
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 23, 2024

On quantum approach to modeling of plasmon photovoltaic effect

Kluczyk, Katarzyna; David, Christin; Jacak, Witold Aleksander

Published in:
Journal of the Optical Society of America B-optical Physics

Link to article, DOI:
10.1364/JOSAB.34.002115

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Kluczyk, K., David, C., & Jacak, W. A. (2017). On quantum approach to modeling of plasmon photovoltaic effect.
Journal of the Optical Society of America B-optical Physics, 34(10), 2115-2127.
https://doi.org/10.1364/JOSAB.34.002115

https://doi.org/10.1364/JOSAB.34.002115
https://orbit.dtu.dk/en/publications/776af661-4149-43f8-98e2-51ca32e215d1
https://doi.org/10.1364/JOSAB.34.002115


Research Article Journal of the Optical Society of America B 1

On quantum approach to modeling of plasmon
photovoltaic effect
KATARZYNA KLUCZYK1,*, CHRISTIN DAVID2, AND WITOLD A. JACAK1

1Department of Quantum Technologies, Wrocław University of Science and Technology, Poland
2Department of Photonic Engineering, DTU, Denmark
*Corresponding author: katarzyna.kluczyk@pwr.edu.pl

Compiled July 26, 2017

Surface plasmons in metallic nanostructures including metallically nano-modified solar cells are conven-
tionally studied and modeled by application of the Mie approach to plasmons or by the finite element so-
lution of differential Maxwell equations with imposed boundary and material constraints (e.g., upon com-
mercial Comsol software-system). Both approaches are essentially classical ones and neglect quantum par-
ticularities related to plasmon excitations in metallic components. We demonstrate that these quantum
plasmon effects are of crucial importance especially in theoretical simulations of plasmon-aided photo-
voltaic phenomena. Quantum corrections considerably improve both the Mie and Comsol approches in
this case. We present the semiclassical random phase approximation description of plasmons in metallic
nanoparticle and apply the quantum Fermi golden rule scheme to assess the sun-light energy transfer to
the semiconductor solar cell mediated by surface plasmons in metallic nanoparticles deposited on the top
of the battery. In addition, short-ranged electron-electron interaction in metals is discussed in the frame-
work of the semiclassical hydrodynamic model. The significance of the related quantum corrections are
illustrated by the quantumly improved Comsol simulations. © 2017 Optical Society of America

OCIS codes: (160.3900) Metals; (160.4236) Nanomaterials;(260.3910) Metal optics;(350.4990) Solar energy.
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1. INTRODUCTION

In many photodiode setups and photo-cell systems a significant
increase in efficiency has been observed due to mediation of plas-
mons in the process of sun-light energy harvesting [1–8]. Even
though an enhancement of the photo-current in a laboratory pho-
todiode setup reaches 100% increase, the overall gain in realistic
solar cells is much more modest because the photo-effect aided
by plasmons is only one element of a long series of factors decid-
ing on the final efficiency of a cell. Recently, an efficiency increase
up to several percent has been observed in multi-crystalline sil-
icon cells covered with not densely distributed gold or silver
nanoparticles with radius of several tens of nanometers [9]. It
must be emphasized that such an increase is very promising in
view of other photovoltaic technology, like thin film solar cells,
organic plastic cells or newly developed perovskite cells, where
an increase even by a few percent would be important to obtain
industrially competitive cell designs [4, 7, 10–18].

Such encouraging prospects in experiments cause also a rapid
increase of theoretical studies of the related physical effects and
of numerical modeling and simulations of metallically nano-
modified solar batteries. Especially popular are numerical meth-
ods for study of surface plasmons in metallic nanoparticles utiliz-

ing the finite element method for solution of Maxwell differential
equations with geometry and material constraints imposed on
the propagating electromagnetic (e-m) wave corresponding to
a sun-light beam incident on the photoactive surface of a sub-
strate semiconductor with metallic component deposited on the
top. This approach finds a correspondence with the classical
analytical solution of the problem of scattering of the incident
e-m plane wave on the spherical metallic body [19, 20]. The
solution of the related Fresnel equations both by Mie approach
or by the finite element method utilize as a prerequisite the di-
electric function for metals, usually in the simplified form upon
the Drude approximation [20]. This appears to be sufficient to
display surface plasmon modes for absorption of incident light
with frequencies much lower than the bulk plasmon frequency

[21], ωp =
√

e2n
ε0m . The surface plasmon modes are dependent

on multipole number corresponding to the decomposition of
plasma oscillations in spherical functions adjusted to the spher-
ical system geometry. The lowest such frequency, ω1 =

ωp√
3

, is
usually called Mie frequency [19]. It is worth noting that the sur-
face plasmon frequencies are determined by the geometry type
constraints imposed on the completely classical Maxwell equa-
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tions. The information on microscopy of the plasma dynamics
in metallic sphere is packed into phenomenological parameters,
ωp and γ, modeling the Drude-Lorentz dielectric function for
free electrons [20],

ε = 1−
ω2

p

ω2 + iγω
, (1)

where ωp—bulk plasmon frequency, γ—damping rate for plas-
mons. Hence, in such approaches is no room for quantum details
unless the dielectric function of the metallic nanosphere is more
precisely identified. We will inspect this way for quantum cor-
rections to the e-m response of metallic nanoparticle especially
in view of better simulation of metallically modified solar cells
upon the commercial system Comsol utilizing the finite element
method for Maxwell equation solution. Furthermore, we discuss
the modification of Mie coefficients to include spatial dispersion
effects of electrons interacting with each other over short dis-
tances. Such nonlocal effects are introduced in the framework of
the hydrodynamic model [22–26].

2. SURFACE PLASMONS MEDIATE ENERGY TRANS-
FER IN METALLICALLY NANO-MODIFIED SOLAR
CELLS

Plasmons are collective excitations of the electron liquid in met-
als [21] with energy similar to Fermi energy, h̄ωp ∼ εF (εF is
the Fermi energy in metal, typically of order of 7− 8 eV). Plas-
mons do not interact with low energy excitations near the Fermi
surface (single electrons), but can be excited by photons with ad-
justed energy (UV in bulk and visible light in nanoparticles [20]).
Many approaches were used to describe plasmons. The random
phase approximation (RPA) [21] occurred to be very convenient
to describe volume plasmons in bulk and then this approach has
been accommodated to metallic finite systems [27–30]. Other
methods utilized the Kohn-Sham approach in numerical version
of related calculus called LDA (Local Density Approximation)
and its time-dependent version (TDLDA) [27–29, 31, 32]. In
metal clusters these numerical quasi-exact studies are, however,
effective only for ultra-small clusters, up to approximately 300
electrons, i.e., 2− 3 nm of cluster size. For larger clusters, the
random phase approximation (RPA) [30] appears to be efficient
and sufficiently accurate. In these studies the jellium model is
usually applied to avoid the inertial heavy ion crystal lattice
dynamics [27, 28, 31]. The origin of high-energy of plasmons
(similar as the Fermi energy) is the Coulomb interaction of elec-
trons with jellium and the coherent participation of all electrons
in plasma oscillations in contrast to single-particle excitations
(Landau quasiparticles) close to the Fermi surface [21, 30, 33, 34].
In the case of bulk metal only volume plasmons are possible [21],
whereas in finite metallic systems also surface plasmon modes
can be excited besides volume ones. The surface plasmons corre-
spond to the translational type mode of coherent oscillations of
all electrons with respect to the jellium, whereas the volume plas-
mons are collective compressional-type osillations of electrons.
The former result in the uncompensated charge of fluctuations
only on the surfaces of the finite system, whereas the latter–
compressional fluctuations still possesses their volume character
[30]. Interestingly, the frequencies of volume modes in metallic
nanoparticles are larger than ωp, whereas the frequencies of the
surface modes are smaller than ωp [30]. For photovoltaic appli-
cations important are nanoparticles of noble metals (Au, Ag and
also Cu) for which surface plasmon frequencies conveniently
enter the visible part of the e-m spectrum.

Surface plasmon frequencies appear to be strongly size depen-
dent. In ultra-small clusters this dependence is caused mostly
by so-called spill-out of electrons beyond the rim of the jellium,
which causes a dillution of the electron density and reduces plas-
mon energy [28]. The spill-out effect is, however, negligible for
larger clusters (with radius larger than appr. 5 nm). In the case
of large metallic nanospheres it has been proved that the strong
size dependence of plasmon energy is governed by irradiation
effects (Lorentz friction) [30, 35–37].

The strong plasmon irradiation from metallic nanoparticles
makes plasmons usable for solar cell applications as of high
efficiency energy transmitters [2, 3, 5, 38–41], because due to
absorption–emission symmetry the large metallic nanoparti-
cles absorb sun-light energy with exceptionally high efficiency
[42, 43] and then may transfer the collected energy in plasmon
oscillation to semiconductor substrate via coupling of plasmons
with semiconductor band electrons. This coupling appears to
be much stronger than coupling of free space irradiation with
band electrons [30, 36] and the sun-light energy may flow to
the substrate semiconductor highly beyond the efficiency of the
ordinary photo-effect when is mediated by plasmons. The ef-
ficiency gain in plasmon mediated photo-effect reaches even
200− 300% increase beyond the ordinary photo-effect [30, 36].
It contributes to an overall gain of a solar cell efficiency in much
modest way because other process contribute and the plasmon
mediated photo-effect is only the initial stage of the series of fur-
thers steps—6 percent eventual increase has been demonstrated
in conventional Si-multi-crystalline cell [9].

The plasmonic-induced efficiency enhancement of the photo-
effect is related to the trade-off between two opposite mecha-
nisms [30, 36]. An enhancement of the electric field near the
metallic nanoparticle due to growing amplitude of the sur-
face plasmon oscillations is proportional to a3 (a is the metal-
lic nanosphere radius) because all electrons participate in the
translational-type oscillations of surface plasmons. This local
concentration of the electric field strengthens coupling to band
electrons in the substrate semiconductors, and prefers larger a.
Nevertheless, the other important effect favors smaller a—it is
related to the contribution of all indirect inter-band electron tran-
sitions in the semiconductor substrate induced by plasmons. For
local coupling with plasmons in a nanoparticle, the translation
invariance is violated and the momentum conservation does not
hold in contrary to the ordinary photo-effect being translational
invariant. Reducing of the momentum conservation constraint
apparently prefers thus the smaller nanoparticle when the larger
amount of indirect inter-band transitions contributes [30, 36].
The related size-competition gives rise to optimize the size of
nanoparticles for photo-voltaic applications. The details of this
efficiency trade-off are presented below.

A. Plasmons in large metallic nanospheres
Plasmons in metallic clusters were intensively studied since 80.
of the last century by application of the Kohn-Sham approach in
a numerical manner. The related precise quantum study called
as LDA (Local Density Approximation) and its time-dependent
generalization TDLDA [27–29, 31, 32] were, however, ranged
to ca. 300 electrons as sharply limited by rapid growth of re-
quired computation resources with rising number of electrons.
Hence, the method LDA (TDLDA) appeared useful rather for
ultra-small metallic nanoparticles with size of order of 1− 3 nm.
Such small nanoparticles exhibit, however, a different collective
behavior than larger clusters. In the case of the extreme small
clusters (of size 1− 3 nm) all the physics is dominated by surface
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effects including the pronounced in this scale a spill-out of elec-
trons beyond the jellium rim. The dilution of electrons caused by
the spill-out is the most important factor shifting the surface plas-
mon resonance in such small particles. The resulting red-shift
of surface plasmon frequency has been studied experimentally
in ultra-small clusters of K and Au [28]. Nevertheless, in larger
metallic nanoparticles with radius greater than 5 nm all effects
induced by spill-out are negligible as quickly lowering with the
radius growth. In this size scale the so-called Landau damping
of plasmons (i.e., the decay of plasmons for high energy particle-
hole pairs) is also small and practically negligible [28]. Moreover,
in larger nanoparticles (with radius exceeding 10 nm, for noble
metals) quite different mechanism of plasmon damping occurred
to be important [30, 37]. The latter corresponds to the irradiation
of energy of plasmons (the synchrotron-type effect), intensity of
which grows with number of electrons in the nanoparticle, ∼ a3

(a is the nanoparticle radius). The resulting strong damping of
plasmons in nanoparticles with a ∈ (10, 100)nm dominates the
plasmon physics in this scale. To account a quantum behavior of
plasmons in this scale the random phase approximation (RPA)
[21, 30] occurred to be very convenient. The RPA theory has been
proposed originally by Pines and Bohm [21] to describe volume
plasmons in bulk and was next accommodated to the metallic
finite systems [27–30]. This methods appears to be effective and
sufficiently accurate in the size scale a ∼ 10− 100nm, especially
in view of the shortage of LDA (TDLDA) methods in this scale.
Moreover, the RPA approach allowed for an analytical definition
of plasmon resonances and their damping [30, 37] simplifying
further applications.

The dynamic equations for plasmons in a metallic nanosphere
have been derived in [30] upon the RPA formulation via utiliza-
tion of the Heisenberg dynamic equation for time dependent
operator of local density of electrons [21]. According to this
theory (for details of derivation cf. [30]), the electron density
fluctuations can be represented for the volume and the surface
modes, respectively,

δρ̃1(r, t) = neF(r, t), for r < a,

δρ̃2(r, t) = σ(Ω, t)δ(r + ε− a), ε = 0+, for r ≥ a, (r → a+),
(2)

where ne =
Ne
V is equilibrium density of electrons.

For the spherical symmetry of the nanoparticle one can find
the solution of the dynamic equations written in the above nota-
tion [30],

F(r, t) =
∞

∑
l=1

l

∑
m=−l

∞

∑
n=1

Almn jl(knlr)Ylm(Ω)sin(ωnl t) (3)

and

σ(Ω, t) =
∞

∑
l=1

l

∑
m=−l

Blm
a2 Ylm(Ω)sin(ω0l t)

+
∞

∑
l=1

l

∑
m=−l

∞

∑
n=1

Almn
(l + 1)ω2

p

lω2
p − (2l + 1)ω2

nl
Ylm(Ω)ne

×
a∫

0

dr1
rl+2

1
al+2 jl(knlr1)sin(ωnl t),

(4)

where jl(ξ) =
√

π
2ξ Il+1/2(ξ) is the spherical Bessel functions,

and Ylm(Ω) is the spherical functions, associated with the

spherical symmetry of the metallic particle. The frequencies

ωnl = ωp

√
1 + x2

nl
k2

T a2 define frequencies of the volume plasmon

self-oscillations, where kT =
√

6nee2

εF
is the Thomas-Fermi length

(εF is the Fermi energy), the xnl are the nodes of the Bessel func-

tion jl(ξ), knl = xnl/a. The frequency ω0l = ωp

√
l

2l+1 is fre-
quency of l-multipole mode of surface self-oscillations (surface
plasmons). The function F(r, t) describes the volume plasmon
oscillations, whereas σ(Ω, t) the surface plasmon oscillations.
In the formula (4) the first term corresponds to surface self-
oscillations, whereas the second term describes the surface oscil-
lations induced by the volume plasmons. The frequencies of the

surface self-oscillations are, ω0l = ωp

√
l

2l+1 ., which for l = 1
gives the dipole-type surface oscillation frequency originally
found by Mie [19], ω01 = ωp/

√
3 (we denote it as ω1 = ω01).

B. Damping of plasmons in large metallic nanoparticles in di-
electric surroundings

The damping of plasmons in metallic nanoparticles in dielectric
surroundings is induced by the scattering of electrons on other
electrons, on defects, on phonons and on nanoparticle bound-
aries [44] and by the Loretz friction [37]. The electron scattering
can be described in common by the damping rate,

1
τ0
' vF

2λB
+

CvF
2a

, (5)

where a is the nanosphere radius, vF is the Fermi velocity in the
metal, and λB is the electron mean free path in the bulk, C is a
constant of order of unity and its particular value displays in
a phenomenological manner the type of scattering of electrons
on the edge of a nanoparticle (diffusive, reflective or intermedi-
ate). The first term in (5) evaluates all the scattering processes
similar to those in the bulk, the second one displays scattering
of electrons on the nanoparticle edge. Dissipation of energy of
plasmons due to scattering of electrons hampers both volume
and surface plasmons.

The Lorentz friction-induced plasmon damping can be ac-
counted for by the solution of the RPA dynamic equation for
plasmons in the nanoparticle. In the case of metallic nanopar-
ticles with radius well smaller that the resonant wavelength of
only the dipole (l = 1), surface plasmon oscillations contribute
to the e-m response (to the sun-light illumination), because of
dipole approximation constraint (for wavelength much larger
than the nanoparticle size). The corresponding dipole of the
plasmon oscillations attains the form [30],

D(t) = e
∫

d3rrδρ(r, t) =
4π

3
eq(t)a3. (6)

and this dipole satisfies the following equation:[
∂2

∂t2 +
2
τ0

∂

∂t
+ ω2

1

]
q(t) =

ene

m
E(t), (7)

where E(t) is the electric field component of an incident light
beam. The Lorentz friction which hampers the oscillations of a
plasmon dipole has the form [45],

EL =
2

3c3
∂3D(t)

∂t3 , (8)

where EL is an additional electric field braking the charge oscil-
lations, c is the light velocity and D(t) is the dipole—here of the
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surface plasmon oscillations. Due to Eq. (6), one can rewrite the
above formula,

EL =
2e
3c3

4π

3
a3 ∂3q(t)

∂t3 . (9)

The Lorentz friction field contributes the dynamic equation,[
∂2

∂t2 +
2
τ0

∂

∂t
+ ω2

1

]
q(t) =

ene

m
E(t) +

2
3ω1

(ω1a
c

)3 ∂3q(t)
∂t3 .

(10)
One can find the exact solution of Eq. (10) for the damping and
self-frequency including Lorentz friction is as follows [37] (the
exponents of solution ∼ eiΩt for self-modes)

Ω1 = − i
3l −

i21/3(1+6lq)
3lA − iA

21/33l = iα ∈ Im,

Ω2 = − i
3l +

i(1+i
√

3)(1+6lq)
22/33lA + i(1−i

√
3)A

21/36l = ω + i 1
τ ,

Ω3 = −ω + i 1
τ = −Ω∗2 ,

(11)

whereA =
(
B +

√
4(−1− 6lq)3 + B2

)1/3
, B = 2+ 27l2 + 18lq,

q = 1
τ0ω1

and l = 2
3
√

ε0

(
aωp

c
√

3

)3
. The functions ω and 1

τ (in di-
mensionless units, i.e., divided by ω1) are plotted in Fig. 1 versus
the nanosphere radius a. Noticeable is the strong deviation from
the perturbatively obtained behavior, 1

τ ∼ a3, which is apparent
for a > 30 nm [30, 37].

The exact solution (11) improved the fitting with the exper-
imental measurements of the resonance frequency of dipole
surface plasmons [37].

C. Damping of plasmons due to coupling to band electrons in
semiconductor substrate

If another electrical system is present in the vicinity of the
nanosphere, the situation changes considerably. The coupling
of plasmons with other charged system causes resonant energy
transfer, which results in a huge increase in the plasmon damp-
ing. In the case in which the nanosphere is deposited on the
surface of a semiconductor, the near-field coupling of dipole
plasmons with the band electrons of the semiconductor creates
the very efficient channel to energy transfer. The attenuation rate
corresponding to this process can be found by the application of
Fermi golden rule approach to near-field coupling of plasmons
with electrons [30, 46].

The Fourier components of the electric (Eω) field induced
at a distant point R by monochromatic plasmonic dipole oscil-
lation at the origin, D = D0e−iωt, has the form, including the
retardation effect [45],

Eω =
1
ε

{
D0

(
k2

R
+

ik
R2 −

1
R3

)
+n̂(n̂ ·D0)

(
− k2

R
− 3ik

R2 +
3

R3

)}
eikR, (12)

where we use the following notation for the retarded argument:

iω
(

t− R
c

)
= iωt− ikR and n̂ = R

R . The contributions with de-

nominators of R3, R2, and R are referred to as the near-, medium-
and far-field zones of the dipole radiation, respectively. For in-
teractions with the adjacent layer of the semiconductor, the near-
field zone prevails. Hence, one can neglect the terms containing
1
R and 1

R2 . For the near field zone, one can obtain, Bω = 0 and
Eω = 1

εR3 [3n̂ (n̂ ·D0)−D0], which corresponds to the dipole
electric field. The magnetic field is not important in the near-field

0.00

0.15

5 30

Fig. 1. The real and imaginary parts of the exact oscillating so-
lution of Eq. (10), i.e., the resonance frequency and the damp-
ing rate given by Eq. (11) are plotted as the functions of the
nanosphere radius a and for two distinct dielectric surround-
ing media (vacuum and water); the lines corresponding to the
perturbative solutions are presented for comparison; in the
inset an impact of C constant in Eq. (5) is illustrated.

zone [45]. The related potential for the near-field interaction of
the Mie-type surface plasmons with the band electrons can be
written as follows, [45]:

w = eψ(R, t) = e
εR2 n̂ ·D0sin(ωt + α) = w+eiωt + w−e−iωt,

w+ =
(
w−
)∗

= e
εR2

eiα

2i n̂ ·D0,
(13)

w+ and w− correspond to emission and absorption, respectively
(n̂ = R

R , and D0 is the plasmon dipole amplitude).
The semiconductor band system we model here in the sim-

plest form of single-band parabolic effective mass approxima-
tion. According to the Fermi golden rule, the inter-band transi-
tion probability is given by the expression,

w(k1, k2) =
2π

h̄
∣∣< k1|w+|k2 >

∣∣2 δ(Ep(k1)− En(k2) + h̄ω),
(14)

where the Bloch states in the conduction and valence bands are
assumed to be plane waves (to simplify calculations):

Ψk1 =
1

(2π)3/2 eik1·R−iEp(k1)t/h̄,

Ψk2 =
1

(2π)3/2 eik2·R−iEn(k2)t/h̄,

Ep(k1) = −
h̄2k2

1
2m∗p
− Eg, En(k2) =

h̄2k2
2

2m∗n
,

(15)
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where the indices n and p refer to electrons from the conduction
and valence bands, respectively, and Eg is the forbidden gap.
We must find the matrix element,

< k1|w+|k2 >=
1

(2π)3

∫
d3R

e
ε2i

eiαn̂ ·D0
1

R2 e−i(k1−k2)·R.

(16)
All integrals can be calculated analytically. After some algebra,
one arrives at the expression,

< k1|w+|k2 >= −1
(2π)3

eeiα

ε D0cosΘ(2π)
∫ ∞

a dR 1
q

d
dR

sinqR
qR

= 1
(2π)2

eeiα

ε
D0·q

q2
sinqa

qa
a→0−−→ 1

(2π)2
eeiα

ε
D0·q

q2 .
(17)

To estimate the absorption probability per time unit, the sum-
mation over all initial and final states in both bands must be
performed. according the formula,

δw =
∫

d3k1

∫
d3k2 [ f1(1− f2)w(k1, k2)− f2(1− f1)w(k2, k1)] ,

(18)
where f1 and f2 represent the temperature-dependent distribu-
tion functions (Fermi-Dirac distribution functions) for the initial
and final states, respectively. Emission and absorption are in-
cluded, but for room temperature, one can assume that f2 ' 0
and f1 ' 1, leading to,

δw = 4
3

µ2(m∗n+m∗p)2(h̄ω−Eg)e2D2
0√

m∗nm∗p2πh̄5ε2

∫ 1
0 dx sin2(xaξ)

(xaξ)2

√
1− x2

= 4
3

µ2√
m∗nm∗p

e2D2
0

2πh̄3ε2 ξ2 ∫ 1
0 dx sin2(xaξ)

(xaξ)2

√
1− x2.

(19)

In limiting cases, we finally obtain,

δw =

 4
3

µ
√

m∗nm∗p(h̄ω−Eg)e2D2
0

h̄5ε2 , for aξ � 1,

4
3

µ3/2
√

2
√

h̄ω−Ege2D2
0

ah̄4ε2 , for aξ � 1,
(20)

where the parameter ξ =

√
2(h̄ω−Eg)(m∗n+m∗p)

h̄ .
Note that the above formulae are distinct than the one for the

ordinary photo-effect,

δw0 = 4
√

2
3

µ5/2e2

m∗2p ωεh̄3

(
εE2

0V
8πh̄ω

)
(h̄ω− Eg)3/2. (21)

Taking into account that the number of photons in the volume V

is equal to
(

εE2
0V

8πh̄ω

)
, the probability of single-photon absorption

by the semiconductor per time unit takes the following form in
the ordinary photo-effect:

q0 = δw0

(
εE2

0V
8πh̄ω

)−1

=
4(4)
√

2
3

µ5/2e2

m∗2p ωεh̄3 (h̄ω− Eg)
3/2, (22)

where the factor of 4 corresponds to the spin degeneracy of the
band electrons.

The corresponding probability in the case of plasmon me-
diated transitions is given by Eq. (20). An enhancement of
the transition probability for the near-field coupling with plas-
mons in comparison with direct photon absorption is related
with admission of indirect interband transitions not restricted by
momentum conservation, which does not hold in the nanostruc-
ture. This enhancement is gradually reducing with the radius a
increase, as expressed by Eq. (20).

Assuming now that dipole plasmon oscillations are excited
by the rapid switching off the uniform electric field, E(t) =

E0(1−Θ(t)), the dipole-type solution for surface plasmons has
the form [30],

D(t) = [0, 0, D0e−t/τ′ cos(ω′1t)], (23)

with

D0 =
e2ne

mω2
1

E0
4π

3
a3. (24)

It is easy to estimate the total energy of this plasmon mode
transfered to the semiconductor,

A = β

∞∫
0

δwh̄ω1dt =

 2
3

βω1τ′µ
√

m∗nm∗p(h̄ω1−Eg)e2D2
0

h̄4ε2 , for aξ � 1,

2
3

βω1τ′µ3/2
√

2
√

h̄ω1−Ege2D2
0

ah̄3ε2 , for aξ � 1,
(25)

where β accounts for the proximity constraints (not included in
the model) that reduce the near-field contact of the sphere with
the semiconductor; for the case of nanospheres deposited on
the surface of a semiconductor layer, β ∼ h2

a2 ∼ 10−3 for a ∼ 50
nm (h is the effective range of the near-field coupling), whereas
for nanospheres entirely embedded in the semiconductor, β is
larger. Considering Eq. (24) and comparing the value given by
the formula (25) with the energy loss estimated in [30] (the total
energy of the plasmon oscillations), one finds that the damping
rate of plasmons, τ′, induced by coupling with semiconductor,

1
τ′ω1

=


4βµ
√

m∗nm∗p(h̄ω1−Eg)e2a3

3h̄4ε
, for aξ � 1,

4βµ3/2
√

2
√

h̄ω1−Ege2a2

3h̄3ε
, for aξ � 1.

(26)

For nanospheres of Au deposited on an Si layer, we obtain,

1
τ′ω1

= 44.092β (a[nm])3 µ

m

√
m∗nm∗p

m
, (27)

for a� 0.15
√

m/(m∗n + m∗p) [nm], and

1
τ′ω1

= 3.648β (a[nm])2
( µ

m

)3/2
, (28)

for a� 0.15
√

m/(m∗n + m∗p) [nm], where light (heavy) carriers

in Si, m∗n = 0.19(0.98) m and m∗p = 0.16(0.52) m, with m being

the bare electron mass; µ =
m∗nm∗p

m∗n+m∗p
; and Eg = 1.14 eV, ε = 12,

and h̄ω1 = 2.72 eV. For these parameters and for nanospheres of
radius a in the range of 5− 50 nm, the case of Eq. (28) applies.
The value of parameter β taken from the experimental data is
equal to approximately 0.002.

One can also notice that for not sufficiently small values of
β, the plasmon oscillator enters the overdamped regime due to
extremely large efficiency of their coupling to band electrons.
The energy transfer to the semiconductor substrate via the near-
field coupling channel is then so efficient that it quenches free
plasmon oscillations but the energy flow to the semiconductor
is maintained and can be estimated in the regime of the forced
overdamped oscillator [36].

The efficiency of the plasmon near-field coupling channel
may be displayed by the ratio of the probability of energy ab-
sorption in the semiconductor via the mediation of the surface
plasmons (per single incident photon, qm) to the probability of
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energy absorption in the semiconductor directly from the plane-
wave illumination (also per single photon, q0, as given by Eq.
(22)). The probability qm can be expressed according to (20),

qm = βNmδw

(
εE2

0V
8πh̄ω

)−1

. (29)

The driving force for plasmon oscillations is the electric field
of the incident plane wave, whereas the damping force is the
energy transfer described by 1

τ′ as given above. The resulting
red-shifted resonance, with a simultaneously reduced ampli-
tude (as for damped and forced oscillator), corresponds to the
stable balanced transfer of incident energy via plasmons to the
substrate. Therefore,

qm =

 βC0
128

9 π2a3 µ
√

µ∗nµ∗p
m2 (h̄ω− Eg)

e6n2
e ω

h̄4ε3 f 2(ω), for aξ � 1,

βC0
128
9

√
2π2a2 µ3/2

m2

√
h̄ω− Eg

e6n2
e ω

h̄3ε3 f 2(ω), for aξ � 1,
(30)

where f (ω) = 1√
(ω2

1−ω2)2+4ω2/τ′2
corresponds to the ampli-

tude factor for the forced and damped oscillator and D0 =
e2ne E04πa3

3m f (ω); C0 = Nm4/3πa3

V , V is the volume of the semi-
conductor, Nm is the number of metallic nanospheres, and

ξ =

√
2(h̄ω−Eg)(m∗n+m∗p)

h̄ .
The ratio qm

q0
can be thus written as,

qm

q0
=


8π2a3 βC0

√
m∗n(m∗p)5/2e4n2

e ω2 f 2(ω)

3
√

2µ3/2m2
√

h̄ω−Eg h̄3ε2 , for aξ � 1,

8π2a2 βC0(m∗p)2e4n2
e ω2 f 2(ω)

3µm2(h̄ω−Eg)h̄2ε2 , for aξ � 1.
(31)

The above results are consistent with the experimental behav-
ior [3, 30, 36]. To compare with the experiment measurements
we estimate the photocurrent in the case of a silicon metalli-
cally modified photodiode I′ = |e|N(q0 + qm)A, where N is the
number of incident photons; q0 and qm are the probabilities of
single-photon absorption in the ordinary photo-effect and of
single-photon absorption mediated by the presence of metallic
components, respectively; and A is the amplification factor [47].
The normalized photo-current (measured in the experiment [3])
can be thus expressed as follows,

I′

I
= 1 +

qm

q0
, (32)

where I = I′(qm = 0) and the ratio qm/q0 is given by Eq. (31).
It is worth noting that the strong photocurrent enhancement

was observed at the relatively low surface concentration of metal-
lic nanocomponents. However, in many real solar cells, experi-
mentally observed enhancements due to metallic nanocompo-
nents are not so pronounced [7]. This is because some additional
effects contribute in a competitive manner, such as the reflec-
tion of incident photons or destructive collective interference
in a dense metallic coverage [4, 15], surface state perturbations
caused by deposited nanoparticles, specific type of deposition
and other. These effects are phenomenologically accounted for
by the fitted experimental factor β.

3. NUMERICAL MODELING UPON IMPROVED COMSOL

A. Modification of the dielectric function of nanoparticles with
plasmon

The wide spread off in the literature numerical calculations of ab-
sorption enhancement due to incorporation of metallic nanopar-
ticles in the solar cell are performed using as a prerequisite the

material optical parameters taken from various experimental
data. They are, however, addressed to bulk materials or rarely
for thin films and do not display important behavior genuine for
nanoparticles. Their behavior can be significantly different since
in the nano-scale some quantum effects becomes to be especially
important in described above.

The dielectric function can be divided into real and imaginary
part ε = ε′ + ε′′ which are connected to refractive index and
absorption coefficient, respectively.

ε
′′
=

nc
ω

α(ω) (33)

where n is a real part of the refractive index and α is the
absorption coefficient of the semiconductor defined as

α(ω) =
h̄ωqm(0)

I0
, (34)

where and I0 is the incident electromagnetic energy flux and
qm(0) is the number of transitions per unit volume and time
defined according to eq. 29 for the case of Si with metallic
nanoparticles on the top and eq. 22 in the case without nanopar-
ticles. The photon absorption probability was obtained using
Fermi Golden Rule as described in the previous paragraphs of
the present paper. For nanoparticles of size 5− 55nm and Si
substrate the parameter aξ is bigger than 1, so we use the second
case of eq. 20.

The plasmon amplitude D0 can be obtained from the formula
for total power of a dipole radiation,

D2
0 =

4πε0λ4

(2π)4c

∫
Σ

S · dσ, (35)

where S Poynting vector and Σ is the nanoparticle surface. The
total energy dissipation inside the dispersive material can be
calculated as [48]:

Q =
ω

4π
(ε
′′
E2 + µ

′′
H2). (36)

The absorption enhancement A, may be defined as the ratio
of absorption with and without nanoparticles and is calculated
according to eq.36 by integrating of square of the normal electric
field component over the semiconductor substrate volume:

A(ω) =
ω
4π

∫
V nε

′′
m(ω)E2

with NPdV
ω
4π

∫
V nε

′′
0(ω)E2

without NPdV
(37)

where ε
′′

m(0) is the imaginary part of dielectric function modified
for the case with and without nanoparticles, respectively. In the
calculations based on the measured refractive index of Si (after
[49] ) the imaginary part of dielectric function of Si was defined
as ε

′′
(ω) = 2n(ω)k(ω).

B. Calculation model setup
In our calculations we have used the finite element method
(FEM) implemented in the commercial software COMSOL Mul-
tiphysics 5.0, specifically we have worked with Wave Optics
module (http://www.comsol.com).

The simulation cell consisted of three domains: air at the top,
semiconductor at the bottom and metallic nanoparticle at the
center laying on the semiconductor substrate.

The calculations were conducted in two steps: first within
full field formulation we have calculated the distribution for the
electromagnetic field without the nanoparticle and then, in the
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second step, we have used this field as the background field
in the scattering field formulation for the structure with the
nanoparticle.

In the first step, within the full field formulation the incident
light was set as a planar TM wave propagating along z-axis. To
do so, we have used two ports: the first for defining incoming
plane wave parameters (on the top boundary) and the second
to absorb wave transmitted through the substrate (at the bot-
tom). On the side boundaries we defined the Floquet boundary
conditions, which allowed us to effectively simulate an infinite
system.

In the second step instead of periodic conditions, we have
defined additional domain surrounding the calculation cell and
absorbing all outgoing light (so called Perfectly Matched Layers).
Such an approach allowed us to reduce the simulation area and
to effectively simulate rare nanoparticle coverings, neglecting,
however, interparticle interaction. This is justified only for suffi-
ciently diluted coverings, just as in the experiment [3], where pla-
nar density of metallic nanoparticles is of order 107 − 108/cm2.
For so distant separation of nanoparticles there are unimportant
also corrections induced by a regular or random distribution of
metallic compounds. We have verified [50] that the collective
effects including destructive interference of incident light may
affect the plasmon photovoltaic effect at much larger (by several
orders) densities of coverages, so these effects can be safely ne-
glected in the presented here simulation. The thickness of the
Si substrate and the width of the computational cell were set
400 nm, where the thickness of the air domain was assumed 300
nm. The mesh size was adjusted to the refractive index of the air
and Si domains in such a way to ensure at least 5 elements per
wavelength. The nanoparticle was mashed with element size
a/5.

The optical properties of the nanoparticle and substrate was
modeled by the dielectric function. We have performed calcula-
tions with dielectric function of Si modified on the basic of FGR
as described in previous sections of this article and compared
them with calculations performed using the measured dielectric
data of Si from [49]. The dielectric function of the Au was mod-
eled by Drude model with parameters ε∞ = 9, ωp = 9 eV and
damping γ defined as in eq.28.

Fig. 2. Photo-current gain calculated without (left panel) and
with (right panel) quantum-corrected Comsol simulations for
Au nanoparticles radii 25, 40 and 50 nm with planar concentra-
tions 6.6× 108, 1.6× 108 and 0.77× 108 1/cm2, respectively (as
in experiment [3]—cf. Fig.3).

Fig. 3. Dependence of the normalized photocurrent I ′
I (λ)

given by the analytical formulae (32) and (31): comparison
with the experimental data (red) after [3] for (left) a = 25 nm
and ns = 6.6 × 108 1/cm2, (center) a = 40 nm and ns =
1.6× 108 1/cm2, and (right) a = 50 nm and ns = 0.8× 108

1/cm2 (H = 3 µm).

C. Exemplary results and comparison with experiment

In order to demonstrate feasibility and accuracy of the improved
Comsol simulation we present our simulation of the experimen-
tal setup as in [3] including into Comsol calculus the described
above formulae for plasmon damping due to coupling of plas-
mons with band electrons in the semiconductor substrate. The
quantumly improved Comsol simulation—Fig. 2—very well re-
produces the experimental data (after [3]) with respect to proper
size dependence of the photo-current gain ( I

I ′ plotted in Fig. 2)
in satisfactory coincidence with the experiment for the maxima
positions, heights and widths of spectra for different radii of
metallic nanoparticles.

The pretty good coincidence with the same experimental data
is also achieved by application of our analytical approach given
by Eqs. (32) and (31), as visualized in Fig. 3. The apparent
agreement of the numerical simulation, analytical theory and of
the experimental data proves the consistency and significance
of the presented quantum approach to modeling of plasmon
photo-voltaic effect. Noticeable is the success of here formulated
quantum upgrade of the Comsol software, which considerably
increases its usability, fidelity and precision in the field of nano-
plasmonics for photovoltaics.

4. INCLUSION OF NON-LOCAL OPTICAL RESPONSE IN
METALLIC NANOSPHERES

Besides of quantum effects in plasmon mediation of the photo-
voltaic effect in metallically modified solar cells, we also address
to another quantum type problem arising in nonlocal plasmon
response in metallic nanoparticles. We examine this effect gov-
erned by the electron microscopic dynamics in metallic nanopar-
ticles in order to assess a nanoparticle size at which the nonlocal
effect is important and to evaluate a potential role of nonlocal
quantum corrections in plasmon aided photovoltaic effect.

The nonlocal effects are spatially governed by the dispersion
of plasmons and by particularities of electron dynamics on the
scale of a metallic nanoparticle, se we denominate effects of
electron coupling over a short distance [51]. The details of mi-
croscopic short distance electron interactions are inherent to the
solution for the displacement field ~D of the Coulomb equation,

∇~D(t,~r) = ε(~r)~E(t,~r)

⇒ ~D(t,~r) =
∫

dr′ε(~r,~r′)~E(t, r′). (38)
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In homogeneous media, we can assume a dependence on the
distance |~r−~r′| rather than on the specific position of electrons,
which allows to solve Maxwell’s equations in Fourier space

~D(ω,~k) = ε(ω,~k)~E(ω,~k). (39)

The dependence on the wave vector~k enables us to describe
nonlocal electron-electron interaction (Coulombic force) and
electron diffusion effects. It is important to note that the large-
k response that originates in the sub-wavelength oscillations
of plasmonic excitations is not only an inherent prerequisite
for many intriguing wave phenomena, but also particularly
sensitive to nonlocality. However, the common local response
approximation of material parameters has no upper wavelength
cut-off, does suppress short-range electron interactions which
can strongly dampen the response beyond ω/vF.

Advances in fabrication of nanostructures and experimental
access to particle sizes and interparticle spacings below 10 nm
to directly or indirectly observe such effects [52–59] have led
to an increased interest in semi-classical approaches towards
the incorporation of damping and interaction effects stemming
from the quantum nature of charge carriers. Efforts to extend the
original formulation of light scattering by a sphere by Gustav
Mie [19] which excludes electro-optical bulk and surface effects
of the conduction band electrons are made since the 1980s [60–
64]. Advanced material models can be derived from perturba-
tive theories [23, 51], by separating the free electron dynamics
from the core electron polarization via the hydrodynamic equa-
tion for an electron plasma [22–26, 65–73] and from microscopic
theories [30, 36, 74]. It was shown within the hydrodynamic
framework that the electron spill-out can be adequately incorpo-
rated [75].

We show in the corresponding section below that accounting
for nonlocal response obtained with the hydrodynamic approach
leads to longitudinal pressure waves as additional solutions to
the combined system of differential equations of the electro-
magnetic wave equation and (linearized) Navier-Stokes equa-
tion. These waves primarily create additional damping channels,
however, they also yield resonant enhancement effects [26, 71].

A. Electron dynamics with the hydrodynamic model
In recent years, a great effort to theoretically [22–26, 65–73] de-
scribe and subsequently to experimentally [55–57, 59] verify the
effect of spatial dispersion in metals was made. In the hydrody-
namic approach, coupling the electromagnetic wave equation

∇×∇× ~E− k2εb~E =
4πik2

ω
~jind (40)

to the (linearized) Navier-Stokes equation

~jind =
i

ω + iγp

(
ω2

p

4π
~E−

(
β2 + D(γp − iω)

)
∇ρind

)
(41)

allows treating the conduction band electrons as a plasma sub-
ject to short-ranged interaction such as the Coulomb force in-
cluded in the pressure term p = β2ρind and electron diffusion
via the diffusion coefficient D. It is convenient to abbreviate
β2

GNOR = β2 + D(γp − iω) (where GNOR refers to the general-
ized nonlocal optical response model [24, 25]). With this, we can
write the wave equation in a compact form

∇2~E + k2ε⊥~E = ηρind, (42)

where η ≡ 4π
(

1
εb
− k2 β2

GNOR
ω(ω+iγ)

)
and ε⊥ = εb −

ω2
p

ω(ω+iγp)
. To-

gether with the continuity equation ∇~jind = iωρind, we readily
obtain a separate wave equation for the induced charges

−β2
GNOR∇

2ρind =
ε⊥
εb

ω(ω + iγp)ρ
ind, (43)

where ∇~E = 4π
εb

ρind was used. This yields the wave vector of
the longitudinal field and motion of electrons

q =
1

βGNOR

√
ε⊥
εb

ω(ω + iγp). (44)

Thus, this system of coupled equations yields an additional
wave solution, longitudinal in character, and can be solved
for different geometries leading to nonlocal extensions of e. g.,
Mie [22, 23] and Fresnel coefficients [71]. Typically, hard-wall
boundary conditions are assumed for the additional boundary
condition~jind ≡ 0 prohibiting electrons to trespass into the di-
electric surrounding, using a uniform electron density n0 inside
the material and neglecting the electron spill-out. However, it
was shown that a smooth surface distribution of electrons can
be taken into account accurately [75] and that the hydrodynamic
model is capable of dealing with the spill-out by solving the
above equations with position-dependent material parameters
ωp(z)2 = 4πn0(z) e2

me
. Note that the finite value of =(1/q) leads

to a finite distribution of induced boundary charges upon illumi-
nation in contrast to the delta-like accumulation at the surface
within classical theory. The characteristic penetration depth
=(1/q) is hereby comparable to the electron spill-out [23, 76].

Next, we present the derivation of nonlocal Mie scattering
coefficients of individual spheres and nanoshells described with
the hydrodynamic model [23]. The resulting scattering matri-
ces can be used to investigate interacting spheres with a mul-
tiple scattering method [77]. The hydrodynamic model has no
free parameters which makes the resultant nonlocal response
for the short distances involved in the interaction between the
charges of metallic nanoparticles the sole source of these effects,
in contrast to the quantum-confinement picture for plasmon
broadening presented by of Kreibig.

The derivation of the nonlocal Mie coefficients for spherical
geometries starts from Eq. (42) which describes the evolution
of the electric field, together with Eq. (43) which is the wave
equation for the induced charge.

It is convenient to use an expansion of the electric field into
scalar functions [78] as

~E = (1/k)∇ψL +~LψM +
∇×~L

ki
ψE, (45)

where~L = −ih̄~r×∇ is the angular momentum operator, and
the superscripts E, M, and L indicate electric, magnetic, and
longitudinal components, respectively. The additional boundary
condition, Eq. (41), becomes with~̂r~j = 0

β2 ∂

∂r
ρind =

e2n0
mek

(
∂

∂r
ψL +

1
r

l(l + 1)ψE
)

(46)

in terms of the scalar functions and the angular momentum
number l using the identity−~r · (∇×~L) = (−i~r×∇) ·~L = L2 =
l(l + 1). The boundary conditions for the electric and magnetic
field components result in the continuity of ψM, (1 + r ∂

∂r )ψ
M,

ψL + (1 + r ∂
∂r )ψ

E, and εψE for the scalar functions.
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Fig. 4. Effect of spatial dispersion on gold nanoparticles: A
strong blueshift of the localized surface plasmon resonance
(LSPR, black) is observed for small metallic nanoparticles with
respect to the common local response approximation (Mie,
solid). Furthermore, the inherent damping effects in nonlocal
response theory (dashed) lead to a reduction of the optical
response as shown here for the extinction cross section (blue)
normalized to the illuminated surface area.

The magnetic and electric scalar functions ψν (ν = {E, M})
obey a Helmholtz equation of the form (∇2 + k2ε⊥)ψ

ν = 0 and
can therefore be expanded in terms of spherical Bessel functions

ψν = ∑
L

ψν
L jL(k⊥r).

Similarly, the electron density is expanded into

ρind(~r, ω) = ∑
L

ρL jL(qr),

with the longitudinal wave vector q given by Eq. (44). The
longitudinal scalar function satisfies a different wave equation,
namely ∇2ψL = 4πk/εb, which we find from the Coulomb law
∇εb~E = 4πρind. Note that the above analysis is needed for the
metal region, where the electric (ν = E) and magnetic (ν = M)
field are given by Aν

l jL, with jL = jlm(k⊥r). Outside the par-
ticle, the longitudinal scalar function vanishes since there are
no induced charges in the dielectric surrounding. Therefore,
the electric scalar field is given by jlm(k0r) + tν

l h+lm(k0r) with
unknown parameters Aν

l and scattering matrix tν
l . Exploiting

the boundary conditions stated above, we find a set of linear
equations for the magnetic and electric scattering matrices. In-
terestingly, the magnetic scattering matrix is unchanged with
respect to the local theory, indicating that magnetic modes are
not sensitive to the induced longitudinal modes. The scattering
matrix for the electric scalar function is more complicated than in
the local approximation due to the appearance of ψL in the metal
region that contains information on the nonlocal response. The
additional boundary condition yields a prescription to calculate
ρL.

The local scattering matrix can then be extended by a single
parameter describing nonlocal behavior of the electron motion
in the conduction band

gl =
l(l + 1)jl(θ⊥)jl(qa)

qaj′l(qa)

(
ε⊥
εb
− 1
)

(47)

and becomes with θ0 = ka
√

ε0 and θ⊥ = ka
√

ε⊥.

tE
l =

−ε⊥ jl(θ⊥)[θ0 jl(θ0)]
′ + ε0 jl(θ0)([θ⊥ jl(θ⊥)]′ + gl)

ε⊥ jl(θ⊥)[θ0h+l (θ0)]′ − ε0h+l (θ0)([θ⊥ jl(θ⊥)]′ + gl)
, (48)

Fig. 5. Reduction of the maximum field enhancement of gold
nanoparticles with spatial dispersion: Maximum field en-
hancement factor EF=|~E|2/|~E0|2 as a function of (a) particle
radius and (b) permittivity of the surrounding medium.

where the primes indicate differentiation with respect to the θ
variables. The scattering coefficients tν

l fully contain the optical
response of the particle for an external observer.

Note that the nonlocal parameter g vanishes under the as-
sumption of local response (β→ 0⇒ gl → 0) fully recovering
the original Mie coefficients [19, 79]. This allows us to study
nanoparticles with only a small correction in available numeri-
cal procedures.

Likewise, for a nonlocal metal nanoshell the magnetic re-
sponse is insensitive to the nonlocal properties of the material.
The electric part, however, mixes with the longitudinal compo-
nents from the two interfaces of the metal intermediate layer.
For the electric scalar functions, we obtain a linear system of six
equations that can be solved with linear algebra in practice.

The expressions obtained are used to calculate e. g. the ex-
tinction cross section of an individual sphere via

σext =
2π

k2ε0
∑

l
(2l + 1)Im(tE

l + tM
l ). (49)

B. Comments on the significance of nonlocal plasmon effects
The main observation for nonlocal theories are a blueshift of the
plasmon resonance with respect to the common local approxima-
tion, see Fig. 4, and plasmon broadening, in particular tied to the
diffusion coefficient which can be set to fully capture the broad-
ening found with Kreibig damping [24, 25]. In the present work,
we have D ≡ 0. The damping associated with nonlocal response
is shown in Fig. 5 in terms of the local field enhancement.

The presented semi-classical approach towards inclusion of
aspects of mesoscale electron dynamics in metal nanoparticles
has the advantage of analytic expressions fully compatible with
existing computational procedures. The scattering matrix pre-
sented here can be used in standard Mie calculations and also
to obtain optical properties of complex structures, e. g. with a
multiple scattering approach [77].

The presented nonlocal theory introduces a novel type of
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electron motion, longitudinal pressure waves, in addition to the
transversal modes stemming from the classical electromagnetic
wave equation. This additional electronic excitation offers fur-
ther damping channels due to energy lost in this dampened mo-
tion. Here, the Mie coefficients were derived from the coupled
system of optical and electronical excitation yielding modified
scattering matrices that can again be implemented in existing
methods. The properties of the longitudinal wave are given by
analytic expressions such as their wave vector (Eq. (44)) and
their importance with respect to the common Mie solution is
entirely captured in the additional term (Eq. (47)).

It is noteworthy that the hydrodynamic theory allows fully
retarded calculations for not only spherical particles as re-
viewed here, but also planar geometries (nonlocal Fresnel co-
efficients) [71] and even regular two-dimensional particle lay-
ers [26]. Although the presented quantum phenomena are highly
localized they can have a strong impact on a larger particle or
system in the interplay with long-range retardation effects. In
addition, particle layer modes can couple to nonlocal modes
within particle arrays and thus increase their impact on a larger
scale [26].

Nevertheless, from the above presented analysis it follows
that nonlocal quantum corrections do not change significantly
the Mie-response for metallic nanoparticles of size as are utilized
for metallically modified solar cells. The strongest nonlocal ef-
fect is a large blue-shift of plasmon resonance in nanoparticles
below 3 nm for their radius (cf. Fig. 4 and Fig. 5). Despite
this shift in frequency the related correction to plasmon attenua-
tion is rather small and far lower than the irradiation induced
plasmon damping discussed in paragraphs 2− 3 of the present
paper. So we can conclude that nonlocal quantum corrections
to plasmon response do not modify significantly the plasmon
aided photovoltaic effect, though nonlocal effects elucidate some
previously unclear spectral property of ultra-small nanoparticles
(up to ca. 3 nm for radius) yielding the blue-shift of the reso-
nance, opposite to the red-shift caused by the ordinary spill-out
in the same scale of nanoparticle size. [29].

5. SUMMARY

Quantum effects due to dipole near-field coupling of surface
plasmons in metallic nanoparticles with band electrons in the
semiconductor substrate have been accounted for in terms of the
Fermi golden rule in order to determine damping rate of plas-
mons in the regime of plasmon aided ptoto-effect. This coupling
opens a very efficient short-time channel for energy transfer from
plasmons to electrons which results in giant damping of plas-
mons. The effect strongly depends on the size of nanoparticles
deposited on the top of the solar cell. The trade-off in efficiency
growth with respect to opposite size effects is demonstrated and
optimal metallic component size is identified for photovoltaic
plasmon applications. The found analytical formula for the
damping rate is utilized to upgrade the Drude-Lorentz formula
for the dielectric function of the metallic component. The im-
proved dielectric function has been next input as a prerequisite
to numerical simulation of solar cell metallically modified upon
the commercial software-system Comsol. The strong corrections
are evidenced in comparison to previous conventional Comsol
approach neglecting damping of plasmons due to their quan-
tum coupling in the near field-zone with electrons. The results
evidenced high significance of the presented quantum improve-
ment of former classical wide spread off numerical tools like
Comsol or Mie-type packets.

We have also looked at different types of damping mech-
anisms, such as electron collision, irradiation and interaction
effects. We found analytic expressions compatible with exist-
ing numerical procedures. For the smallest nanoparticles with
radii of few nm, not exceeding 10 nm, the spatial dependence
of electron scattering on other electrons, phonons, defects and
admixtures and on boundary of the metallic nanoparticle char-
acterizes the dissipation of energy of plasmons and yields a
damping induced correction in the spectral position of the sur-
face plasmon frequency in agreement with experiments. For
larger particles (with radii beyond 10 nm), the plasmon damp-
ing rapidly grows and is overwhelming by the Lorentz friction
of plasmon oscillations. The related irradiation energy losses
dominate over other channels of plasmon damping in nanopar-
ticles with radii larger than 10 nm in the case of free plasmon
oscillations (when the nanoparticle is placed in vacuum or im-
mersed in a dielectric medium). The irradiation losses addition-
ally strengthen when in the vicinity of the metallic nanoparticle
another electrically active system is present, e.g., a band elec-
tron system in a substrate semiconductor on which the metallic
nanoparticle can be deposited. Near-field coupling of plasmons
with the substrate band electrons opens a very effective energy
transfer channel resulting in a giant damping of plasmons for
all size-scale of metallic nanoparticles, though with specific size
dependence identified by the Fermi golden rule. This damp-
ing is greater than plasmon attenuation caused by the Lorentz
friction of plasmons in a dielectric medium or vacuum and al-
lows for plasmon mediation in the photovoltaic effect. Inclusion
of this size dependent damping in the dielectric function for a
metallic nanoparticle used in the Mie approach to plasmons or
in the other version of Maxwell equation solution (typically by
finite element method for solution of differential equations as
applied in the commercial system Comsol) appears to be crucial
for any reliable utilization of these methods to model plasmon
effect in metallically improved solar cells. Though details of
the e-m field distribution are precisely displayed by the Comsol
software which is of high importance in the case of various size,
arbitrary shape and deposition type of metallic nanoparticles,
the negligence of the imaginary part of the plasmon energy (its
damping) caused by described above irradiation effects leads to
a very big error. Thus, for a reliable fit of numerical simulation
(of Comsol or Mie type) with experimental observations of plas-
mon aided solar cells, the inclusion of the irradiation induced
plasmon damping, highly exceeding the electron scattering rate,
is necessary.
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