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aDepartment of Management Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
bRigshospitalet, Copenhagen, Denmark

Abstract

In this paper we investigate the planning of operating rooms at Rigshospitalet, a large Danish
hospital. Each operation must be assigned to a specific operating room and also be scheduled for a
specific time while taking into account clinical guidelines. Both elective and emergency operations
are included, such that the elective operations are planned while still taking potential emergency
operations into consideration. Furthermore, the duration of each operation is uncertain. The aim
is to construct robust operating room schedules that minimise overtime work and release unused
capacity.

Due to the uncertainty associated with arrival of emergency patients and also the duration of
each operation, a deterministic model is not suitable for this problem. Therefore, we develop a
stochastic model where operation duration can vary and where the arrivals of emergency patients
are unknown. The stochastic model is computationally heavy, so two mixed integer programming
based heuristics denoted 2-Step Relax-and-Fix and All Open Relax-and-Fix are developed to solve
the problem.

The computational study is based on an extensive dataset compromising 304 days. The heuris-
tics give good results with half of the operating rooms having less than 8 minutes of overtime work.
To test the robustness of the solutions we carry out a simulated implementation of the operation
plans. The simulation shows that the heuristic solutions are fairly robust. In general, results show
a clear potential for implementing the method for planning and scheduling of operating rooms at
Rigshospitalet.

Keywords: Operating room, Planning, Scheduling, Stochastic model, Heuristic
2000 MSC: 90B36, 90B90, 90C15, 90C59

1. Introduction

Hospitals are often very large and complex with many different functions, and Rigshospitalet,
which is situated in central Copenhagen, is one of the largest hospitals in Denmark. In 2016
Rigshospitalet had 1,377 beds and around 10,200 employees covering more than 50 professional
groups. One of the most expensive and resource demanding functions is to perform surgeries.
Rigshospitalet performed 96,788 operations in 2014 including both elective and emergency patients.
Elective patients are often planned well in advance after one or more consultations, while emergency
patients show up unexpected on the day and have to be operated within a certain time limit. This
can be anywhere from 30 minutes to 24 hours depending on how serious the emergency is. A
total of 188,488 unique patients were treated in 2013. With so many activities going on it is of
great importance that the resources, whether it is operating rooms (ORs), nurses, anaesthetists or
surgeons, are used in the most efficient way. In Green (2004) they even write that “the efficient
use of ORs, which are often bottlenecks, can be central to the smooth functioning of the hospital
as a whole”.
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It requires complex planning to ensure efficient use of ORs. Planning is currently being done
manually at Rigshospitalet with help from the planning tool “Orbit”. Orbit is a software tool,
where nurses or doctors simply drag and drop operations either in order to add them to the
schedule or in order to move an operation in time and/or space. Orbit indicates if some rules are
violated, and the doctor then evaluates the violation.

As planning is currently done at Rigshospitalet, the date and time of each operation is decided
very early for elective patients who are not staying a night at the hospital. Often it is decided during
one of the preceeding consultations, which can take place several weeks before the operation. This
leaves little flexibility in the planning of a day as a whole, as an operation fixed at a certain time can
cause either unnecessary wasted time, unnecessary overtime work or even that another operation
has to be moved to another day. This might be avoided with better planning. For elective patients
who are staying overnight at the hospital, typically only the day is given in advance and not the
specific time, which significantly helps with regard to the flexibility in the planning process. In this
paper we will assume that for all elective patients only the day is given well in advance, whereas
the time of the day will be decided upon the day before the operation. As we at this point know
all the elective operations for a given day, greater flexibility is achieved, which makes it possible to
make a better plan. Apart from capacity utilisation a hospital must also adhere to strict clinical
guidelines concerning quality and patient safety. In Denmark, as in most other countries, studies
have found that too many patients experience adverse events, leading to a number of preventable
deaths (Schiøler et al. (2001)).

The purpose of this paper is to explore how to efficiently plan which operations to assign to
which ORs while simultaneously deciding what time each operation should be scheduled for and
taking into account clinical guidelines. The schedules have to be robust with respect to changes
during the operation day, such that unforeseen events do not ruin the entire plan. This can be
very difficult since we have both elective and emergency patients. In addition, we can never be
completely sure about the length of an operation.

We have received data from Rigshospitalet, which has been made anonymous. We have received
data for two specialities here denoted S1 and S2. The data covers a period of nearly a year and
includes more than 8,000 operations. Both of the selected specialities mostly deal with elective
operations and only have a small amount of emergency operations.

The rest of the paper is organised in the following way. Section 2 contains a review of related
literature while Section 3 gives a detailed description of the problem of allocating and scheduling
operations to ORs at Rigshospitalet. A stochastic model is presented in Section 4. It has remained a
challenge to get good solutions within an acceptable running time, and therefore we have developed
a heuristic for solving the stochastic problem. Two variants of the heuristic are presented in Section
5. The results for the developed model and heuristics are presented in Section 6. Finally, the main
conclusions of the paper can be found in Section 7.

2. Literature review

The survey by Cardoen et al. (2010) gives a comprehensive overview of more than 100 papers on
OR planning and scheduling published in the period 2000-2009 by classifying the papers according
to different aspects of the examined problems. Planning is described as dealing with capacity
decisions, while scheduling is the sequence and time allocation of the activities of an operation. In
this paper both planning and scheduling are considered, as we both decide which ORs to open and
the time allocation and OR for each operation. The review is extended by Samudra et al. (2016)
who also present a basic analysis of the research trends in the main areas of OR planning.

One of the aspects used for categorising papers in Cardoen et al. (2010) is performance criteria.
A number of different performance criteria are used in the papers, where two of the main criteria
are waiting time and utilisation. We use both general utilisation (whether to open or not) and
overutilisation (overtime work) of the ORs. The same kind of objective function is used in Denton
et al. (2010). Another important aspect of the problem is type and level of decisions. In Monteiro
et al. (2015) the authors also include the skill level of the nurses and quality of teamwork as part
of the objective function. We decide on the capacity on a discipline level, whereas we decide on
the time and room on a patient level.
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It is also important to specify what type of patients are considered: Elective and/or non-
elective. Both types of patients can be further divided into subtypes. In total, 60 of the papers
examined in Cardoen et al. (2010) deal with only elective patients, one paper deals with only
non-elective patients, and 19 papers deal with both elective and non-elective patients. We deal
with both types of patients in this paper. Interestingly, if we look at Samudra et al. (2016) their
analysis on the research publications show that the level of elective vs. emergency patients have
remained almost constant over the last 15 years; basically all research contributions deal with
elective patients whereas much fewer papers look at emergency patients. As a review, Van Riet
and Demeulemeester (2015) more specifically looks at the trade offs in OR planning, the sources of
variability and approaches to tackle the trade offs. The allocation of time for emergency patients
in the ORs can be done in different ways: One possibility is to allocate a number of ORs to only
take care of emergency patients, such that the planning of the elective patients is not disturbed
by emergency patients. This method is presented in Smith et al. (2013), where it is concluded
that variability management improves the operational and financial performance of a hospital’s
surgical unit. However, this conclusion is not shared by all papers, as for instance Wullink et al.
(2007) reaches the opposite conclusion by using a discrete event simulation model. In Rachuba
and Werners (2014) the optimisation approach deals with elective and emergency patient using
stochastic optimisation where rooms can be used by both elective and emergency patients. They
ensure that the stochastic amount required for emergency patients is divided over a maximum
number of ORs while deferring patients to the next planning period in case of insufficient capacity.
Part of the focus is to obtain parameters for the stochastic optimisation that are fitted to avoid
re-scheduling. Our approach will leave all rooms to be planned by the optimisation methods so we
do not reserve specific rooms for emergency patients.

On a more strategic level we also have the case-mix problem for a surgery department. Here
uncertainty into surgery duration, lenght of stay, surgery demand and availability of nurses has to
result in a case-mix set up for the surgery department. A recent paper using stochastic optimisation
models for this problem is Yahia et al. (2016).

Different solution techniques are used in the literature to solve the OR planning and schedul-
ing problems. In Cardoen et al. (2010) the main solution techniques listed are: mathematical
programming, simulation and heuristics. In Cardoen (2010) it is mentioned that especially lin-
ear programming gives satisfying results. This is also the basis of our approach. In addition,
approaches combining mathematical programming and (meta-)heuristics have been used with suc-
cess. In Landa et al. (2016) a neighborhood-based approach is used in combination with integer
programming to solve the stochastic version of the problem. The solution approach in Tanfani
and Testi (2010) is to use integrated simulation and optimisation for solving a problem consisting
of waiting list management, OR planning and scheduling, and stay area sizing and organisation.
Another way of using both optimisation and simulation is done in Zhang et al. (2009) where a
deterministic MIP model is solved to allocate OR capacity to medical specialities. The allocation
plan is then evaluated and fine-tuned by simulation. Wang et al. (2016) and Baesler et al. (2015)
also use discrete event simulation and optimisation to schedule ORs. Lamiri et al. (2009) instead
propose several heuristics to solve the stochastic surgery planning problem. Lately, Marchesi and
Pacheco (2016) have used a genetic algorithm to solve the master surgical schedule problem while
Hancerliogullari et al. (2016) use simulated annealing to generate the schedules for a set of ORs.
Two quite different approaches can be found in Roshanaei et al. (2017) and Castro and Marques
(2015). In Roshanaei et al. (2017) they use logic-based Benders’ decomposition to schedule a dis-
tributed set of ORs across a network of hospitals while Castro and Marques (2015) use generalised
disjunctive programming for the room scheduling problem.

An important aspect closely related to patient types is the incorporation of uncertainty. The two
main kinds of uncertainty discussed in the literature is arrival of non-elective patients and duration
for all patients. All uncertainty is ignored in deterministic models, whereas stochastic models take
the uncertainty into account explicitly. 40 papers examined in Cardoen et al. (2010) consider
only a deterministic model, whereas 42 papers consider only a stochastic model and six papers
consider both a deterministic and a stochastic model. Addis et al. (2014) use a stochastic model
to incorporate the uncertainty of operation durations, and Lamiri et al. (2008) use a stochastic
model to incorporate uncertainty in capacity needed for emergency patients. Addis et al. (2014)
generate all possible scenarios which satisfy that 1) a certain number of operations will need their
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maximum operation time and 2) the rest of the operations will need their average operation time.
The solution then has to be feasible for the worst case scenario. This is tested on instances with
20 or 40 operations. In Lamiri et al. (2008) a number of different scenarios are generated, each
having a random capacity needed for emergency patients. The model calculates the overtime
work for each scenario and finds the solution that gives the minimum average overtime work.
This is tested on instances with 44 operations and between 2 and 1,000 samples. The study
is continued in Lamiri et al. (2009), where some heuristics are proposed to solve the stochastic
problem. In a more recent paper Gauthier and Legrain (2016) solve the problem in two phases:
first a deterministic version using constraint programming and then a stochastic version in a
sample average approximation scheme. In Addis et al. (2016) a rolling horizon approach is used to
implement an integer programming based approach that can be used not only for scheduling but
also for rescheduling of operating rooms. Aringhieri et al. (2015) puts a special focus on avoiding
weekend stays when building the weekly plans.

More recent papers try to integrate different planning problems. The most “classical” planning
problems to be integrated must be the planning of the rooms and the nurses. This is accomplished
in Wang et al. (2015) using a metaheuristic. In Yin et al. (2016) they consider elective patient
surgery in multiple operating theatres where the different stages of surgery is optimised as a
complex connected patients flow problem. Nemati et al. (2016) integrate the transport of patients
to the surgery unit with the optimisation of the operating schedule.

The OR planning problem has been widely studied. The novelty of this paper is the combination
of using a large real-life dataset and including both elective and non-elective operations in the
model, where the uncertainty of both operation duration and patient arrival are taken into account.
At the same time the decision level is very detailed, as the exact time and location of each operation
is determined.

3. Problem formulation

The problem considered in this paper is to assign and schedule operations to ORs in a both
efficient and robust way while taking into account clinical guidelines. By efficient and robust we
mean that we get as little wasted time in the ORs as possible, but at the same time the plan
should also be able to handle sudden changes such as operation times being longer than planned
or emergency operations.

When a patient has had a consultation and is referred to surgery, a rough estimate of the
required operating time is automatically generated as the average operating time of the last op-
erations of the same type performed by the consulting doctor. This information is then used to
find an available date that suits the patient and has sufficient available time left. This estimate of
“sufficient available time” is based on rough time estimates for all considered operations allocated
to that day, a very rough estimate (even guess) on the required time to peform ermergency surg-
eries, and the number of available ORs. The number of available ORs is a strategical long term
decision though it is not required to use all available ORs each day. Since ORs can be closed and
overtime is also allowed, there is therefore quite a broad definition of what constitutes “sufficient
available time”.

As time passes the patients assigned to a given day changes dynamically as new patients are
added and some are removed (rescheduled to other days or simply cancelled). The day before the
operating day the assigned elective patients are fixed. The problem considered here is therefore a
daily planning problem, meaning that for each day both the set of operations to perform and the
set of available ORs are given.

For other specialities operations are sometimes performed in ORs belonging to S1 or S2, and
we accommodate these operations in the plan. The reason for this is to not disturb the schedule
of other specialities. It makes sense to plan each day separately since elective operations are, as
far as possible, scheduled within the normal opening hours of the ORs, meaning that each day
is a separate problem. We have chosen that all operations have to be performed on the given
day, meaning that we never cancel any operations. It is assumed that surgical staff with the right
qualifications is available for an open OR.

The aim is to minimise a weighted sum of overtime work and open ORs. We want to minimise
the overtime work, because it is expensive to have people working overtime and it also causes
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dissatisfied staff. We want to minimise the number of open ORs, because closing down an OR
means that resources are released to perform other tasks. We have the following constraints given
by Rigshospitalet, that need to be respected:

1. Operations can only be performed in compatible ORs.

2. Patients with diabetes have to start their operation before 11:00.

3. Patients using anticoagulant drugs have to start their operation after 10:00.

4. For operations performed on patients with a special infection there has to be at least a one
hour break afterwards for that OR (for special cleaning).

The first constraint is important because different operations demand different equipment,
which has to be present to perform the specific operation. The second constraint is important
because patients have to fast before going under anaesthetic. Typically, they fast from the morning
until the operation. For people with diabetes it can be dangerous to fast for too long since their
blood sugar can become very low. Therefore patients with diabetes need to start their operation
early. The third constraint is needed because patients who take anticoagulant drugs have to have
taken a blood test before the operation. This blood test is taken in the morning and the test answer
needs to be back before the beginning of the operation. The last constraint is needed because
operations of people with a special infection demand more time consuming cleaning afterwards
to make sure that the OR is clean enough to perform a new operation. We have decided not to
include this cleaning time in the overtime work if the cleaning time is after the last operation in
the OR. Because the cleaning is done by an external cleaning company, the cleaning in the end of
the day does not affect the overtime work of surgeons and nurses.

We have chosen to model the overtime work so that we only have overtime work after the
closing time of an OR and not before the opening of an OR. This means that in our model it is
not possible to plan elective operations before the opening time but it is allowed, with a penalty,
to plan operations after the closing time. Operations of emergency patients that arrive after the
compatible ORs have closed is not included in the overtime work, as the night shift deals with
these operations.

4. The stochastic model

As seen in the literature the majority of the papers only consider elective patients, and just
around half of the papers include uncertainty. However, uncertainty is important regarding the
execution of the operating plans. In the literature, one strategy for incorporating uncertainty
is to make a deterministic plan with only a certain utilisation of the ORs; often 85% (see for
example Jebali et al. (2006)). This reserves some capacity for unforeseen events, but without
considering whether the size and location of this extra capacity is appropriate. Another way to
take the emergency patients into consideration is to use a stochastic model instead of a deterministic
model. It is possible to take advantage of the fact that we have historic data from Rigshospitalet
about the operations and use this in a stochastic model. It is also possible to consider not only
emergency operations, but also other stochastic parameters in the model. We have decided to focus
on stochastic arrivals and stochastic lengths of the operations, as these according to Rigshospitalet
are the most important unknown quantities.

Even though the lengths of elective operations and the presence of emergency operations are
not known, these can still be accounted for in the planning of the elective operations, because we
have information about the behaviour of the operations. By taking the unknown into consideration
when planning the elective operations, it is possible to make the operation plans more robust, so
the arrival of an emergency patient or the delay of a planned operation does not ruin the flow of
the ORs and make the plans infeasible.

4.1. Monte Carlo simulation

Inspired by Lamiri et al. (2008) we have used Monte Carlo simulation and mixed integer pro-
gramming to solve the stochastic problem. The stochastic model is based on samples, where a
sample can be seen as a possible scenario for the actual running of an operation schedule. A sam-
ple consists of a set of emergency operations and lengths of all operations. Given a set of samples,
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the goal for the stochastic model is to produce the solution that gives the best possible operation
plan, when the scenario is unknown. “Best” in this context is defined later.

Lamiri et al. (2008) are also planning ORs, but they have a much simpler problem. They
assume that the elective operations are deterministic and they do not look at the individual ORs.
The only unknown is an emergency capacity for each time period. However, we can still use the
same approach:

1. Generate a set K of random samples. The distributions used for this are described in Section
4.3.

2. Solve a mixed integer program that uses the random samples, and where the objective func-
tion optimises the average best solution across the samples. The mathematical model for
this problem is seen in Section 4.2.

Solving the stochastic model can be seen as solving a deterministic model |K| times. The
assignment of operations to ORs is the same across the samples and so is the order of elective
operations in each OR. However, the start time of the operations vary depending on the sample.
This way we will get a solution for the elective operations that leads to the average best solution
for all samples, where the actual lengths and emergency operations are taken into account.

The overtime work will differ for each sample, but in the objective function the average overtime
work through all samples is used. The objective function also uses variables to decide whether to
open a given OR or not, and these variables do not change with the samples.

We would like to use the start times of the elective operations as part of the OR plans, but
since the start times will differ depending on the samples, these cannot be used directly in order to
get the final schedule. However, the assignment to ORs and the order of the elective operations are
constant across the samples, so these can be used to generate the schedule. The schedules are made
such that the first operation in an OR starts when the OR opens, and all following operations are
scheduled to start right after the planned length of the previous operation. The only exceptions
are if the previous patient has a special infection, in which case the start time of the operation will
allow for extra cleaning, or the patient takes anticoagulant drugs, in which case it cannot start
before 10:00.

4.2. Mathematical model

All the sets, variables and parameters used in the stochastic model are listed below:

Sets

K The set of random samples.

E The set of elective operations.

Ak The set of emergency operations in sample k ∈ K.

Ok The set of all operations in sample k ∈ K, so Ok = E ∪ Ak.

R The set of OR types available. The ORs are grouped into types in order to improve the running
time. Types are defined rooms with the same compatibility and opening hours.

Nr The set of ORs for OR type r ∈ R.

Variables

z̄rn ∈ R+
0 The average overtime work in minutes for OR n ∈ Nr of type r ∈ R.

zrnk ∈ R+
0 The overtime work in minutes for OR n ∈ Nr of type r ∈ R in sample k ∈ K. This

variable is naturally integer.

tik ∈ R+
0 The start time in minutes after midnight for operation i ∈ Ok in sample k ∈ K. This

variable is naturally integer.

qrn ∈ {0, 1} Binary variable which is 1 if OR n ∈ Nr of type r ∈ R is used, and 0 otherwise.
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yirn ∈ {0, 1} Binary variable which is 1 if operation i ∈ E is performed in OR n ∈ Nr of type
r ∈ R, and 0 otherwise.

ẏirnk ∈ {0, 1} Binary variable which is 1 if operation i ∈ Ok is performed in OR n ∈ Nr of type
r ∈ R in sample k ∈ K, and 0 otherwise.

xijrn ∈ {0, 1} Binary variable which is 1 if operation i ∈ E is performed before operation j ∈ E in
OR n ∈ Nr of type r ∈ R, and 0 otherwise.

ẋijrnk ∈ {0, 1} Binary variable which is 1 if operation i ∈ Ok is performed before operation j ∈ Ok
in OR n ∈ Nr of type r ∈ R in sample k ∈ K, and 0 otherwise.

Parameters

w ∈ R+
0 The weight of overtime work.

or ∈ R+
0 The opening time in minutes after midnight for OR type r ∈ R.

cr ∈ R+
0 The closing time in minutes after midnight for OR type r ∈ R.

aik ∈ R+
0 The arrival time in minutes after midnight for emergency operation i ∈ Ak in sample

k ∈ K.

dik ∈ R+
0 The maximum delay in minutes for the start time after arrival for emergency operation

i ∈ Ak in sample k ∈ K.

lik ∈ R+
0 The random length in minutes of operation i ∈ Ok in sample k ∈ K. This includes

pre-operation time, operation time, post-operation time and normal cleaning time.

κirk ∈ {0, 1} Binary parameter which is 1 if operation i ∈ Ok, k ∈ K, is compatible with OR type
r ∈ R, and 0 otherwise.

h Conversion between minutes and hours, i.e. 60 min/hour.

psik ∈ {0, 1} Binary parameter which is 1 if the patient having operation i ∈ Ok, k ∈ K, has a
special infection, and 0 otherwise.

pai ∈ {0, 1} Binary parameter which is 1 if the patient having operation i ∈ E is taking anticoagu-
lant drugs, and 0 otherwise.

pdi ∈ {0, 1} Binary parameter which is 1 if the patient having operation i ∈ E has diabetes, and 0
otherwise.

The mathematical formulation of the stochastic problem is as follows:
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Model

min
∑

r∈R

∑

n∈Nr

(wz̄rn + (cr − or) qrn) (1)

s.t. z̄rn =

∑
k∈K zrnk
|K| ∀r ∈ R, n ∈ Nr (2)

yirn = ẏirnk ∀k ∈ K, i ∈ E , r ∈ R, n ∈ Nr (3)

xijrn = ẋijrnk ∀k ∈ K, i, j ∈ E , r ∈ R, n ∈ Nr (4)

tik ≥ aik ∀k ∈ K, i ∈ Ak (5)

tik ≤ (aik + dik) ∀k ∈ K, i ∈ Ak (6)

qr(n+1) ≤ qrn ∀r ∈ R, n ∈ Nr (7)

M1 (1− ẏirnk) + zrnk ≥ tik + lik − cr ∀k ∈ K, i ∈ Ok, r ∈ R, n ∈ Nr (8)

qrn ≥ ẏirnk ∀k ∈ K, i ∈ Ok, r ∈ R, n ∈ Nr (9)
∑

r∈R

∑

n∈Nr

ẏirnk = 1 ∀k ∈ K, i ∈ Ok (10)

ẏirnk ≤ κirk ∀k ∈ K, i ∈ Ok, r ∈ R, n ∈ Nr (11)

tik ≥ oryirn ∀k ∈ K, i ∈ E , r ∈ R, n ∈ Nr (12)

M2 (1− ẋijrnk) + tjk ≥ tik + lik + hpsik ∀k ∈ K, i, j ∈ Ok, r ∈ R, n ∈ Nr (13)

ẋijrnk + ẋjirnk ≥ ẏirnk + ẏjrnk − 1 ∀k ∈ K, i, j ∈ Ok, i 6= j, r ∈ R, n ∈ Nr (14)

tik ≥ 10hpai ∀k ∈ K, i ∈ E (15)

pdi tik ≤ 11h ∀k ∈ K, i ∈ E (16)

z̄rn ∈ R+
0 ∀r ∈ R, n ∈ Nr (17)

zrnk ∈ R+
0 ∀k ∈ K, r ∈ R, n ∈ Nr (18)

tik ∈ R+
0 ∀k ∈ K, i ∈ Ok (19)

qrn ∈ {0, 1} ∀r ∈ R, n ∈ Nr (20)

yirn ∈ {0, 1} ∀i ∈ E , r ∈ R, n ∈ Nr (21)

ẏirnk ∈ {0, 1} ∀k ∈ K, i ∈ Ok, r ∈ R, n ∈ Nr (22)

xijrn ∈ {0, 1} ∀i, j ∈ E , r ∈ R, n ∈ Nr (23)

ẋijrnk ∈ {0, 1} ∀k ∈ K, i, j ∈ Ok, r ∈ R, n ∈ Nr (24)

The objective function (1) minimises a weighted sum of the overtime work and the number of
open ORs, where the overtime work is measured as the average overtime work across all samples.
The cost of overtime work is a penalty weight saying how expensive it is to have one time unit
of overtime work compared to one time unit of regular work. Cost can be interpreted as both
money-wise cost and human cost because of dissatisfied staff. Whether to open an OR or not, qrn,
r ∈ R, n ∈ Nr, does not depend on the sample. The cost of opening an OR corresponds to the
open time for that room, so it is preferred to open a room with short opening hours compared to
a room with longer opening hours, as long as it does not result in extra overtime work.

Constraints (2) set the average overtime work for each OR as the mean of the overtime work
for that room over all the samples. Constraints (3) and (4) make sure that each elective operation
is performed in the same OR for all samples and that the elective operations are performed in the
same order, so the scheduling of the elective operations can be made from this. Constraints (5)
and (6) give an upper and lower bound for the start time of emergency operations, as emergency
operations cannot be conducted before the patient has arrived and they cannot be delayed more
than a certain maximum amount of time. In the mathematical model this delay can be specified
for a specific operation in a specific sample, so it is possible to differentiate between different levels
of urgency. However, our information about the emergency operations is not that detailed, so in
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our model all the emergency operations have to start before four hours after arrival.
To avoid symmetry, constraints (7) give a prioritised order for which OR to open for identical

ORs, as an OR cannot be opened unless the previous OR for the same type is open. Constraints (8)
set the overtime work for all operations. If operation i is performed in another OR, so ẏirnk = 0,
the inequality will not constrain the problem because M1 is a large constant. We have set M1 such
that it corresponds to 36 hours, as it is reasonable to assume that all operations will end earlier
than 36 hours after closure of the OR.

An OR has to be open for all samples if an operation in any of the samples uses that OR,
which is ensured by constraints (9). Constraints (10) make sure that all operations in all samples
are performed exactly once, and constraints (11) make sure that operations are only performed in
compatible ORs.

All elective operations have to start after their OR has opened, which is ensured by constraints
(12), so overtime work can only be planned in the afternoon and evening, and not in the morning.
These constraints do not hold for the emergency patients, as the arrival of these patients and their
maximum delay might make it impossible to perform these operations within the opening hours
of the ORs. If emergency operations are to take place before the ORs open, this is not included
in the overtime work, as the night shift takes care of it. Overlapping operations are handled
by constraints (13), which make sure that the next operation in an OR does not start until the
previous operation has ended. If the previous patient has a special infection there also needs to
be time for extra cleaning of the OR. These constraints hold for all operations, both elective and
emergency operations, and for all samples. Since the randomness in the lengths can cause some
extreme cases we have set M2 = 48 · 60 corresponding to 48 hours converted to minutes.

The connection between the x- and y-variables is ensured by constraints (14). Patients using
anticoagulant drugs and patients with diabetes are taken into account in constraints (15) and (16).
These constraints are made only for the elective operations, as it might not always be possible
to consider these special cases in an emergency situation. Finally, constraints (17)-(24) set the
domain of all the decision variables in the stochastic model.

4.3. Sample generation

In order to generate samples for use in the stochastic model, we need random distributions
for the elective as well as emergency operations. For elective operations, we need the lengths of
the operations, whereas for emergency patients we need the number of emergency operations for a
given day together with their arrival times and lengths of their operations.

For the emergency operations, we first need to generate the number of emergency operations
for each day and their arrival time. From the data from Rigshospitalet 245 of the 8,273 operations
are emergency operations, but they are not distributed equally across the weekdays. We have
made some Analysis of Variance (ANOVA, see eg. Johnson (2011)) tests in order to see whether
this difference is significant or not. This showed that there is no significant difference between the
weekdays, but Saturday and Sunday are both significantly different from the weekdays and from
each other. Therefore, we have made three different distributions for generating the emergency
operations: One for the weekdays, one for Saturdays, and one for Sundays.

For all three subsets we assume that the number of emergency operations per day is Poisson
distributed, as the Poisson distribution is often useful as a model to describe counts without a
natural upper bound such as independent arrivals (Johnson (2011)). For Poisson distributed events,
the time until the first arrival and the waiting time between successive arrivals are exponentially
distributed with parameter λ. This parameter λ is the average number of emergency operations
per day and is used to write up the inter-arrival times as exponentially distributed with mean
inter-arrival time 1

λ days. For weekdays there is on average 1.0 day between emergency operations
(1.0 operation/day), for Saturdays there are 1.7 days on average (0.6 operation/Saturday), and
for Sundays there are 4 days on average (0.3 operation/Sunday). The exponential distributions
are used to generate arrival times for the emergency operations, and the number of emergency
operations for each day is given directly from this.

In the provided data we have 8,242 operations that can be used to generate distributions for
the actual lengths. For more information about how the distributions were derived we refer to
Foverskov and Ravnskjær (2015).
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When fitting distributions for the data of the relative lengths, we use the function allfitdist in
Matlab. This function fits a number of different distributions to the data and ranks the distributions
according to the Bayesian Information Criterion (BIC). For each operation type we choose the
distribution with the highest rank, but only among the distributions that cannot be negative, as
the relative length can never be negative. The used distributions have no upper limit on the range,
so the maximum relative length is infinite, but in practice there is a limit on the maximum length
of an operation. Therefore, if the relative length generated from a distribution is more than 3,
we will instead fix it to 3. This means that the lengths of the operations in the samples cannot
be more than three times the planned lengths. In practice, if an operation is too long, it will be
stopped. The reason for this is either that something else has to be done, or because it is dangerous
to keep the patient under anaesthesia for too long.

5. Heuristic solution approaches

Solving the stochastic model directly does not give useful results within a reasonable time limit.
Therefore, we need another way to solve the problem. For this, heuristics are a prudent choice.
Since we have a mixed integer programming (MIP) model that exhibits long running times, we
will focus on MIP-based heuristics.

We have developed a new heuristic called 2-Step Relax-and-Fix. It is inspired by the Relax-
and-Fix heuristic (Ball (2011) and Wolsey (1998)). The main idea of the Relax-and-Fix heuristic
is to solve easier problems, where we first decide on the most important variables, fix them and
then decide on the remaining variables. The procedure for the heuristic can be seen in Algorithm
1.

Algorithm 1 Relax-and-Fix

1. Relax: Relax the integrality requirements for the less important variables and solve
the corresponding relaxation
2. Fix: Fix the most important variables to their integer solution from the

relaxation
3. Solution: Solve the problem with fixed values to obtain the heuristic solution

We present our 2-Step Relax-and-Fix heuristic via a simplified version of the stochastic model,
where we do not distinguish between y and ẏ, nor x and ẋ. In the simplified version of the problem
none of the non-integer variables are included. This gives a binary MIP problem which looks like
the problem presented in (25)-(27). It seems natural that the most important decision is to decide
which ORs to open, the second most important decision is to assign operations to ORs, and finally
the least important decision is to decide on the order of the operations. This means that q is more
important than y, which again is more important than x.

z = min c1q + c2y + c3x (25)

s.t A1q +A2y +A3x = b (26)

q ∈ {0, 1} , y ∈ {0, 1} , x ∈ {0, 1} (27)

An overview of the 2-Step Relax-and-Fix heuristic is seen in Algorithm 2, and each step is
explained in details below.

Algorithm 2 2-Step Relax-and-Fix

1. Relax: (q, y, x)← Initial solution to linear programming (LP) relaxation

2. Fix: Fix q-variables: q ←
⌈
q
⌉

3. Relax: (ỹ, x̃)← MIP solution with fixed q, integer y and relaxed x
4. Fix: Fix y-variables: y ← ỹ
5. Solution: Order and start times of operations (x-variables) ← Algorithm 3
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The first step of the heuristic is to relax the model. Instead of just relaxing the less important
variables, as is the case in the standard Relax-and-Fix heuristic, we relax all the variables. So (27)
is replaced by:

0 ≤ q ≤ 1 , 0 ≤ y ≤ 1 , 0 ≤ x ≤ 1 (28)

Preliminary tests showed that a standard Relax-and-Fix heuristic takes too long to solve the
problem, even though just one set of variables has to be binary.

The solution for this relaxed problem is denoted (q, y, x). We can use the fractional solution
(q, y, x) to fix the most important variables q. If the fractional q-variable is 0, it is fixed to 0 and
in all other cases it is fixed to 1. As soon as a room has been open, even though it is just very
little, i.e. the fraction is very small, the room has to be open in the binary solution.

When the q-variables are fixed the problem is solved again. This time only the least important
variables, x, are relaxed. The solution for this problem is given by (ỹ, x̃), where ỹ is binary and x̃
is still fractional. From the solution (ỹ, x̃), we can now fix the y-variables to the values given by ỹ.

At this point we know which ORs to open (corresponding to q) and which operations to perform
in which ORs (corresponding to y). This means that we do not need to solve the final MIP problem
to decide on a feasible order of the operations (corresponding to x). Instead we have developed an
algorithm to schedule the operations in a given OR.

Algorithm 3 Order and start times of operations

for All open rooms in a given day do
Find order of operations:
1. Place all diabetes patients in ascending order according to planned opera-

tion length
2. Place all “normal” patients in descending order after the diabetes patients
3. Place all patients taking anticoagulant drugs in descending order after the

“normal” patients
4. Place all patients with a special infection in descending order after the

patients taking anticoagulant drugs
end for
Let the first operation start when the OR opens.
Assign start times to all following operations on the basis of the given order and planned oper-
ation lengths. Account for patients taking anticoagulant drugs cannot start until 10:00.

We always place diabetes patients first, because they have to be operated before 11:00. We place
them in ascending order according to planned operation length, such that the shortest operation
will be first, which ensures that the latest start time of a diabetes patient will be as early as possible.
Next, we place all the “normal” patients in descending order, such that the longest operation will
be first. We place the normal patients before the patients taking anticoagulant drugs, because
patients taking anticoagulant drugs are not allowed to start before 10:00. Using this order avoid
potential empty space. However, when assigning a start time to the patients taking anticoagulant
drugs, it has to be checked that this time is not earlier than 10:00. Finally, we place the patients
with a special infection at the end of the day to avoid that the time used to clean the room after
such a patient is taking up time from another operation.

6. Experimental setup and testing

A running time of 10 minutes has been chosen as a fair compromise between the time used in
the manual planning process as it is at Rigshospitalet now and the challenge of solving the entire
data set with almost a year of instances. The heuristics are implemented using ILOG CPLEX
version 12.6 with default settings and all tests are run on a PC with 3.0 GHz Intel(R) Core(TM)2
Duo processor and 4.0 GB memory.
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6.1. Data description

We have received data from Rigshospitalet covering a period of 304 days for the two specialities.
After editing data, where operations performed in special ORs were excluded, the data consists
of 8,273 operations. Out of the total period 100 days are holidays or weekends even though all
rooms are officially closed during weekends and holidays. In these 100 days only 203 operations
are performed, i.e. around 2 operations per day. Hence, weekends and holidays are not really
that interesting as they represent very simple and non standard planning problems. This leaves
8,070 operations to be performed in the remaining 204 weekdays. This gives an average of 39.6
operations per weekday with a range of 17-60 operations. The available ORs per weekday is on
average 13.2 with a range of 7-16 ORs.

The average planned length of operations is 2.2 hours. The difference between actual lengths
of operations and planned lengths are on average -8 minutes, which means that the operations on
average are planned to take longer than their actual duration. Figure 1 shows a histogram of the
delay in operation lengths, and it is clear that the majority of the operations are planned to take
longer than their actual lengths.

Figure 1: Histogram of difference between actual lengths of operations and planned lengths.

We have divided the dataset into smaller subsets consisting of chosen days from the entire
period. These subsets are more or less “clean” subsets of the entire dataset with regard to the
planned operations. We have decided to make such a division of data, because we want to be able to
compare our solutions with the original plan, which contains some inconsistencies and infeasibilities
such as overlaps of operations and operations outside opening hours. Since we cannot have this
in our plans, it makes sense to compare our solution with a relatively clean original plan. We
have defined clean on the basis of four criteria: Big overlaps of operations (more than 5 minutes),
operations planned outside the opening hours, operations performed by other specialities, and
operations performed in ORs belonging to other specialities.

In the data we have no weekdays, where all of the criteria are zero, so we have no “perfect”
days. Instead we have decided to divide the data into five data sets A to E as described in Table 1.

It can be seen that A ⊆ B ⊆ C ⊆ D ⊆ E, with E corresponding to the original dataset.
Characteristics of the five sets can be seen in Table 2, where the average values of the four criteria
for clean datasets are shown together with the range in parenthesis. For each set the first column
lists the number of instances. The second column lists the number of big overlaps (more than 5
minutes), and the third column lists the number of operations performed outside normal opening
hours. The fourth column lists the number of operations performed by other specialities in rooms
belonging to S1 or S2, and the fifth column lists the number of rooms used which belongs to other
specialities.

Not even A is perfect, as we on average have 1.4 operations placed outside the opening hours
and 0.8 of the used rooms belong to other specialities. Going from A to D the instances get less
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Name Description
A Weekdays with no big overlaps, no more than 5 operations outside the

opening hours, no more than 2 operations performed by other specialities
and no more than 2 operations performed in rooms belonging to other
specialities. This set consists of 5 days.

B Weekdays with no more than 2 big overlaps, no more than 5 operations
outside the opening hours, no more than 2 operations performed by other
specialities and no more than 2 operations performed in rooms belonging
to other specialities. This set consists of 13 days.

C Weekdays with no more than 5 big overlaps. This set consists of 48 days.
D All weekdays. This set consists of 204 days.
E All days. This set consists of 304 days.

Table 1: The data sets developed for the analysis.

Set no.
No. of Big Outside Other Other
days overlaps hours operations rooms

A 5 0.0 (0-0) 1.4 (0-3) 0.0 (0-0) 0.8 (0-2)
B 13 1.2 (0-2) 2.0 (0-5) 0.2 (0-1) 0.8 (0-2)
C 48 3.1 (0-5) 1.8 (0-10) 0.2 (0-1) 1.1 (0-8)
D 204 8.3 (0-19) 2.3 (0-10) 0.2 (0-3) 1.1 (0-9)
E 304 5.6 (0-19) 1.5 (0-10) 0.1 (0-3) 1.4 (0-9)

Table 2: Characteristics of subsets

and less clean, as the average number of the four criteria all increases. The reason why most of
the numbers decrease in E compared to D is that weekends and holidays are included in set E.
The weekends and holidays include so few operations that these days are almost always perfect. In
Table 3 the instance sizes for the different sets are seen together with the range in parenthesis. For
each set the first column lists the number of instances. The second column is the average number
of operations per day, and the third column is the average number of ORs per day.

Set no. No. of days Operations Rooms
A 5 33.4 (25-46) 12.2 (10-14)
B 13 37.5 (25-50) 12.9 (10-15)
C 48 35.9 (17-50) 12.5 (7-16)
D 204 39.6 (17-60) 13.2 (7-16)
E 304 27.2 (0-60) 8.9 (0-16)

Table 3: Size of subsets

6.2. Results

The weight w in the objective function is not only an expression of the cost of extra salary for
overtime but also represents the personal cost of working overtime. Therefore, the weight cannot
simply be chosen based on a monetary tradeoff between overtime work and closing an OR. The
best balance will in the end be a matter of opinion and different departments at Rigshopitalet have
different approaches and valuation regarding overtime work. The management at the considered
department did not at the time of implementation have strong opinions on what constituted the
best balance. We have therefore simplified the selection procedure for w. In case more specific
input can be retrieved, more advanced selection procedures can of course be utilised. We have run
the model with different values of w and afterwards inspected the plots of the solutions visually.
We have looked at the days for which the solutions differ with regard to number of open ORs and
considered whether closed ORs were obtained at the cost of too much overtime, and vice versa
whether reduction in overtime was obtained at the cost of underutilised ORs. This visual approach
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indicates that w = 2 gives a good balance between overtime work and number of closed operating
rooms. Therefore we will use the weight w = 2 from now on.

For the 2-Step Relax-and-Fix heuristic the LP relaxation, corresponding to (25), (26), and (28),
is run without any time limit and the MIP model with relaxed x- and ẋ-variables is run with a
time limit of 10 minutes per day. Finally, Algorithm 3 is run. This time is not included in the total
time, but for all instances it only took a few seconds. To keep the computational running time
relatively low, the number of samples used for all tests except for those in Section 6.4 is |K| = 10.
In Section 6.4 we double the number of samples to 20 to investigate the effect.

The results for the 2-Step Relax-and-Fix heuristic is presented in Table 4. Notice that the gap
shown is the average relative difference between the best integer solution and the lower bound from
the LP relaxation with fixed q-variables, and not the original LP relaxation. ’Time’ is the average
total time for solving both the LP relaxation and the MIP model. ’Overtime work’ is the average
total overtime work per day in minutes. ’Closed rooms’ is the average number of rooms per day
that are closed.

Set no.
No. of Gap Time Overtime Closed
days (%) (s) work (min) rooms

A 5 1.2 515 102 1.0
B 13 2.9 574 215 0.8
C 48 3.4 566 259 0.8
D 204 5.5 612 399 0.7
E 304 3.7 412 273 0.6

Table 4: Results for 2-Step Relax-and-Fix heuristic

For set D the average gap is only 5.5%. We can also see that the average time used is 612
seconds, i.e. just over 10 minutes. Except for set E the average gap decreases as the sets get
cleaner, and for set A the gap is down to merely 1.2%. The solution time is correlated with the
average problem size as given in Table 3. The amount of overtime work decreases from set D
with 399 minutes to set A with only 102 minutes. At the same time the number of closed rooms
increases from set D with 0.7 closed rooms to set A with 1.0 closed rooms. It may seem like much
overtime work in set D; however, it should be remembered that this overtime work is the average
overtime work taken over 10 samples, where we do have samples with very long operation lengths
being up to three times the planned length. The overtime work includes emergency operations,
which contribute with a lot of uncertainty and thereby increase the expected overtime work.

6.2.1. Utilisation

We want to see how well the ORs are utilised when the heuristic method is compared to the
original planning. This is done by calculating the percentage of time that the rooms are open
and unused. In order to get a more fair comparison we also include the operations that could
be performed within the opening hours for the original plan since operations in the original plan
might be placed outside the opening hours without being categorised as emergency operations.
This does not happen in the heuristic plan due to the way the operations are scheduled (see
Algorithm 3). In the heuristic we distinguish between elective and emergency operations and
therefore we exclude emergency operations in the utilisation calculations. This is done such that
the utilisation is an expression for how well the planning is done beforehand, where the number
and lengths of emergency operations are unknown. Table 5 contains the utilisation calculated as
the percentage of unused capacity for the original and the 2-Step Relax-and-Fix heuristic planning
without emergency operations.
Comparing the results in Table 5 we get less unused capacity for the heuristic in sets A to D.
Note that it does not make sense to calculate the utilisation for set E, as this set includes all
weekends and holidays where all rooms are officially closed. The unused capacity for the heuristic
increases as the sets go from A to D, whereas the trend is more unclear for the original planning.
However, the difference in unused capacity between the original and the heuristic planning have a
clear trend and decreases from 4.4% in set A to 1.6% in set D. Not surprisingly, this indicates that
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Set no.
No. of Original Heuristic
days planning (%) planning (%)

A 5 11.9 7.5
B 13 10.9 7.9
C 48 11.0 9.0
D 204 10.8 9.2
E 304 - -

Table 5: Comparison of utilisation in original and 2-Step Relax-and-Fix heuristic planning

the instances included in e.g. set A may have had too many open rooms in the original planning
leaving a lot of unused capacity, which is avoided in the heuristic planning by closing some rooms.

6.2.2. Extreme cases

It is important for the staff to avoid extreme overtime work, as this might negatively impact their
private lives. What is considered extreme varies between departments, but one hour of overtime
work in an OR is extreme for most of the departments at Rigshospitalet. Figure 2 shows the
distribution of overtime work per OR for all weekdays, i.e. set D, for the solutions from the 2-Step
Relax-and-Fix heuristic. The boxplot in Figure 2(a) has all outliers included, while Figure 2(b)
shows the boxplot without outliers. Notice the different scales. As can be seen there are some very
extreme cases with up to 1855 minutes (30.9 hours) of overtime work. This very extreme overtime
work can be explained by a couple of reasons. First, the model is solved with a heuristic, so we
have no guarantee of the quality of the solution and second, there is high uncertainty connected
to the lengths of operations. Despite of the outliers with very extreme overtime work, most of the
ORs have a reasonable amount of overtime work. Half of the ORs have less than 8 minutes of
overtime work and 75% of the ORs have less than 28 minutes of overtime work.

(a) Overtime with outliers (b) Overtime without outliers

Figure 2: Overtime work per OR for each day in set D for the 2-Step Relax-and-Fix heuristic

Out of all the ORs, 69 (2.6%) have more than three hours of overtime work. Five of these are
solved to optimality after the q-variables are fixed and 6 of them only have a gap of up to 2%.
However, the gap can be as high as 52%.

Instances solved to optimality or near-optimality which still have much overtime work is because
not enough resources are available. This could potentially be caused by an unfortunate fixing of
the q-variables such that too many or the wrong ORs are closed. However, as we shall see in
Section 6.2.3, where we leave all ORs open, most of the overtime is actually caused by a shortage
in OR capacity. On the other hand, a large gap does not on its own explain a high amount of
overtime work. Instead, we can use the amount of unused capacity. Instances without enough
available resources are characterised by a high amount of overtime work and little unused capacity,
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while the instances where the heuristic fails are characterised by having a high amount of overtime
work, while at the same time having much unused capacity.

Table 6 shows how many days that have at least one OR with more than one hour of overtime
work in the 2-Step Relax-and-Fix solutions. For each set, the first column gives the number of
instances in the set and the second column shows the number of days with at least one OR with
more than one hour of overtime work. Finally, the third column gives the average number of ORs
per day with more than one hour of overtime work and the corresponding range in parenthesis.
For set D there are 135 days with extreme overtime work in an OR. This corresponds to 66.2% of
the days, so this happens very often. On average 1.5 of the available ORs during a day will have
more than one hour of overtime work, and this ranges from zero to six ORs.

Set no.
No. of Days with >1h Operating rooms
days overtime work per day

A 5 1 (20.0%) 0.2 (0-1)
B 13 4 (30.8%) 0.8 (0-5)
C 48 24 (50.0%) 1.1 (0-6)
D 204 135 (66.2%) 1.5 (0-6)
E 304 141 (46.4%) 1.0 (0-6)

Table 6: Days that include ORs with more than one hour of overtime work in the 2-Step Relax-and-Fix solutions

Of all the ORs on weekdays, 11.2% have more than one hour of overtime work. Table 7 shows
how these ORs are spread across the weekdays. In the heuristic planning Wednesday, closely
followed by Tuesday and Monday, are the days with most rooms with extreme overtime work.
This could indicate that too many operations are planned on the first three days of the week.

Monday Tuesday Wednesday Thursday Friday
75 79 82 33 34

Table 7: ORs with more than one hour of overtime work in the 2-Step Relax-and-Fix solutions

It is also important to look into days with extreme underutilisation. Here it could be advan-
tageous to close one or more ORs. On average 0.7 ORs are closed in the solutions for set D, so
even though we have solutions with significant amounts of overtime work, we also find that many
rooms can actually be closed.

Three or more ORs are closed on 6 of the 204 weekdays, all of which are Mondays. In addition,
two or more ORs are closed on 33 days (16.2%). There is a very clear tendency that these days
are Mondays as can be seen in Table 8.

Monday Tuesday Wednesday Thursday Friday
23 1 8 0 1

Table 8: Days with two or more ORs closed in the 2-Step Relax-and-Fix solutions

The boxplots in Figure 3 show the number of closed ORs for each weekday. Also here it is seen
that ORs are often closed on Mondays, with at least one OR closed on 75% of Mondays. From
these results we see that we have quite a lot of overtime work for Mondays, but at the same time
this is the day of the week where most ORs are closed. This could indicate that the heuristic closes
too many rooms for Mondays. We see the same tendency for Wednesday. This could be caused by
the heuristic decision of which rooms to close. Some of the overtime work might be avoided with
another value of the weight w, or it could be looked into whether it was actually better to just
keep all rooms open. This will be done in the next section.

6.2.3. All Open Relax-and-Fix heuristic

It could be argued that the 2-Step Relax-and-Fix heuristic may close too many rooms, since
we for set D have an average overtime work of 399 minutes and at the same time close 0.7 rooms.
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Figure 3: Number of closed ORs in the 2-Step Relax-and-Fix solutions

This is in spite of the fact that we only close those rooms where the q-variable is exactly zero in
the LP relaxation. To test if we close too many rooms, we have derived a new heuristic called All
Open Relax-and-Fix. It is almost identical to the 2-Step Relax-and-Fix heuristic except that we
skip the first step where the q-variables are relaxed. Instead we start out in step 2 by fixing all the
q-variables to 1, which means that all rooms are open. From here, the All Open Relax-and-Fix
heuristic is exactly as step 3 to step 5 in the 2-Step Relax-and-Fix heuristic in Algorithm 2.

The All Open Relax-and-Fix heuristic is run using the same 10 samples as for the 2-Step
Relax-and-Fix heuristic. The results are shown in Table 9 together with the results for the 2-Step
Relax-and-Fix heuristic. ’Gap’ is the average relative difference between the integer solution and
the lower bound from the LP relaxation with fixed q. ’Time’ is the average total solution time
while ’Overtime work’ is the average total overtime work per day in minutes.

Set no.
No. of

All Open Relax-and-Fix 2-Step Relax-and-Fix

days
Gap Time Overtime Gap Time Overtime
(%) (s) work (min) (%) (s) work (min)

A 5 0.9 382 94 1.2 515 102
B 13 1.5 511 157 2.9 574 215
C 48 1.9 514 196 3.4 566 259
D 204 4.2 588 354 5.5 612 399
E 304 2.8 396 243 3.7 412 273

Table 9: Comparing results for the All Open Relax-and-Fix heuristic and the 2-Step Relax-and-Fix heuristic

Like with the 2-Step Relax-and-Fix heuristic, there is a trend in the amount of overtime work
as it increases from 94 minutes in set A to 354 minutes in set D. Compared to the 2-Step Relax-
and-Fix heuristic the gap for each set is smaller for the All Open Relax-and-Fix heuristic and,
as expected, for each set the amount of overtime work is also less. However, looking at set D,
the difference is not that big, as it is only 45 minutes shared between all the open rooms in the
2-Step Relax-and-Fix heuristic. Therefore, a very large part of the overtime work in the 2-Step
Relax-and-Fix solutions must be caused by a shortage in OR capacity rather than closure of too
many of the wrong ORs.

The amount of overtime work is reduced, which is natural as we increase the number of open
rooms. However, it is also important to look at the utilisation of the rooms. In Table 10 the
percentage of unused capacity for the original planning, the All Open Relax-and-Fix heuristic and
the 2-Step Relax-and-Fix heuristic is shown, where all emergency operations have been excluded
in the calculations as described earlier.

The percentage of unused capacity for the All Open Relax-and-Fix heuristic is higher for all
sets compared to the original planning. The opposite is true for the 2-Step Relax-and-Fix heuris-
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Set no.
No. of Original All Open 2-Step
days (%) Relax-and-Fix (%) Relax-and-Fix (%)

A 5 11.9 15.3 7.5
B 13 10.9 12.4 7.9
C 48 11.0 13.0 9.0
D 204 10.8 12.7 9.2
E 304 - - -

Table 10: Percentage unused capacity for the original, the All Open Relax-and-Fix heuristic, and the 2-Step Relax-
and-Fix heuristic planning.

tic, where the original planning has a higher unused percentage of capacity. For the All Open
Relax-and-Fix heuristic the unused capacity is 12.7% for set D, whereas the unused capacity for
the 2-Step Relax-and-Fix heuristic is 9.2%, which is a difference of 3.5%. It is natural that the un-
used proportion is higher for the All Open Relax-and-Fix heuristic than the 2-Step Relax-and-Fix
heuristic, as we have more capacity available, but the same amount of operations. The question is
if the 45 minutes less overtime work per day makes up for the 3.5% extra unused capacity. This
can be difficult to answer, as it depends on how the prioritisation is between the two factors. To
get closer to an answer, we have also looked at extreme cases for the All Open Relax-and-Fix
heuristic, to see if the extra capacity can reduce the amount of extreme cases. The results are not
presented, but it turned out not to be the case.

It can be seen from the results that it makes a difference to the average overtime work to force
all rooms to be open, but it does not make a big difference for the extreme cases. At the same
time, the percentage of unused capacity increases. Therefore it could be argued, that the 2-Step
Relax-and-Fix heuristic actually performs excellently.

6.3. Simulated implementation

We would like to test the quality of the generated heuristic solutions and evaluate how the op-
eration plans would perform in real life; however, since it has not been possible for us to implement
the solutions in real life, we have made a simulated implementation instead. The plan evaluation
is based on Monte Carlo simulation like that of Lamiri et al. (2008).

The idea is to generate a set L of random samples. These are generated the same way as
described in Section 4.3. While the set of samples K was used to produce operation plans, the set
of samples L is used to evaluate the robustness of these plans.

In the simulated implementation it is assumed that the room and order of the elective operations
cannot be changed, as these are given by the operation plans. The first operation will start on
time when the OR opens, and all following operations will start depending on the duration of the
previous operations in the same OR. For the emergency patients we do not know their OR and
start time, so we need to find this in order to simulate the performance of the day. It is assumed
that operations in progress cannot be disturbed, so if an emergency operation arrives while an
operation is taking place in the assigned OR, the emergency operation is delayed until the current
operation has ended.

In order to allocate the emergency operations, the ORs are prioritised according to the amount
of underutilisation. Each emergency operation is allocated to the feasible room with the highest
priority. It is feasible to allocate an emergency operation to an OR, if two conditions are satisfied:
First, the operation and OR are compatible, secondly, when the emergency operation arrives at the
hospital, a possible current operation in the room needs to end such that the emergency operation
can start before a given maximum delay. When an emergency operation is scheduled, all the
following planned operations are delayed. If no feasible room is found, the algorithm has failed,
and no feasible solution is found for this sample on the given day.

Table 11 shows the results for the simulated implementation of the 2-Step Relax-and-Fix heuris-
tic with L = 100 samples. ’Overtime work’ is the average total overtime work per day in minutes.
’>60 min overtime work’ is the average percentage of rooms, where the overtime work is more than
60 minutes. ’Unused cap.’ is the average percentage of unused capacity for the ORs. Finally, ’No
sol.’ is the average percentage of the samples that did not find a feasible solution with the simu-
lation. The average overtime work per weekday is 418 minutes, which is only 4.8% more than the
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optimised overtime work for the heuristic (see Table 4). The small increase in the overtime work
means that the heuristic solution is quite robust, even though it is based on only 10 samples. On
average 15.1% of the ORs on weekdays have more than one hour of overtime work. The solution
for the 2-Step Relax-and-Fix heuristic had 11.2% ORs with more than one hour of overtime work,
so again there is a little increase in the simulation. The unused capacity in set D for the heuristic
was 9.2%, while the unused capacity in the simulation is 20.7%, i.e. more than twice as large. This
might be caused by the few samples in the model, if they in general have longer operation times
than the 100 samples in the simulation.

Set no.
No. of Overtime >60 min overtime Unused No sol.
days work (min) work (%) cap. (%) (%)

A 5 183 9.1 21.6 0.00
B 13 263 12.5 20.5 0.00
C 48 285 13.0 20.7 0.00
D 204 418 15.1 20.7 0.02
E 304 280 - - 0.01

Table 11: Results for the simulated implementation of the 2-Step Relax-and-Fix heuristic

On average the operations in the simulated implementation start 17 minutes earlier than
planned, with a range from 12.6 minutes earlier than planned to 17.4 minutes later than planned.
It is worth noting that 18.7% of the operations in the simulated implementation are set to start
more than one hour before planned start, while 6.6% are set to start more than one hour after
planned start.

For set D we get that the majority of the rooms have a reasonable overtime work. The mean
overtime work for an OR is 32 minutes; however, 75% of the ORs have less than 31 minutes of
overtime work. This is only a bit worse than the optimised results, where 75% of the ORs had less
than 28 minutes of overtime work.

The results for the simulated implementations are generally a bit worse than the results found
with the heuristic; however, this is to be expected since the heuristic solution is optimised to the
samples, while that same solution is used in this simulated implementation with new samples. On
the other hand, the overtime work is not much worse for the simulated implementation, so this
could be an indication that the heuristic method is robust.
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6.4. Extra samples

In this section we want to see how it affects the results if we increase the number of samples and
at the same time allow longer running times. The number of samples will be doubled to a total of
20 samples. We have chosen three days to test the longer running times and extra samples on: An
“easy” day, an “average” day, and a “hard” day. The easy day has 27 operations and 10 operating
rooms. When solving this instance with the stochastic model it had a gap of 4.8%, which is well
below the average gap of 53.2% for the solved instances. The average day has 36 operations and 13
operating rooms. It had a gap of 47.3%, which is close to the average gap. Finally, the hard day
has 56 operations and 15 operating rooms. This instance found a solution for the stochastic model
with a gap of 100%, so this solution is not useful. If we include more than 20 samples, CPLEX
runs out of memory for the hard day.

The test is run for 10 minutes, 2 hours and 5 hours, respectively, for the MIP problem. There
is no time limit for solving the LP solution, even though these vary from around 30 seconds to
10 minutes. The results for the heuristic with 20 samples are presented in Table 12. It can be
seen that the easy day has been solved to optimality within the 10 minutes time limit, when the
q-variables are fixed. In fact, this instance was solved within 4 minutes. For the easy and average
days we get satisfying results after just 10 minutes, whereas the hard day has a very large gap
and an extreme amount of overtime work. For the hard day with only 10 samples we got a gap of
5.5% and 244 minutes of overtime work, so for this day the extra samples make a big difference.
Looking at the results found with extra samples, it seems that the heuristic provides good results
for long running times. However, 20 samples are too much for some of the instances to give good
results, if the running time is kept at 10 minutes.

Level
10 min. time limit 2 hour time limit 5 hour time limit
Gap Overtime Gap Overtime Gap Overtime
(%) work (min) (%) work (min) (%) work (min)

Easy 0.0 115 0.0 115 0.0 115
Average 2.1 240 1.2 223 1.1 222
Hard 56.8 4,416 3.7 211 2.1 155

Table 12: Results for the 2-Step Relax-and-Fix heuristic with 20 samples and different running times. Gap is the
average relative difference between the integer solution and the lower bound from the LP relaxation with fixed q.
Overtime work is the total overtime work for the day in minutes.
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7. Conclusion

We have developed and presented a stochastic integer programming model to solve the OR
planning and scheduling problem with both elective and emergency patients as well as stochastic
lengths of all operations. We have run this model with 10 samples, where each sample consists
of stochastic arrivals of emergency operations and stochastic lengths of all operations. Because of
large gaps and poor solution quality within the time limit, we have developed the 2-Step Relax-
and-Fix heuristic to solve the problem. This heuristic takes advantage of relatively fast running
times for LP relaxations and a prioritisation of the binary variables. We have also tested another
version of the heuristic, the All Open Relax-and-Fix heuristic, in which all ORs are forced to be
open.

The average overtime work for weekdays is 6.7 hours for the 2-Step Relax-and-Fix heuristic and
5.9 hours for the All Open Relax-and-Fix heuristic. Half of the ORs have less than 8 minutes of
overtime work in the 2-Step Relax-and-Fix heuristic, and the heuristic closes 0.7 ORs on average.
The heuristics give solutions where the first days of the week have significantly more overtime work
than the last days, and Mondays are the days where it is most likely to close ORs. It is a bit better
with regard to overtime work and utilisation in the average case to open all ORs; however, there
is no difference between the two heuristics when it comes to extreme cases. Most of the overtime
work is not caused by closed ORs but is caused by a shortage in OR capacity, which could be
compensated for by distributing the available capacity better. An interesting extension of this
work would therefore be to investigate the effect of extending the model to plan several days at a
time. This would make it possible for the model to distribute the operations intelligently between
the days included in the planning to avoid too much overtime work on any of the days.

The 2-Step Relax-and-Fix heuristic has been implemented with a simulation in order to see
how it performs with new data and thereby determine the robustness of the plans produced. The
overtime work for the simulated implementation is a bit larger than for the original heuristic
solutions. However, there is not a significant difference, indicating that the operation plans are
robust.

The problem dealt with in this paper is part of a greater flow taking place in the hospital.
This means that to improve the final solution, it could be very interesting to look at what takes
place before we start scheduling the operations and what takes place afterwards, when changes are
necessary because of e.g. emergency patients.
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