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Abstract 

Statistical considerations are applied to a general equation of motion 
for cup anemometers in a turbulent wind. It is shown that the relative 
overspeeding AS/S can be expressed as: AS/S « ifjAtJ*-) + c Iw

2» 
where I . and I are the horizontal and the vertical turbulence intensities, s w * 
respectively. The function J depends on the shape of the spectrum of 
horizontal turbulent energy, I i s the distance constant for the anemometer 
and A is a characteristic length scale of the horizontal turbulence. The 
constant c is of order unity. 

If A is suitably chosen as the scale of the energy-containing eddies, 
then Jg is satisfactorily approximated by Jg » (1 + * 8 / l 0 ) in most at
mospheric applications. 
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1. INTRODUCTION 

The cup anemometer is widely used because it is a simple, sturdy and 
reliable instrument that generally only requires a minimum of maintenance. 
A further major advantage from an operational point of view is that there is 
no need for alignment into the wind direction, so the cup anemometer is 
ideal for continuous measurements. A disadvantage is the co-called over-
speeding caused by the nonlinear response to fluctuating winds. Cup anem
ometers respond more quickly to an increase in the wind speed than to a 
decrease of the same magnitude. Consequently, in a turbulent flow the 
mean wind speed will be overestimated, if the instrument has been cali
brated in a laminar flow. It has been shown by Busch (1965) that the over-
estimation is proportional to the variance of the horizontal wind speed div
ided by the square of the mean wind speed, i. e . , proportional to the square 
of the horizontal turbulence intensity. However, it seems intuitively clear 
that a fast-responding cup anemometer will show less overspeeding than a 
slow-responding cup anemometer, if the two are exposed to the same wind 
field. In the following we establish a relation between overspeeding, turbu
lence intensity, and the ratios between the length scale of the instrument 
and the scales of the turbulence. 

2. CUP ANEMOMETER DYNAMICS 

We shall take our starting point in the work of Wyngaard et al. (1 971), 
in the following referred to as WBL. They use the rather general equation 
of motion 

IRQ £ I R ^ = T(RQ, S, W). (1) 

Here I denotes the moment of inertia, R the cup arm, Q the angular 
velocity, and T the torque exerted on the instrument by the wind field with 
the total horizontal component S and the vertical component W. The angu
lar position of the cup wheel does not appear in the equation, because 6 and 
T represent quantities that are smoothed over the period of time that it 
tal es the cup wheel to turn the angle 2x/N, where N is the number of cups. 

In a steady, horizontal wind, the torque is zero, so we have 

0 • 0 (2) 
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and 

T(R Q « RC^ S * S^ W * 0) » 0. (3) 

We consider the case in which S(t) and W(t) are second-order, station
ary, stochastic processes satisfying 

<S > * SQ (4) 

and 

<W> » 0. (5) 

where the brackets here and in the following denote ensemble averaging. 
The fluctuating quantities s(t), 0(t) and «(t) are defined by 

s(t) - S(t) - SQ, (6) 

e(t) = W(t)/S0 (7) 

and 

«(t) = fc(t)- UQt (8) 

where Q can be found by solving (3). The ensemble means of s(t) and 6(t) 
are zero. 

From various symmetry considerations, WBL argued that the second-
order dynamic equation for the fluctuating quantities can be written 

*.1T *F ' f + » 3 -bJ -5 - - (a -b )^ . + ce2. (9) 
o o o 5^ o o urt 

O O 

where s, b and c are constants in the sense that they do not depend on the 
fluctuating quantities, and * is a characteristic time. For later con
venience, we introduce the so-called distance constant l by 

*o ' Vo- <10> 

In order to find an expression for the overspeeding we take the ensemble 
average of (9): 
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o Si **o yo fil 
o o 

(11) 

The left-hand side of (11) is the relative overspeeding, since it i s the 
mean of the excess response divided by the response to a constant wind 
speed of magnitude S . Unfortunately, the right-hand side contains terms 

2 proportional to (su) and (w ) . These terms cannot be evaluated without 
additional information on *»(t). 

To overcome this problem, we assume that | s | / S _ l * ! / 0
o a™* 1*1 

are so small that the solution to the linear perturbation equation 

*o « . * _ s n9X 

o o o o 

can be used to relate (s*») and (•» ) to ( s ) with sufficient accuracy. 
The solution to (12) with the initial condition »(- oo) = 0 is 

oo s 

£ - • 7 - f s ( t - f ) exp(- j 2 f ) d f . (13) 
o o J_ o 

It is easily shown mat 

fiT o o S* o •* *o 
o o o 

where °f " ( • ) is the variance and P8(T) the autocorrelation function for 
the time series s(t). 

Using Taylor's hypothesis to convert the temporal autocorrelation 
function to a spatial autocorrelation function, we can write the expression 
(11) for overspeeding 

a2
 r

w *2 

^ • * -J <' - T- J %<*> •*9('X/lom + c -£-. (15) 
S* o * w S* 

o o o 
where 

•»,(*) • P . W V ' (16) 
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2 
and • is the variance of the vertical wind velocity component. 

If we introduce the speed energy spectrum * (*) by 

ao 

-co 

then (15) may also be written 

0 0 ( i m)2 a2 

o sz
ft J i + ( t r t » r 

da + c - £ - . (18) 
00 * O ' O 

From wind tunnel measurements, WBL found that a • 0. 96 and c = 0.67 
for their cup anemometer. Hence, both horizontal and vertical wind fluc
tuations should give rise to an overestimation of the mean wind speed. In
deed, more detailed theoretical considerations seem to show that a should 
be close to unity. 

3. SCALE RELATIONS 

Eq. (18) forms the basis for our evaluation of the overspeeding of a cup 
anemometer. As demonstrated by WBL, the coefficients a and c for a 
given cup anemometer can be determined once and for all in a wind tunnel. 
In each application we t 
addition to the quantity 

2 2 
In each application we still have to estimate the variances o and o in 

0 0 < * » > 2 

JB • f 2 r t . (» )d« . (19) 
00 % O ' 

The distance constant t can also be determined in a laminar wind 
o 

tunnel, whereas the speed spectrum •_(») depends on the actual wind field. 
As an example, let us consider a situation with small wind direction 

fluctuations. In this case the mean wind speed is approximately equal to 
the mean of the wind velocity component U in the mean wind direction. 
The reason i s that up to the third order in the horizontal components u and 
v of the fluctuating part of the wind vector, the following relation holds 

»o ' V 1 * f <v2>/Uo> • <20> 
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To the same approximation, we have a relation between the fluctuating 
parts of S and u and v: 

s « u + ^<v2 - < v 2 » / U 0 . (21) 

We neglect the second-order terms in (20) and (21) and set the spectrum 
t (B) equal to the oue-dimensional horizontal spectrum F . . (a) for u: 

•8v») - F n ( a ) . (22) 

If the fluctuating quantity u has an integral scale A , and if the spec
trum F . . (s) fulfils certain rather weak conditions which are actually ful
filled in most atmospheric applications, then for a ( ( t we have 

2 F- .Wdm » 1 - 1 - ^ 2-
- 0 0 * 0 - CO * O 

•"=*•/ T77TT " -l»'l°- (23) 

- 00 O 

If there is no integral scale, or if it i s not much smaller than the 
distance constant, then this approximation i s invalid. Instead, we may 
assume, for instance, that an inertial subrange exists, and that the cor
responding expression for the one-dimensional spectrum, 

F11("> s V5*^T" 1*1 ~ 5 / 3 • <24> 
• u 

can be used over a sufficiently wide % range. The meanings of the quan
tities in (24) are: € i s the rate of viscous dissipation of turbulent energy, 
ø the root mean square of u, and e the so-called Kolmogorov constant, 
which i s approximately equal to 1.5. The expression for J 0 becomes 

i s « 2 l
a

2 / 3 

J. • tffc «•** <T» < <25> 
where 

a- ( t 8 / ! ) 1 / 4 (26) 



- 10 -

is the Kolmogorov dissipation scale and Re the Reynolds number based on 
H , o , and the kinematic viscosity v. 

Eqs. (23) and (25) show examples of how overspeeding may be related 
to the ratios between the distance constant and the length scales of the 
horizontal turbulence. 

Thiough (25) we may also relate the overspeeding to the friction 
velocity u» a n d m e height of measurement z, provided that the Monin-
Obukhov similarity hypothesis holds and that there is local balance between 
the production of turbulent energy and viscous dissipation. Then we have 

u 2 /3 £ 2 /3 o 
«> _ _ 18 « a • ( f ( z , z} ( o, ' + c - V (27) a 
o 

5T?3jT73 J T ^ m l T l " ^ , *T"' ^ 
o o 

The quantities k, L and • are the von Karman constant, the Monin-

Obukhov length scale and the non-dimensional wind-shear, respectively 
so in 

z/L 

We may also introduce the function + m (r ) Dy 

•m<f>=J C- 'm^of 1 ' <28> 

in which case (27) can be written 

z 2 2/3 2 

—0
 a ̂  nk —: "TT" hr> + c r* - (29) 

where z denotes the roughness length. 
In order to illustrate the meaning of (29) let us assume that the constant 

2 
a is equal to one, and that o is equal to zero. We may rewrite (29) so 
that the relative overspeeding is expressed by 

o 

For the function fm(-r)> we adopt the expression 
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(1 - 15 £ ) for j - < 0 

v<r> •< (31) 

r Ior r w 1 + 5 5- for i- > O 

suggested by Carl et al. (1973). 
The function f is shown in figs. 1 and 2 as contour plots for two dif

ferent values of JL/*Q. 
As an example, suppose that a rather heavy, standard cup anemometer, 

with distance constant equal to 20 m, is located at a height of 2 m over a 
surface with roughness length equal to 10 cm. In this case the relative 
overspeeding will amount to about 10% under neutral conditions and to about 
20% for z /L * - 0.2. For a light cup anemometer with distance constant 
2 m, the corresponding numbers are 2. 5% and 4. 5%, respectively. 

The function f in (30) was evaluated under the assumption that the 
spectrum is given by (24) for all values of *, which implies that the integral 
scale is infinite. Eq. (30) will become inaccurate when ft is not small 
compared to the length scale of the horizontal turbulence. To estimate the 
error introduced by use of (24), we select five different expressions for the 
spectrum F«. (*) and compute the ratio between the overspeeding pertaining 
to each of them and the overspeeding as computed with (24). The five dif
ferent spectral expression are chosen so that they coincide with (24) in the 
limit | * | •* GO. The five expressions are 

3 5 / 3 

o ) # . % . w (o),„! ! i ! 
3 I N 

F,:' ' (») - F, »"'(»J 2 rrr (Kaimal et a l . , 1 972) (32) 

C f j l f l ) 7 

o 

( 3 ) s / 8 

F1t
(2)(») • r,\°\*J * j - m - (von KarmSn, 1048) (33) 

c + !<r;> > 
O 

34'3 If i 
F n

W ( » ) • *t}°H*J ^ 4/5 (Davenport, 1901) (34) 
0 • 3(jr> > 
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3 

Fn
(4)(») = F,\%Q) 8 , ^ , 5 / ^ ( K a i m a 1 ' , 9 7 3 ) < 3 5 ) 

2 | ^ l 
1/3 

Fn<5)(.) - F , ^ ) a — r - . (36) 
(1 + 2 ( i - ) ) 

o 

where F . . ' ° ' refers to the spectrum (24). 

For each spectrum, the peak wave number « must be adjusted so that 

oo 
J Fn<w>(»)d» - T, n - 1 , 2 5 . (37) 
-oo 

The reciprocal of * is a horizontal length scale of the turbulence. 
The five spectra are displayed in fig. 3, in which the peak positions 

have been made to coincide for the sake of comparison. 
The result of the investigation is shown in fig. 4, where JD /J„ 

is plotted as a function of *0*0- Here J * ' is given by 

j W . f — i - ° t ! - r.,<»»(.)d. (38) 
-co » + < V > 

which may be interpreted as the relative overspeeding divided by the square 
of the turbulence intensity. Fig. 4 shows that use of (24) generally leads to 
an overestimation of the overspeeding of between 0 and 50%. 

Finally, (36) is evaluated for the five spectral shapes (32) through (36). 
In addition, the spectrum 

F,/*)(«) • i JL 2 — (39) 
11 * *o 1 • ( » / » / { } 

is included in the investigation. For this spectrum the integration in (38) 
can be done analytically to yield (cf. (23)) 
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J
8
6) * W^W- ( 4 0 > 

Fig. 5 shows J ' , * 1, 2, . . . . 6, as a function of * 0 » 0 . 

4. CONCLUDING REMARKS 

A statistical method was applied to a general cup-anemometer equation 
of motion in order to determine the overestimation of the mean wind speed 
in a turbulent wind. It was shown that the overapecding depends not only on 
the turbulence intensity, but also on the shape of the speed energy-spectrum, 
e_fc). If the energy-containing part of the spectrum is well described in 
terms of the variance and a length scale A then the relative overspeeding 
AS/S can be written 

where I and I are the horizontal and the vertical turbulence intensity, 
respectively, I is the cup-anemometer distance constant, J a function 
of *_/A , and c a constant. Bom J and c are believed to be less man 
unity, and consequently the relative overspeeding can never exceed the sum 

"*:£«—..—-_*.—_.. 
integral scale of the horizontal turbulence, then, from quite general as
sumptions about the existence of an inertial subrange and Monin-Obukhov 
similarity with local balance between production and dissipation of turbulent 
energy, we conclude that only in extreme cases does the overspeeding amount 
to more than 10%. Such cases may occur when the ratio between i and the 
height of observation is of the order of 10 or more. Even then AS/S is over
estimated if a correction for the finite magnitude of the integral scale is not 
taken into consideration (cf. fig. 4). 

For practical purposes it is shown (cf. fig. 5) mat if the characteristic 
scale A for the dominating turbulent eddies is chosen such that A • A • 

-1 * Q , where *0 is the peak wave number for the logarithmic energy spectrum 
(cf. fig. 3), then 

J. * O + A/y"1 («) 
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will roughly describe the behaviour of the scale-dependent part of the over-

speeding. 

While the final manuscript was being prepared. Dr. J. C. Wyngaard of 

the Cooperative Institute for Research in Environmental Sciences, Boulder, 

brought to our attention an unpublished paper by E. I. Kaganov and A. M. 

Yaglom of the Institute of Atmospheric Physics, Academy of Sciences, 

Moscow, USSR, in which the overspeeding problem is treated in much the 

same way as in the present paper. A. M. Yaglom has informed us (personal 

communication) that he obtained the basic equation (18) in the early fifties 

and published the result in a paper (Yaglom, 1 954) that has remained vir

tually unknown outside the USSR. 
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