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Abstract 14 

Urban pluvial flooding is a global challenge that is frequently caused by the lack of available 15 

infiltration, retention and drainage capacity in cities. This paper presents RUFIDAM, an urban 16 

pluvial flood model, developed using GIS technology with the intention of rapidly estimating 17 

flood extent, depth and its associated damage. RUFIDAM integrates a 1D hydraulic drainage 18 

network model (SWMM or MOUSE) with an adapted version of rapid flood inundation 19 

models. One-metre resolution topographic data was used to identify depressions in an urban 20 

catchment. Volume-elevation relationships and minimum elevation between adjacent 21 

depressions were determined. Mass balance considerations were then used to simulate 22 

movement of water between depressions. Surcharge volumes from the 1D drainage network 23 

model were fed statically into the rapid inundation model. The model was tested on three 24 

urban catchments located in southeast Melbourne. Results of flood depth, extent and damage 25 
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costs were compared to those produced using MIKE FLOOD; a well-known 1D-2D 26 

hydrodynamic model. Results showed that RUFIDAM can predict flood extent and 27 

accumulated damage cost with acceptable accuracy. Although some variations in the 28 

simulated location of flooding were observed, simulation time was reduced by two orders of 29 

magnitude compared to MIKE FLOOD. As such, RUFIDAM is suitable for large-scale flood 30 

studies and risk-based approaches that rely on a large number of simulations. 31 

Keywords 32 

Flood damage cost; Geographic Information Systems (GIS); hydrodynamic modelling; 33 

MIKE FLOOD; MOUSE; SWMM 34 

1. Introduction 35 

Global climate is changing with increases in the frequency and intensity of extreme events, 36 

such as coastal flooding, extreme precipitation and heat waves already observed (IPCC, 37 

2014). This, together with urbanisation and land use change, will cause even more severe 38 

floods and damage to urban areas in the near future. However, it is neither practically nor 39 

economically feasible to make urban areas completely free from flooding (CSIRO, 2000; 40 

Zhou et al., 2012). For example, it is difficult to protect against minor frequent floods, 41 

although we know that the cumulative cost (over time) of these small events might be 42 

comparable to, or even larger than, extreme yet infrequent floods (Moftakhari et al., 2017). 43 

Adaptation has seen a shift towards implementing a range of novel solutions, (e.g. green 44 

infrastructure or real-time control solutions), rather than “fighting” against the forces of nature 45 

by building traditional large structures (Mimura et al., 2014). That said, it has been speculated 46 

that while potentially beneficial for minor frequent floods, novel measures might not be 47 

suitable for the mitigation of extreme cases. Consequently, water utilities and local 48 

municipalities are recognising the need to develop “integrated” flood management plans and 49 
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strategies to minimise flood hazard and build flood resilience (e.g. Melbourne Water, 2007) 50 

by evaluating both traditional and novel flood protection solutions. 51 

To support this process, the utilisation of computer models to simulate flood extent, depth, 52 

duration and flow velocity and their associated damages, as well as effectiveness of different 53 

solutions, is paramount. Ideally, planning for flood risk mitigation should be supported by 54 

many flooding scenarios (i.e. future climates and urbanisation rates) and alternative solutions 55 

(traditional and novel) with respect to uncertain future conditions, as well as their possible 56 

consequences and damages (Apel et al., 2006). For example, exploratory modelling (Bankes, 57 

1993), is used for analysing many scenarios with a high level of future uncertainties (e.g. 58 

Löwe et al., 2017; Urich et al., 2013). To ensure accuracy in the modelling, we need to 59 

continuously simulate these selected scenarios over time – e.g. continuous simulation is 60 

crucial for the assessment of green infrastructure flood benefits since they mainly protect 61 

against minor but frequent flooding episodes. This approach should consider a whole range 62 

of storm types (in terms of magnitude, intensity and duration) over a long time period (e.g. 50 63 

to 100 Years). Additionally, it is able to see the effect of antecedent conditions, such as the 64 

retention/detention storage available prior to a storm, an important consideration in capacitive 65 

catchments (Kuczera et al., 2006; Rahman et al., 1998; Rahman et al., 2002).   66 

Urban pluvial floods are generally caused by a lack of drainage capacity. This is especially 67 

true during high intensity rainfall where free flow to the underground drainage network 68 

(typically called the “minor system”) becomes pressurised and the water level rises above- 69 

ground causing surcharge in manholes or sewer inlets. The surcharged flow subsequently 70 

spreads across the surface flow network, called “major systems”, which usually includes 71 

roads, footpaths, ground depressions and small water courses (Maksimović et al., 2009). The 72 

dynamic interaction of minor and major systems, known as the “dual-drainage concept” 73 

(Djordjević et al., 1999; Djordjević et al., 2005), is represented in urban flood models in 74 
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various ways and with different levels of complexities. The most detailed representation of 75 

this interaction belongs to 1D-2D models, where a one dimensional (1D) drainage network 76 

model is coupled with a two dimensional (2D) overland flow model. MIKE FLOOD (DHI, 77 

2013), SOBEK (Deltares, 2017), XPSWMM (XPSolutions, 2017) and TUFLOW (WBM, 78 

2008) are examples of commercially available models. These detailed flood models can 79 

simulate flood characteristics with great intricacy, however they are often computationally 80 

intensive and, occasionally, numerically unstable (Leandro and Martins, 2016; Lhomme et 81 

al., 2006; Teng et al., 2017; Zhang and Pan, 2014).  82 

Due to this practical limitation, flood mitigation studies that use detailed 1D-2D models are 83 

often reduced to a limited number of simulations, with performance of each measure 84 

evaluated against predefined storm events (i.e. design rainfall) and future conditions. 85 

Conversely, simplified models reduce flood simulation time in different ways. However, this 86 

speed-up usually comes at the expense of accuracy loss. According to the concept of “fit for 87 

purpose model”, we should be pragmatic when selecting a model for flood simulation: a fit 88 

for purpose model is a model that predicts the required results within the desired level of 89 

accuracy and manageable amount of time and computational expense (Guillaume and 90 

Jakeman, 2012; Haasnoot et al., 2014; Wright and Esward, 2013).  91 

Attempts to improve the computational performance of flood models can be classified into 92 

the following three categories:  93 

1. Model simplification: reducing model structural complexities by incorporating simpler 94 

representations of processes. Examples include: Simplifying 2D shallow water equations 95 

by omitting certain terms such as inertia (Bates and De Roo, 2000; Bates et al., 2010; 96 

Seyoum Solomon et al., 2012); replacing complex 2D surface flow models with 1D 97 

models composed of surface depressions and overland flow paths (known as 1D-1D 98 

models) (e.g. Maksimović et al., 2009; Mark et al., 2004); using Cellular Automata (CA) 99 
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approaches instead of solving shallow water equations in the modelling of 2D overland 100 

flows (Dottori and Todini, 2011; Ghimire et al., 2013; Guidolin et al., 2016) as well as 101 

their application in 1D drainage networks (Austin et al., 2014) and 1D-2D dual drainage 102 

systems such as CADDIES model (Guidolin et al., 2012); using highly simplified 103 

conceptual models known as rapid inundation models (Bernini and Franchini, 2013; 104 

Krupka, 2009; Lhomme et al., 2008) or sometimes considered as 0-term models (Néelz 105 

and Pender, 2013); and using empirical/data driven surrogate models (Wolfs and 106 

Willems, 2013). 107 

2. Detail reduction: using less detailed data or bigger time steps, reducing model input 108 

details and/or simulation time-step, e.g. using lower resolution topographic data (Cook 109 

and Merwade, 2009; Fewtrell et al., 2008; Savage et al., 2016) or simplified drainage 110 

networks (Davidsen et al., 2017). 111 

3. Maximum use of computational resources: parallel computing, code parallelisation, and 112 

utilising graphics processing units (GPU) in 1D (Burger et al., 2014) and 2D models 113 

(Kalyanapu et al., 2011; Leandro et al., 2014; Vacondio et al., 2014; Zhang et al., 2014b) 114 

and using remote distributed computers or Cloud computing (Glenis et al., 2013). 115 

One method can be implemented independently or together with methods in other categories. 116 

The reduction in simulation time can vary by orders of magnitude depending on the method 117 

used. Among others, rapid flood inundation models and empirical models generally have 118 

lower simulation time, in the order of seconds or a few minutes (Bernini and Franchini, 2013; 119 

Krupka, 2009; Néelz and Pender, 2010; Néelz and Pender, 2013), which makes them a 120 

potential choice when many simulations are required.  121 

Rapid inundation models divide the 2D surface domain into elementary areas called Impact 122 

Zones (IZs) (Lhomme et al., 2008) representing local depressions. Flood water fills these 123 

depressions and spills towards neighbouring depressions until all flood water is spread over 124 
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the ground surface. These models provide more computational speed by disregarding the 125 

temporal evolution of the flood hydraulic process (Bernini and Franchini, 2013; Gouldby et 126 

al., 2008; Krupka et al., 2007; Lhomme et al., 2008). These models are solely based on solving 127 

water balance equations and only predict the final and maximum flood extent and its 128 

associated depth. These indicators nevertheless represent the most important characteristics 129 

that are used for flood risk assessment (Bernini and Franchini, 2013; Krupka, 2009; Lhomme 130 

et al., 2008). Rapid inundation models are particularly suitable for large study areas and/or 131 

stochastic modelling for probabilistic flood risk assessment (Néelz and Pender, 2013; Teng et 132 

al., 2017). Examples of these models developed for simulating fluvial flooding (where the 133 

flood source is from a river or dike-breach) are: RFIM1 (Krupka et al., 2007), RFSM2 134 

(Gouldby et al., 2008) and its modified versions (Bernini and Franchini, 2013; Lhomme et al., 135 

2008), and FCDC3 (Zhang et al., 2014a). Models that are developed for simulating pluvial 136 

flooding (where flooding is mainly triggered by the lack of storm drainage network capacity) 137 

include: GUFIM4 (Chen et al., 2009) and USISM5 (Zhang and Pan, 2014). GUFIM and 138 

USISM have a storm runoff model to estimate surface runoff, which is the cumulative rainfall 139 

volume in excess of infiltration and the drainage network’s capacity. This runoff then serves 140 

as input to the inundation model. 141 

While all rapid inundation methods utilise the same concept in their routine for generating 142 

IZs, there are variations in their flood spreading routines. For example, the RFIM (Krupka, 143 

2009) and the earlier version of RFSM (Gouldby et al., 2008) implemented a one-directional 144 

spilling flood inundation routine in which an IZ with excess volume only spills towards the 145 

neighbouring IZ(s) that have the lowest communication level. By incorporating more physical 146 

                                                 
1 Rapid Flood Inundation Model (RFIM) 
2 Rapid Flood Spreading Model (RFSM) 
3 Flood-Connected Domain Calculation (FCDC) 
4 GIS-based Urban Flood Inundation Model (GUFIM) 
5 Storm Inundation Simulation Method (USISM) 
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processes into RFSM, Lhomme et al. (2008) introduced a multi-directional spilling routine. 147 

In their new method, spilling towards neighbouring IZ(s) is determined by comparing the 148 

communication levels to a calculated water level, which considers the effect of IZ shape on 149 

the speed of filling and impact of surface friction on the spilling dynamics. Thus, water can 150 

spill towards more than one neighbouring IZs.  151 

Current rapid inundation models are used to simulate fluvial flooding, where the flood source 152 

is from a river or dike-breach. The flood inundation routine in these models starts with 153 

spreading flood from the specified breach point and estimates its extent. However, the 154 

application of the rapid inundation models for urban pluvial flood inundation (where flooding 155 

is mainly generated by surcharges from the drainage network manholes) has not yet been 156 

investigated. In the case of urban pluvial flooding, surcharges from drainage network 157 

manholes can occur at many locations and surface inundation generated by different manholes 158 

can meet each other in several locations. ISIS FAST model (CH2M, 2013) is a commercial 159 

package that was developed based on the concept of rapid flood inundation models. The 160 

‘Dynamic Linked’ version of ISIS FAST model is able to simulate urban pluvial flooding by 161 

creating a dynamic linking with a 1D drainage network model. The rapid flood inundation 162 

model implemented in the dynamic mode however, solves the Manning’s equation (and 163 

therefore the temporal evolution of flooding) instead of using simple volume balance 164 

methods. The Dynamic Linked ISIS FAST model therefore represents a dynamic 1D-2D 165 

model that uses a more complex rapid flood inundation model. To our knowledge there are 166 

no other rapid inundation models that attempt to couple a 1D drainage network model to 2D 167 

rapid inundation model. 168 

This study aims to develop and validate an urban pluvial flood inundation model that is fast, 169 

yet accurate enough for predicting maximum flood extents (and depths) and their associated 170 

damage costs. We named it RUFIDAM - Rapid Urban Flood Inundation and Damage 171 
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Assessment Model. The main novelty of this study is its advancement of rapid inundation 172 

models for applications urban pluvial flood assessment. Unlike existing rapid inundation 173 

models, RUFIDAM adopts a modified rapid inundation routine and couples it to a 1D 174 

drainage network model in a static way, allowing simulation of inundation caused by 175 

surcharging drainage manholes. In other words, we tested the hypothesis that the surcharges 176 

predicted by a 1D drainage network model can be fed to a rapid flood inundation model (to 177 

reliably characterise the location and magnitude of pluvial flooding in minor-major drainage 178 

systems) without considering bi-directional dynamics between the two models. We test the 179 

validity of this hypothesis by comparing RUFIDAM against a well-known 1D-2D 180 

hydrodynamic urban flood model in series of simulation experiments. Our model was found 181 

to predict flood inundation and damage costs with sufficient accuracy, while being 182 

considerably faster than existing hydrodynamic models. 183 

2. Methods 184 

2.1. Model formulation 185 

The RUFIDAM model structure (see Figure 1) has four main modules: (M1) IZs generation; 186 

(M2) 1D drainage network model; (M3) rapid flood inundation model; and (M4) damage 187 

assessment block. These four blocks are conveniently integrated with a graphical user 188 

interface (GUI) developed using the Python Toolbox in ArcGIS.  189 

 190 

FIGURE 1 APPROXIMATELY HERE 191 

 192 

The IZs generation module (M1) is responsible for creating the input data for the rapid 193 

inundation model. The 1D drainage network model (M2) simulates the rainfall-runoff process 194 
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and estimates the amount of water that enters the pipe network, then uses a hydraulic 195 

simulation engine to calculate surcharges from the subsurface drainage network. These 196 

surcharge volumes are imported as input to the rapid flood inundation model (M3). The 197 

current version of RUFIDAM is able to use either SWMM (Rossman, 2015) or MOUSE 198 

(DHI, 2003); two well-known and well-tested packages. The linkage between 1D drainage 199 

network model and rapid flood inundation model is ‘static’ (c.f. Section M2). The damage 200 

assessment module (M4) uses the depth-damage curve method to calculate residential, 201 

commercial-industrial and road damage costs based on the inundation depths produced by the 202 

rapid inundation model. The next section explains each module in detail.  203 

M1. Impact zones generation  204 

Rapid inundation models divide the 2D surface domain into elementary areas called Impact 205 

Zones (IZs) (Lhomme et al., 2008), representing local depressions. All impact cells within a 206 

particular IZ flow towards the accumulation point of that IZ (see Figure 2). The 207 

communication point of an IZ determines the communication level at which water spills into 208 

the neighbouring IZ (Lhomme et al., 2008). Flood water fills these cells and starts to overflow 209 

to adjacent IZs according to the elevation of communication points between two or more 210 

neighbouring IZs (Figure 2). An example of the generated IZs from a 1m resolution DEM 211 

before and after elimination process is illustrated in the supplementary document S1. 212 

 213 

FIGURE 2 APPROXIMATELY HERE 214 

 215 

IZ generation involves generating a network of IZs and their characteristics (list of 216 

neighbours, communication points and levels, volume-elevation relationship) based on a 217 

digital elevation map using the following steps:  218 
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1. Compute flow direction for each cell of the DEM. 219 

2. Identify sinks. 220 

3. Identify watersheds for all sinks (confined areas where all points pour into the same 221 

sink). 222 

4. Extract sink boundaries as lines and determine the minimal elevation between 223 

neighbouring IZs based on the digital elevation map. 224 

5. Determine the volume stored for different water levels in each IZ based on the digital 225 

elevation map 226 

Details of the procedure above is provided in the supplementary document S1. The results of 227 

the IZs generation step are output in the form of three tables, which characterise:  228 

 Links between the different IZs, as well as the surface elevations above which water 229 

will be exchanged between IZs; 230 

 Surface elevation-volume relationship for each IZ; and 231 

 Links between IZs and nodes of the 1D network model. 232 

M2. 1D drainage network model  233 

The hydraulic simulation of the underground drainage network in this study was carried out 234 

using MOUSE (DHI, 2003) although SWMM was also available. This model also includes a 235 

simulation of the rainfall runoff process and thus, an estimation of the amount of surface 236 

runoff water that is generated and must be managed by the pipe network and/or above ground.  237 

RUFIDAM couples 1D drainage network models to the rapid flood inundation model in a 238 

static way, where the 1D drainage network model simulation is carried out without a dynamic 239 

interaction with the rapid inundation model. At the end of the 1D simulation, the predicted 240 

surcharge volumes from each manhole are fed to the rapid inundation model. When the static 241 

coupling method is used, the predicted surcharge volumes might differ from those predicted 242 
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by the dynamically coupled 1D-2D models. Our hypothesis is that urban pluvial flooding is a 243 

local phenomenon, meaning the surcharges from the drainage network does not travel long 244 

distances over the surface ground. The surcharge volume would rather pond above the 245 

manholes and return to the underground network from the same node when there is available 246 

capacity (this is already modelled in the 1D drainage network model if the ponding option is 247 

selected), or flow downstream and re-enter the drainage network within a short distance. 248 

Therefore, it might be possible to simulate pluvial flooding without modelling these local 249 

surface flows in detail while maintaining sufficient accuracy and gaining substantial speed-250 

ups. Additionally, the rapid inundation model implemented in RUFIDAM does not represent 251 

the temporal evolution of flooding and it cannot provide information on when the surface flow 252 

might reach to a downstream intake nodes.  253 

1D drainage network models (such as MOUSE and SWMM) commonly provide different 254 

options to handle surcharges when used in a static simulation. In the so-called ponding 255 

configuration, it is assumed that water ponds over the surcharging node and will return to the 256 

network via the same node when the capacity exists to do so (DHI, 2003). Thus, the water 257 

level in the manholes can rise above the terrain level. In the spilling configuration, it is 258 

assumed that water leaves the pipe network once the terrain level is reached and not 259 

reintroduced into the system. It is not immediately clear, which of these approaches is more 260 

suitable as an input for the rapid inundation model. Therefore, both approaches were tested in 261 

this paper, applying the standard configurations provided in MOUSE (DHI, 2003).  262 

M3. Rapid flood inundation model 263 

The rapid inundation model developed in this study, improves the RFIM algorithm (Krupka, 264 

2009) by incorporating a simpler multiple spilling method used in RFSM (Lhomme et al., 265 

2008) and further adapts it to represent the dynamics of  overlapping inundations from 266 

multiple manholes. Our rapid inundation model takes the flood volumes from surcharging 267 
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manholes in the 1D model as input and spreads the flood volume among the IZs based on the 268 

elevation of communication points. 269 

Figure 3 sequentially illustrates the inundation routine for three surcharging nodes and eight 270 

IZs in ten stages (labelled 1 to 10). The rapid inundation model spreads the surcharge volumes 271 

by first filling the IZs that are adjacent to surcharging manholes and spilling the excess water 272 

into the neighbouring IZs. The filling/spilling process continues until the surcharged volume 273 

from all manholes has been spread across the floodplain. A detailed flowchart of the algorithm 274 

developed is represented in the supplementary document S2.   275 

The surcharges from different manholes are treated sequentially and the order of processing 276 

the different manholes does not affect the final flood map. Considering the surcharge volume 277 

from a single node, the containing IZ is filled up to the lowest communication point with a 278 

neighbouring downstream IZ, at which point the remaining surcharge volume is distributed 279 

into the downstream IZ, which is again filled up to its lowest communication point. If the 280 

water level in a downstream IZ rises to the same level as in a neighbouring upstream IZ, the 281 

two zones are merged and subsequently treated as one (Figure 3, subfigure 3). 282 

Before an upstream IZ can overflow into a downstream IZ, which does not yet contain any 283 

water, the water level in the upstream IZ needs to rise to a level Δz above the communication 284 

point (Figure 3, subfigure 2, 4, 5 and 10). The extra driving head Δz represents friction losses 285 

and it is treated as a parameter of the model (Krupka, 2009; Lhomme et al., 2008). The value 286 

Δz is not considered in the computation of surcharge volumes as it is assumed that this water 287 

will eventually spill to a downstream zone. However, Δz is considered when evaluating 288 

maximal water depth in the IZs. If the level of the lowest communication point plus Δz is 289 

greater than the level of other communication points, water will spill in multiple direction 290 

(Figure 3, iteration 10).  291 

 292 
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FIGURE 3 APPROXIMATELY HERE 293 

 294 

M4. Damage assessment 295 

The rapid flood inundation model produces a raster map, pixels of which represent water depths. 296 

The damage assessment module translates these water depths into damage values. There are 297 

various damage assessment frameworks of varying complexity developed internationally 298 

(Hammond et al., 2015; Merz et al., 2010; Velasco et al., 2016) and in Australia (M.H., 2010; 299 

Olesen et al., 2017). RUFIDAM assesses financial damage cost using the stage-depth damage 300 

curve method in which cost is a function of flood depth and area. During the flood damage 301 

assessment process, flood inundation maps are overlaid with building and road layers and 302 

stage-depth damage curves are applied to estimate direct tangible flood damages RUFIDAM 303 

uses stage-damage curves from Australian studies that were identified during a recent 304 

literature review (Olesen et al., 2017). The implemented approach in this study uses three 305 

curves for three types of land-uses: (1) residential buildings, (2) commercial and industrial 306 

buildings and, (3) road areas. We implemented this approach because more detailed damage 307 

curves were not available for Australia.  308 

2.2. Model testing and application 309 

2.2.1. Case study description and data set 310 

We tested RUFIDAM for three catchments (C1, C2, and C3 in bottom-right of Figure 4) of 311 

different sizes and average slopes, as presented in Figure 4. These catchments are located 312 

within the Elster Creek basin in South Eastern Melbourne, which has been subject to 313 

frequent pluvial and tidal flooding due to severe storms and urbanisation in low-lying areas. 314 

The catchment predominantly contains residential buildings and a small proportion of 315 

commercial and industrial buildings distributed across the area (Olesen et al., 2017).  316 
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 317 

FIGURE 4 APPROXIMATELY HERE 318 

 319 

A 1D-2D hydrodynamic model for the catchment was available from a previous project 320 

(Davidsen et al., 2017). This model was implemented in MIKE FLOOD (DHI, 2013) by 321 

replacing the 2D surface model with LiDAR DEM data of 1m horizontal resolution provided 322 

by Geoscience Australia (GA, 2017). The same LiDAR DEM data was also used for 323 

RUFIDAM modelling, to create IZs. Supplementary document S3 reports specification of 324 

identified IZs for the three catchments. The 1D portion of this 1D-2D hydrodynamic model 325 

was used as the 1D drainage network model in RUFIDAM to estimate input surcharge 326 

volumes. It included a hydrologic runoff and hydraulic flow simulation engine. Runoff 327 

simulations were performed using the so-called ‘MOUSE model B’. In this approach, initial 328 

losses are considered for runoff from impervious areas, while initial and infiltration losses are 329 

considered for pervious areas. A modified Horton approach is applied for modelling 330 

infiltration capacity. Runoff transformation is modelled using a kinematic wave approach and 331 

all runoff is routed to manholes in the 1D network. Similar to the 1D-2D MIKE-FLOOD 332 

model implemented in this study, RUFIDAM assumes that all the generated runoff enters the 333 

drainage network. 334 

Three design storms with duration of 4.5 hours and return period of 5, 10 and 100-years were 335 

extracted from Australian guidelines and used in the simulation experiments. 336 

2.2.2. Simulation experiments 337 

As discussed in the following section, we performed a number of simulation experiments 338 

using the selected storms to develop and validate RUFIDAM. 339 
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1D drainage network simulation vs. 1D-2D simulation 340 

We investigated the impact of implementing a static approach by comparing the results from 341 

a 1D simulation of the network to a fully dynamic 1D-2D model. As mentioned in the model 342 

description section, the 1D drainage network model can have two different configurations, 343 

namely ‘ponding’ and ‘spilling’. It was not obvious whether 1D simulations of the pipe 344 

network should apply the spilling or ponding configuration when used in conjunction with the 345 

rapid inundation model in a static way. To gain insight into these challenges, we compared 346 

simulated total flows in links and maximum water levels in nodes for different static 1D model 347 

configurations (ponding and spilling) against the results of the dynamic 1D-2D model (MIKE 348 

FLOOD) in the three catchments and for all three storm events. Ideally, the comparison would 349 

also consider the volume exchanged between 1D drainage network and surface in both 1D 350 

and 1D-2D simulations. However, this result was not readily available from MIKE FLOOD. 351 

Sensitivity analysis of key model parameters 352 

We conducted sensitivity analysis to investigate how RUFIDAM predictions varied based on 353 

the 1D model setup (ponding and spilling) and to find the range of model parameters (constant 354 

extra head Δz and minimum IZ area) for which the best performance indicators (see Section 355 

2.2.3) were obtained. This analysis was carried out only in Catchment 1 for the 100-year 356 

design storm. We used a grid-search approach with a total of 3000 simulations (2 drainage 357 

model setups i.e. spilling and ponding; 50 values for minimum IZ areas ranging between 10 358 

to 2000 m2; and 30 values for Δz, ranging from 1 to 30 cm with 1 cm intervals). Our initial 359 

investigation prior to the sensitivity analysis showed that there was no improvement in the 360 

performance indicators for ∆z within a 30 to 150 cm range and for minimum IZ area bigger 361 

than 2000 m2. Therefore, we limited our sampling to the range within which we expected to 362 

find the best result and increased sampling frequency. 363 
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Surface inundation prediction 364 

To evaluate how our simplified 2D simulation affects predictions of surface inundation, we 365 

compared the 2D part of RUFIDAM (the rapid inundation model) against the 2D part of 366 

MIKE FLOOD by providing them the same surcharge volumes as the boundary condition. 367 

This helped remove the uncertainty of surcharge predictions caused by static simulation of 368 

the 1D drainage network model when compared with the 2D surface models. In both model 369 

simulations (rapid inundation model and MIKE FLOOD), 43 source points of inflows to the 370 

surface model were considered as boundary conditions. These points and their flows were 371 

derived by grouping the 380 nodes surcharging during a 1D network simulation of Catchment 372 

1 for a T=100-year event. The inflow volume at each source point corresponded to the 373 

aggregated surcharge volume of the nodes in each group. Since the rapid inundation model 374 

does not consider the temporal evolution of flooding, it only requires the total surcharge 375 

volumes as input, while we considered a typical surcharge hydrograph (represented in the 376 

supplementary document S4) for all source points as input to MIKE FLOOD. 377 

Damage cost prediction 378 

We evaluated the overall performance of RUFIDAM in the three catchments and for all three 379 

storm events by comparing them against 1D-2D MIKE FLOOD results. We used the 1D 380 

model setup and rapid inundation model parameters that were suggested by the sensitivity 381 

analysis. We also compared total damage cost predicted by RUFIDAM to those predicted 382 

using MIKE FLOOD results. The damage cost of flooding were calculated using the stage-383 

depth damage curves provided in Olesen et al. (2017).  384 

2.2.3. Performance indicators 385 

Ideally, RUFIDAM’s performance should be tested using the measured data of an observed 386 

flood event. However, we did not have such a data and therefore compared our model with 387 
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MIKE FLOOD, a well-known 1D-2D hydrodynamic model. Since RUFIDAM only predicts 388 

the final and maximum flood extent and maps, we measured the performance of the model by 389 

comparing its results to the maximum flood depth map predicted by MIKE FLOOD model. 390 

Unlike RUFIDAM, MIKE FLOOD represents the temporal evolution of flooding, meaning a 391 

flood depth map can be reported at each time step of the simulation. The maximum flood 392 

extent map represents the highest water depth calculated for each pixel regardless of the time 393 

of occurrence.  394 

For all the above scenarios, considering the maximum flood depth maps generated by the 1D-395 

2D simulation in MIKE FLOOD as our baseline, we evaluated two different sets of indicators: 396 

(1) indicators for comparing model hydraulic behaviour and (2) indicators for comparing 397 

damage cost predictions. The hydraulic indicators, namely Root Mean Square Error (RMSE), 398 

Fit, and Bias, are calculated by pixel-by-pixel comparison of the flood depth in both models.  399 

- RMSE for evaluating flood depth prediction performance is calculated as follows:  400 

𝑅𝑀𝑆𝐸 = √∑ (𝑌𝑖
𝑅𝑈𝐹𝐼𝐷𝐴𝑀 − 𝑌𝑖

𝑀𝐼𝐾𝐸 𝐹𝐿𝑂𝑂𝐷)𝑛
𝑖=1

2

𝑛
 (1) 

In which 𝑌𝑖
𝑅𝑈𝐹𝐼𝐷𝐴𝑀and 𝑌𝑖

𝑀𝐼𝐾𝐸 𝐹𝐿𝑂𝑂𝐷 are the maximum inundation depth of the ith cell 401 

of the RUFIDAM and MIKE FLOOD results, and n is the number of cells that is wet 402 

in at least one of the models. The closer the RMSE is to zero, the better the estimate 403 

provided by the rapid model. We defined a pixel as wet if water depth was greater than 404 

5 cm.  405 

- Fit indicator (Lhomme et al., 2008) [%], was used to measure the agreement between 406 

two models in predicating  flood extent: 407 

𝐹𝑖𝑡 = 100 ×
B

B + C + D
 (2) 
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where B represents the number of pixels inundated in both models, C is the number of 408 

pixels inundated in RUFIDAM but dry in MIKE FLOOD, and D is the number of 409 

pixels inundated in MIKE FLOOD but dry in RUFIDAM. A fit value closer to 100% 410 

represents a better agreement in flood extent prediction. 411 

- Bias indicator represents the relative percentage error with respect to the final extent 412 

of the flooded area. Positive values indicate overestimation of the extent compared to 413 

the expected value, whereas negative values indicate underestimation. Values closer 414 

to zero represent smaller errors in predictions (Bernini and Franchini, 2013). 415 

𝐵𝑖𝑎𝑠 = 100 × (
B + C

B + D
− 1) (3) 

The damage cost indicators include:  416 

- Percent Error (PE) of the total damage costs [%] that measures the relative difference 417 

between the total flood damage cost for a catchment (Cost) predicted by the models: 418 

𝑃𝐸 = 100 ×  
𝐶𝑜𝑠𝑡𝑀𝐼𝐾𝐸−𝐹𝐿𝑂𝑂𝐷 − 𝐶𝑜𝑠𝑡𝑅𝑈𝐹𝐼𝐷𝐴𝑀

𝐶𝑜𝑠𝑡𝑀𝐼𝐾𝐸−𝐹𝐿𝑂𝑂𝐷
    

(4) 

 

- Fit indicator [%], was used to measure the agreement between two models in 419 

predicting the number of flood damaged buildings at a location. This indicator was 420 

calculated using Equation 2 where B is the number of damaged buildings in both 421 

models, C is the number of damaged buildings in RUFIDAM but unaffected in MIKE 422 

FLOOD, and D is the number of damaged buildings in MIKE FLOOD but unaffected 423 

in RUFIDAM. A fit value closer to 100% represents a better spatial agreement in 424 

damage prediction. 425 

- Bias indicator for number of flooded buildings [%], which evaluates the total number 426 

of flooded buildings in a catchment, irrespective of their location. This indicator uses 427 

Equation 3 with parameters defined for the damage cost fit indicator above. Positive 428 
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values indicate overestimation in the number of damaged buildings by RUFIDAM 429 

compared to MIKE FLOOD, whereas negative values indicate an underestimation.  430 

3. Results 431 

3.1. 1D drainage network simulation vs. 1D-2D simulation 432 

Figure 5 compares maximum water levels and total link flow volumes obtained in static 1D 433 

drainage network simulations (with ponding and spilling configurations), against those 434 

obtained from a dynamic (1D-2D MIKE FLOOD) simulation for a T=100-year event in 435 

Catchment 3 (the results for Catchments 1 and 2 were similar as shown in the supplementary 436 

document S5). In all three catchments, maximum water levels were positively biased for the 437 

1D simulation with ponding configuration, while they vary around the values obtained from 438 

the dynamic simulation when applying the spilling configuration. Link flow volumes were 439 

overestimated by the 1D model with ponding configuration as compared to the dynamic 440 

simulation and underestimated by the 1D model with spilling configuration. These trends 441 

were consistent for all the considered catchments and rain events.  442 

 443 

FIGURE 5 APPROXIMATELY HERE 444 

 445 

Figure 6 shows a map of differences between maximum water levels (maximum water level 446 

in static 1D simulation minus maximum water level in dynamic 1D-2D MIKE FLOOD) and 447 

link flow volumes (total link flow in static 1D simulation minus total link flow in dynamic 448 

1D-2D MIKE FLOOD) for a T=100-year event for Catchment 3. In upstream areas, the 449 

simulated levels and flows in the spilling method were very similar to the dynamic 1D-2D 450 

MIKE FLOOD model, while for the ponding method the upstream values were biased. As 451 
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water moves downstream, the difference in link flows aggregated, and resulted in a greater 452 

difference in the main downstream links. Additionally, higher water levels in the ponding 453 

simulation induced upstream pipe flows and thus led to reduced surcharge volumes in 454 

upstream nodes.  455 

 456 

FIGURE 6 APPROXIMATELY HERE 457 

 458 

3.2. Sensitivity analysis of key model parameters 459 

Figure 7 shows the result of the sensitivity analysis by comparing results obtained from 460 

RUFIDAM with different configurations, against a MIKE FLOOD simulation for a T=100-461 

year event in Catchment 1. This figure used the damage cost prediction performance 462 

indicators. Sensitivity analysis using the hydraulic performance indicators is provided in the 463 

supplementary document S6. These figures suggest that RUFIDAM was most sensitive to the 464 

Δz parameter and minimum IZ area, while the choice of either ponding or spilling 465 

configuration of the 1D model had minimal impact on model results. The spilling 466 

configuration showed slightly better performance, which is in agreement with the already 467 

presented results (section 3.1). In both spilling and ponding options, the impact of minimum 468 

IZ area increased with Δz (up to around 10 cm), while the influence of Δz did not change with 469 

an increase in IZ area. A parameter set should be selected by accounting for all performance 470 

indicators. The best PE and highest FIT values were observed for Δz = 12 to 15 cm, and 471 

minimum IZ area between 150 to 250m2 in both spilling and ponding methods. Bias for the 472 

same values were around -12 to 5 percent. As such, these parameter values in combination 473 

with 1D model simulations using a spilling configuration were applied. 474 

 475 
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FIGURE 7 APPROXIMATELY HERE 476 

 477 

3.3. Surface inundation prediction 478 

Figure 8 shows the flood extent predicted by the rapid inundation model and MIKE FLOOD 479 

for the scenario in which 43 nodes were surcharging. The flow paths predicted by the rapid 480 

inundation model were very similar to those predicted by MIKE FLOOD. This highlights the 481 

ability of the rapid inundation model in predicting the flooding pattern, even if it was over- or 482 

underestimating local flooding. Figure 8 also shows a pixel-by-pixel comparison of flood 483 

depth between both models. The rapid inundation model performed well in predicting higher 484 

flood water depth (which can cause significantly higher damage costs). The Fit and Bias 485 

values were 48.5% and -6%, respectively. 486 

 487 

FIGURE 8 APPROXIMATELY HERE 488 

 489 

3.4. Damage cost prediction 490 

Figure 9 compares the flood damage cost for residential buildings, commercial/industrial 491 

buildings and roads in all catchments, estimated using flood inundation maps produced by 492 

MIKE FLOOD and RUFIDAM. Generally, RUFIDAM overestimated the total damage cost. 493 

The predicted damage for residential buildings was similar across both models, while the 494 

difference was higher for commercial/industrial damages. The reason for this discrepancy is 495 

that the damage cost of these buildings was more sensitive to changes in water level. 496 

Commercial buildings also incur a relatively high damage cost and represent a significant 497 

proportion of the total damage costs even though the number of flooded buildings was lower. 498 



 

22 

 

As the number of commercial/industrial buildings decreases in a catchment, the total damage 499 

cost predicted by RUFIDAM approaches the value predicted by MIKE FLOOD. In Catchment 500 

3 no commercial/industrial building was flooded.  501 

 502 

FIGURE 9 APPROXIMATELY HERE 503 

 504 

Figure 9 also shows the Fit, Bias and PE indices for each catchment. The Fit index ranges 505 

around 40 to 50 percent while the Bias index was in the order of 10% or less in all cases. 506 

Hence, compared to a fully dynamic 1D-2D simulation, we concluded that RUFIDAM was 507 

able to reproduce the overall flood extent, while we observed quite widespread variation and 508 

errors in the locations where flooding was simulated. This is also evident from Figure 10, 509 

which compares flood depth and damage maps for the two different simulation methods.  510 

 511 

FIGURE 10 APPROXIMATELY HERE 512 

 513 

4. Discussion 514 

4.1. 1D network model configuration as an input to rapid inundation model 515 

Maximum water level and link flows were higher when the ponding configuration was applied 516 

in the 1D simulation as opposed to the spilling configuration. The reason for this behaviour 517 

is that higher water levels and thus higher pressure gradients were simulated in the 1D 518 

configuration and that surcharged water will eventually enter the network from the same node 519 

when the capacity becomes available. In the spilling configuration, all the surcharged volume 520 

is assumed to be lost from the network and water levels cannot rise above the ground level.  521 
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In the 1D-2D MIKE FLOOD simulation, part of the surcharged volume will enter from the 522 

same node, some will flow downstream and re-enter the network via other nodes and the rest 523 

will exit the catchment as surface runoff. Surface water levels can affect the pressure gradients 524 

in the pipe network, but the surface water levels above the manholes were usually low. 525 

Compared to 1D-2D simulation, the spilling method showed only small variations in water 526 

levels and flows through upstream pipes, suggesting that surcharges should occur in a similar 527 

location as in the 1D-2D simulation. During sensitivity analysis, slightly better results were 528 

obtained for the spilling configuration than for the ponding configuration, while the 529 

configuration of 2D parameters had greater impact on model results. This suggests that the 530 

biggest potential for improving RUFIDAM should be found in the 2D surface model while a 531 

static 1D model can describe the hydraulics of the pipe network with sufficient accuracy.  532 

4.2. Predicting flood inundation 533 

Overall, the maximum flood inundation extent predicted by the rapid inundation model were 534 

comparable with those predicted by the 1D-2D MIKE-FLOOD hydrodynamic model. The 535 

model performs better in areas that have natural depressions than flat topography and 536 

therefore tends to predict higher inundation depths better than lower depths (as high depth of 537 

flood water is usually formed in areas where there are natural depressions in the surface terrain 538 

and flood water can accumulate). 539 

One of the limitations of rapid inundation models is that their simple wetting/drying algorithm 540 

tends to leave flooded areas in between IZs (which are natural flow paths) as dry areas. In 541 

other words, only locations of ponding water will be reported as flooded areas and the flow 542 

paths between two flooded neighbouring IZs will be reported as dry in the final inundation 543 

map. As the size of IZs increases (the number of IZs decreases), the amount of dry areas 544 

increases. This can be improved by finding possible connecting pathways between IZs using 545 

the “rolling ball” technique suggested in the literature (CH2M, 2013; Leitão et al., 2009; 546 
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Maksimović et al., 2009; van Dijk et al., 2014). Water depth in these dry areas were usually 547 

smaller than the minimum threshold level in our depth damage curves. Therefore, this 548 

shortage did not significantly affect the total damage cost predictions.  549 

4.3. Predicting flood damage cost 550 

The total damage cost predicted by RUFIDAM had good agreement with those based on the 551 

MIKE-FLOOD inundation maps, for residential buildings and road areas. However, it was 552 

not comparable for commercial/industrial buildings because their damage cost is sensitive to 553 

flood depth. Estimated Fit index values for flood damage prediction were around 40 to 50 554 

percent in different catchments, indicating RUFIDAM did not perform well in identifying the 555 

same buildings flooded in MIKE FLOOD, but was able to predict the overall damage cost 556 

within the study area.  557 

In areas like Australian suburbs, where land-use usually does not vary a lot across small 558 

distances, local variations in the prediction of flooding will have little impact on total flood 559 

damage, particularly compared to the uncertainty from other model inputs such as damage 560 

curves, the rainfall, etc. It is important to have a “balanced” level of complexity and 561 

uncertainty among each modelling block (e.g. rapid inundation model and damage assessment 562 

blocks). In particular, when comparing to the uncertainty resulting from depth-damage 563 

functions (de Moel and Aerts, 2011), RUFIDAM provides estimates of total flood damage 564 

with sufficient accuracy and a minimum of simulation time and model complexity. de Moel 565 

and Aerts (2011) states that while estimating the absolute flood damage cost, estimates for 566 

proportional changes in flood damages are much more robust. Therefore, we can expect more 567 

confidence when we use RUFIDAM to compare the performance of different flood mitigation 568 

measures, rather than predicting absolute damage cost reduction.  569 
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4.4. Computational requirements and simulation speed  570 

In general, the simulation time of RUFIDAM was less than 15 minutes. This comprises the 571 

total time spent for the 1D drainage network, rapid flood inundation model, damage 572 

assessment processes and creation of output maps, but does not include the IZ generation 573 

process (which we measured separately). Around 40 percent of this time was spent for 1D 574 

drainage network simulation (MOUSE simulation time for Catchments 1, 2, and 3 were 575 

around 5, 6 and 1 minutes, respectively). The IZs generation process for catchments required 576 

between 2 to 10 minutes depending on the catchment size. When running many simulations, 577 

the IZs generation step need only be carried out once if the change in topography (e.g. city 578 

development over time) is not considered.  579 

Figure 11 compares the simulation time of RUFIDAM (excluding IZs generation) and MIKE 580 

FLOOD for all catchments and return periods in relation to catchment sizes. Unlike the rapid 581 

flood inundation model, MIKE FLOOD uses parallel processing (we used a 6-core CPU 582 

computer for MIKE FLOOD simulations). The total simulation time in RUFIDAM is a 583 

function of the study area (catchment size), number of IZs, and the amount of surcharge 584 

volume to be spread in the rapid inundation model. Figure 11 shows that in general, as the 585 

size of the catchment increases, the speed gain increases exponentially.  586 

 587 

FIGURE 11APPROXIMATELY HERE 588 

 589 

It should be noted that this analysis should also be carried out for DEMs with different 590 

resolutions. It is expected that MIKE FLOOD would be significantly quicker when coarser 591 

resolution DEMs are used. 592 
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5. Conclusion 593 

This paper presented RUFIDAM, a GIS based rapid urban pluvial flood inundation and 594 

damage assessment model that was designed to run with very short computational and setup 595 

time to be used in exploratory modelling and continuous flood simulations. RUFIDAM 596 

integrates a 1D drainage network model with a simple and fast volume spreading routine 597 

based on only water balance and topography (local depressions).  598 

Results showed that the spilling configuration of the 1D drainage network model (MOUSE) 599 

yields hydraulic results that are very similar to those obtain in a 1D-2D simulation. The 600 

surcharge volumes obtained from such a model are thus an appropriate input to a rapid flood 601 

inundation model when land use changes in the catchment are small and summary statistics 602 

are the key focus. Our hypothesis that using a 1D drainage network simulation are sufficiently 603 

accurate to simulate pluvial flooding without modelling these “local” surface flows in detail 604 

was proven to be valid.  605 

The maximum flood inundation extents predicted by RUFIDAM were comparable with those 606 

predicted by the 1D-2D MIKE FLOOD especially in areas that have natural depressions and, 607 

hence, high water depths. However, local variations of flood areas were observed, leading to 608 

deviations about which buildings were considered flooded. However, comparable total flood 609 

damages are simulated by RUFIDAM and the 1D-2D model. 610 

RUFIDAM is suitable for flood inundation and damage estimation when the study area is 611 

large or a large number of simulations are required (such as risk-based approaches for flood 612 

risk assessment or exploratory modelling) and where differences between calculations are 613 

more important than accurate calculations of each result.  614 
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Future research includes the sensitivity analysis of the model performance to the DEM grid 615 

resolution. The model has the potential to represent tidal floods and this capability will be 616 

introduced in the future to simulate tidal and pluvial flooding.  617 
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