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On the simulation of aggregated solar PV
forecast errors

Edgar Nuño∗, Member, IEEE, Matti Koivisto, Nicolaos Cutululis, Member, IEEE, and
Poul Sørensen, Senior Member, IEEE

Abstract—The uncertainty arising from high levels of solar
photovoltaic (PV) penetration can have a substantial impact on
power system operation. Therefore, there is a need to develop
models capable of representing PV generation in a rigorous
manner. This paper introduces a novel transformation–based
methodology to generate stochastic solar area power forecast
scenarios; easy to apply to new locations. We present a simu-
lation study comparing day–ahead solar forecast errors covering
regions with different geographical sizes, total installed capacities
and climatic characteristics. The results show that our model can
capture the spatio–temporal properties and match the long–term
statistical properties of actual data. Hence, it can be used to
characterize the PV input uncertainty in power system studies.

Index Terms—Solar power generation, forecast uncertainty,
simulation, power systems.

NOMENCLATURE

A Set of power system areas.
C Set of area power centres (latitude, longitude).
D Set of area diameters (km).
L Set of PV locations.
S Set of combinations.
Ω Set of combination weights.
xt Vector of PV power measurements time series

(MW).
x̃t Vector of PV power forecasts time series (MW).
x̃sim
t Vector of simulated PV power forecast time series

scenarios (MW).
τt Vector of clear–sky power time series (MW).
ξt Vector of transformed PV forecast error time

series (p.u.).
fhautocorr Function describing the evolution of the hth fore-

cast error autocorrelation lag with the area size.
fcorr Functional relationship between the forecast error

correlation coefficient with the distance between
areas.

DNI Direct Normal Irradiance (W/m2).
DHI Diffuse Horizontal Irradiance (W/m2).

I. INTRODUCTION

L IMITED predictability and variability are two
fundamental characteristics associated to photovoltaic

(PV) solar power. They generally translate into errors in the
estimated production, which can represent a challenge during
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the operation of highly solar–penetrated power systems. Solar
forecasting is a fast–growing field, however, the non-linear
and stochastic effect of cloud motion on solar irradation limits
the definition of accurate and robust all-purpose forecasting
systems [1]. In this regard, different forecasting horizons
e.g. from minutes to 6 hours and up to a few days ahead
require dedicated techniques [2]. Among all the available
commercial products, day-ahead forecasts represent an
important operational planning tool in power systems. They
are generally based on numerical weather prediction (NWP)
models [2] and are used as an input during the market-clearing
process in order to optimize the generator’s scheduling for
the next day of operation on an hourly resolution; matching
the current electricity market designs in Europe. Errors in
day–ahead forecasts will need to be corrected during the
different intra–day markets to prevent eventual imbalances
between generation and demand. However, this situation can
translate into a sub–optimal result mainly due to the limited
liquidity of such markets.

Power system operators are normally interested in aggregated
forecasts at a regional level. Generally, wind and solar
power forecasts are performed for a group of representative
installations and later up-scaled to represent the aggregated
production in the system [3, 4]. The uncertainty associated
to operational forecasts increases with the leading time due
to the complex nature of the atmosphere. A natural way
to minimize this shortcoming is to move away from point
estimations into probabilistic scenarios. For instance, they
can be generated by slightly changing the parametrization or
starting points of NWP models [5] or via chains of conditional
distributions [6, 7, 8, 9, 10, 11]. The first technique, known
as ensemble forecasting, is based on deterministic equations
and generally comes at the expense of large computation
times. The latter requires a significant amount of information,
namely the conditional probability distribution of each
prediction step for every location. Some power system studies
e.g. integration, market studies, etc. may not require the
best possible prediction, but realistic forecast errors to study
the impact of renewable energy sources (RES) on power
systems. Often, these errors are assumed to be constant as a
percentage of the installed capacity or to show an increasing
standard deviation changing with the leading time [12]. Söder
[13] firstly addressed this issue by developing a methodology
to simulate wind speed forecast errors at different areas of
the power system using a Vector Autoregressive Moving
Average (1,1) (VARMA) model. The method has been used
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for different applications such as stochastic optimization [14].
Different methods based on time series have been proposed
to forecast PV generation [15], often relying on observations
from nearby locations[16, 17]. However, to the best of our
knowledge the simulation of stochastic PV forecast scenarios
as such has not yet received the same degree of attention.

The objective of this paper is twofold. First, to generalize the
methodology proposed in [18] to simulate statistical day-ahead
aggregated PV forecast scenarios and second, to validate the
results considering areas with different weather characteristics
and levels of aggregation. The paper is organized as follows.
Section II presents the general methodology and the theoretical
basis of this work. A case study along with the model
calibration results are summarized in section III. Furthermore,
validation results are presented and discussed in sections IV
and V respectively, followed by some concluding remarks in
section VI.

II. METHODOLOGY

Solar generation is mainly determined by the availability
of the solar resource as well as cloud patterns. Moreover, it
can be significantly affected by additional local phenomena
such as suspended solids particles and shading effects. These
conditions hinder the ability to formulate a valid model
able to perform well at locations with different climatic
characteristics, since the performance of the same module can
significantly differ [19]. In this work, we describe a stochastic
model able to reproduce day-ahead forecast scenarios
understood in a statistical sense i.e. focusing on the statistics
of the forecast errors. Thus, the main goal is to simulate
realistic realizations matching the most important properties
of the actual forecast errors e.g. their autocorrelation,
cross-correlation and distributional characteristics, rather than
accurate predictions. The fundamental motivation behind this
work lies in the fact that stochastic methods offer much higher
computational efficiency than traditional NWP tools. For
instance, it is possible to simulate predictions over a year for
a given location within seconds on a regular laptop computer;
without the need to rely on high performance computer (HPC)
clusters. Thus, developing a method to accurately reproduce
the main statistical features of state-of-the-art predictions at
a limited computational cost can foster the application of
probabilistic techniques in power systems.

As proposed in [20, 21], the time series of interest can be
firstly transformed into a stationary multivariate Gaussian pro-
cess to capture both temporal and spatial dependencies in the
Gaussian domain. This procedure allows for a straightforward
simulation of data, which can then be transformed back to the
domain on interest. The proposed methodology is summarized
in Fig. 1. Input and output variables at each stage of the
process are explained in the following sections.

A. Geographical description

Photovoltaic installed capacity at the regional level is ge-
nerally distributed among a large number of small generation

Geographical descriptionL

D, C

Aggregated power curves

Ω

DNI, DHI
xt
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L

Data pre-processing
xt, x̃t

L
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Stochastic model
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xt, x̃t

Random simulation

xt

L
C,D
τt

x̃ sim
t

Inputs

Fig. 1: Schematic diagram of the scenario simulation process

facilities. As a matter of fact, the spatial distribution of the
panels can significantly affect the properties of the aggre-
gated production and prediction, also known as smoothing
effect [22]. The geographical properties of each individual
area Ai ∈ A = {A1, . . . , Ak} can be summarized using a
single quantity, from here on referred as the area diameter,
i.e. Di ∈ D = {D1, . . . , Dk}. It can be defined as the
average distance (in kilometres) between all the installations
in that area Li ⊂ L and the geographical point minimizing
the distance between them; known as its power centre, i.e.
Ci ∈ C. Note that all distances calculated from individual
locations are always weighted by its rated power. In a nutshell,
high diameter values indicate that the panels are relatively
spread; hence, as an aggregate, less exposed to local weather
phenomena. Conversely, low diameters reveal that PV panels
are geographically closer to each other within the area.

B. Aggregated power curves

One of the biggest challenges of large–scale PV modelling
correspond to the limited available information regarding
the location, inclination and orientation of the individual PV
panels. Inspired on current wind power modelling techniques
[23], we applied a method based on aggregated solar power
curves [18, 24] to account for the spatial distribution,
orientation and inclination uncertainty. We consider a set of
combinations S = {S1, . . . , Sn} corresponding to different
azimuth and tilt angle pairs for all the installations inside each
area. Every combination has a specific weight associated,
so for a given area i the set Ωi = {ω1,i, . . . , ωn,i} includes
all the combination weights. Note that these sets of weights
might change across areas i.e. Ω1 6= Ω2 6= . . . 6= Ωk. Also,
let Ω = {Ω1, . . . ,Ωk} be the set of weights across all the
areas of interest.
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Let now xi,t = [xi,1, . . . xi,T ] be the time series of measured
aggregated solar production at area i of the system. The
production at each area is directly related to the average global
effective irradiance reaching its surface g. It can be computed
as a function of the selected combinations S as well as
the meteorological information near all the reported locations
e.g. direct normal irradiance (DNI) and diffuse horizontal
irradiance (DHI); obtained for example using NWP–based
reanalysis techniques [25]. For a given combination j and
a specific area i, let us define an aggregated solar power
curve [26] as a function in R mapping time series of the
area–averaged effective global irradiance corresponding to that
combination and the measured solar production time series:

γ̃j,i : gj,i,t → xi,t (1)

Based on the empirical data analysed, a linear relationship was
found satisfactory to describe this relationship. Consequently,
if we operate backwards and apply the previously derived
power curve to a time series of effective irradiance, it is
possible to obtain the corresponding estimated production for
combination j and area i:

x′j,i,t = γ̃j,i(gj,i,t) (2)

Let us now assume that the true aggregated power production
at area i can be approximated as:

xi,t '
n∑

j=1

ωj,i · x′j,i,t (3)

Then, the weights of the possible inclination and orientation
specifications for that area, Ωi = {ω1,i, . . . , ωn,i}, can be
estimated by fitting a multiple regression model, where the
independent variables are the estimated PV generation time
series of the combinations x′i,j,t and the dependent variable
is the measured (known) PV generation of the area. The
weights are constrained to be positive, as generation from any
of the inclination and orientation combinations can only be
positive. The magnitude of each individual weight is related
to the unknown orientation and inclination of all the PV
installations mix inside an area. The higher the weight, the
closer the theoretical production of that area with all the
installations with the azimuth and tilt angles corresponding
to that combination would be.

C. Data pre-processing

Solar generation depends on the solar irradiance at the
ground level, which at hourly resolution will show both strong
daily and yearly patterns due to the the Earth’s rotation and
translation respectively. This deterministic profile translates
into a changing variance of the solar forecast errors across the
day. We propose to correct this highly heteroscedastic random
process by pre-processing the raw data into the standard
normal space by including several transformations. Let xt =
[x1,t, . . . , xk,t]

T be the random vector of solar measurements
time series at areas i = 1, . . . , k, and let x̃t = [x̃1,t, . . . x̃k,t]

T

be the vector of solar PV forecast time series. Both solar
vectors must be divided by the maximum possible generation
time series under clear–sky conditions [27], hereafter referred

as clear–sky power τt = [τ1,t, . . . , τk,t]
T, so the stochastic

component can be isolated from the original signal. Note that
the clear–sky power is specified here so that it gets values
bounded between 0 and 1. The normalized time series for any
i = 1, . . . , k are:

mi,t =
yi,t
τi,t
∈ [0, 1]

m̃i,t =
ỹi,t
τi,t
∈ [0, 1]

(4)

where yi,t and ỹi,t correspond to the time series of PV
measurements and PV forecasts at area i, normalized by the
hourly installed capacity in the region e.g. yi,t = xi,t/pi,t.
The last step in the pre-processing stage requires transforming
the previously defined variables into new normally distributed
random variables:

zi,t = Φ−1
[
Fi(mi,t)

]
∼ N (0, 1)

z̃i,t = Φ−1
[
F̃i(m̃i,t)

]
∼ N (0, 1)

(5)

where Φ−1 is the inverse cumulative distribution function
(CDF) of a standard normal distribution and Fi, F̃i represent
the empirical area CDFs of the corresponding normalized
variables mi,t and m̃i,t respectively. Consequently, the vector
of forecast errors can be defined as:

ξt = z̃t − zt ∈ Rk (6)

D. Stochastic model

Multivariate Vector Autoregressive Moving Average
(VARMA) models represent a robust tool to account for
both the temporal and spatial dependencies between random
variables, such is the case for solar forecast errors. More
specifically, we found vector autoregressive (VAR) processes
as good candidates to capture the variability of the solar
PV forecast errors at the power system area level based on
initial investigations [18]. They can be estimated based on
ordinary least squares (OLS); which significantly reduces
the complexity of their estimation compared to other models
relying on maximum likelihood estimation (MLE) e.g. when a
moving average term is added. In a general way, the evolution
of a random vector such in (6), ξt = [ξ1,t, . . . , ξk,t]

T at time
t following a H–th order VAR(H) process can be presented
as:

ξt = α+

H∑
h=1

Bh · ξt−h + εt (7)

where α is a vector of additive constants, ξt−h is a vector
of past realizations of ξt at lag h, Bh is a matrix of
coefficients corresponding to that lag and εt ∼ N (0,Σ) is
the random innovation term with zero mean and correlation
matrix Σ. Both temporal and spatial properties are related to
the underlying multivariate time series process. For simplicity,
we assumed a diagonal structure of the coefficient matrices
i.e.:

Bh =

b
h
1 0

. . .
0 bhk

 (8)
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An optimization routine was proposed in [13] in order to
construct Bh so that the root mean square error (RMSE) of the
simulated forecast errors was minimized. This approach was
relatively limited since it assumed a single set of parameters
i.e. bh1 = bh2 = . . . = bhk and did not directly aimed at capturing
the autocorrelation structure of the data. Alternatively, we
explicitly connect the temporal properties of the aggregated
forecast errors to the spatial characteristics of the ith area,
summarized by its diameter Di. Consequently, knowing the au-
tocorrelation coefficients for each different lag i.e. r1i , . . . , r

h
i ,

it is possible to operate backwards and estimate the elements
of the coefficient matrices of the model corresponding to each
area via the Yule–Walker eqs. [28].

b1i
b2i

...
bh−1i

bhi

 =


1
r1i 1 Sym.
...

...
. . .

rh−2i rh−3i . . . 1

rh−1i rh−2i . . . r1i 1



−1

×


r1i
r2i
...

rh−1i

rhi

 (9)

where the H–lag autocorrelation coefficients depend on the
area characteristics:

rhi = fhautocorr(Di) (10)

Hence, repeating the process over for all the areas
{A1, . . . , Ak} ∈ A, it is possible to build a set of model
parameter matrices corresponding to each individual lag Bh

for h = 1, . . . ,H , as in eq. (8). The geographical dependence
structure between forecast errors of the different areas will be
determined by the correlation matrix of the innovation term,
Σ. Based on the existing literature [29, 30], we assumed a
monotonically decreasing relationship between the pairwise
zero-lag cross-correlation (also known as Pearson’s correlation
coefficient) between the forecast errors at two different areas
and their geographical distance.

ρi,j = fcorr(d(Ci, Cj)) (11)

where Ci, Cj correspond to the respective power centres of
area i and j. The estimated shape of fcorr is presented in
section III-C. Note that eq. (11) does not guarantee a suitable
correlation matrix, specially as dimension increases. In such
cases, there are different methods to obtain a positive-definite
correlation matrix as close as possible to the empirical one
e.g. [31].

E. Random simulation
Once the individual fhautocorr(D) function values associated

with each h lag and the relationship between cross-correlation
and distance i.e. fcorr(C) have been defined, the random vector
of forecast errors ξ sim

t = [ξ sim
1,t , . . . , ξ sim

k,t ]T can be simulated
according to (7). Subsequently, it has to be transformed back
to the original domain. First, the simulated forecast vector can
be calculated based on (6):

z̃simt = ξsimt + zt ∈ Rk (12)

and then the inverse of eqs. (4), (5) can be applied:

ỹ sim
i,t = F−1i

[
Φ(z̃ sim

i,t )
]
· τi,t

x̃ sim
i,t = ỹ sim

i,t · pi,t
(13)

Note that x̃ sim
t = [x̃ sim

1,t , . . . , x̃ sim
i,t ] is the vector including

the forecast scenarios for all the areas in the system. In
this case, we consider that the empirical distribution of the
forecasts can be approximated by the distribution of the
measured counterparts. Therefore, no prior forecast data are
required to simulate any forecast scenario. The overall process
can be summarized as follows:

Step 1 – Characterize each individual area calculating their
power centres C and diameters D.

Step 2 – Determine the scenario weights Ω matching the
measured power against the effective irradiance for
each of the inclination and orientation combinati-
ons.

Step 3 – Pre–process the original data (4) – (5) and calculate
the vector of transformed forecast errors ξt, (6).

Step 4 – Derive the functions fhautocorr for h = 1, . . . ,H lags
included in the stochastic VAR(H) model, as well
as fcorr.

Step 5 – Based on D and fhautocorr obtained in Steps 1,4
estimate the lag–h autocorrelation coefficients and
derive the model parameter matrices applying (9).

Step 6 – Construct a cross-correlation matrix considering
the distances between locations (11).

Step 7 – Simulate the VAR(H) random process.
Step 8 – Apply (12) – (13) to obtain the final forecast sce-

nario.

III. CASE STUDY

A. PV power areas

We selected two different climate regions in order to test
the performance of the proposed model: one corresponding
to a relatively sunny and stable conditions (Southern Europe)
and another one presenting a poorer solar irradiation resource
(Central Europe). Table I summarizes the characteristics of
each of the studied regions and Fig. 2 shows an overview of
the spatial distribution of the PV panels in the areas. From
the initial pool of locations, we selected 17 different regions
for calibrating the model parameters, leaving 6 for validation.
We gathered publicly available solar production data and day–
ahead forecasts for each region from the individual TSOs:
Elia [32], Amprion [33], TenneT [34] and Transnet BW [35],
as well as the European Network of Transmission System
Operators for Electricity (ENTSO-E) [36]. Additionally, we
inferred the approximate geographical distribution of the PV
panels per postal code based on the information from the
national energy agencies: Bundesnetzagentur (BNetzA) [37],
Gestore dei Servizi Energetici (GSE) [38], Commission wal-
lonne pour l’Energie (CWaPE) [39] and Vlaamse Regulator
van de Elektriciteits- en Gasmarkt (VREG) [40].

B. Meteorological data

We run the Weather Research and Forecasting (WRF) [41]
model, a widely used open-source mesoscale modelling system
to simulate the meteorological conditions matching the histo-
rical power records in the areas. We used time series of DNI
and DHI on a 10 by 10 kilometre spatial grid and a temporal
resolution of one hour. An analogous method for generating
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Fig. 2: Geographical distribution of the PV panels in Southern (left) and central Europe (right). Individual plants are represented
by grey dots. The power center of the areas used in calibration are displayed in blue and the validation areas in red.

TABLE I: Regional PV characteristics

Region Country D (km) Capacity MW
(end 2015)

Antwerp

BE

21.3 1,981
Brussels <10 194
East Flanders 21.2 1,924
Flemish Brabant 22.1 1,013
Hainaut 35.0 765
Liege 17.0 1,078
Limburg 20.3 1,840
Luxembourg∗ 32.2 344
Namur 21.1 468
Walloon Brabant 13.6 289
West Flanders∗ 27.7 1,913

Bayern∗

GE

101.1 11,309
Schleswig-Holstein∗ 55.2 1,498
Hessen 61.9 1,811
Bremen, L. Saxony 98.8 3,622
Amprion 101.8 6,700
Baden-Württemberg 71.6 5,117

Centro-Sud

IT

101.9 2,654
Sud 104.7 3,613
Centro-Nord∗ 82.0 2,271
Nord 130.0 8,319
Sicily 77.3 1,309
Sardinia∗ 63.0 726

∗ Used for validation

time series was used and verified in [25]. We derived the
global horizontal irradiance (GHI) from the previous variables
and applied the Haurwitz model [42] to derive the GHI under
clear–sky conditions GHIclear considering the solar geometry
at the middle of each hour. Lastly, under each combination
j at area i, we used the Perez model [43] and trigonometric
relations to calculate the effective and clear–sky effective irra-
diance time series i.e. gj,i,t and gclearj,i,t respectively. Each time
series of effective irradiance was used to derive empirically the
k× n aggregated power curves as in (1). These power curves
were later applied to obtain the set of combination weights Ω
via eqs. (2) – (3). Subsequently, the average clear–sky effective
irradiance for area i = 1, . . . , k was calculated as:

gcleari,t =

n∑
j=1

ωj,i · gclearj,i,t (14)

and the conversion to clear–sky power was performed assu-
ming an ideal power curve i.e. the rated power of the area
corresponds to 1,000 W/m2:

τi,t = gcleari,t /1, 000 (15)

C. Model calibration

We initially selected a VAR(2) model aiming at reducing
the complexity of the random vector simulation model. Fig. 3
presents the first and second–lag autocorrelation coefficients
of the transformed area forecast errors ξ, as well as those
corresponding to different combinations of the original areas
based on geographical proximity.
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Fig. 3: Evolution of the lag–1, ACF (1) and lag–2, ACF (2),
autocorrelation coefficients with the area diameter parameter.

The lag–1 coefficient clearly remains relatively stable as the
area diameter increases. However, the lag–2 coefficient tends
to increase with the diameter due to the smoothing effect
caused by the geographical spread of the installations. The-
refore, we chose to approximate eqs. (10) as linear functions.
Similarly, Fig. 4 illustrates how the standard deviation of the
transformed forecast errors changes with the diameter of the
area.
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Fig. 4: Change in the standard deviation of the forecast errors
ξ as the areas parameter increases.

The standard deviation of ξ significantly decreases as the
PV installations are more spread across the area. Similarly
to Fig. 3, we found two well–defined clusters. One between 0
and 60 kilometres corresponding to the Belgian areas and their
combinations and a second cluster near 200 kilometres formed
by the combination of the areas in Germany and Belgium. The
individual areas were aggregated based on their geographical
proximity. Hence, three out of the four Italian areas used
in the calibration of the model were combined separately.
Finally, Fig. 5 shows the relationship between the cross–
correlation of the transformed forecast errors and the inter–
area geographical distance. The results suggest that the cross-
correlation between the transformed forecast errors decreases
as the distance between the area centres increases. Moreover,
the cross correlation tends to be slightly negative for distances
greater than 700 kilometres. The relationship was clearly not
linear. Instead, we found that a third–order rational function
(shown in black) was able to match the cross–correlation of
the transformed forecast errors quite accurately, i.e.:
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Fig. 5: Pairwise cross-correlation coefficient between area
transformed forecast errors ξ as a function of the distance
between areas.

ρi,j =
δ1

δ2 + di,j + δ3 · d 2
i,j + δ4 · d 3

i,j

(16)

where δ1, δ2, δ3 and δ4 are constants and di,j = d(Ci, Cj)
represents the Euclidean distance between the power centres
of area i and area j.

IV. RESULTS

This section presents the results from the six regions in-
cluded in the validation set, as shown in Fig. 2. For each
case, we used information regarding the spatial distribution
of the panels across the areas D, C,L, the clear–sky power
vector τt based on set of combination weights allocated to
each area as well as the actual measurements vector time
series xt to simulate day-ahead forecast scenarios for a full
year on an hourly resolution in a single run. The CPU
time required to simulate 500 realizations on a two–core
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Fig. 6: Comparison of the measured PV production (grey area), actual forecast (blue) and one model run (red) for selected
days of the simulated year.
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computer with 2.10 GHz and 2.70 GHz and 8 GB RAM was
132.4 seconds. Power measurements (grey shaded area) and
actual forecasts (blue lines) for different days of the year are
presented in Fig. 6. Moreover, the results of a single model
run are presented in red. Simulated forecasts were relatively
smooth, resembling characteristics of aggregated production.
In addition, our model was able to capture yearly trends
observed in the measurements as well as the variation in the
sunshine duration throughout the year. Furthermore, Fig. 7
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Fig. 7: Auto–correlation function of the forecast errors of
the regions included in the validation set. Measurements and
simulated scenarios are represented by blue and red lines
respectively.

illustrates the auto–correlation function of the actual (blue)
and the mean of the simulated (red) forecast errors based on
500 model realizations. It can be observed that, despite its
simplicity, the proposed VAR(2) model was able to closely
match the temporal properties of the forecast errors. This
highlights the importance of the pre-processing steps (5) in
order to successfully isolate the stochastic component of the
original measurement and forecast vectors. We also observed
an intra–day temporal structure, exemplified by a 24–lag peak
in the forecast error autocorrelation function. Even though
this peak was significant, specially in Luxembourg, Bayern
and Hessen, it was captured during the back–transformation
step (12). The same conversion also ensured that the forecast
never exceeds the theoretical maximum production, defined by
the clear–sky power or goes below zero. According to (13),
for each area m̃ sim

i,t ∈ [0, 1], hence ỹ sim
i,t ∈ [0,max(τi,t)]. In

addition, Fig. 8 shows the evolution of the zero–lag cross-
correlation coefficient of the measured forecast errors and
a 95% confidence band for the simulated forecast errors
based on 500 realizations. It can be observed that most
of the measurements laid within the confidence band. The
representation of the geographical structure of the model can
be further improved by including off–diagonal terms in the
parameter matrices (8). This will require to consider individual

cross–correlation functions for the different lags of the model,
similar to the selected procedure applied for the autocorrela-
tion coefficients. We were also interested in reproducing the
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Fig. 8: Cross-correlation of the forecast errors as a function of
the distance between area centres. The blue points correspond
to the measured cross-correlation values whereas the red area
represents the 95% confidence band of the simulations.

distributional properties of the actual forecast errors. Fig. 9
illustrates the histogram of the measured (blue) and simulated
(red) forecast errors for the validation set using 0.05 per unit
bins. The proposed methodology does not directly preserve
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Fig. 9: Histograms of the measured (blue) and simulated (red)
area forecast errors.

the statistical distribution of the forecast errors, but rather
the distribution of the PV forecast scenarios. Nevertheless,
we observed that the simulated results precisely matched
the actual data, supporting the main assumption in (13) i.e.
Fi ' F̃i. In order to assess the accuracy of the simulations,
Table II summarizes the mean standard deviation σ and the
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TABLE II: Summary statistics of the simulated and measured forecast errors

Region σ nRMSE CRPS Q2.5 Q97.5

Luxembourg 0.099 (0.068) 0.122 (0.084) 0.0225 -0.27 (-0.14) 0.15 (0.19)
West Flanders 0.059 (0.061) 0.073 (0.075) 0.0093 -0.12 (-0.12) 0.16 (0.16)
Bayern 0.066 (0.054) 0.073 (0.058) 0.0164 -0.20 (-0.10) 0.08 (0.15)
Schleswig-Holstein 0.052 (0.045) 0.081 (0.068) 0.0131 -0.15 (-0.09) 0.07 (0.12)
Centro-Nord 0.051 (0.031) 0.082 (0.051) 0.0093 -0.12 (-0.04) 0.08 (0.09)
Sardinia 0.057 (0.044) 0.079 (0.061) 0.0122 -0.15 (-0.09) 0.08 (0.11)

All the results are expressed in per unit. The parenthesis values correspond to the actual measured forecast
errors.

normalized RMSE (nRMSE) using the range of the data at
each location as normalization factor. Note that the results are
based on 500 forecast scenario realizations. Furthermore, the
continuous rank probability score (CRPS) [44] was added as
a metric evaluating the simulated forecast error density. The
quantities between parenthesis correspond to the original data.
For illustration purposes, the 97.5th and the 2.5th quantiles
Q97.5, Q2.5 respectively corresponding to the 95% confidence
region are also presented in Table II, along with the mean
quantile-quantile (Q-Q), illustrated in red in Fig. 10. We
observed a slight increase in the standard deviation of the
forecast errors, but in general the results matched the measured
data closely. Similarly, the results in terms of nRMSE were
also consistent. Moreover, the CRPS was notably low for all
locations, indicating the precision of the probabilistic forecast
scenarios. Note that a value of zero corresponds to a perfect

deterministic forecast. The quantiles of the simulated forecast
errors agreed with the theoretical quantiles of the measured
forecast errors during most of the sample domain. However,
we observed significant deviations below the 2.5th quantile
in all cases except for West Flanders. In other words, the
model tended to amplify those situations in which the the solar
generation was under–predicted i.e. the forecast was smaller
than the actual realization.

V. DISCUSSION

There are three main reasons behind the limitations
described at the end of the previous section. Firstly,
the statistical distribution of the forecast errors was not
modelled specifically. Normalized Gaussian forecast scenarios
are transformed back to the original space via the inverse
transformation in eq. (13) assuming that each random variable

-0.6 -0.3 0 0.3 0.6

Measured quantiles

-0.6

-0.3

0

0.3

0.6

S
im

u
la

te
d

 q
u

a
n

ti
le

s

Luxembourg

Original space

-0.6 -0.3 0 0.3 0.6
-0.6

-0.3

0

0.3

0.6
West Flanders

-0.6 -0.3 0 0.3 0.6
-0.6

-0.3

0

0.3

0.6
Bayern

-0.6 -0.3 0 0.3 0.6
-0.6

-0.3

0

0.3

0.6
Schelswig-Holstein

-0.6 -0.3 0 0.3 0.6
-0.6

-0.3

0

0.3

0.6
CNOR

-0.6 -0.3 0 0.3 0.6
-0.6

-0.3

0

0.3

0.6
Sardinia

-0.6 -0.3 0 0.3 0.6

Measured quantiles

-0.6

-0.3

0

0.3

0.6

S
im

u
la

te
d

 q
u

a
n

ti
le

s

Luxembourg

Gaussian space

-0.6 -0.3 0 0.3 0.6
-0.6

-0.3

0

0.3

0.6
West Flanders

-0.6 -0.3 0 0.3 0.6
-0.6

-0.3

0

0.3

0.6
Bayern

-0.6 -0.3 0 0.3 0.6
-0.6

-0.3

0

0.3

0.6
Schelswig-Holstein

-0.6 -0.3 0 0.3 0.6
-0.6

-0.3

0

0.3

0.6
CNOR

-0.6 -0.3 0 0.3 0.6
-0.6

-0.3

0

0.3

0.6
Sardinia

Fig. 10: Mean quantile-quantile plot of actual and simulated forecast scenarios. Red lines correspond to the original domain
i.e. εt = x̃t−xt and εsimt = x̃sim

t −xt, whereas Gaussian vectors are presented in blue i.e. ξt, ξsimt . In both cases, dashed
black lines show the theoretical quantiles.

ednuno
Highlight

ednuno
Highlight



IEEE TRANSACTIONS ON SUSTAINABLE ENERGY 9

z̃simi,t strictly follows a standard normal distribution N (0, 1).
This condition is not fully guaranteed by eq. (12) which
may introduce additional errors in the transformed vector.
For instance the Gaussianity of the elements of ξsimt might
depend on the considered number of samples. Furthermore,
the derivation of the vector zt requires different steps and
it is likely to deviate from a strictly standard multivariate
normal distribution. Additional errors are intrinsic to the
transformations Fi for i = 1, . . . , k which are essentially
empirical and non–linear; hence limiting the tractability of the
problem. The effect of such transformations in the simulated
forecast error scenarios can be noticed in Fig. 10, where
the blue lines represent average quantiles of the simulated
normalized Gaussian forecast errors against the quantiles of
the normalized measurements. As expected, the quantiles
of the simulated scenarios prior to the transformation are
much closer to the quantiles of the measured forecast errors.
Last but not least, the clear–sky power time series could
be additional sources of inaccuracies, specially due to the
estimation of the hourly installed PV capacity in each area,
pi,t. These issues will be considered in future research in
order to improve the accuracy of the model.

An additional limitation of the presented technique is that
it only reproduces the long–term (i.e. day–ahead) properties
of the forecasts. For example, the model is calibrated for
day–ahead simulations, which does not ensure correct intra–
day behaviour. However, we believe that the methodology is
sound and general enough to be extended to other temporal
resolutions e.g. intra-hourly, and/or forecast horizons e.g.
intra–day, as long as data are available. The deterministic
components of solar radiation become less important as the
time resolution increases. Therefore, the data pre–processing
step might be avoided, simplifying the procedure. The model
can be improved by including off–diagonal terms in the
parameter matrices (8). This will require to consider different
expressions for each of the cross–correlation lags and can lead
our future research efforts. Furthermore, geostatistics offer
different alternatives to represent the spatial variation of the
forecast cross-correlation coefficients. More precisely, kriging
[45] emerges as a sound technique for spatial interpolation.
It has already been applied in the wind and solar literature
[46, 47] and it is a possibility to be explored in the near future

VI. CONCLUSION

Solar photovoltaic (PV) power is starting to play a sig-
nificant role in modern power systems. This fact highlights
the importance of improving how solar generation is currently
represented in grid planning and operation. Hereof, capturing
the uncertainty arising from solar forecast errors represents
a big challenge specially when historical forecasts are not
available or can potentially become a tedious exercise using
NWP–based methods. In this work, we propose a gene-
ral transformation–based heuristic methodology to generate
hourly day–ahead forecast scenarios matching both spatial
and temporal characteristics as well as long–term statistical
properties of observed data. The temporal properties of the

forecast errors, summarized by their autocorrelation function,
are related to the geographical spread of the PV panels
inside a given area. Besides, cross-correlation properties are
parametrized as a function of the distance between areas.
Hence, only information regarding the geographical spread
of the PV panels and aggregated measurements are required
to simulate forecast errors. We observed both strong daily
and seasonal patterns in the data at this level of temporal
resolution. Therefore, our model relies on a sequence of
transformations in order to correct for non–stationarity and
a changing error variance. The stochastic modelling takes
place in the standard normal space and assumes a VAR(2)
process. We presented a case study considering six out–of–
sample regions with different sizes and climatic characteristics.
Despite the simplicity of the model, the sequence of transfor-
mations captured both temporal and spatial properties of area
forecasts. Thus, no higher order models or dummy variables
were required to retain the daily structure of the forecast errors.
In addition, the statistical distributions of the forecast errors
were preserved between the 2.5th and 97.5th quantiles. Based
on the validation results, we believe that the approach could
be applied to areas for which forecast records are not currently
available. Furthermore, the parameters of the model can be re-
calibrated in order to incorporate advances in solar generation
prediction techniques. The proposed methodology could be
applied to generate forecast scenarios as an input to different
power system studies e.g. focusing on operational reliability
and renewable integration. This would allow analysing the
impact of PV uncertainty on the power system via stochastic
scenarios. Ultimately, the method can be compared against
related probabilistic techniques e.g. meteorological ensembles,
as well as alternative ways of capturing uncertainty e.g.
chance–constrained power flow formulations; paving the way
for a more efficient integration of renewable energy sources
in the power system.
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