Hidden hearing loss with envelope following responses (EFRs): The off-frequency problem

Encina-Llamas, Gerard; Parthasarathy, Aravindakshan; Harte, James Michael; Dau, Torsten; Kujawa, Sharon G.; Shinn-Cunningham, Barbara; Epp, Bastian

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Hidden hearing loss with envelope following responses (EFR): The off-frequency problem

Gerard Encina-Llamas¹, Aravindakshan Parthasarathy², James M. Harte³, Torsten Dau¹, Sharon G. Kujawa², Barbara Shinn-Cunningham⁴ and Bastian Epp¹

¹ Hearing Systems, Technical University of Denmark (DTU) - ² Harvard Medical School (MEEI - HMS) - ³ Interacoustics Research Unit (IRU) - ⁴ Boston University (BU)

Introduction

Recent animal studies have shown that noise over-exposure can cause the loss of auditory nerve (AN) fiber synapses without causing hair cell loss (see Kujawa and Liberman (2015) for a review). This AN fiber synapses loss has been termed “hidden hearing loss” or “synaptopathy”, since it is not reflected in the traditional pure-tone threshold. The envelope following response (EFR) has been proposed as a potential objective method to assess synaptopathy in humans (i.e., Bharadwaj et al., 2015). Encina-Llamas et al. (2016) reported different trends in EFR level-growth functions recorded using two modulation depths in normal-hearing (NH) and mild hearing-impaired (HI) listeners. The EFR is a gross encephalographic potential that represents the encoding of the envelope of the stimulus, arisen from synchronized neural activity from all excited frequencies and fibers. In this study, a computational model of the AN was used to investigate the effects of off-frequency contributions (i.e. away from the characteristic place of the stimulus) and the differential loss of different AN fiber types on EFR level-growth functions.

Methods

- Computational AN model:
 - Humanized AN model (Zilany et al., 2016).
 - 200 characteristic frequencies (CF), ranging from 0,2 to 20 kHz.
 - Synapses per IHC are simulated by several independent computations of each AN CF (about 500 per CF). Synaptopathy is simulated by computing less of such independent computations.

- Levels:
 - EFR level-growth: 5 to 100 dB SPL, 5 dB steps.
 - Stimulation: 2000 Hz (J = 93 Hz as in Encina-Llamas et al. (2016)).
 - Modulation:

- Mild hearing-impaired: AN fiber method synaptopathy
 - Stimuli: 1000 Hz (J = 93 Hz as in Encina-Llamas et al. (2016)).
 - Modulation: 10-90 dB SNR, 5 dB steps.

- Stimulated with high intensity SAM tone. Differences between NH and mild HI due to OHC dysfunction.

Figure 1: Simulated EFR level-growth functions for the mild-HI group in Encina-Llamas et al. (2016). The group averaged audiogram is fitted assuming 2/3 of OHC dysfunction and 1/3 of IHC dysfunction.

Figure 2: Simulated EFR level-growth functions with a 60% loss of medium- and low-sensory rate (SR) AN.

Figure 3: Simulated EFR level-growth functions with the same ANF loss as in Fernandez et al. (2015). Adapted from the noise to the human cochlea.

Figure 4: Simulated EFR level-growth functions to match the response from the NH group in Encina-Llamas et al. (2016).

Synaptopathy:

- AN tuning curves stimulated with high intensity SAM tone.
- Differences between NH and mild HI due to OHC dysfunction.

Figure 5: Simulated EFR level-growth functions for the mild-HI group in Encina-Llamas et al. (2016). The group averaged audiogram is fitted assuming 2/3 of OHC dysfunction and 1/3 of IHC dysfunction.

Figure 6: All tuning curves simulated with a high-intensity SAM tone. Differences between NH and mild HI due to OHC dysfunction.

Figure 7: Simulated EFR level-growth functions to match the response from the mild-HI group in Encina-Llamas et al. (2016).

Conclusion

- EFRs at high stimulus levels are dominated by the off-frequency contributions.
- EFRs are dominated by the responses from high-SR fibers.
- EFR level-growth functions from synaptopathic frequencies in exposed mice show similar trends to EFR functions in some NH human listeners.

Acknowledgment

Research supported by the Division Center of Excellence for Hearing and Speech Sciences (CHeSS) at DTU in collaboration with ComNet, and by DOD W81XWH131-0103 (SGK) at HMS.

References