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Denmark 

 

 

 

Abstract 

A function class suitable for estimating cost preferences in demand models is presented. The function class 

is applicable to any positive cost variable and is designed to be: i) monotonically decreasing, ii) to have 

decreasing marginal sensitivity with respect to cost, and iii) to be differentiable at every point. It is shown 

how suitable functions can be formed from sequences of tailored functions in a manner that ensures their 

continuity and differentiability at the knot points. The proposed functions are well suited for demand 

models where price elasticities exhibit a damped pattern as the values of their argument increase. The 

usual linear-in-parameter functions or non-linear functions, such as the Box-Cox function, do not have an 

equally flexible way of accounting for such a pattern. This can be relevant when estimating transport 

demand models where the sensitivity of demand with respect to transport costs is known to decline as the 

cost increases, i.e. the phenomenon of “cost-damping”. However, it may also be relevant as a means to 

capture the marginal return of investments or declining marginal utility of income. To provide an 

illustration, the functions are incorporated in a multinomial logit model that is estimated from synthetically 

generated data by maximum likelihood. A Monte Carlo simulation study shows that the estimator is able to 

recover the true parameters2. The practical application of the function class is also considered within the 

new large-scale Danish National Transport Model.  

Keywords: discrete choice models; multinomial logit; functional form; cost-damping; spline functions 

 

 

  

                                                           
1
 E-mail addresses: rich@dtu.dk, jeppe.rich@gmail.com  

2
The programs for generating the synthetic data and for estimating the models (in R and SAS software) are available as 

supplementary material to the electronic version of the paper. 
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1 Introduction 

This paper proposes new parametric functions that could be used in estimating cost and time preferences 

in demand models. The proposed functions satisfy the requirement of Definition 1:  

Definition 1: A cost-damping function class   

Represents functions of positive cost that have the following characteristics.  

i) Utility decreases monotonically with respect to cost.  

ii) Marginal sensitivity decreases with respect to cost (cost-damping). 

iii) The functions are continuous and differentiable at every point. 

This class includes the well-known Box-Cox function (Box and Cox, 1964) as well as the logarithmic 

functions. The paper propose two new functions that comply with definition 1 and that offer some 

additional flexibility compared to existing functions. The first function is inspired by a Taylor expansion of 

the Box-Cox function and it exploits L'hopital's rule (Rich and Mabit, 2015). It inherits the desirable 

properties of the Box-Cox function, but it possesses a more flexible curvature. The second function is 

constructed directly from a sequence of Box-Cox functions. This function relaxes the assumption that the 

shape parameter is identical across the entire domain. The proposed functions are generally more flexible 

than traditional functions in the sense that the damping characteristics can be controlled more effectively. 

It is not discussed in detail why cost-damping is likely to be found in empirical data as this has been 

considered in other papers (Daly, 2010; Rich and Mabit, 2015; Daly et al., 2016). However, the reasons 

could include human preferences, unobservable attributes, heteroscedasticity, and selection bias.  

The proposed functions are flexible, yet they are constrained to comply with typical properties of demand 

models, such as convexity in prices and cost-damping. More specifically, the functions are appropriate to 

circumstances where there is decreasing marginal sensitivity of demand with respect to prices. As examples 

of a decreasing sensitivity, it may be observed that doubling the money spent on a bottle of wine does not 

always double the pleasure that it will give, that the quality of life does not always increase in proportion to 

the available income (Layard et al., 2008), that there are often diminishing returns to scale in investments 

and that the disutility of increasing a driving distance from 10 to 20 KM is generally less than the disutility 

of increasing the distance from 200 to 210 KM.   

The functions that are proposed in this paper are particularly relevant in analyzing the demand for 

transport as a function of its costs. Transport models are typically formulated within a random utility 

framework, where utility is represented as a function of transport costs and of travel time and estimated as 

discrete choice models. In the literature, there are several contributions to the issue of functional form 

specification in transport models. Piecewise linear approximations have been discussed in Ben- Akiva and 

Lerman (1985) in a logit modelling framework and, more recently, in Pinjari and Bhat (2006) in a mixed logit 

framework. Power series expansions are also discussed in Ben-Akiva and Lerman (1985) and they have 

been used in testing the adequacy of linear models.  Other contributions include the early work on Box-Cox 

transformations in Gaudry and Wills (1978) and Hensher and Johnson (1981) and the more recent work in 

Gaudry (2010). Applications of the Box-Cox function are to be found in Gaudry et al. (1989), Ben-Akiva et al. 

(1987), Mandel et al. (1994) and Lapparent and de Palma (2002). Most recently, Rich and Mabit (2015) have 
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investigated several combinations of linear-in-parameter but non-linear-in-attribute forms, which, in 

several cases, have outperformed the Box-Cox model. 

Compared to many of the existing functions in the literature, the two functions proposed in this paper can 

be seen as restricted splines (Wold, 1974) that satisfy the requirement of Definition 1. The segments of 

these functions are joined at knot points; and their parameters ensure connectivity and differentiability at 

these points. Several research papers have been concerned with spline-based approaches in the context of 

discrete choice models, including those of Kneib et al. (2007), Tutz and Scholz (2004), Huang and Nychka 

(2000) and Bilbao-Ubillos et al. (2015). However, these papers typically adapt a Bayesian approach; and 

they are generally concerned with the estimation of socioeconomic consumer preferences. They are not 

aimed at the estimation of price and demand relationships. The problem of using unconstrained spline 

functions (which are often piecewise polynomial functions) is that, in general, they do not fit into a context 

of random utility maximization. McFadden (1981) touched upon this in his seminal work, which later won 

him the Nobel price.  In his discussion of indirect utility properties, he underlined the need for quasi-

convexity in prices (page 207), which is also a requirement of the William- Daly- Zachary Theorem 

(Williams, 1977; Daly and Zachary, 1978). This is also mentioned in McFadden’s work (page 211). Although 

it might be possible to estimate a piecewise polynomial function that is convex and complies with random 

utility theory, one cannot trust that this will be the case. Typically, such flexible functions conflict with the 

requirements of our definition in certain parts of the domain and for certain applications. This can lead to 

elasticities with the wrong sign and to biased policy experiments. For this reason, such unconstrained 

functions are rarely seen in the econometric literature in connection with discrete-choice demand 

modelling or in demand models more generally. 

It is equally relevant to consider the contribution of these proposed functions when compared with 

piecewise linear functions. Three things can be highlighted in that respect. First, as the linear model is non-

differentiable at the knot points, it is not possible to apply a traditional optimization algorithm such as the 

Newton-Raphson algorithm. Therefore, it is necessary either to set the knot points manually or to develop a 

heuristic approach to accommodate a search for the optimal placement of the knots. Secondly, a linear 

segment cannot represent the tail of the utility function adequately. Instead, it is desirable to adopt curves 

that flatten out in the tail in order to produce the kind of extreme damping that characterizes the log 

transformation. This case resembles a situation where the elasticities are scale-invariant with respect to the 

arguments of the function. Scale-invariance in the context of the linear model represents the situation 

where there is no effect of the attribute variable on the demand. This represents a situation that is typically 

not identified since it is absorbed in the constants of the model. The proposed functions use a log-

transformed specification in the tail of the function and this leads to the desirable property of scale-

invariance. Thirdly, from a pure behavioral perspective, it seems natural that preferences are indeed 

smooth across a population. Hence, applying functions that imply non-smoothness is a coarse 

approximation of preferences. In principle, this could have consequences for policy experiments as well.  

In Section 2, we present the methodology by which the two utility functions that have the desired 

properties are derived. Section 3 considers model estimation based on a synthetically generated dataset. 

Section 4 considers the implications of the proposed functions for demand responses and their application 

within a large-scale transport model. Finally, section 5 contains the conclusions. 
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2 Methodology 

In the following, for simplicity of notation, consider a linear-in-parameter function   (  ) for a cost 

variable    where     represents destination alternatives from a universal choice-set   and where 

   . To simplify the notation,   is suppressed in the following. To illustrate the connection between 

knots and intervals, consider Figure 1 below which illustrates a piecewise linear function connected by four 

knots.  

c0c0 c1c1 c2c2 c3c3 c4c4

F1F1

F3F3

F4F4

F5F5

F2F2

UtilityUtility

”cost””cost”

F1(c1)=F2(c1)F1(c1)=F2(c1)

F2(c2)=F3(c2)F2(c2)=F3(c2)

F3(c3)=F4(c3)F3(c3)=F4(c3)

F4(c4)=F5(c4)F4(c4)=F5(c4)

 

Figure 1: Piecewise linear functions connected by four knot points. 

In order to make Definition 1 operational in a mathematical context, a general piecewise function is 

considered as presented in (1) below 

 (           )  

{
 
 
 

 
 
 
  (    )                        
  (       )                    
  (       )               

 
  (         )              

 
  (      )               

. (1) 

For functions to be consistent with Definition 1 it is required that 

   ( )

  
                  , (2) 

   
    

.  ( )      ( )/                     (3) 

and  
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4
   ( )

  
 
     ( )

  
5                     

(4) 

Hence, Equation (2)-(4) represents the formal mathematical recipe for the function class to be considered.   

2.1 Function candidates for   ( )     ( ) 

The simplest possible set of function candidates  ( )  {  ( )     ( )} which are consistent with 

property i) and ii) of Definition 1 is the set of linear functions as illustrated in Figure 1. If      and 

  {         } represents the vector of knot points, the linear spline class can be written as in (5) below 

 ( )  ∑  ( )  ( )

 

   

 ∑  ( )[      ] 

 

   

 

 

(5) 

where the indicator function   ( ) is defined such that    ( )    ⇔   [       ] and zero elsewhere. If 

it is assumed that   (  )    the slope parameters can be found from (6)  

{       }  8
   (  )

  
 
  (  )    (  )

     
   

    (    )    (  )

       
9  (6) 

 

The first intercept parameter    is set to 0 and the remaining intercepts can be found using (3) recursively. 
Hence,  

{       }  {    (     )      (     )          (       )}. 

 
The piecewise function, however, has undesirable properties as mentioned in the introduction.  

First, as seen in Figure 1, the function is not consistent with Definition 1 as it violates condition iii), e.g. it 

has “kinks” in the first-order derivative at the knot points. This is not realistic as one often expects a smooth 

transition between cost attributes and perceived marginal utility. Hence, the linear spline formulation is, 

presumably, a piecewise linear approximation of a smooth process. In practice, it could have undesirable 

impacts with respect to policy analysis. If a policy intervention aimed at trips above a certain distance (i.e., 

related to the construction of a large bridge), was compared to a policy aimed at shorter trips, it could 

potentially bias the corresponding consumer surplus calculation. Secondly, the linear spline requires a knot 

to be defined at the endpoint to enable the calculation of the slope and the intercept of the final segment. 

This raises an identification issue as a scale-invariant specification is absorbed in the alternative specific 

constant.  

A solution to these problems would be to introduce many knot points. However, this raises the problem of 

how to choose the knot points. As the function has kinky first-order derivatives the search for optimal knot 

points           will have to be based on heuristic methods, where the likelihood function needs to be 

evaluated for each combination of points. In other words, a Newton-like procedure is not possible. 

In the following, two function candidates are proposed that fulfill Definition 1 and solve the “tail-issue” of 

the piecewise linear function. This is accomplished by imposing a more flexible non-linear curvature.  
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2.2 Log-power spline 

The first candidate arises from a power series expansion of the logarithmic function. Hence, consider the 

function shown in Equation (7) below 

 ( )  ∑  ( )[    ( )
        ] 

 

   

 (7) 

The function is connected in     knot points          and is defined in such a way that the     ( )
  

    function operates in the first part of the curve where        . For         the function 

    ( )
       is active and this is continued successively, such that for the last part of the curve, the 

function is modelled using a purely logarithmic form. It should be acknowledged that  ( )    if    . 

This is not necessarily a problem; however, should non-negativity be desirable the function can be shifted 

accordingly.  

It is worth noting that an approximation of the Box-Cox function emerges as a special case of (7) with 

   2
 

 
      3 and    

   

  
 for all         where   represents the Box-Cox parameter. This can be 

shown using L'hopital's rule and the precision of the approximation depends on the size of   (Gaudry, 

2010; Rich and Mabit, 2015).  However, the approximation in a given point can be arbitrarily good and the 

difference can be expressed as the Taylor remainder term  ( ). The proposed function shares all of the 

desirable properties of the Box-Cox function yet allows for a more flexible curvature through the 

introduction of knot points.  

It now remains to find the form of the   and the   parameters. First, note that of the   spline parameters 

        and        , only      is identified. Hence, the first scale    is normalized to 1 and the first 

intercept    is set to 0.  

 

Proposition 1 

Consider an arbitrary log-power spline function of degree   as described in (7) which complies with 

Definition 1. Let      and     . Unique spline parameters         and         exist and can be 

found from  

   
 

     
∏   (    )

 

   

           (8) 

and 

   
 

   
  (  )

   

      
  

   
  (  )   (  )

     

      
  

   
  (  )   (  )   (  )

     

(9) 
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  (  )   (  )   (  )   (  )

     

and 

        
(   ) 

   
  (    )

     
∏  (  )  

   

   

 

Proof 

Equation (2)-(4) can be used in a recursive manner to determine the parameters         and        . 

The easiest way to find the closed-form expressions in (8) and (9) is to find all scaling parameters   and 

then subsequently work out the   intercepts recursively. Per definition,      and     , and the first 

scale parameter for     can be based on Equation (4) as shown in Equation (10) below. The    parameter 

is then applied in the calculation of the next scale parameter as shown in Equation (11). This process 

continues, and it can be shown, by algebraic manipulations that the  ’th scale parameter can be 

represented as in Equation (12) which is identical to (8).   

   ( )

  
|
    

 
   ( )

  
|
    

 
⇔

   (  )
   

(   )  (  )
   

 
   (  )

(   )
   (      )  (10) 

   ( )

  
|
    

 
   ( )

  
|
    

 
⇔  (         ) (

   

   
*   (  )  

   (  )

(   )
  (  )    (         )  

(11) 

 … 
 

 

   ( )

  
|
    

 
     ( )

  
|
      

 
⇔

 

(     )
∏   (  )

 

   

   (           )  (12) 

 

The existence and uniqueness of         follow directly from the recursive solution procedure. For the 

first equation,  there is only one possible solution for    and this in turn causes the calculation of    to be 

unique and so on. The next step is to find the interception parameters        , to make sure that the 

utility functions are connected in all of the knots. These parameters can be found recursively from  
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  (    )|       (       )|     

  (       )|       (       )|     
 

  (         )|    
     (         )|    

 

 

For the log-power spline in (7), this can be written as  

  (  )
      (  )

       

    (  )
           (  )

       
 

      (  )
     

          (  )
       

 (13) 

By inserting the calculated scale parameters        , as found from (10)-(12), the form of the intercepts 

can be found recursively. By trivial algebraic manipulations, the form in Equation (9) can be shown to be 

valid. Uniqueness follows directly from the recursive solution.  

2.3 Power splines 

The second function candidate arises from a sum of power functions for which the power is gradually 

decreasing and always less or equal to 1. Hence, the function to consider is given by  

 ( )  ∑  ( )[   
     ]

 

   

               (14) 

The curvatures of the power spline and of the log-power spline of (7) are similar. It is also possible to define 

a more direct Box-Cox spline that is formed as a sequence of connected Box-Cox functions, hence  

 ( )  ∑  ( ) 6  4
     

  
5    7

 

   

               (15) 

The curvature of the above Box-Cox function is similar to that of the power spline. The only difference is the 

division by the Box-Cox parameters      . However, this scaling is absorbed in the    parameters for all  .  

For the power-spline function, using similar manipulations as in Proposition 1, it can be shown that the 

corresponding scaling and intercept parameters can be found from (16) and (17) 

   ∏
  
    

  
       

   

   

             (16) 

and  

     
  (  

  
  
*   

          
       

    

          
       

    

  

(17) 
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The corresponding parameters for the Box-Cox spline function have been included in Appendix 2.  

3 Estimating knot points and parameters  

As a result of requirement iii) in Definition 1, and the way the functions are constructed, each of the 

proposed function candidates in Equations (7) and (14) are differentiable with respect to the spline 

parameters. Consequently, it is possible to calculate first- and second-order conditions for the log-

likelihood function for all    . This implies that the optimal knots can be estimated using maximum 

likelihood estimation simultaneously with the remaining parameters.  

As seen from Equation (8) and (9), even low-dimensional spline functions are highly nonlinear and cannot 

be estimated using standard software. However, today most econometric software packages facilitate the 

estimation of nonlinear functions based on auto-generated derivatives. In the following, the joint 

estimation of all parameters using maximum likelihood estimation is explored. To test the procedure, a 

controlled experiment consisting of a synthetic data generating process that resembles a multinomial logit 

model is constructed. The synthetic model is formed from two spline functions each having two knot points 

and it is estimated using a SAS procedure called PROC NLMIXED (SAS Software, 2016). The setup can easily 

be generalized to more choices, other types of error terms (e.g., nested logit and mixed logit), and more 

spline variables, each having more knot points.  

3.1 Synthetic MNL data 

In the following, a generic data generating model is defined. It can be tailored to different specification 

tests, of which only a few are analyzed in this paper. Consider in (18) the utility functions      for choices 

        for a synthetic population          

         (          )     (          )             . (18) 
 

The index of   is suppressed for ease of notation. It is assumed that  (          ) and  (          ) 

represent spline functions in the form of log-power splines. Hence, they are expressed in their knot points 

for which they each have two. That is,  

 (          )   ,     -   (  )
   ,       -,  (   )  (  )

    (   )-

  ,       -,  (       )  (  )    (       )-  

 

Here the spline parameters, according to (7), are given by   (   )  
 

 
   (   ),   (       )  

    (   )   (   ),   (   )   
 

 
  (   )

  and   (       )   
 

 
   (   ),   (   )

    (  )
 -. The 

notation for  (          ) is similar and is not repeated. 
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Furthermore, assume that    follows a standard Gumbel distribution. Hence, if        ( ),  then 

       ( ). 

The exogenous variables    and    are constructed from random distributions. In the following, these are 

assumed to be log-normally distributed, as this resembles a typical income or price distribution. To be able 

to define the mean for the log-normal distributions, these are constructed from the following distributions  

 

         ( (     
 )) and      (   )    ( (     

 ))       

 
The mean and variance are defined by  
 

   √     
 ,      (  

    ) and   
    √  (  

    
 ) 

and 

   √     
 ,      (  

    ) and   
    √  (  

    
 )  

 
Here,    and    define the mean of the final log-normal distribution, and    and    are parameters used 

to control the scale of the variation. Assume that    , in order to have uncorrelated variables, and use 

        to force some variation in the data. Also assume that the true knot points are selected in such 

a way that they are approximately equal to the corresponding 25% and 75% quartile of    and   , 

respectively, but represented as integers for ease of comparison.  

After generating the utility function as described above, the utility maximization principle is imposed for 
the choice process. Refer to the choice variable as    , where       ⇔             and     . The 

code for generating the synthetic data in R or SAS can be provided upon request.  
 

3.2 MLE and inference 

Based on the above data    , and utility function    , the log-likelihood function for the MNL model is 

defined as 

 ( | )  ∏∏        
  

 

 ∏∏     :
   (   ( |     ))

∑    .   ( |     )/ 

;

 

 

 

 

 

where, in the most general form,   *                             +.  The models are estimated using 

PROC NLMIXED (SAS) and R and the code are provided as supplementary material.  

To check that the model can approximately reproduce the true parameters for different data generating 

processes, the generation of the data and the estimation of the models have been embedded in a Monte-

Carlo framework which allows us to estimate the model repeatedly but with different random seeds for the 

data generation. Hence,    and    are maintained across each Monte-Carlo iteration (for the same model), 
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but with different realizations of the error-term   . This allows the model to be tested, and the parameters 

that have been estimated from different finite samples to be compared.  

We start with the simplest possible model, namely a single-variable model referred to as M1 with utility 

given by 

      (          )               
 

The results for M1 are given below in Table 1. 

Parameter True Nobs=1.000  Nobs=10.000  Nobs=100.000  
  Mean MC std mean MC std mean MC std 

   -0.2 -0.232 0.108 -0.203 0.027 -0.200 0.005 
(T-stat)   (-6.422) 4.398 (-13.090) 5.345 (-37.825) 4.117 

    6 6.813 2.774 6.280 1.420 6.050 0.332 
(T-stat)  (2.415) 1.376 (5.182) 1.256 (17.098) 1.232 

    14 20.703 34.052 13.961 2.017 14.006 0.517 
(T-stat)  (2.902) 1.461 (7.635) 1.815 (25.437) 1.272 

Table 1: Maximum likelihood model parameters for different sample sizes for 200 Monte Carlo runs for 

model M1.  

As can be seen from Table 1 the spline parameters, as well as the scale parameters   , approached the true 

values as the sample size increases. The “MC std” columns represent the standard deviation of the 

attribute across the Monte-Carlo sample.  

It should be noted that the likelihood function sometimes tends to become relatively flat around the 

optimal knot points. This was experienced in this synthetic data setup, as well as for practical applications 

(refer to Section 4).  

The next model that is considered here is referred to as M2. This model is a slight generalization of the 

previous model in that we now allow for a new linear term     , that is 

      (          )                  . 
 

Parameter True Nobs=1.000  Nobs=10.000  Nobs=100.000  
  mean MC std mean MC std mean MC std 

   -0.2 -0.215 0.064 -0.207 0.030 -0.200 0.006 
(T-stat)  (-6.961) 9.974 (-11.559) 5.125 (-35.499) 4.446 

   -0.1 -0.100 0.007 -0.100 0.002 -0.001 0.001 
(T-stat)  (-15.151) 8.545 (-47.360) 0.237 (-150.242) 0.268 

    6 6.813 2.666 6.043 1.457 6.019 0.393 
(T-stat)  (2.304) 0.890 (4.767) 1.245 (16.116) 1.188 

    14 20.645 37.738 13.957 1.912 13.942 0.517 
(T-stat)  (3.135) 3.605 (7.804) 1.823 (25.795) 1.458 

Table 2: Maximum likelihood model parameters for different sample sizes for 200 Monte Carlo runs of 

model M2.  
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The final model to consider, the M3 model, is defined in (17), except that all alternative specific constants 

are assumed to be zero. This model allows for two different spline functions, with two spline knot points 

each, and a corresponding scale parameter. This result in a total of six parameters.  

Parameter True Nobs=1.000  Nobs=10.000  Nobs=100.000  
  Mean MC std Mean MC std mean MC std 

   -0.2 -0.221 0.080 -0.205 0.037 -0.200 0.006 
(T-stat)  (-9.605) 34.298 (-13.625) 9.704 (-36.604) 4.251 

   -0.1 -0.128 0.146 -0.104 0.043 -0.103 0.015 
(T-stat)  (-6.401) 21.749 (-4.640) 3.040 (-8.402) 2.057 

    6 6.997 2.704 6.212 1.487 5.924 0.365 
(T-stat)  (2.718) 2.058 (5.232) 1.290 (17.249) 1.231 

    14 14.893 16.436 13.923 1.854 14.867 0.581 
(T-stat)  (3.551) 3.728 (8.171) 2.687 (26.489) 1.267 

    3 6.144 4.966 3.986 1.954 3.149 0.495 
(T-stat)  (1.877) 1.527 (2.812) 0.979 (6.791) 0.941 

    15 31.874 75.763 14.286 4.023 14.759 1.261 
(T-stat)  (1.496) 0.486 (3.616) 0.821 (12.486) 0.863 

Table 3: Maximum likelihood model parameters for different sample sizes for 200 Monte Carlo runs of 

model M3. 

The main conclusion of the experiments is that if the underlying data generating process is described by 

one or more log-power spline functions, parameters can be estimated jointly using maximum likelihood 

estimation techniques.  

As the models are highly non-linear, the likelihood functions are generally not convex across the entire 

parameter space. Therefore, some attention should be paid to starting values. However, in the above 

experiments, the results are not overly sensitive to starting values, and even with relatively poor starting 

values, the optimum can be attained rapid using a Newton-Raphson algorithm. Appropriate starting values 

may be obtained from a linear model combined with strictly positive and ordered knot points defined 

according to for example quartiles. More advanced search algorithms could be implemented, and are a 

topic for future research.  

4 Impacts and practical application 

Although the function classes were described mathematically in Section 2, and an estimation analysis was 

provided in Section 3, it is relevant to consider what the proposed functions imply in practice. We therefore 

start by considering the curvature and the implied elasticity curves in Section 4.1, then continue to discuss 

the mixing of functions in Section 4.2, and end by offering results and application experience from the 

Danish National Transport Model in Section 4.3. 

Section 4.1 below consider a random utility model where spline functions are applied to express the 

indirect disutility of transport costs (and time).     
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4.1 On the curvature 

To investigate the curvature in more detail, consider a simple destination choice model with (indirect) 

utility function   . The utility function includes a spline function  (  ) defined on the basis of a generic 

cost variable   . A Gumbel distribution is attributed to the error term so that the model renders logit 

choice probabilities. 

       (  )              

From this choice model, the model sensitivity can be represented by elasticity curves. 

     
  (  )

   
  (    )          

To maintain simplicity, the analysis is limited to splines of the order of    , and only to the log-power 

spline as described in (7). For the log-power spline, the parametrization is straightforward as the powers 

are integers, e.g.   

 (  )   ,    -   (  )
   ,     -,    (  )

    -   ,     -,    (  )    -  (19) 

 

where  ,    - represents the indicator function for the interval ,    -. The elasticity curves are given by 

     ( ,    -   (  )
   ,     -     (  )   ,     -  )(    )  

and the spline parameters are directly available from Table 5 in Appendix 1. Below in Figure 2, the 

curvature of the utility function is illustrated for the simple linear case, for   (  )
 , and for the spline 

function as represented by Equation (19). The comparison between   (  )
  and the spline is interesting as 

it reveals the gradual damping as cost increases. The function is constructed with         and knot 

points *     +  *      +. 
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Figure 2: Curvature for utility functions as a function of cost. 

The corresponding elasticity curves are shown below in Figure 3 from where it is clear how the tail of the 

spline function is damped. Contrary to this, the linear model tends to produce rather extreme and 

unrealistic elasticities due to the direct scaling with respect to cost. The   (  )
  function provides some 

damping compared to the linear model; however for large cost values it tends to exaggerate elasticities as 

well. It is also worth noting that a combination of functions such as the logarithmic and linear functions 

(Daly, 2010) does not solve the damping issue entirely. When the cost variable becomes large the linear 

term dominates the logarithmic term in a logit type model.  

In Figure 4, it is shown how different knot points produce different elasticity curves.  
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Figure 3: Curvature of the elasticity curves as a function of cost. 

 
Figure 4: Comparison of elasticity curves for different knot points for a log-power spline with Q=3.  

The real benefit of applying the spline function is that it is possible to control more effectively the behavior 

of the tail. This is not accommodated by any other simple functional forms such as the Box-Cox or 

alternative linear approximations of the Box-Cox as presented in Rich and Mabit (2015).  
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4.2 Mixing of functions 

Additive mixing of different functions can be used to add even more flexibility to the curvature. A common 

way of mixing is the combined logarithmic and linear form      (  )      . In this case, the linear 

curvature is mixed with the logarithmic parameter, and scale parameters are estimated separately for the 

two functions. In the case of the logarithmic and linear model, it is important to understand that      (  ) 

operates in the first part of the curve, whereas      operates in the last part of the curve. As the cost 

increases, the linear term tends to dominate the logarithmic term and the exaggeration of elasticities 

caused by the linear term will prevail.  

The spline function is also a good function candidate for mixing. However, it is particularly relevant to 

consider mixing candidates that are active in the first part of the curve. If spline functions are combined 

with functions that involve scale effects in the tail of the distribution, they will generally violate the 

damping properties. Hence, it is recommended that mixing candidates should have a similar or smaller 

order of power than the tail function of the spline. This suggests the pure logarithmic form as a perfect 

mixing candidate as it is active in the first part of the curve only. By allowing for a separate scaling of this 

function, we indirectly allow for a more flexible curvature. In any case, testing the significance of the added 

term(s) provides an easy way to assess whether the functions are sufficiently flexible.  

4.3 Results from the Danish National Transport Model 

Until now, it has been assumed that the underlying discrete choice model resembled a multinomial logit 

model and operated on a destination choice domain. However, it may be more relevant to consider a 

nested-logit model by adding a mode-choice dimension. It is trivial to see that if the logsum parameters do 

not change with the choice of destination or mode, all of the calculations carry over and the spline 

parameters are similar to those found above. Even if the logsum parameters varied with one or more 

choice dimensions, calculations would be relatively straightforward. In that case, the scaling parameters 

would remain essentially unchanged except for additional scaling of the logsum parameters.  

In the Danish National Transport Model (Rich and Hansen, 2016), nested logit models with logsum 

parameters that do not change across choice of destination and mode are applied. The models are 

characterized by having a relatively wide destination domain. It has been difficult to find appropriate 

function candidates applicable to the entire destination domain. As a result, a log-power spline formulation 

has been applied and has been shown to work. In particular, the function has worked well for leisure travel 

and shopping travel segments as these tend to exhibit a strong damping pattern. However, this has not 

been the case for business and commuting travel to the same extent, which is less damped. The core 

function implemented in the Danish National Transport Model (only for weekday travel and only for 

primary trips) is shown in equation (20) below 

  (      |         )   ∑   0  (c  c )   (      | )
     

   (c  c )1
 

   
  (20) 

 

where       |  
       

  
        , and    is the value-of-time for individual  . The value-of-time is 

income-dependent, but is fixed prior to the estimation. Clearly, this implies that elasticity curves, as shown 

below for time and cost attributes, are essentially a weighted representation where the balance between 
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cost and time is controlled by the value-of-time. However, to illustrate the damping, this simplification is 

not strictly critical. The function in (20) is then further mixed with simple log-functions to introduce a more 

flexible description for shorter trips. Below in Figure 5, the log-likelihood profile of using the log-power 

spline class compared to the previous model for which the base model is actually identical to the 

parametrization with      and      is shown.  

 

Figure 5: Log-likelihood performance of leisure trip segment as a function of different knot point 
parameters. 

As can be seen, there is a significant improvement in log-likelihood of approximately 200 log-likelihood 

points. The estimation of the knot points was carried out by simulating likelihood values for the nested logit 

model over a grid of    and    parameters. Hence, it has not been possible to provide t-stats for the 

parameters and the parameters can only be considered as “near-optimal”. However, as also previously 

discussed, the curvature is relatively flat around the knot points. It makes no practical difference as long as 

all other parameters, including scale parameters, conditional on the near-optimal values of    and   , are 

estimated. 

The implication for the model sensitivity of choosing a “near-optimal” combination of    and   , in contrast 

to choosing      and     , is significant. The mean of the elasticities is slightly affected, as only a 

small share of the trips exceeds    and   . However, for longer trips the spline function prevents the 

elasticities from “exploding”, as it effectively introduces a maximum elasticity.  

This has several implications. First, for large-scale infrastructure projects for which the share of long-

distance trips is high, using a proper spline form significantly reduces the elasticities for these trips. The 

elasticity also tends to change from being sensitive to distance to being sensitive to the choice of mode. 

Figure 6 and Figure 7 are examples of the impact on the elasticity curves. 
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Figure 6: Elasticity curve for public transport cost and time for leisure travel for spline model versus normal 
model with      and     .  

 

Figure 7: Elasticity curve for car cost and time for leisure travel for spline model versus normal model with 
     and     .  

As can be seen, there is a significant difference, not only in the tail of the distribution but also for semi-long 

distances. Even the mean is relatively different. For the more distant destinations above 300 KM, the 
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elasticity curve is actually declining. This can be attributed to mode shifts, but can also represent shifts in 

the destination choice. It should be remembered that there are very few observed choices in the tail of the 

distribution, and single observations may cause the curvature to fluctuate somewhat. The above 

simulations are based on a cost increase of 10% and this generally causes the average distance to decline. 

Hence, this will cause a move from right to left. If there are very few trips for some of the longest distance 

intervals, the share of these tends to drop at the expense of shorter trips, and this movement will result in 

a backward bending curve.  

The performance of the function class has also been tested during two consecutive back casting exercises 

using the Danish National Transport Model. First, the model was back cast to year 2002. Then, in a more 

recent exercise the model was forecasted to 2015 and evaluated against observed transport measures for 

2015. Overall, these results have been very encouraging, and it was specifically tested whether the model 

could reproduce the transport growth across the Great Belt Corridor in Denmark for which a price 

reduction of 20% was introduced in 2005. As this is a long-distance corridor with trips across the entire 

distance domain, this test was particularly interesting from the perspective of evaluating the spline 

function. In both of these tests the model was able to reproduce the observed sensitivity very well. More 

details with respect to the Danish National Transport Model can be found in Rich and Hansen (2016). 

5 Summary and conclusions 

The paper presents a new function class that may be suited for estimating demand models where individual 

demand responses are estimated as a function of prices. The proposed function class embraces a set of 

flexible yet constrained functions in order to comply with typical demand model properties such as 

convexity in prices and marginally decreasing sensitivity to cost. As such properties are often observed in 

empirical data, the function class provides a tool that may prove relevant in a number of econometric 

modelling situations.  

From the general function class, two specific functions are proposed which are formed from a sequence of 

connected power-functions. The proposed functions have natural linkages to other spline functions, such as 

polynomial spline functions and linear splines, e.g. piecewise linear functions. However, the proposed 

functions differ in important ways. The proposed functions offer consistency with the random utility 

framework. Moreover, the functions offer a smooth and elegant way of introducing decreasing sensitivity 

to cost, something that is not accommodated by polynomial spline functions. Compared to linear splines, 

the proposed function has several advantages. As the functions are differentiable (by construction) the 

estimation of knot points can be based on standard maximum likelihood estimation techniques and 

estimated jointly with other model parameters. In addition, the functions provides an elegant way of 

modelling the tail of the distribution and obtain scale-invariance. This is not possible in a linear 

specification. Finally, the functions relaxes the problematic assumption of non-smooth preferences, which 

underlines the piecewise linear model.    

To support those who might be interested in further investigating these functions, this paper offers 

examples of how to estimate such functions for a controlled data setup that resembles a multinomial logit 

model. The functions are also discussed from a more practical applied perspective with reference to a 

large-scale national transport model for Denmark.  
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Future research related to the proposed functions could include: i) two-stage estimation strategies for 

finding appropriate starting values, ii) search for other function candidates that may complement those 

proposed in the paper, and iii) more examples of applications.  
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Appendix 1: Pre-calculated spline parameters 

Usually, not more than four knot points are needed. Below we provide pre-calculated spline parameters for 

the standard cases of the log-power function with integer powers. 

Log-power spline parameters 

Table 4-Table 6 provide spline parameters deducted from Proposition 1. In this case we have already scaled 

with the  -spline parameter, which is assumed identical across spline intervals. Note that this does not 

affect the   -parameters as these are invariant to uniform scaling. 
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Table 4: Spline parametrization for the log-power spline class for    . 
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Table 5: Spline parametrization for the log-power spline class for    . 
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Table 6: Spline parametrization for the log-power spline class for    . 

Power spline parameters 

For the power spline function it is slightly easier to calculate the scale parameters as these are invariant 

with respect to  . For      we have; 
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Table 7: Spline parametrization for the power spline class for    . 

It is easy to generalize the above expression to the general case. 
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Appendix 2: Spline parameters for Box-Cox spline 
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