A mouse model of the auditory nerve to study cochlear synaptopathy

Encina-Llamas, Gerard; Dau, Torsten; Harte, James Michael; Epp, Bastian

Publication date: 2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
A Mouse Model of the Auditory Nerve to Study Cochlear Synaptopathy

Gerard Encina-Llamas1, Torsten Dau1, James M. Harte2 and Bastian Epp1

1 Hearing Systems, Technical University of Denmark (DTU) - 2 Interacoustics Research Unit (IRU)

Introduction

Several non-human animal studies have demonstrated a permanent loss of auditory nerve (AN) fiber synapses after noise overexposure, termed cochlear synaptopathy, without causing hair cell loss or altering normal auditory thresholds (Encina-Llamas and Liberman, 2009). Studies in humans are generally inconclusive, mainly because the status of the AN in humans represents a major challenge. In a previous study, we proposed the use of EFRs (as a tool to investigate synaptopathy both in mice and humans (Encina-Llamas et al., under review). Parthasarathy et al., 2011). Similar patterns of synaptopathic ANs in mice and humans were found. The use of a “humanized” version of the AN model by Zilany et al., (2009, 2014) could qualitatively account for the patterns obtained in the human listeners. Nevertheless, the use of the original AN model of the AN model (based on the cat) failed to simulate EFRs in mice. It was argued that a species-specific AN model could improve the non-human animal simulations. Given that the mouse is the most used and best characterized species in connection with cochlear synaptopathy, the present study proposes a modification of the original AN model by Zilany et al., (2009, 2014) based on cat data adapted to the mouse.

Aim of the project

- Modify the AN model by Zilany et al., (2009, 2014) based on the cat to adapt it to the mouse.
- Due to the complexity of the AN model, it was intentionally decided to modify as few parameters as possible.
- Three main blocks were modified: the middle-ear filter, the cochlear tuning (Q10dB values), and the range of sensitive characteristic frequencies (CF).
- The ultimate goal was to use the model to simulate EFRs in non-sympathetic and sympathetic mice.

Methods

- **Model**: “Mousification” version based on the AN model by Zilany et al., (2009, 2014) - 200 characteristic frequencies (CF) per AN fiber, 4 to 6 CFs per CF with a total of 600 CFs.
- **Simulated EFRs using the CAT model**: Stimulus: non-sympathetic 12.1 kHz, sympathetic 0.65 kHz.

Results I

EFRs recorded in mice:

- **Non-sympathetic frequency (fNM):** 12.1 kHz
- **Sympathetic frequency (fSM):** 0.65 kHz

Results II

Analysis on- and off-frequencies and different fiber types:

- **Middle-ear filter:**
- **"Mousification" of the AN model:**

Conclusion

- The modifications applied to “mousify” the AN model (ME filter, AN tuning and range of sensitive CFs) were sufficient to generally account for the mouse AN thresholds.
- The mouse model improved significantly the simulation of EFR level-growth functions in mice with respect to the use of the cat model.
- Although the model simulations capture the general trend of the EFR level-growth functions, there are still discrepancies in particular at the lower and higher stimulus levels at the sympathetic frequency.
- Simulated EFRs using the mouse model at supra-threshold levels are dominated by the activity of high-SF fibers at off-frequency contributions, similarly to the humanized AN model (Encina-Llamas et al., under review).

References

Acknowledgments

This research was supported by the Danish Center for Excellence for Hearing and Speech Sciences (HELICS) at the Technical University of Denmark (DTU).