Communication—Perovskite Electrochemical System for Highly Selective NOx Reduction of Diesel Engine Exhaust

Shao, Jing; Cheng, Qilun; Liu, Ying; Zhang, Wenjing; Tao, Youkun; Hansen, Kent Kammer

Published in:
Journal of The Electrochemical Society

Link to article, DOI:
10.1149/2.0261810jes

Publication date:
2018

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
A perovskite electrochemical system was developed for selective NOx reduction of diesel engine exhaust. The system was composed of a La0.9Sr0.1CoO3δ oxidation catalyst and a La0.85Sr0.15MnO2-xCe0.9Gd0.1O1.95 electrochemical cell with BaO nanoparticles. A selectivity of 25–35% was achieved with a NOx conversion of 65–75% in 1000 ppm NO with 8% O2 at 375 °C. The superior performance of the system was suggested to be ascribed to the promotion in NO2 formation substantially activating the NOx trapping and reduction processes on the electrode.

Nitrogen oxides (NOx, NO+ NO2) are dangerous for both human beings and the environment, causing health problems, acid rain and photochemical smog.1 The NOx removal technology is therefore in high demand, especially in the case of diesel engine exhaust, where excessive oxygen (5~15%) making the reduction of NOx (200~1500 ppm) extremely difficult. The mature technologies for NOx removal under oxygen-rich conditions require a reducing agent, either from extra fuel or supply of urea/ammonia, which greatly added the system complexity and raised concerns on spill management and secondary pollution.2

One attractive technology under development is electrochemical NOx reduction, where NOx was decomposed to N2 and O2 by electron transfer and oxygen (Eq. 1).

\[
\text{Cathode: } 2\text{NO}_x + 4x\text{e}^- \rightarrow N_2 + xO_2^{2-} \quad [1]
\]

\[
\text{Anode: } 2O_2^{2-} \rightarrow O_2 + 4e^- \quad [2]
\]

A high selectivity towards NOx decomposition (deNOx) is crucial for electrochemical NOx reduction in order to suppress the competitive reaction of O2 (Eq. 3).

\[
\text{Cathode: } O_2 + 4e^- \rightarrow 2O_2^{2-} \quad [3]
\]

To achieve satisfactory deNOx selectivity, noble metals have been used extensively as electrode materials because of their excellent catalytic activity. The noble metal electrodes suffer from issues such as high cost and poor thermal durability. With respect to noble-metal-free deNOx cell, Huang et al. adopted the structure and composition of solid oxide fuel cells and achieved an effective NOx reduction in the NOx concentration higher than 1500 ppm, but the performance declined significantly in the NOx concentration of 400 to 1500 ppm. Our previous studies showed the possibility of using perovskite oxide for NOx reduction, but the selectivity (<11%) needed to be improved under oxygen-rich conditions.3,4 For most of the non-precious-metal electrodes (e.g., Ni, Ir, and doped-LaCoO3), the deNOx selectivity was limited to a few percent. Consequently, there is substantial interest in the development of high selective, low-cost, and more durable electrochemical deNOx system.

In this study, we report an electrochemical deNOx system that is based on perovskite oxides and achieves a highly selective NOx reduction in the presence of excess oxygen. This electrochemical system was composed of a La0.9Sr0.1CoO3δ (LSC) oxidation catalyst and a BaO infiltrated La0.85Sr0.15MnO2-xCe0.9Gd0.1O1.95 (CGO) electrochemical cell (Fig. 1). LSM is one of the most widely used electrode materials for solid oxide cells, due to its strong catalytic activity, high stability and good economy. The oxidation catalyst was chosen as LSC instead of commonly used Pt catalyst for its comparable performance and better economy. Different from the conventional electrochemical deNOx, the working principle of this electrochemical system is to first convert NO to NO2 by the LSC oxidation catalyst, and subsequently reduce NO2 to N2 on the BaO impregnated LSM/CGO cell.

The oxidation catalyst contains 2 wt% La0.9Sr0.1CoO3δ washcoat on a cordierite monolith. The blank cell was fabricated by screen printing a (La0.85Sr0.15MnO2-xCe0.9Gd0.1O1.95 (LSM))/Ce0.9Gd0.1O1.95 (CGO) composite slurry on both sides of a dense Ce0.9Gd0.1O1.95 tape. The blank cell was then impregnated with BaO nanoparticles.

The cell was connected to a Gamry Reference 600 potentiostat for electrochemical measurements. The outlet gas composition was monitored throughout the test by chemiluminescence (Thermo Scientific 42i HL), mass spectrometry (Pfeiffer Vacuum Omnistar GSD 301). Besides, the blank cell and the BaO impregnated cell without the LSC catalyst were tested under the same conditions for comparison.

Results and Discussion

The NOx conversion and current efficiency (CE) for the electrochemical system, the BaO impregnated cell and the blank cell were plotted as a function of temperature and voltage in Figs. 2a–2c. The CE is the ratio of the current consumed by NOx reduction to the total current, which is the sum of the current for both NOx reduction and O2 reduction. The value of CE depends not only on the activity of NOx reduction but also on that of O2 reduction, which explains the commonly observed difference in the dependences of the CE and NOx conversion on the temperature.3,4 The perovskite electrochemical system was found to be highly active and selective for NOx reduction under oxygen rich conditions. A deNOx selectivity of 25–35% was achieved with a NOx conversion of 65–75% in 1000 ppm NO with the presence of 8% O2. In comparison, the blank LSM/CGO cell was almost inactive in the presence of excess oxygen with the maximum NOx conversion less than 8%. The BaO impregnation enhanced the NOx reduction compared to the blank cell above 325 °C, but the selectivity was basically below 10% in the testing range. BaO has been reported as a typical NOx trapping materials which was able to selectively
adsorb and store NOx species on the electrode surface (Eq. 4).

\[
2\text{NO}_2 (g) + \text{O}_2 (g) + \text{BaO} \rightarrow \text{Ba(NO}_3)_2
\]

With respect to the NOx trapping process over BaO, NO2 has been found to be the sorption precursor or a required intermediate.2 However, in diesel engines exhaust gases, NO is usually the dominant NOx species (∼90%). The formation of NO2 is spontaneous in the oxygen-rich atmosphere due to the thermodynamic equilibrium between NO and NO2, whereas this reaction is kinetically limited within a small fraction, especially at low temperatures.2

With the LSC catalyst, the NO2 conversion increased with increasing temperatures within the kinetically limited regime and achieved a maximum of 80% as the equilibrium limit was reached (Fig. 2d). The introduction of LSC catalyst significantly increased the concentration of NO to NO2 in the gas atmosphere, which could in turn promote the NOx trapping process over the BaO sites on the electrodes, especially in the low temperature range.

In addition, the electrode processes of the NOx reduction were investigated by Impedance characterization under various temperatures and atmospheres. The spectra at 400°C, at which temperature the system showed both high conversion and selectivity, were listed in Fig. 3 as typical examples. A large arc was observed dominating in the lowest frequency range of spectrum in 1000 ppm NO only. With the presence of oxygen or changing to 1000 ppm NO2, this arc disappeared. By fitting the spectra using equivalent circuits established for the LSM cathode,5,10,11 the summit frequency, activation energy and frequency exponent of the lowest frequency arc were defined as 0.002∼0.006 Hz, 0.9∼1.1 eV and 0.72∼0.8, respectively. The characteristics of this arc fitted well with a conversion arc originated from the lack of the reaction intermediate NO2 in the NO containing atmospheres.10,11 This finding suggested that the overall reaction was probably impeded by insufficient NO2 formation on the LSM electrode. By relieving the limitation of NO2 formation, the introduction of the LSC catalyst could be able to facilitate the electrochemical NOx...
Table I. Results of preliminary durability test on the electrochemical system.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Simplified gas</th>
<th>Model gas initial</th>
<th>Model gas ~80h%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx Conversion</td>
<td>67.70</td>
<td>61.26(−9.51)</td>
<td>57.53(−6.09)</td>
</tr>
<tr>
<td>C.E.</td>
<td>29.78</td>
<td>24.84(−16.58)</td>
<td>23.48(−5.47)</td>
</tr>
<tr>
<td>N2 selectivity</td>
<td>59.09</td>
<td>63.57(−7.58)</td>
<td>62.07(−2.42)</td>
</tr>
</tbody>
</table>

a 1000 ppm NO with 8% O2.
b 1000 ppm NO, 8% O2, 5% H2O, 5% CO2.
c The N2 selectivity was calculated as 2 × ΔN2/ΔNOx.
d Deviation versus Simplified gas.
e Deviation versus Model gas initial.

reduction on the electrode (Eq. 5).

\[
2\text{NO}_2 - \text{LSM}/\text{CGO} + 4\text{V}_2 = 8\text{e}^- \\
\rightarrow \text{N}_2 (g) + 4\text{O}_2^- + 2\text{Site (LSM/CGO)} \tag{5}
\]

We should point out the difference between the integration of an upstream LSC oxidation catalyst and co-infiltrating the LSC into the electrode with BaO. The co-infiltration was expected to deteriorate the oxidation ability of the LSC due to the loss in dispersion and the steric hindrance by nitrate formation, similar as in the case of Pt/BaO/Al2O3 catalyst12 shown in Fig. 2d.

Finally, a preliminary durability test of the electrochemical system was performed by operating the system in a model gas of diesel engine exhaust consisting of 1000 ppm NO, 8% O2, 5% H2O, 5% CO2 balanced by Ar for approximately 80 hours (Table I). During this period, the system experienced multiple gas changes, voltage variations and two heating cycles from room temperature to 500°C. The switch from the simplified gas to the model gas resulted in a 9.51% decline in the activity and a 16.58% decline in selectivity, which is apparently associated with the coexistence of H2O and CO2. This was reported to have a positive effect on the electrochemical cell13 but a harmful effect on the NOx adsorption materials and NO oxidation catalyst.2 Only minor degradation was found after 80 hour operation in the model gas, indicating a satisfying durability of the system regarding the operation time. We presume it is related to the good stability of ceramic structure used in the system. Besides, both the gas atmosphere and operation time showed no evident impact on the N2 selectivity.

Summary

A perovskite electrochemical DeNOx system was developed by combining a La0.9Sr0.1CoO3δ electrode with BaO impregnated LSC oxidation catalyst and a BaO infiltrated (La0.9Sr0.15MnO2.5/CGO) electrochemical cell. Highly selective NO reduction under oxygen rich conditions was realized on this electrochemical system, which simultaneously eliminated the use of precious metals and the addition of reducing agents. The superior performance of the system was ascribed to the integration of the LSC oxidation catalyst with the BaO impregnated cell promoting the NO2 formation and substantially activating the NOx trapping and electrochemical NOx reduction.

Acknowledgments

This study was financially supported by Shenzhen Science Innovation Committee (JCYJ20160422152829188, JCYJ20170817110358231, KQJSCX2017032715133249), Guangdong Natural Science Foundation (2017A030310345), National Natural Science Foundation of China (51702221, 51702151) and Research Foundation of SZU (827-000226).

ORCID

Jing Shao https://orcid.org/0000-0002-0514-5642
Kent Kammer Hansen https://orcid.org/0000-0002-1349-958X

References