Offshore Extreme Wind Atlas Using Wind-Wave Coupled Modeling

Larsén, Xiaoli Guo; Du, Jianting; Bolanos, Rodolfo; Imberger, Marc; Badger, Merete

Publication date: 2018

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Offshore Extreme Wind Atlas
Using Wind-Wave Coupled Modeling

Xiaoli Guo Larsén¹, Jianting Du¹, Rodolfo Bolanos²,
Marc Imberger¹ and Merete Badger¹

1. DTU; 2. DHI
Relevance of the study/state-of-the-art
Relevance of the study/state-of-the-art
Relevance of the study/state-of-the-art
Method for obtaining the 50-year wind

1. Collecting the samples:
 Selective Dynamical Downscaling Method – Storm Episodes

1994 – 2016, 429 stormy days

5%
Method for obtaining the 50-year wind

2. Modeling the samples:

Optimalization of model setup
With consideration of:
1) Domain size
2) Domain location
3) Initial time
4) Simulation length
5) Spinning up time
6) Resolution
Method for obtaining the 50-year wind

2. Modeling the samples:

Two-way online
Nested 18-6-2km
36 hours for each run

WRF:
CFSR+OISST
77 vertical sigma levels
MYNN 3.0 PBL scheme
RRTM long and short wave radiation
Kain-Fritsch cumulus scheme (domain I)
Corine land use

WBLM

SWAN:
1/8 arc-minute bathymetry data
Initiated 24h before the simulation
Close boundary for open sea
36 directional bins.
0.03 Hz < f < 10.05 Hz (KOM and WBLM)
0.03 Hz < f < 0.57 Hz (JANS)
Method for obtaining the 50-year wind

2. Modeling the samples: the WBLM

The Wave Boundary Layer Model

Method for obtaining the 50-year wind

3. Validation of the modeling: general validation

- Point measurements (mast, buoy, lidar)
- Satellite data (SAR, Quikscat, cloud images)
- The literature

Edson (2007): CBLAST-LOW

Donelan (2004): Laboratory measurements in a wave tank (15m long x 1m wide x 1m high)
Method for obtaining the 50-year wind

3. Validation of the modeling: U50

<table>
<thead>
<tr>
<th>Site</th>
<th>Coordinates</th>
<th>Period</th>
<th>Data length (years)</th>
<th>Height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINO1</td>
<td>6.588°E, 54.014°N</td>
<td>2004 - 2017</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>FINO2</td>
<td>13.1542°E, 55.007°N</td>
<td>2008 - 2017</td>
<td>10</td>
<td>102</td>
</tr>
<tr>
<td>FINO3</td>
<td>7.1583°E, 55.195°N</td>
<td>2010 - 2017</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>Høvsøre</td>
<td>8.15°E, 56.433°N</td>
<td>2005 - 2017</td>
<td>13</td>
<td>100</td>
</tr>
<tr>
<td>M2</td>
<td>7.875°E, 55.508°N</td>
<td>2000 - 2005</td>
<td>6</td>
<td>62</td>
</tr>
</tbody>
</table>
Method for obtaining the 50-year wind

2. For calculating the 50-year return value

<table>
<thead>
<tr>
<th>Peak-Over-Threshold Method</th>
<th>Annual Maximum Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>[U_T = u_0 + A \ln(\lambda T)]</td>
<td>[U_T = \alpha^{-1} \ln(T/T_{BP}) + \beta]</td>
</tr>
</tbody>
</table>

- **Peak-Over-Threshold Method**: Applied to measurements only
- **Annual Maximum Method**: to both measurements and modelled data
Results

Questions:

Have we captured the relevant storms?

How is the general model performance?

How is the estimate of U50, coupled vs not-coupled?
Question 2:
How is the general model performance?
Results

(a) FINO1

(b) FINO2

(c) FINO3

(d) Horns Rev

M2
Results

Question 3:
How is the estimate of U50?
Results

(a) U50 at 100 m, coupled

(b) U50 at 100 m, not-coupled

(a) – (b)

(a) – (b), smoothed
Results

(a) Entire data

(b) Overlapping Period

Table 1 – Basic parameters for wind turbine classes

<table>
<thead>
<tr>
<th>Wind turbine class</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ref} (m/s)</td>
<td>50</td>
<td>42.5</td>
<td>37.5</td>
<td>Values specified by the designer</td>
</tr>
<tr>
<td>A</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: FINO 1
2: FINO 2
3: FINO 3
4: Høvsøre
5: Horns Rev M2
Summary

- Selective dynamical downscaling method is efficient and reliable
- The WRF-WBLM-SWAN model improves strong wind calculation in comparison with WRF-alone
Acknowledgement

The Danish ForskEL project X-WIWA (www.xwiwa.dk)

The EU CEASELESS project
Sub materials

FIGURE 8 Examples of the wind fields in the presence of open cells: 2016-02-08 11:00 and 2016-12-24 18:00.