemicals in the food (FAO and WHO, 2005). The allowed dose 397 
for a certain substance is often derived from animal testing, or calculated using models. The dose 398 
level where no adverse effects are observed is then divided by uncertainty factors (or safety factors) 399 
to ensure their safe application on human beings. These uncertainty factors are applied to account for 400 
interspecies and intraspecies variability. They are intended to assure adequate safety of the final 401 
toxicological value but may actually result in overly conservative safe dose estimates. The uncertainty 402 
mentioned above focus on parameter uncertainty, which is usually treated in studies. In contrast, 403 
model uncertainty is rarely quantified.  404 

In addition to the traditional risk assessment mentioned above, CBA is sometimes also used for food 405 
decision making. Some food such as fish and nuts has positive benefits on human health, but they can 406 
also contain harmful substances, e.g. heavy metals and carcinogenic toxins. The negative risks are 407 
sometimes compared with the positive benefits of food to help determine whether the food has an 408 
overall health benefit (EFSA, 2006).    409 

How are environmental impacts considered?  410 

In terms of food security, there is a strong need for a more sustainable food production and 411 
consumption to be able to feed the predicted global population of 9.5 billion people by 2050, with 412 
respect of less environmental impacts and resource depletion. UNEP presented several long term 413 
targets and indicators for “sustainable agriculture and food security” (UNEP, 2014), e.g. reducing 414 
food and nutrient loss along production and consumption. Van der Goot et al. (2016) concluded that 415 
current food production manners are not very efficient, where the losses of food are significant along 416 
the production chain. Research and application of technology development and new farming systems 417 
are promoted by European Commission to enhance sustainability in food production (Freibauer et al., 418 
2011). These sources point to the fact that currently there is an increasing attention to reduce 419 
environmental impacts in food production and consumption. This is also reflected in the EU 420 
regulations such as food law (European Commission, 2002) that “the protection of animal health and 421 
welfare, plant health and the environment” should be pursued in food regulations. But still a 422 
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harmonized system and operation procedure is missing to implement environmental considerations 423 
in decision making along the whole food production chain from primary production to consumption.    424 
LCA has been extensively conducted for the production and processing of industrial food products, 425 
dairy and meat production, fruits, and agricultural products. As summarized in Arvanitoyannis et al.  426 
(2014) and Roy et al. (2009), these studies mainly aim at 1) identifying hotspots in the system for 427 
future improvement, and 2) comparing different food and their related products (e.g. packaging), to 428 
identify the best choice regarding environmental impacts. These LCA studies shows a strong potential 429 
of solving food security problem in the cause of less environmental impacts. 430 

Food production is an important source of many environmental impacts and there are potential trade-431 
offs between food risk minimization and sustainability of the alternatives in food production system. 432 
However, environmental sustainability aspects are rarely taken into account. It will thus be beneficial 433 
to integrate LCA into the current food risk management practice to quantitatively assess 434 
environmental impacts associated with the alternatives that minimizes the risks.  There are some 435 
common metrics (e.g. DALY) that are used to present results both in LCA and food safety risk 436 
assessment, which may potentially serve as the basis for the integration of LCA and risk assessment 437 
for food safety as shown in Stylianou et al., (2016). Note that DALY only describes human health 438 
consequences, whereas animal health and welfare, and impacts on ecosystems cannot be expressed. 439 
For those aspects, research is needed to convert LCA output in a valuable metric for food safety risk 440 
assessment.  441 

4.   Discussion on the need, obstacles and research agenda for integrating LCA into decision 442 
analysis 443 

We have screened the major criteria considered in the current decision analysis of three application 444 
areas. It turns out that economical costs and benefits are the major concerns in transport and flood 445 
management, where CBA is often used to prioritize alternatives in decision analysis. Human health 446 
is the focus in food safety related decisions, where traditional risk management is often used to 447 
prioritize alternatives. Environmental benefit/cost is rarely considered in flood management, and to a 448 
very limited extent in transport projects, focusing on few pollutants in few life stages. In food safety 449 
related decisions, though human health caused by the food itself is well taken into account, the 450 
environmental impacts arising from the rest of the food system, are not considered and these also 451 
have the potential to impact negatively on human health e.g. through climate change or release of 452 
toxicants that expose humans through the environment. Comprehensive environmental considerations 453 
are not well addressed in decision analysis tools, making them inapt to support decisions towards 454 
sustainability.  455 

LCA offers a solution to the problem. It has been applied in transport and flood management to assess 456 
the environmental impacts arising from infrastructures and resource consumptions. LCA also has the 457 
potential to quantify the environmental performance of food risk mitigation actions. Such results can 458 
provide valuable information to support decisions if combined with the main decision analysis tool 459 
such as CBA or risk assessment. A summary of the main elements in decision analysis for the three 460 
research areas covered in this study and LCA is presented in Table 1. It can be clearly seen that there 461 
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are many discrepancies between the conventional decision analysis and LCA. First of all the goal is 462 
different. While LCA aims at assessing environmental impacts, the conventional decision analysis 463 
tries to solve decision problem such as how to protect human beings and properties from certain risks, 464 
and how to provide a service to satisfy human being’s basic needs. This results in the different choice 465 
of principles, i.e. non-precautionary, precautionary and cautionary principle. The covered impacts, 466 
study system and uncertainty treatments also vary between different methods.  467 

These discrepancies are confirmed by other references. Cowell et al. (2002) discussed the application 468 
of risk assessment and LCA in regulatory context. They found that, similar to the situation in flood 469 
management and food risk assessment in this study, risk assessment works with a precautionary 470 
principle, where both absolute and comparative results can be delivered. LCA, in contrast, aims at 471 
quantifying the average or marginal consequences, and only comparative results are expected. In 472 
analogy to the transport project, Hoogmartens et al. (2014) highlights that CBA has been mainly 473 
applied for policy or strategic decision making, where the project is the main focus, meaning that the 474 
time span and system boundaries are defined by the project. CBA puts emphasis on the socio-475 
economic impacts rather than external environmental impacts. In contrast, conventional LCA is 476 
product oriented, which results in the different system boundaries, and it focuses on environmental 477 
impacts rather than social and economic impacts. In recent years, LCA has been used in a broader 478 
scope, such as assessing impacts for services (Barjoveanu et al., 2014), urban metabolism (Goldstein 479 
et al., 2013), and larger scale applications (Lotteau et al., 2015) and territorial planning (Loiseau et 480 
al., 2018). Correspondingly, the term of “product” has been extended from a single product to services, 481 
sectors, cities, etc. Still, the focus is on the function provided by the service, product or system, which 482 
is different from CBA and risk assessment. By integrating two different methods together to solve 483 
the same decision problem, those discrepancies bring us the opportunities to obtain a more 484 
comprehensive picture of the potential consequences of the decision. But the methods and results also 485 
need to be integrated in a transparent and coherent way to avoid inconsistency among options under 486 
comparison. Main discrepancies from our three application areas are discussed in the following 487 
section, concluding with a proposed future research agenda. 488 

4.1 Compatible study system 489 
A clear identification of the boundaries and temporal scope of the system under assessment is 490 
necessary, such that the system is identical for both LCA and the other traditional decision analysis 491 
approaches. System boundaries are not always easy to identify. In CBA and risk assessment, the 492 
system is defined by the project or hazard prone area, meaning that only elements and associated life 493 
stages relevant for the life cycle of the system are included (i.e. both spatial and temporal boundaries). 494 
In contrast, the system boundary defined in LCA as function to be provided (function unit), within 495 
all life stages of the system (i.e. both temporal and spatial boundaries). This leads to difficulties in 496 
identifying a consistent system boundary when the results delivered by two methods need to be  497 
combined into a common decision pathway. Whereas incompatibility of boundaries is not avoidable, 498 
it is on a case-by-case discussion whether that incompatibility has a large influence on the results. 499 
And it needs to be transparently presented to the audience so that they are aware of the differences. 500 
For example, in flood management and transport projects, an infrastructure is a mean to improve 501 
mobility or to prevent floods. According to the specific goal and scope of the analysis, the 502 
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infrastructure may provide more than one function from the perspective of CBA, risk assessment and 503 
LCA. For instance, a dike may be built with a road on the top. This provides extra mobility function 504 
in addition to its primary function, i.e. storm water management. If those two alternatives are for 505 
comparison, one dike with road and one without, and the scope of the project is only storm water 506 
protection with system boundaries limited to the dike itself, then the two alternatives are equivalent 507 
in the prospective of conventional flood management. However, they are still different in LCA, since 508 
one alternative provides an extra mobility function, which needs to be accounted for and compared 509 
to a matching infrastructure providing the same mobility function within the system boundary. 510 
Allocating the proper share of environmental impacts to the main function can potentially align the 511 
system boundary with CBA, where caution is needed for the alignment. Another concern is which 512 
life stages to include in the system when considering that some of the environmental impacts 513 
occurring along the life cycle do not affect the project location, e.g. the emissions for construction 514 
material production may not happen in the same place where the infrastructure is built and used. From 515 
the perspective of LCA, all emissions regardless of location should be included. In contrast, CBA of 516 
an infrastructure may only take into account the emissions that happens within its concerned local 517 
geographical scope as a valid environmental cost (EIB, 2013; European Commission, 2014). This 518 
emphasizes that the geographical coverage needs to be clearly identified during the project assessment 519 
and communicated to the decision process.          520 

Temporal scope is another issue that needs to be addressed. Decision analysis is always dealing with 521 
time. Benefits and costs are discounted over years in e.g. transport projects and flood management in 522 
standard methods. But when it comes to impacts on human health, discounting is not always 523 
conducted due to ethical issues (Motarjemi et al., 2014). LCA calculates impacts from Life Cycle 524 
Inventory (LCI) flows representing the aggregated load of emissions over the life cycle of a product 525 
or service. The traditional LCA thus only provides time-integrated results over the product. Recently, 526 
studies have explored dynamic LCA, considering that emissions in reality often happen over a period 527 
of time (Levasseur et al., 2010). However, applying discounting across generations on environmental 528 
impacts in LCA is not encouraged, due to ethical concerns similar to the ones applying to the human 529 
health impacts (Hellweg, 2003). There is no single answer to whether LCA results should be 530 
discounted when they are being integrated with other decision analysis tools. It depends on the impact 531 
category and the decision context. However, as a rule of thumb, it is essential to have consistency in 532 
discounting when aggregating similar impacts in LCA and other decision analysis tools.        533 

4.2 Cautionary principle vs. non-cautionary principle 534 
”Cautionary principle means that caution, for example by not starting an activity or by implementing 535 
measures to reduce risks and uncertainties, shall be the overriding principle when there is uncertainty 536 
linked to the consequences” (Aven, 2008). In the extreme case where scientific uncertainty of the 537 
consequence is lacking, e.g. flooding due to climate change, it can be referred as  precautionary 538 
principle (Aven, 2008). The cautionary principle is applied in many contexts, especially where risk-539 
based decision approaches are applied. Thresholds are one way to apply a cautionary principle, e.g. 540 
there are thresholds for many chemicals that cannot be exceeded in food products. In EU food policies, 541 
those thresholds are even set up according to precautionary principle that supports taking protective 542 
action before a complete scientific proof of a risk, e.g. prohibition of the use of growth hormones in 543 
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beef production. Similarly, cautionary requirements exist for infrastructures, where a certain level of 544 
safety against natural disaster, such as flood and earthquakes, needs to be achieved. In those cases, 545 
the cautionary and precautionary thresholds and requirements will limit the number of alternatives 546 
available for optimization in decision analysis. In contrast, LCA aims at comparing environmental 547 
burdens with “best estimate of risk on the basis of scarce knowledge” (Hauschild, 2005). The 548 
cautionary constrains are not applied in LCA, which does not limit the applicability of alternatives 549 
via thresholds and requirements as in the cautionary principle based tools. Recently developed 550 
methods aiming at translating LCA results into limited carrying capacity may help harmonize this 551 
discrepancy (Bjørn and Hauschild, 2015). 552 

  553 
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Table 1. Summary of main elements in decision analysis and LCA for the three research areas in this study  554 

 Conventional decision analysis Life Cycle Assessment 
Flood management 
decision analysis 

Transport project 
decision analysis 

Food production and 
consumption decision 
analysis 

Main method Risk assessment in 
combination with 
CBA  

CBA (often combined 
with MCA) 

Risk assessment Life cycle inventory quantification and 
life cycle impact assessment 

Studied 
system 

System 
components 

People and assets 
within the urban 
environment (e.g. 
buildings, roads, 
water 
infrastructure).    

Individuals and 
households transport 
choices,  transport 
services, policy  and 
infrastructures  

Agriculture farming, 
food production 
system, food 
consumption and waste 
treatment 

- For flood: Infrastructure of urban water 
management system 

- For transport projects: Infrastructure of 
transportation system, vehicles driven 
by different fuels and mobility modes 

- For food production and consumption: 
Farming process, food production 
system, consumption and waste 
management 

System 
boundary 

All relevant 
elements within 
the utility function;  
including: 
identified risks, 
actions to be taken, 
investment, costs 
of consequences, 
etc. 

Costs and benefits 
foreseen from the 
project expressed in 
monetary terms 

All relevant elements 
within the utility 
function, including 
identified risks, actions 
to be taken, investment 
and costs, etc. 

All flows related to delivering the 
functional unit, including raw 
materials, production, consumption/ 
maintenance and waste management 

Goal and 
Scope 

General goal Protect people and 
assets from flood. 
Control the risk of 
flood to an 
acceptable level 

To guarantee and 
enhance the mobility 
of persons and goods  

Guarantee food safety 
and availability 

Assess impacts on ecosystem and 
human health on comparative bases  

Scale Water catchment  
(Local/Regional, 

Local or regional Local, regional and 
global 

Impacts caused by the studied system 
are assess in a comprehensive way, 
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usually following 
natural water 
divides)  

Depends on the impact category, the 
scale of consequences can be global 
(such as climate change) or local (such 
as eutrophication) 

Cautionary 
or non-
cautionary 

Precautionary Cautionary in most 
cases 

Precautionary and 
cautionary 

Non-cautionary 

Covered impacts Economic 
benefit/loss 

Socio-economic 
benefits/cost;  
environmental 
impacts to a much less  
degree 

Human health;  impacts 
on ecosystem to a less 
degree  

Environmental impacts, human health 
impacts and resource impacts 

Location and time  The consequences are time and location dependent The consequences are integrated over 
time and location is unspecific 

Uncertain
ty 

Parameter 
uncertainty 

Usually treated   Usually treated Usually treated Occasionally treated 

Model 
uncertainty 

Rarely treated Rarely treated, but 
recommended by 
guidelines 

Rarely treated Rarely treated, but recommended by 
guidelines 

 555 
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4.3 Uncertainties 556 
The reliability of the decision analysis results can only be assessed through an evaluation of the 557 
uncertainty. As mentioned in section 2, parameter and model uncertainty are the two essential forms 558 
of epistemic uncertainty and variability in an analysis. The usual approach for dealing with the 559 
parameter uncertainty is to assign a probability distribution to each input parameter, fitting the best 560 
to data. In LCA, only four types of distributions are normally used due to software limitations and 561 
the complexity of the modelled product life cycle: normal, lognormal, uniform and triangular 562 
distributions (Heijungs and Frischknecht, 2005). In the decision analysis approaches applied in flood, 563 
transport and food, more distribution patterns are applied, e.g.  Gamma, Beta, Weibull and 564 
Generalized Extreme Value distributions (Faber, 2012). Generally, distribution patterns are fitted to 565 
data in the other decision analysis approaches, but not often in LCA. Compared to parameter 566 
uncertainty, model uncertainty is given much less attention by practitioners, both in LCA and decision 567 
analysis within the three discussed research areas, and often it is completely neglected.    568 

Monte Carlo and other simulation methods are the primary approach to propagate the uncertainty to 569 
the output in the decision analysis for all three considered research areas and LCA, assuming different 570 
distribution patterns of chosen input parameter (de Jong et al., 2007; Halsnæs et al., 2015; Lloyd and 571 
Ries, 2007; Vose, 1998). An important feature of LCA is that it provides impacts on a site-generic 572 
and time-integrated scale. Thus, spatial and temporal variations are not often represented in the result. 573 
In the recent years efforts have been made to develop spatial differentiated LCA methods (Huijbregts 574 
et al., 2015; Wernet et al., 2016). However, due to the diverse location of elements included in the 575 
system, data availability, and the diverse location of impacts, it is not easy to reach a systematically 576 
regionalized LCA result. On the contrary, risk-based methods and CBA provide full uncertainty 577 
quantification in time and space. These aspects need to be harmonized in the problem definition when 578 
integrating LCA with other decision analysis approaches.  579 

4.4 Combining LCA and other decision analysis tools – current status and recommendations 580 
There are some studies discussing the similarity and difference between LCA and risk assessment. 581 
Olsen et al. (2001) concluded that LCA and risk assessment are not substitutable due to different aims, 582 
scopes, etc. Bare (2006), Flemström et al. (2004) and Cowell and Clift (2000) reached similar 583 
conclusions after comparing LCA and risk assessment within the context of human health impact, 584 
chemical toxicity and public decision making respectively. Despite the difficulties, a few studies have 585 
still attempted to combine LCA with risk assessment for a better decision support. Linkov et al. (2017) 586 
summarized that two mainstream methods exist for such integration. One is to apply risk assessment 587 
on different life stages where risky materials appear. The other one is to apply risk exposure pathway 588 
and impact in LCA methodologies in some impact categories, such as the method proposed by OECD 589 
(2015) for nano-enabled applications. Harder et al. (2015) reviewed case studies blending risk 590 
assessment and LCA. They conclude that in addition to the two methods mentioned above, LCA and 591 
risk assessment in many cases studies were conducted in parallel to complement each other. However, 592 
none of them can really deliver results integrating the environmental impacts and risk consequences 593 
(e.g. Barberio et al., 2014; Dhingra et al., 2010; Ribera et al., 2014). Guinée et al. (2017) points out 594 
that tools such as multi-criteria decision-making is emerging in the past decade to deliver a full 595 
combination of LCA and risk assessment result (e.g. Benetto et al., 2007; Linkov and Seager, 2011; 596 
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Tsang et al., 2014). Normalization or weighting may be performed to allow the harmonization of 597 
assessment results from LCA and risk assessment depending on the stakeholders’ preference, where 598 
the results can be combined together. These studies show that though obstacles exist, efforts has been 599 
made to integrating LCA with risk assessment, that may serve as inspiration e.g. for flood and food 600 
decision analysis when risk assessment is the main tool.  601 

The combination of LCA and CBA has also been conducted in few studies. Møller et al. (2013) used 602 
LCA to quantify energy consumption and CO2 of biofuel production. There “welfare economic 603 
accounting prices” were assigned to those results and integrated into traditional CBA for comparing 604 
the consequences of using three different biofuels in Denmark. In Jones et al. (2017),  CO2, SO2, 605 
PM10, NMVOC and N emissions were quantified over the life cycle of a transport service provided 606 
by train, which are further monetized and integrated into CBA to calculate NPV. Huang et al. (2017) 607 
conducted LCA and CBA in parallel for assessing the “environmental and cost impacts of reusing fly 608 
ash”, where a normalization factors were given to LCA and CBA results respectively for combination. 609 
On the other hand, Hoogmartens et al. (2014) identified the obstacles for combining LCA and CBA 610 
in terms of discrepancies in key focus (product vs. strategies), life span, life stages covered, metrics, 611 
and system boundaries such as whether to include impacts on broader society. These examples show 612 
that multiple ways of combining LCA with CBA exist, that can serve as the basis when integrating 613 
LCA into decision analysis in transport and flood management. But caution is needed as also 614 
discussed in above sections. 615 

Note that in addition to the conventional environmental LCA (eLCA) as we mentioned in this study, 616 
social LCA (sLCA) and life cycle costing (LCC) also exist, though used to a less extent due to the 617 
less mature methodology. They share the same principle as the conventional LCA, but looking at 618 
social impacts and cost flows respectively. Norris et al. (2001) proposed to use LCC for accounting 619 
economical cost and discussed two approaches for combining LCA and LCC for providing 620 
sustainability decision support. Hoogmartens et al. (2014) argue that eLCA, sLCA and LCC together, 621 
the so-called life cycle sustainability assessment (LCSA), can well deliver a sustainability decision 622 
support. They imply that instead of integrating LCA into CBA, effort should be put on translating 623 
CBA into LCC for such integration. However, obstacles mentioned in the previous sections still need 624 
to be conquered, and it may face even more challenges to convince the decision makers to switch 625 
from CBA to another method as the main decision analysis tool.  626 

An increasing trend of using LCA for sustainability assessment is observed, in addition to the 627 
combination with risk assessment, CBA and LCC as mentioned above. LCA used often for assisting 628 
eco-design of products (Bovea and Pérez-Belis, 2012). Arena et al. (2013) propose a streamlined 629 
LCA framework, where important impacts in each life stages of a car life cycle was extracted from 630 
LCA and other guidelines or standards. They are developed into a qualitative performance evaluation 631 
system to be used in the early stage decision making. Welsh-huggins and Liel (2017) did parallel risk 632 
assessment and LCA study on buildings with green roofs, where trade-offs was demonstrated between 633 
cost, material, hazard resistance and environmental impacts. As pointed out by Jeswani et al. (2010), 634 
many possibilities exist for broadening LCA in its use for a better sustainable decision support, 635 
especially in combination with other decision analysis tools such as strategic environmental 636 
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assessment, environmental impact assessment, multi-criteria decision analysis, LCC, CBA and sLCA. 637 
However, whether a better and more systematic LCA is needed in relevant decisions largely depends 638 
on the context of study and more importantly, the stakeholders’ preference. Indeed, one reason for 639 
not including comprehensive environmental assessment results in the decision analysis is 640 
stakeholders’ perceptions and priorities. Although integrating LCA into decision analysis may give a 641 
better overview of potential environmental consequences that may eventually cause damages to 642 
society, these consequences are considered external in the conventional projects. As no mandatory 643 
requirements exist, most stakeholders prefer not to internalize such external costs. Another concern 644 
is the limited social acceptance when environmental impacts and their associated damages to humans 645 
and ecosystems need to be monetized or normalized to another metrics, to be able to integrate it with 646 
results from other decision analysis tools. Monetizing of non-market things using “willingness to pay” 647 
assessments assumes that individuals have the same preference in giving up or obtaining the same 648 
thing and that this willingness is not changed when facing public decision instead of private 649 
transactions (Kelman, 1981). Both assumptions are not true in reality, which may result in far-off 650 
monetary values. Putting values on human life is another issue that will always be argued on fairness 651 
and human rights (Bayles, 1978). These methodological and ethical issues may further hinder the 652 
stakeholders’ willingness to include external environmental impacts into decision analysis.  653 

Even though obstacles exist, both from methodology and stakeholders’ willingness, to integrate LCA 654 
into risk assessment and CBA, the examples given above show that it may make an important 655 
difference to the decision when LCA is taken into account. The three application areas, transportation, 656 
flood management and food production and consumption, all target at decision making at societal 657 
level. Their environmental consequences will cause damage to nature and society, and disregarding 658 
them in decision analysis will eventually cause more problems to fix afterwards. Climate change is a 659 
good example of paying such prices after ignoring GHG emissions in the past. Therefore, it is highly 660 
relevant to integrate sustainability considerations into decision analysis now, e.g. using the LCA-661 
based approaches described above to support robust decisions that avoid shifting burdens to the future.     662 

5.   Conclusions and perspectives 663 
It is clear that economic benefit and cost, and impacts on human health are major concerns in decision 664 
analysis within the three research areas presented in this study. Few attempts exist to assess 665 
environmental impacts, e.g. noise and air quality assessment in transportation CBA, classification of 666 
green or grey facilities in flood management and reducing waste and harmful elements in food 667 
production and consumption. However, those methods either cover only few environmental impact 668 
categories, or act as a guideline without actually assessing the impacts. There is thus a clear need for 669 
a better assessment of environmental impacts to be incorporated into decision analysis for these 670 
research areas as well as in general in order to support sustainable system choices. As a promising 671 
tool, LCA provides a mature and ISO standardized methodology to assess a full set of environmental 672 
impacts. Previous applications in the three studied research areas have demonstrated its ability to 673 
support an informed judgement on the environmental profile of the compared alternatives. However, 674 
there are still many challenges ahead. Due to lack of common scopes and purposes, and 675 
methodological differences, the aim of study and system boundaries need to be aligned as much as 676 
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practically possible between LCA and the traditional decision analysis tools, assuring the 677 
compatibility in the comparison and/or aggregation of the results when possible. Similarly, 678 
uncertainty and discounting are treated differently, where an alignment is needed. Moreover, metrics 679 
in LCA (e.g. DALY and PDF) are different from the ones used in other decision analysis tools. 680 
Although recent studies show that there are multiple ways of integrating LCA and other decision 681 
support tools, further research is needed to overcome these challenges. 682 
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