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PREFACE 
 

 

This PhD thesis is the outcome of my research carried out at the Department of Civil 

Engineering at Technical University of Denmark (DTU BYG) between Dec 2012 and June 

2017, where I was affiliated as PhD student. The main supervisor was Professor Lisbeth M. 

Ottosen from DTU BYG, and Associated Professor Gunvor M. Kirkelund, Professor Per 

Goltermann also from DTU BYG and Anja Bache PhD and Artist were my co-supervisors. 

The PhD thesis is based on three scientific papers and one conference paper in which I am the 

first author. The conference paper and the three scientific papers are enclosed in chapter 5 in 

the thesis. 

The research presented in the thesis is intended for professionals and researchers who have an 

interest in the overall topic Waste as resource and specifically in utilisation of sewage sludge 

ash as resource in building materials. Research focus was centered on the aesthetical and 

technical potentials when sewage sludge ash is used as partial cement replacement in mortar. 

The aim of the research was to provide knowledge relevant for different disciplines of 

engineering, architecture and design, which can be used to evaluate potentials and constrains 

of utilising sewage sludge ash as resource for production of concrete in the future. 
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ABSTRACT 

The research findings presented in this thesis Alternative Ashes in Concrete – New Technical and Aesthetical 

Performance contribute to the discussion on utilisation of sewage sludge ash (SSA) as a secondary resource. 

SSA is the result of incineration of sewage sludge, which is mainly applied at water treatment plants in dense 

areas to safely handle large amount of sludge. Today SSA is in most cases sent to landfill, which raises the 

question: is it possible for SSA to change status from waste to resource by utilising SSA in the production of 

cement based materials? 

So far SSA has not commercially been applied in concrete production. This is even though research has 

shown that SSA has some potential as secondary resource to partially replace cement in blended cements or 

concrete. One main reason might be the fact that SSA has a relatively high content of phosphorous, which is 

an irreplaceable nutrient essential for crop growth. Since phosphorous is regarded as a scarce resource, 

options to keep phosphorous in the nutrient cycle are increasingly becoming an object of attention. 

Consequently, the present research has focused on SSA utilisation as resource for production of cement 

based materials without losing the potential source for phosphorous used in fertilizer production. 

The present research included three studies in which different degrees of processed SSA was used in mortar 

to partially replace cement. The three processes used to treat the SSA were: milling, acid washing and 

electrodialytic treatment. The treatments were applied for two purposes: 1. optimizing the performance of the 

mortar, and 2. to recover the phosphorous available in the SSA. The main purpose of the experimental work 

was to unfold the aesthetical and technical potentials of mortar with SSA by showing how basic properties of 

mortar were affected when 20 % of cement was replaced with untreated and treated SSA. 

The outcome of the research project has both a linguistic and non-linguistic part, which collectively forms 

the thesis of a practiced based research. The non-linguistic part of the thesis is represented by four series of 

physical samples that show how ordinary mortar transforms when different degrees of processed SSA are 

used as partial cement replacement. The physical output signifies the potentials of using SSA as a resource, 

whereas the technical and aesthetical potentials are unfolded by correlating the physical output with 



quantitative measurements of compressive strength and flow value of the mortars. The research covers a 

general assessment of the feasibility to utilise SSA-containing concrete, and the experiments were designed 

to investigate the material behaviour in an open framework. 

The research findings of the present study support findings of previous research. Numerous studies have 

shown that the compressive strength and workability decrease when SSA is used as partial cement 

replacement in mortar and concrete. However, when SSA is milled to obtain finer particles it is possible to 

reach compressive strength and flow value comparable to ordinary mortar. Up until now only one previous 

study has combined phosphorous recovery and an investigation of phosphorous extracted SSA in mortar, and 

only one previous demonstration project Biocrete has reported on the influence of SSA on the colour of 

concrete. Therefore have I chosen to focus on these two parameters in order to address these issues that 

challenge the use of SSA as resource in cement based materials. 

The experimental work of the present research showed that the colour intensity increased parallel to an 

increase of the compressive strength and workability when the particle sizes of raw SSA decreased (obtained 

by increasing durations of milling). Furthermore, it was shown that the properties of mortar were notably 

affected when phosphorous was extracted before the SSA was used in mortar as partial cement replacement. 

Especially the visible changes were even more evident for mortars with SSA after phosphorous extraction, 

both acid washed and electrodialytic treated. The colour of mortar with either acid washed SSA or 

electrodialytically treated SSA changed from the familiar grey colour of ordinary mortar into two similarly 

saturated reddish colours. The colour tones of the mortar did not gradually increase when the two types of 

treated SSA were milled to obtain finer particles as seen for raw milled SSA. The compressive strength 

found for mortar with acid washed SSA was slightly below the compressive strength of ordinary mortar, but 

increased when the treated SSA was milled to finer particle sizes and reached to the level of the reference. 

Like the compressive strength the workability increased, however, without reaching the level of ordinary 

mortar. For mortar with electrodialytically treated SSA, the milling of the treated SSA did not have any 

significant effect on the performance of mortar, which initially was below ordinary mortar. 



The findings of the present research can be used to point out future possibilities to utilise SSA as resource in 

cement based materials in specific cases by displaying the behaviour of mortar with the different types of 

processed SSA. The knowledge obtained is attended for professionals from different disciplines in 

engineering and architecture and the result of the research may serve as common ground for future research 

on SSA utilisation within the scope of resource efficiency. 



SAMMENFATNING 

 

Dette ph.d. projekt Alternative asker i beton – ny teknisk og æstetisk performance er et bidrag til 

diskussionen omkring anvendelse af slamaske som en sekundær ressource. Slamaske stammer fra afbrænding 

af slam, som er en metode, der anvendes til at reducere mængden af slam fra spildevandsrensning. I dag 

bliver slamaske som oftest deponeret, og derfor rejses spørgsmålet: kan slamaske ændre status fra affald til 

ressource ved at anvende slamaske i produktionen af cement baserede materialer? 

På trods af at en række forskningsresultater har vist, at slamaske har potentiale til at kunne anvendes som 

delvis cement erstatning i beton, har dette endnu ikke ført til, at slamaske udnyttes kommercielt. En 

væsentlig årsag kan være den, at slamaske har et højt indhold af fosfor, som er et vigtigt næringsstof 

uundværligt for alle levende organismer. En stor del af den fosfor, som i dag anvendes i gødning, kommer 

fra minedrift af fosfat. Da disse fosforressourcer i realiteten anses for knappe, er der en stigende interesse 

for at udvikle nye metoder, der tillader at fosforen forbliver i næringskredsløbet tilgængelig for landbruget. I 

dette forskningsprojekt er fokus derfor rettet mod at undersøge brugen af slamaske som delvis 

cementerstatning i beton, for samtidig inddrage det forhold at slamaske er en vigtig ressource for fosfor, 

som derfor ekstraheres før asken anvendes i beton. 

Forskningsprojekt består af tre adskilte studier, hvor anvendelse af både ubehandlet og behandlet slamaske er 

blevet undersøgt som delvis cementerstatning i mørtler. Behandlingsmetoderne, der er blevet anvendt, er: 

1. formaling af asken, 2. syrevask og 3.elektrodialytisk behandling. Formålet med at anvende disse metoder 

var at forbedre de undersøgte materialegenskaber for mørtlerne, og at udvinde fosforen fra slamasken inden 

den videre anvendes som cementerstatning. Hovedformålet med det eksperimentelle arbejde var at udfolde 

potentialerne for mørtler med slamaske ved at undersøge, hvordan grundlæggende materialeegenskaber 

såsom farven og styrke reagerede, når 20 % af cementen blev erstattet med henholdsvis ubehandlet og 

behandlet slamaske. 

Ph.d projekt består både af en verbal og non-verbal formidling af forskningsresultaterne, som samlet set 

udgør et praksisbaseret forskningsprojekt. Den non-verbale formidling består af fire serier af 



materialeprøver, som viser hvordan mørtelen transformeres, når forskellige grader af forbehandlet slamaske 

bruges som cementerstatning. Det fysiske output har til formål at udpege materialets æstetiske potentiale og 

sammenstille dette med kvantitative egenskaber som f.eks. trykstyrke og bearbejdelighed. Formålet er 

derigennem at anskueliggøre de muligheder som opstår, når slamaske anvendes som ressource i 

cementbaserede materialer. Forskningsresultatet indbefatter en generel vurdering af de potentialer og 

begrænsninger, som er forbundet med brugen af slamaske i mørtler. 

Forskningsresultater fra tidligere studier viser at trykstyrke og bearbejdelighed reduceres, når slamaske 

anvendes som delvis cementerstatning i beton og mørtler. Formales slamasken derimod til finere 

partikelstørrelser, er det muligt at opnå trykstyrke og bearbejdelighed, som er sammenlignelige med 

almindelig mørtel. Eksperimenter fortaget i forbindelse med dette forskningsprojekt understøtter disse 

tidligere resulter. Men indtil nu har kun et enkelt studie undersøgt brugen af slamaske, hvor fosforen er 

fjernet inden videre brug i beton. Derudover har slamaskens indvirkning på mørtlens farve ikke tidligere 

været direkte genstand for en undersøgelse, og kun et enkelt dansk demonstrationsprojekt Biocrete har 

rapporteret at farven påvirkes, når slamaske indgår som en del af betonens bestanddele. Derfor har jeg med 

dette projekt valgt at inddrage disse to parameter for at adressere udfordringerne som knytter sig til slamaske 

som ressource. 

Resultaterne af studierne viser, at når slamasken bliver formalet til finere kornstørrelser, så intensiveres 

farven gradvist parallelt med, at trykstyrken stiger og bearbejdeligheden for mørtlerne forbedres. Derudover 

viser resultaterne også, at materialeegenskaberne for mørtlerne ændre sig betydeligt, når slamasken enten er 

blevet syrevasket eller elektrodialytisk behandlet for at ekstrahere fosforen. Disse to metoder havde begge en 

afgørende betydning for mørtlens visuelle fremtoning, som ændrede sig fra den grå velkendte farve til mere 

mættede rødlige nuancer. I forhold til de udvalgte parameter har formalingen en større betydning for den 

ubehandlede slamaske. Trykstyrken for mørtlerne med syrevasket aske var som udgangspunkt 

sammenlignelig med referencen, mens den for mørtler med elektrodialytisk behandlet aske var mindre. 

Formaling af disse to typer asker havde ikke større betydning for trykstyrken. I modsætning til trykstyrken 



forbedredes bearbejdeligheden for mørtlerne med syrevasket slamaske igennem formalingen, mens dette 

ikke havde nogen effekt for mørtlerne med formalet elektrodialytisk behandlet slamaske. 

Forskningsprojektet bidrager med ny viden i forhold til, hvordan de fosforekstraherede slamasker indvirker 

på mørtlernes generelle egenskaber både æstetiske og tekniske. Resultaterne kan bruges til at udpege 

anvendelsesmuligheder af cementbaserede materialer med slamaske og bruges som grundlag for nye 

projekter, hvor slamasken som ressource testes i beton i forhold til specifikke formål. 
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1. INTRODUCTION 

 

This PhD thesis Alternative Ashes in Concrete – New Technical and Aesthetical Performance discusses 

potentials connected to the use of sewage sludge ash (SSA) as partial cement replacement in cement based 

materials. The project was conducted as part of ZeroWaste Byg which is a research initiative taken in 2012 at 

the Department of Civil Engineering, Technical University of Denmark. The goal of ZeroWaste Byg is to 

develop the research area and compile knowledge on waste as resource when these secondary resources are 

used in production of construction materials. The research focus of ZeroWaste Byg described prior to the 

start of present research project filled out the roll as the programmatic setting of the research and the 

experimental work initiated to search for new potentials of cement based materials with SSA. 

 

 

 
“The research aims at placing the build environment centrally in a sustainable material cycle 

of society. Research and innovation focus is on increased replacement of natural raw 

materials with secondary resources (if necessary optimized). In addition, strong emphasis is 

on utmost recycling at the end of life. Such redesigned construction materials strongly support 

waste minimization in society, as the building industry is a major materials consumer on a 

volume base. ”(ZeroWaste Byg n.d.) 

 

 

 
SSA is the particulate residue produced at wastewater treatment plants where thermal processing of sludge is 

applied. The main purpose of incinerating sludge is to reduce the volume and to prevent spreading of 

contaminates as heavy metals and pathogens (Fytili & Zabaniotou 2008; Lofrano & Brown 2010). Today 

SSA is regarded as waste and in most cases SSA is landfilled (Donatello & Cheeseman 2013). In order for 

SSA to obtain the status as resource, it requires that appropriate use is found. 

Over the last 30 years utilisation of SSA has been studied, mainly as partial cement replacement in cement 

based materials, but also in production of construction materials and products in general (Donatello & 



16  

Cheeseman 2013). The practice of utilising waste materials, residues and by products from other sectors in 

concrete or as component in blended cement is not new. Cement and concrete producers have in the role as 

scavengers benefited economically by utilising by-products from other industries in production of cement 

and concrete (Reijnders 2007). Residues such as coal fly ash and by-products as blast furnace slag or silica 

fume have been found useful and can be used to replace cement in concrete in quantities between 20 – 70 % 

material (Mehta et al. 2014). When secondary resources are used as partial cement replacement, the generic 

term used for these types of materials is supplementary cementitious material (SCM) (Snellings et al. 2012). 

Incentives to utilise by-products and residues as SCM may initially have been a part of cost saving strategy, a 

strategy which however also was beneficial for the development of new concrete technologies such as high 

strength concrete (Mehta et al. 2014). Furthermore, utilisation of by-product as SCM in concrete have also 

environmental benefits when a CO2 intensive material as cement is replaced by a less intensive such as 

industrial produced by-products. During cement production approximately 1 ton CO2 per 1 ton of cement is 

produced. The high emission of CO2 is due two things. At first the chemical reaction of lime during 

processing, and secondly the high amount of energy required to reach the temperatures necessary for 

producing reactive cement clinker. Therefore, if it is possible to replace cement with a waste material, the 

emission of CO2 related to cement production from both can be reduced. 

Focus of previous studies on use of SSA in mortar has been centred on chemical, physical, mechanical and 

environmental implication and changes when SSA is used as SCM. So far research has not led to a general 

application of SSA in concrete despite numerous studies conducted in this area. Several explanations as to 

why may be found. One reason is likely related to the fact that the performance of mortar and concrete is 

negatively affected, as the majority of studies conducted have found that the compressive strength and 

workability decrease when SSA is partially replacing cement. (Cyr et al. 2007; Donatello & Cheeseman 

2013; Lynn et al. 2015) Another reason of importance is that SSA has a relatively high content of 

phosphorous. 
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Phosphorous is an irreplaceable nutrient essential for life and therefore also for crop growth. Currently, 

phosphorous input in agriculture depends on supplies of phosphate derived from phosphate rock mining. 

Phosphate rock is a finite resource (Cordell et al. 2009; Reijnders 2014; van Dijk et al. 2016) and the 

deposits of phosphate rock are unequally distributed globally, as 77% of the reserves are situated in Morocco 

and West Sahara (van Dijk et al. 2016), countries which can be considered geopolitically unstable. For these 

reasons, dependency on phosphate rock is critical, as it threatens the food supply security globally. 

 

 

 
“Phosphorus governance at global, regional, and local scales is required to stimulate and 

support context-specific sustainable strategies to ensure all the world’s farmers have 

sufficient access to phosphorus to feed the world and ensure ecosystem integrity and farmer 

livelihoods.” (Cordell & White 2014, p.161) 

 

 

 
In the light of the phosphorous challenge, attention on resource efficient use of phosphorous is increasingly 

required to prevent food shortages, as it was seen in 2008. As a consequence of the financial crises in 2008, 

the prices on phosphate rock went unproportioned up by 800%, which meant that farmers in the developing 

countries couldn’t afford buying fertilizer (Cordell & White 2014). For this particular reason when 

considering SSA as resource instead of as a waste material, the primary resource of interest is phosphorous. 

Thus, research in utilisation of SSA as resource is particularly interesting, because it potentially confronts 

two essential problems related to human activity and needs simultaneously, namely: nutrient depletion and 

the problems of the cement production as CO2 intensive industry. However, until now research in utilisation 

of SSA as resource in concrete production has focused on SSA as partial cement replacement, except for one 

study by Donatello et al. (2010a), without addressing the fact that SSA is source for phosphorous. Research 

in this area is lacking. Consequently, in the present research project the studies conducted included 

experiments in which phosphorous was recovered before the SSA was tested as SCM in mortar. 
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2. BACKGROUND 

 

2.1 Waste as resource 

 

In the 5
th 

assessment report by the Intergovernmental Panel on Climate Changes (IPCC) resource use 

efficiency is pointed out as one pathway to mitigate climate change (IPCC 2014). At the political level 

within the European Union (EU) resource use efficiency is in cooperated into waste management legislation 

by implementation of the Waste management hierarchy (EC 2008a). The waste management hierarchy is a 

ranking order that prioritise waste handling options relative to their environmental impact, starting at 

prevention, preparing for reuse, recycling of materials, recovery of energy, and lastly disposal as the least 

favoured option (fig 2.1). The main purpose of the directive is to ensure that waste and waste handling do not 

harm the environment or endanger human health. However, implementation of waste management hierarchy 

into the waste directive constitutes a shift within policy making, because the general idea behind the waste 

hierarchy affects the way waste is perceived from a previous perception of waste as a problem to the 

perception of waste as resource (Hultman & Corvellec 2012). In other words, the aim of the waste hierarchy 

is to encourage member states to “reintroduce as much material as possible into production 

processes”(Hultman & Corvellec 2012, p.2413) 

 

 

 

 

 

Figure 2.1 Waste management hierarchy (EC 2008b) 
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The incentives embedded into waste directive to achieve the aims of the waste hierarchy are based on the 

general principle of “polluter pays” (EC 2008a, p.3) and formulation of the end-of-waste status (EC 2008a, 

p.11). The End of waste status sets the legal binding criterions, which describe when waste ceases to be 

waste and becomes a secondary raw material. In the waste directive the definition of waste is simply “any 

substance or object which the holder discards or intends or is required to discard”(EC 2008a, p.9). To obtain 

the status as resource it requires that waste has gone through recovery and recycling operations. Furthermore, 

the substance must be suitable for a specific purpose, and fulfil technical requirements set by existing 

legislation. But equally important is that the waste material must not as secondary resource imposes adverse 

environmental and human health impacts. According to EU waste legislation this entails that an industrial 

produced by-product is a material, which can be used as resource in other industrial sectors without any 

further processing, whereas a waste material only can change status from waste to resource if it has 

undergone recovery and recycling preparations steps. 

 

 

 
2.2 Sewage sludge ash as waste 

 

This section gives a short description of sewage sludge ash (SSA) as waste and its potential use as resource. 

The specific SSA in focus derives from municipal wastewater treatment systems where incineration of the 

sewage sludge is applied. Sewage sludge is the solids, which during the wastewater treatment processes are 

separated from the liquids before the treated water is returned to the recipient water body (Fytili & 

Zabaniotou 2008). The sewage sludge is dewatered to increase the calorific value of the sludge and 

incinerated at temperatures around 800-900˚. SSA is the particulate inorganic remaining residue, which is 

captured in the flue gas cleaning system. The choice of waste handling option – incineration of the sludge, 

entails that sludge and SSA are labelled as waste. Consequently, in most cases, SSA is disposed at landfills 

and resources are lost. In Denmark however, SSA is deposited in special landfills without other types of 

waste, meaning that the phosphorous resource can be recovered, when proper techniques are developed. 
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Sewage sludge has a relatively high content of nitrogen, phosphorous and potassium, which are all nutrients 

essential for crops growth. Application of sewage sludge in agriculture is therefore considered as best 

practice if concerns about accumulation of heavy metals, organic pollutants in soils, and the spread of 

pathogens had not limited its general application as fertilizer and soil conditioner of agricultural land (Fytili 

& Zabaniotou 2008; Donatello & Cheeseman 2013; Reijnders 2014). Thus, aside from being a method to 

handle large quantities of sludge, incineration of sludge is also a way to deal with potential environmental 

and health risks which sludge represents. Overall advantages of incinerating sewage sludge, summed up by 

Fytili & Zabaniotou (2008), comprise: volume reduction, thermal destruction of toxic organic compounds, 

calorific values equal to that of brown coal and minimisation of odour generation. Nevertheless, these 

advantages do not change the fact that a main disadvantage is loss of fertilizer value. 

 

 

 
2.3 Sewage sludge ash as resource 

 

SSA has extensively been studied for its application in production of construction materials and components 

such as bricks, tiles and pavers (Donatello & Cheeseman 2013). The majority of studies have focused on the 

possibilities to utilise SSA as supplementary cementitious material (SCM) in blended cement. A major issue 

in the research on use of SSA as SCM is concerning the pozzolanic reactivity of SSA. A pozzolane is a 

finely divided siliceous and aluminous material, which in itself does not possess any cementing property; 

however it reacts chemically in the presence of moisture with calcium hydroxide to form cementing 

compounds (Mehta et al. 2014). The major elements of SSA are Si, Al, Ca, Fe and P, which in crystalline 

form constitute the minerals: quartz (SiO2), whitelockite (Ca3(PO4)2), and hematite (Fe203) (Donatello & 

Cheeseman 2013). Overall, due to the proportional content of SiO2, Al2O3  and CaO, SSA is within the 

spectra of latent pozzolanic materials (Lynn et al. (2015), though the content of SiO2 and Al2O3 are 

significantly lower than other known pozzolanic materials such as coal fly ash (Cyr et al. 2007). Despite the 

similarities in regards to the constituents of pozzolanic materials like coal fly ash and blast furnace slag, SSA 

differs from these residues and other by-products in several ways. Coal fly ashes for instance consists of 
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large portions of amorphous and crystalline aluminosilicate phases, which are decisive for the reactivity of 

the material (Donatello & Cheeseman 2013; Mehta et al. 2014). Furthermore, it is combusted at much higher 

temperatures, which entails that glassy spherical particles are formed. The spherical particles influence the 

requirements of water, the workability, and the rate of strength of the concrete (Mehta et al. 2014). As the 

water to cement ratio (W/C) in a mix is the single most important parameter for the strength development of 

the concrete, coal fly ash can be used to decrease the amount of water, and at the same time increase the 

strength of the hardened concrete without affecting the workability of the fresh concrete (Mehta et al. 2014). 

Research findings of conducted studies have in general shown that compressive strength and workability 

decrease when SSA is partially replacing cement in mortar (Monzó et al. 1996; Pan et al. 2003; Cyr et al. 

2007; Garcés et al. 2008; Donatello et al. 2010a; Chen et al. 2013). SSA consists of coarse, angular and 

porous particles. Studies by Pan et al. (2003) and Donatello et al. (2010a) have discussed the impact of the 

morphology of SSA particles on the workability and the compressive strength of mortar by investigating the 

influence of grinded SSA on the performance of mortar. These two studies found that SSA initially has a 

high specific surface area which, however, did not increase proportionally to a decrease of the particle sizes 

when the SSA was grinded to obtain finer particles. The high specific surface area was found to be due to a 

porous structure of the SSA particles characterised by having many open pores. However, when these porous 

particles were grinded the morphology of the SSA altered from being coarse and porous to fine and less 

porous, and this had a positive effect on the workability and compressive strength development. It is 

generally accepted that the fineness of SCM is of importance for the early hydration process. This is because 

fine particles provide extra space and nucleation sites for the reacting compounds to form hydration products 

(Lothenbach et al. 2011). The explanation given for the increase of the compressive strength and the 

workability in the studies by Pan et al. (2003) and Donatello et al. (2010a) were similar but not quite the 

same. Pan et al (2003) suggested that the pozzolanic reaction only occurred on the outer surface as open 

pores of the unmilled SSA were blocked. Opposite Pan et al (2003) Donatello et al. (2010a) suggested that 

the open pores trapped the water and lowered the water, which consequently affected the hydration process 

of the reacting compound in the system. So even though the content of relevant siliceous and aluminous 
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compounds are not at the levels of known pozzolanic materials (Cyr et al. 2007), and different methods to 

assess the reactivity of SSA also have provided opposite results (Donatello et al. 2010c), the basic properties 

of mortar; workability and compressive strength are comparable to ordinary mortar when SSA is grinded 

before it is used as SCM. Grinding residue for qualifying the residue to be used as an SCM is not unusual. 

For instance blast furnace slag needs always to be grinded in order to react with the compounds of cement 

(Mehta et al. 2014). 

Initially incentives to utilise SSA as resource in concrete production were primarily framed as an option to 

solve a waste problem (Tay, 1987; Bhatty & Reid, 1989). However, this perspective is slowly changing, and 

SSA is referred to as a secondary and useful material for production of blended cement and concrete 

(Donatello & Cheeseman 2013; Lynn et al. 2015). However, when SSA is considered as resource, the main 

resource is the content of phosphorous in the SSA. The concentration of P2O5 in SSA is reported between 10 

-25 wt% (Donatello & Cheeseman 2013). Phosphorus pentoxide (P2O5) is the commonly reported constituent 
 

of the phosphate rock. The economic grade of phosphate rock varies from 25% to 37% P2O5 (Gupta et al. 

2014). This concentration range corresponds to 11-16 wt% Phosphorous. Since the content of P2O5 in SSA is 

comparable to low grade phosphate rock (Donatello et al 2010b), SSA is a valuable resource of Phosphorous. 

 

In 2013 a new national strategy “Denmark without waste” was formulated with the overriding purpose of 

preventing the loss of resources through utilisation of the resources available in waste (Danish Government 

2013). The strategy was the legal response to the targets of the European waste directive defined by the 

waste management principles of the waste hierarchy. In the strategy aims for better nutrients exploitation 

was set. The ambition stated was that Denmark should recycle 80% of phosphorous from sewage sludge by 

2018 e.g by recycling phosphorous in sewage sludge ash. 

However, commercially viable large scale methods to extract phosphorous from SSA have not been fully 

developed, but primarily two groups of methods are under development: thermochemical and chemical 

extraction (Donatello & Cheeseman 2013). Currently, only one study by Donatello et al. (2010a) has tested 

SSA as partial cement replacement in mortar after phosphorous has been extracted. In the study sulfuric acid 
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was used as extraction agent. The effects of the treated SSA on the pozzolanic activity were evaluated by 

documenting the compressive strength development of mortars in which 20 wt% of cement was replaced by 

treated SSA. The results of the study showed that acid washed SSA had a negative effect on compressive 

strength as it decreased in comparison to the compressive strength of ordinary mortar and mortar with milled 

SSA. 

In the present research two chemical extraction methods were used to recover the phosphorous from the SSA 

for recycling purposes as fertilizer. One method used hydrochloric acid to leach phosphorus from the SSA 

(Ottosen et al. 2013) whereas the other method used an electric current to acidify the SSA and hereby 

mobilise the phosphorous from the solid phase into a suspension (Ottosen et al. 2014). 



24  

3. RESEARCH QUESTION 

 

In the framing of the present research, the findings of a previous project Biocrete (2008) was important. This 

project was a Danish demonstration project about SSA utilisation in concrete production. In the project it 

was reported that concrete significantly changed colour when increasing amounts of SSA were incorporated 

into the mix design. The transformation of colour was found as an obstacle, because the reddish colour 

differed from the usual grey colour of concrete. Thus, even though concrete with SSA met the technical 

requirements set for the actual concrete, the colour was seen as a limitation for its general application, unless 

the colour could intentionally be used for aesthetical purposes. 

“Bio ash [SSA] concrete has a reddish colour especially when using iron bio ash. The colour 

is distinguishable from the ordinary grey concrete, and this might be a problem if the bio ash 

concrete is to be used for visible structures.”(Biocrete 2008, p.5) 

Aim of the present research was to unfold aesthetical and technical potentials and constraints of SSA in 

concrete by taking into account the fact that SSA is a valuable source for phosphorus. The overall research 

question posed was: 

How does SSA influence the performance of mortar aesthetically and technically when 

phosphorous is recovered from the SSA prior to use of the SSA as resource for production of 

cement based materials? 

In order to be able to answer the first question a second question was posed. This question defined the 

experimental frame of a material survey in which the aesthetical and technical potentials and constrains were 

investigated simultaneously by including colour as a parameter alongside with the most important basic 

properties relevant for the performance of concrete with SSA. 

How do untreated, milled and phosphorous extracted SSA influence basic mortar properties 

such as: colour, strength, setting time and workability of mortar when 20 Wt % of cement is 

replaced by the different types of processed SSA? 
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4. METHODS 

 
The objective of the experimental work was to unfold the technical and aesthetical potentials of concrete 

with SSA. This was done by showing how basic properties evolved when the used SSA was processed by 

different methods prior to being incorporated into the mortar as partial cement replacement. Mortar was used 

instead of concrete as test material because mortar normally is used in the studies on SSA utilisation. The 

SSA was processed by different treatment methods which included: milling, acid washing and/or an electro 

dialytic treatment. The two latter are treatments methods which were used for the purpose of extracting the 

phosphorous in the SSA. 

The experimental procedures used to determine mortar properties such as compressive strength, setting and 

workability were all valid international standards, as it enables results from one study to be compared with 

similar studies on SSA utilisation. The performed physical and chemical analyses of the test materials were 

also following international standards when possible. The use of standards as to document and determine the 

characteristics of a material are normally applied in a technical scientific context of engineering. 

The visual transformation of mortar, how the mortar responded to parametrical changes of the SSA, was 

unfolded trough hands on experiments using the principals of paper cutting to produce rough and smooth 

surface of the mortars. Concrete is a receptive and versatile material. It can be rough and smooth, it has 

sensitiveness towards any imprints of the formwork; all depended on the materials used for the formwork 

and the accuracy of the work done. The contrasting textural qualities, the roughness and smoothness, its 

crude appearance and delicacy of imprints are all qualities, which are essential tools for an architect to 

express the architectural intentions of a building. 

“most buildings consist of a combination of hard and soft, light and heavy, taut and slack, and 

many kinds of surfaces. There are all elements of architecture, some of the things the architect 

can call into play. And to experience architecture, you must be aware of all of these 

elements”(Rasmussen 1962, p.29) 
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The paper cuttings were used as stencil in the mould to produce rough and smooth surfaces for the purpose 

of enhancing the colour experience through the contrasting textural qualities of mortar. The objective of 

these experiments was to provide a physical output that would exhibit the qualities of the mortars and make 

the potentials of SSA as resource in mortar perceptible by the senses useful for an aesthetical interpretation 

of the material in architecture. The experimental approach to unfold the aesthetical qualities of the 

transformed material is a design method normally for practitioners of ceramic design(Hansen 2010). 

The combination of methods was chosen for the purpose of providing material relevant for different 

academic disciplines of Engineering and Architecture for a discussion on environmental, structural, and 

aesthetical potentials and constraints related to utilising SSA as resource. 

 

 

 
4.1 Practice based research 

 

The methods applied in the experimental work originating from the different disciplines of design and 

engineering were unified within the frame of a practice based research in design and art, described by Biggs 

in “Learning from Experience: approaches to the experiential component of practice based research” (2004). 

Biggs states that research is not practice based only for having a practical element or some consequence in 

experience, because “there are very few areas in which pure research is so disassociated from realm of 

practice and experience that it could not find any application”(Biggs 2004, p.2). It is more precisely the 

experiential component of the research and modes to communicate the experiential content. Biggs argues 

that experiential content cannot always be communicated effectively in a linguistic form perceptible to 

others. It depends on the context and therefore also audience, to whom the research is intended. Since 

knowledge production is the aim of research, modes to communicate the experiential content of the practice 

based research is important to define. The research which Biggs has in mind is “ investigations in which 

aesthetical judgements are made in relation to sensory object”(Biggs 2004, p.2). Biggs argues the 

experimentation in art and design arises through “realm of the experience rather than in the realm of 
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cognition”(Biggs 2004, p.3), and therefore, practice is not only an integral part of communication of 

outcomes, but also an integral part of the process of research in the field of art and design. 

Even though the present research is aiming at reaching audiences of the different disciplines of architecture 

and engineering, the investigation of the research is directed by a design practice in which aesthetical 

interpretations of the materials are in focus. The pitfall of practice based research dealing with aesthetical 

judgements is that personal feelings -dislike or likes, cannot be the core of research. However, as the Danish 

architect Steen Eiler Rasmussen writes in his book Experiencing Architecture (1962) feelings cannot be 

excluded if one wish to pick up what is communicated through art “External features become a means of 

communicating feelings and moods from one person to another”(Rasmussen 1962, p.32). This statement 

given by Rasmussen’s resembles the points of Biggs. However, as Biggs explains, the experiential feelings 

can’t be the aim of research as these are personal. But as experiential content is represented by experiential 

feelings, experiential feelings can be the mean as to which the experiential content can be identified and 

perceived by others. 

In design, artefacts may represent experiential content of the research, which cannot be effectively 

communicated linguistically to the audience for which the research is intended. The artefact is relevant when 

it gives answers to the research questions and supports the discussion on the subject in focus (Hansen 2010). 

In this present research the experiential component is related to the aesthetical potentials of concrete when 

SSA is used as supplementary cementitious material. To investigate the aesthetical potentials it necessitates 

an outcome that exhibits aesthetical potentials of the material so that they can be experienced. Investigations 

initiated were based on the experience from a previous study (Biocrete 2008), where it was found that the 

colour changed when SSA was used as resource in concrete. Variations in colours prompted by the 

introduction of secondary resources such as SSA into the mix design of concrete may challenge its general 

application in construction (Biocrete 2008). In a design context colour as well as the structural performance 

of building materials are essential material characteristics for an aesthetical interpretation of material in the 

build environment. Thus, the influence of SSA on the colour was chosen as the focus for an investigation of 

the aesthetical potentials of concrete with SSA. Therefor the aim of the present research was to unfold the 
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potentials by including colour as parameter to see how the SSA was influencing on the colour of the mortar 

alongside the basic properties: Compressive strength, setting time and workability. 
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5. EXPERIMENTAL WORK 

 
The experimental work can be divided into three main studies: 

 

1. Colour as an obstacle or potential – The influence of milled SSA on basic properties in mortar 

 

2. Acid washed SSA in mortar 

 

3. Electrodialytically treated SSA in mortar 

 

Details of the three studies are presented in sections 5.1-5.3 and section 5.4 discusses the studies on an 

overall basis. In the first study, which was reported in two papers: The colour potentials of SSA-containing 

mortar and Utilisation of Sewage sludge ash in mortar- the effect of milling on the compressive strength, 

workability and colour, the experimental frame of the following two studies was clarified. Decisions were 

made about the SSA used in the experimental work, percentages for which cement was replaced by SSA; the 

constituents used for mortar production and treatments methods of the SSA. Two batches of an iron rich SSA 

(SSA1 and SSA2) provided by the wastewater company BIOFOS at their facilities in Avedøre, Copenhagen, 

Denmark were investigated. The SSA’s was tested in mortar instead of concrete, which is common for 

research studies in this area. The main difference between mortar and concrete is the coarseness of the 

aggregates in the two materials. For mortar the aggregates ranges between 0- 4 mm whereas for concrete 

aggregates goes beyond 4 mm (Dam et al. 2008) The parameters decided to be included in the experimental 

frame were: compressive strength, workability, setting time and colour. These properties are basic properties, 

which have significance for the person working with the material as well as the scientist examining the 

material. Finally, a method was developed for the purpose of making diverse textural qualities of rough and 

smooth surfaces on the mortar sample. 

In the two papers supporting study 2 and 3: Technical, aesthetical and environmental potentials and 

constrains of utilizing acid washed sewage sludge ash as partial cement replacement in mortar and 

Utilisation of electrodialytically treated sewage sludge ash in mortar two different types of phosphorous 

extracted SSA were tested as partial cement replacement by using the same experimental frame as described 

above. 
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5.1 Colour as an obstacle or potential - The influence of milled SSA on basic properties of mortar 

 

The first experiments conducted in this research project surprisingly contradicted the general assumption that 

SSA influences and changes the colour of concrete from ordinary grey to a reddish colour (section 5.1.1).The 

results showed that the colour of ordinary mortar did not change significantly even when 10 - 20 Wt % of 

cement was replaced with SSA. What these experiments did show was that the colour induced by the SSA 

was conditioned by the grain size of the SSA and by the amount of SSA incorporated into the mix design. In 

two studies by Pan et al. (2003) and Donatello et al. (2010a) the use of milled SSA as partial cement 

replacement was tested. The results of the studies of Pan et al. (2003) and Donatello et al. (2010a) showed 

that the compressive strength and the workability increase when SSA is milled. The main reason was 

suggested to be due to trapped water in open pores of the porous particles of unmilled SSA, which adversely 

affected the hydration process between reacting cement compounds in the system (Donatello et al. 2010a). In 

the present study it was confirmed that the compressive strength and workability were increasing when the 

SSA was milled (section 5.1.2). However, the study also showed that the colour evolved from a grey tone to 

a slight reddish colour when the SSA was milled to obtain finer particles. Besides from the Danish project 

Biocrete, in which the colour of concrete with SSA was mentioned, colour as parameter has not been the 

focus of research up until now. 

 

 

 
5.1.1 The Colour Potentials of SSA-containing Mortar 

 

5.1.2 Utilization of Sewage Sludge Ash in Mortar - The Effect of Milling on Compressive 

Strength, Workability, and Colour 

(Kappel, A., Ottosen, L.M. & Kirkelund, G.M.; 2017. Colour, compressive strength and 

workability of mortars with an iron rich sewage sludge ash. Construction and Building 

Materials, 157, pp. 1119-1205) 
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Figure 5.1Mortar samples with different percentage of SSA and milled SSA 
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5.1.1 THE COLOUR POTENTIALS OF SSA-CONTAINING  MORTAR 

 
Annemette Kappel, Lisbeth M. Ottosen, Gunvor M. Kirkelund, Anja M. Bache, Per Goltermann. 

Department of Civil Engineering, Kgs. Lyngby, 2800, Denmark, Technical University of Denmark 

Abstract 

This paper reports an experimental study of aesthetical qualities of mortar containing sewage sludge 
ash (SSA). SSA is the residue produced at water treatment plants where incineration of the sludge is 

applied in order to decrease volume and to prevent pathogens from spreading. Today SSA is with a 

few exceptions landfilled and thus, wasted. 

The purpose of the experiments was to examine the influence of SSA and how it affected the  

colour of mortar samples. SSA was ground in 6 different intervals and added to mortar mixes by 

replacing 20% of the cement. An additional focus was to examine the possibilities to accentuate the 

colours of the hardened mortar by using paper cuttings in the production of the samples. The result of 

the experiments showed that a colour scale can be developed from ground SSA, and that paper may 

have the potential of providing divers textural qualities when it is used in combination with other form 

materials. 

 
Keywords: Sewage sludge ash, colour potentials, mortar,  textures. 

 
1   Introduction 

The cement industry is often singled out to be a considerable contributor to climate changes.  

Currently, cement production is estimated to be responsible for 5 - 8% of the total global emission of 

CO2(Scrivener & Kirkpatrick 2008). 

In the fifth assessment report by The Intergovernmental Panel on Climate Change (IPCC, 2014) 

“resource use efficiency” (Fischedick M., J & al. pp.59, 2014) is identified as essential but also one of 

several strategies to mitigate climate change. As part of this political agenda “Waste as resource” is also 

promoted in the waste hierarchy, as in the latest Waste Framework directive (2008/98/EC) of the 

European Union. The waste hierarchy, ranks waste handling options from most to less favoured in the 

order: prevention > minimization > reuse > energy recovery > disposal. The purpose of such a priority 

order is to strengthen resource use efficiency by regulating behaviour explicitly through the principle of 

“polluter pays”. Thus, scientifically and politically it is identified that mitigation of climate change 

necessitates a transformation of the way the available resources are governed. This also includes the 

resources that eventually end up on a landfill, such as SSA. To obtain a sustainable cement production 

in the future there are two main challenges: to reduce the CO2 emission and increase the resource use 

efficiency. Thus, the advantage of replacing cement with SSA seems advantageous. 

Several studies, ( e.g. review by Cyr, Coutand & Clastres 2007; Donatello & Cheeseman 2013), 

have investigated the possibilities to utilize SSA as a supplementary cementitious material (SCM) with 

the potential of lowering the environmental impact of the cement production. The focus of the 

previously conducted research has mainly been on the chemical, mechanical properties and 

environmental consequences attached to the use of SSA in cement based materials ( Cyr, Coutand & 

Clastres 2007; Chen & al. 2013; Donatello, Tyrer & Cheeseman 2010). One question which has sought 

to be answered is whether SSA possesses pozzolanic properties. In some studies SSA is compared to 

other by-products that possess pozzolanic properties but also advantageous characteristics such as 

spherical particles of coal fly ash . Generally, research has found that the compressive strength 

decreases when SSA partly replaces cement. The porous and coarse particles of SSA raise the water 

demand in the mix, and as such, SSA is not comparable to by- products with more obvious  properties. 
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SSA also varies in accordance to parameters such as the level of industrial activity in catchment area, 

seasons and the processes applied at water treatment plant (Donatello & Cheeseman 2013). However 

 

the process of grinding SSA has shown to improve the compressive strength of SSA - containing mortar 

(Donatello & al. 2010). 

Some SSA has a distinct red colour due to chemical precipitation of phosphorus in wastewater 

treatment plants by iron. If cement is replaced by such SSA it can affect the colour of concrete which 

may challenge the traditional comprehension of concrete. Thus, to unfold the potential of utilizing  

SSA as SCM further, this study concentrated on the aesthetical qualities of using ground SSA in 

mortar. Thus, the aim of this study was to examine the colour development of hardened mortar 

samples when ground SSA was added to the mix by partly replacing the cement. 

 

2 Experimental framework 

This study included hands-on experiments for an investigation of: 1) the effect ground SSA had on the 

colour of the mortar samples and 2) the possibilities to use simple paper cuttings as a method to 

provide different textural qualities- rough and smooth surfaces. 

Within the entire experimental study 50 samples were produced with varying percentage of cement 

replacement ranging from 10 to 50 % by weight. The SSA was also ground to obtain increasing 

fineness and larger specific surfaces areas of the SSA particles. The colour scale which was produced 

consisted of seven samples altogether; one mortar sample contained no SSA (reference) whereas the 

other 6 samples had 20 % cement by weight replaced by SSA grinded in the six different time  

intervals 0-10 min. 

The samples originated from several separated experiments in which essential parameters were 

investigated: cement replacement percentage, time interval of the grinding procedure, and form 

materials. The focus was to detect the influence each parameter had on the colour of SSA containing 

mortar. 

2.1 Materials 

An iron-rich SSA was collected from Avedøre Spildevandscenter (AVE), BIOFOS in Denmark. The 

SSA was taken directly from the process line and stored in plastic containers at room temperature 

before use. Due to the high containment of Fe the SSA had a characteristically red oxide colour. A 

coarsely-grained sand, sea-sand 0-4mm, and a Portland cement labelled CEM II/A-LL 52.5R was used 

for the mortar production. This particular Portland cement used in the experiment had a content of   20 

% of limestone filler. 

2.2 Grinding process 

The SSA was dried at 50 °C for 24 h before it was dry-milled for 6 different durations: 0 sec, 10 sec, 

30 sec, 3min, 6 min, and 10 min. A vibratory cup mill (FRITSCH - pulverisette 9) was used for the 

milling. 

2.3 Mortar and sample preparation 

The basic recipe which was used for the mortar samples was 75 % sand, 25 % binder and a 

water/binder ratio of 0.5. The mortar was prepared in a small mixer with the capacity of 5 liters. 

Binder; either cement or cement and SSA, was placed in the bowl, and immediately after the water  

was added, the mixer was switched on for 30 sec at low speed. The sand was added during the next 30 

sec, and then the mixer was switched to high speed and the mixing continued for another 30 sec. The 

mixer was stopped and the paste adhering to the inside of the bowl was within the next 30 sec  

removed by a scraper. After 60 sec of rest, the stirring process proceeded and the paste was stirred at 

high speed for another 60 sec. 

The compaction procedure was executed by a vibrating table at a frequency of 53 Hz. The mortar 

was placed in the mould within the first 30 sec and the mortar was vibrated for another 90 sec. The 

mortar  samples  were  sealed  in  plastic  for  24  hours,  unsealed  and  stored  at  room    temperature. 
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The paper cuttings used to generate rough and smooth surfaces of the hardened mortar was created by 

cutting a circular shape out of the lining paper using a circle cutter. The paper was moistened by placing 

it under running water for a few seconds Fig. 1. Before the frame was mounted, the paper cutting was 

placed at the base of the mould and evened out with the means of a wall paper brush Fig. 2. The samples 

were casted in moulds made from film faced ply wood. The dimensions of the moulds were either 

100x100x30mm or 200x200x30mm. For the colour scale a steel mould was used. The samples  

measured 80x40x40mm. 

 

Fig. 1. The paper was moistened before it was Fig. 2. The wet paper glued to the base. placed 
on the base of the mould. 

 
 

3 Results and discussion 

The experiments of this study revealed that the colour of the SSA-containing mortar intensified as the 

time interval of the grinding process increased, Fig. 3. Each of the 6 steps within the time interval 0 – 

10 min provided an additional colour tone and generated a colour scale consisting of mortar samples 

ranging from greyish to a more saturated red brown colour. 
 

Fig. 3. Colour scale of moisturized mortar samples. The Grey colour of normal mortar gradually changes as the 

fineness of SSA particles increases. The first mortar sample to the left does not contain any SSA. The second 

sample contains un-treated SSA. Hereafter, the samples contain ground SSA of increasing fineness. 

0 min 10 min 
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Additionally, the experiments revealed that the colour of mortar containing untreated SSA did not 

display a noticeable colour change particular when the samples had less than 20 % cement 

replacement. Fig.4. 
 

Fig. 4. a) sample –reference b) 10% cement replacement by un-treated SSA. C) 20% cement replacement by 

un-treated SSA. Half the tile was moistened .The Colour change was easier to see when the samples were wet. 

 

Generally, increasing the SSA amount intensified the colour. Furthermore, it was found that the plain 

form materials -the film faced plywood and the lining paper generated diverse textural qualities in both 

rough and smooth surfaces. The rough and smooth surfaces highlighted the tones of the colour 

differently. Thus, the experiments displayed a possibility to influence the colour and to create circular 

imprints on the surface of the mortar samples Fig. 5. 

However, the experiments also showed that the use of paper as form materials can cause technical 

challenges. In some cases the paper attached to the surface of the hardened mortar and it was not 

possible to remove it Fig. 6. Only by using a brush and running water did the paper detach. 

Consequently, the samples lost some of their vibrancy because the textural differences were blurred by 

this treatment. The reason why the lining paper sometimes was stuck to the surface was not identified 

and will need to be investigated further. Despite the fact that these form materials showed constrains in 

usage, the experiments exhibited a general idea of using absorbent and water repellent form materials 

combined to accentuate the colours of cement based materials which in this case was SSA-containing 

mortar. 
 

Fig. 5. Accentuation of colour displayed by the Fig. 6. Paper stuck to the hardened concrete tile. 
difference of rough and smooth surfaces. The circular parts are smooth and the surrounding areas are rough. 

a) b) C) 
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The variability of SSA challenges it’s suitability as SCM in cement based material. Nevertheless, 

Scrivener & Nonat 2011 advocate for the necessity to adjust future demands for cement by using 

locally available materials, and to develop on the basis of a scientific approach new SCM and cement 

types in order to produce sustainable cement based materials. 

Empirical, initial testing of new materials such as SSA does not establish profound understandings 

of reactions on micro level and predictions of long term material performances at macro scale. Such 

testing will, however, often confront existing theoretical knowledge, pose new questions and unfold 

material properties, not perceived by a parametric model such as the aesthetical quality of a colour. 

Even though the variability of SSA challenges its usage in cement based materials and application  

in construction, it also confronts the general idea and requirements for uniformity especially when 

thinking about concrete. For construction materials such as brick and wood, variation in colour and 

texture is in contrary, often desired and thrived for as aesthetical qualities that add value to the build 

environment. And although SSA containing concrete could be used at places where the colour is less 

important e. g in hidden structures there is also a possibility to incorporate variability into a design 

solution of a facade. As a good example can be mentioned Yardhouse designed by the London based 

architecture collective ASSEMBLE. The design solution for the facade exhibits how variation 

intentionally can be included by using coloured concrete tiles in an unusual scale for normal concrete 

facades Fig. 7. Thus, variation of cement based materials can be aesthetically unfolded trough 

rethinking scale and component. And as such, SSA shows potential as a secondary resource for 

colouring concrete, and if the aesthetical aspects such as colour are taken into account at an early stage, 

it could challenge a general idea that concrete is a grey, and in some views, a drab material. 

 

 

 

 
4 Conclusions 

Fig. 7. Yardhouse, 2014 by Assemble. The facade is made from 

concrete tiles. The colourful tiles is hand made on site. Photo:ASSEMBLE 

 

This study revealed that SSA shows potential as a secondary resource for colouring concrete and a 

colour scale can be developed when different time intervals are applied to the process of grinding SSA. 

Additionally, the experiments displayed that the colour can further be accentuated by the use of simple 

form materials such as lining paper and ply wood. However, the usage of lining paper showed some 

technical challenges and is at present not applicable in large scale and optimisation needs to be 

investigated further. 
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Abstract 

 

Sewage sludge ash (SSA) is the residue produced at wastewater treatment plants where incineration of 

sewage sludge is employed in order to decrease its volume. In Denmark, SSA is currently processed, with a 

few exceptions, as waste and is thus landfilled. This gives rise to environmental and economic problems for 

which solutions are urgently required. 

 
 

This paper reports an experimental study of the colour, compressive strength and workability of mortar when 

cement is partly replaced by milled SSA. The SSA used in the present study had a high content of iron oxide 

which gave it a characteristically red colour. The SSA was dried and milled at 7 different time intervals 

ranging from 0-10 min and mortar samples with 20 % SSA replacing 20% cement were compared to samples 

containing no SSA. 

The properties of the mortars increasingly improved with the duration of milling. The compressive strength 

of unmilled SSA was lower than the reference mortar, but when using SSA milled for more than 3 minutes, 

the same compressive strength was obtained for mortar with and without SSA. The workability of mortar 

containing SSA milled for between 3 - 10 minutes was comparable to the workability of ordinary mortar. At 

the same time, the colour intensified with the milling time, and a colour scale became available through this 

simple pre-treatment. The process of drying and milling are thus parameters which could qualify SSA as 

Supplementary Cementitious Material (SCM) used in blended cement. 

 

 

Keywords: mortar, sewage sludge ash, colour, compressive strength, workability 
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1. Introduction 

 

Negative environmental effects and over-exploitation of available resources, due to a growing human 

population, is one of the problems faced by the construction industry. Not only has the construction industry 

a high demand for materials, but 10% of the global emission of CO₂ is due to provision of construction 

materials of which cement alone is accountable for approximately 85 % [1]. The need for climate change 

mitigation has caused the cement industry to apply the concept of sustainability to its activities. Schneider et 

al.[2] analysed different strategies to reduce the emission of CO2 associated with cement production. These 

strategies cover initiatives such as the use of alternative fuels and alternative materials in clinker production, 

kiln and grinding efficiency, carbon storage, production of cement with several main constituents, 

development of new clinker substitutes, and new types of binders and material concepts. 

In the fifth assessment report by the Intergovernmental Panel on Climate Change [3] resource efficiency is 

recognized as a pathway to mitigate climate changes. Resource efficiency requires that the way available 

resources are governed is changed through their entire lifecycle. Thus, more political attention has been paid 

to the possibilities to utilize waste as resource. In the latest European Union Waste directive 2008/98/EC 

“waste as resource” is promoted by formulation of “end of waste criteria” which sets the legal framework 

that describes when waste cease to be waste and instead is qualified to obtain the status as secondary raw 

materials useful in industrial productions [4]. Industrial residues such as blast furnace slag, silica fume and 

coal fly as have for a long period of time been utilised for concrete production, and utilisation of waste 

products retrieved from other sectors are therefore not new within the concrete industry. This has led to 

conditions where 20 -70 % of cement [5] is replaceable with silico-aluminate materials that fills out the 

function as supplementary cementing material (SCM) in blended cement and such utilisation complies with 

the concept of resource efficiency. However, in order to achieve higher rates of cement substitution for the 

purpose of lowering the CO2 emission due to clinker production, it is necessary to develop and use new SCM 

which also are locally available [6]. Aside from naturally occurring resources such as natural pozzolanes and 

activated clay, sewage sludge ash (SSA), a residue that derives from incinerating sewage sludge, could be 

such a local available resource suitable for SCM. Research has investigated the possibilities of utilizing SSA 
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not only as SCM in blended cement but in a wide range of building materials such as bricks, tiles, pavers, 

light aggregates but also for substitution for cement in concrete and mortar [7–9]. Results reported in 

literature on the compressive strength development, workability and setting time of mortar onconcrete 

containing SSA have however, shown that these properties are negatively affected when compared to the 

same properties of ordinary mortar or concrete. However, studies by Pan et al. [10] and Donatello et al. [11] 

(2010) have found that compressive strength development and workability can be improved when the SSA is 

milled to obtain finer particles. 

So far studies conducted have mainly performed tests on SSA as SCM in mortar and concrete at laboratory 

scale. One exception was the Danish demonstration project BioCrete [12] where utilisation of SSA in 

concrete production was tested on a larger scale. In the project the milled SSA was replacing coal fly ash by 

50 % as the pozzolanic activity of SSA was found too low to replace cement. However, due to a high content 

of Fe in the SSA the colour of the concrete changed from the normal grey to increasingly red tones [13]. The 

change of the colour was addressed as an obstacle as it was stated that the red colour restricted the 

application of the concrete mainly to be used for hidden structures if not intentionally used aesthetically. 

Thus, in a previous study by Kappel et al. [14] the change of colour in SSA-containing mortar was addressed 

as an aesthetical quality, which was unfolded by investigating how the colour evolved when the fineness of 

SSA increased. In the previous study initial tests revealed that the colour did not change significantly unless 

the SSA was milled to obtain finer particles and thus, it was found that the milling of an Fe rich SSA was a 

requirement for the red colour to evolve. The objective of the present study was to examine how SSA 

affected the compressive strength, workability and the colour of SSA-containing mortar. The three 

parameters were chosen as these basic material properties are seen as indicators for the applicability of using 

SSA as SCM in cement based materials. 
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2. Materials and methods 

 

2.1. Materials 

 

SSA was collected at the wastewater treatment plant Biofos in Copenhagen, Denmark (February, 2013). The 

SSA is incinerated in a fluidized bed combustor at about 850°C. The plant treats wastewater from 255.000 

person equivalents (PE) with a subsequent ash production of app. 2500 tons annually. Phosphorous is 

removed from the wastewater by chemical precipitation with Fe. The resulting ash therefore has a 

characteristic red iron-oxide colour. The SSA was collected directly from the process line and stored in 

sealed plastic containers at room temperature. The SSA was both used as-received and milled, and these 

samples are named SSA and SSAXmin, respectively, where x is the duration of the milling. 

For mortar preparation a Portland cement (CEM II/A-LL 52.5R) was used. This cement type has a content of 

less than 20% limestone filler. The sand used in the experiment was a natural sea sand 0-4mm with technical 

specification following DS/EN 12620 ([15] 2008) and DS 2426 [16] In this paper, the term “test material” 

covers SSA (as-received and milled), cement and test binders (cement and SSA). 

 

 

 
2.2 Drying and milling procedures 

 

The effect on the particle size distribution of milled SSA after drying at two different temperatures (50 °C or 

105 °C, for 24 h) was investigated. The SSA was dried before the milling and compared to SSA which was 

dried after the milling, SSA as-receieved and cement. The milling duration was 30 sec and the particle size 

distribution was analysed by laser diffractometry. A vibratory cup mill (FRITSCH - pulverisette 9) was used 

for the milling. For the remaining part of the work, the procedure for drying and milling was: drying at 50 °C 

for 24 h before milling. Milled SSA samples from 6 different durations were produced: 0 sec, 10 sec, 30 sec, 

3min, 6 min, and 10 min. Particle size distribution was measured for each fraction and they were compared 

to the particle size distribution of cement. 
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2.3 Analytical procedures 

 

The concentrations of the trace elements Ni, Cr, Cu, Zn and Pb in the test samples were measured after the 

pre-treatment procedure described in DS/EN 259 [17]: 1.0 g material and 20.0 ml (1:1) HNO3 was digested 

at 200 kPa (120 °C) for 30 min. The digested suspension was filtered through 0.45 µm filter paper, and the 

filtrate analysed by ICP–OES (Induced coupled plasma – optical emission spectrometry). The water content 

of the test samples were measured as weight loss by drying at 105°C for 24 hours. The pH was measured by 

suspending 10.0 g of test material in 25 ml distilled water. After 1 h agitation pH was measured directly in 

the suspension. Loss on ignition (LoI) was determined as weight loss after 30 minutes at 950 ˚C. Solubility 

in water was evaluated by suspending 100 g test material in 500 ml distilled water. After agitation for 1 min 

and settling, the water was decanted and 500 ml new distilled water was added. This was repeated and the 

ash was washed three times. Finally the suspension was filtered, dried and weighed, and the solubility 

expressed as weight loss by this procedure. The buffering capacity of the test materials was determined by 

firstly preparing a suspension of the test material mixed in water (6.7 % w/v) secondly stirring the 

suspension for 30 min before pH was measured. Successive 10 ml of concentrated HCl were made every 30 

min and pH was measured thereafter. This was repeated every 30 min until pH was below 2 [18]. Major 

oxide composition and Cl content in SSA and cement was found by X-ray fluorescence (XRF) on powder 

samples. Images of particle morphology were made using a scanning electron microscopy (SEM) of a small 

sample placed directly on carbon tape. The accelerating voltage of the SEM was 15 kV and it was equipped 

with a large field detector and x-ray cone. Particle size distribution of the test materials was determined by 

laser diffractometry. 

 

 

 
2.4 Mortar preparation and compressive strength test 

 

The mortar preparation followed the procedures as described in DS/EN 191-3+A3 [19] except for the sand, 

where the 0-2 mm sand prescribed was replaced by coarser sand with a grain size distribution between 2- 4 
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mm. This sand was chosen to have a coarser consistency, closer to that of concrete, but still manageable at 

laboratory scale. 

In the experimental mortars 20 % by weight of the cement was replaced by SSA. This percentage was chosen 

to obtain results that would clearly show what effect milled SSA had on colour, compressive strength 

development and workability. The same percentage of cement replacement was used in two studies in which 

milled SSA was tested for pozzolanic activity [10], setting time and workability [9]. 20 % cement 

replacement can also be seen as an appropriate starting point for dealing with the environmental implications 

of cement production. Seven experimental mortars were produced, five with substitution of milled SSA, one 

with substitution of SSA as received (2.0sec) and one control sample without SSA (1.ref) No additional water 

was added to any of the test samples. A description of the different mortars is shown in Table 1. The mixing, 

casting procedures and the moulds used were as prescribed by DS/EN 191-3+A3 [19]. The mortar samples 

were removed from the moulds after 24 h, placed vertically in a water bath 20 °C and cured for 28 days. 

Each prismatic mould produced 3 specimens measuring 160mm x 40mm x 40mm which after curing were 

cut into 6 equal test samples measuring 80mm x 40mm x 40mm. For the determination of the compressive 

strength a Toni 3000 compression machine was used. The compressive strength test followed the 

prescription given in standard DS/EN 191-3+A3 [19] and was applied after 28 days. The seven different 

mortars listed in Table 1 each consisted of six identical test samples that were all tested. 

Table 1 Recipe for reference and test mortars 

 

 

sample 
 

duration 

  of milling  

 

cement 
 

SSA 
 

sand 
 

water 

1.ref ÷ 450 g ÷ 1350 g 225 g 

2.0sec 0 sec 360 g 90 g 1350 g 225 g 

3.10sec 10 sec 360 g 90 g 1350 g 225 g 

4.30sec 30 sec 360 g 90 g 1350 g 225 g 

5.3min 3 min 360 g 90 g 1350 g 225 g 

6..6min 6 min 360 g 90 g 1350 g 225 g 

7.10min 10 min 360 g 90 g 1350 g 225 g 



44  

A characterisation of test materials used in the experiments included SSA as received (SSA), cement, milled 

SSA (SSA10min), and the two test binder consisting of 80% cement and 20 % SSA as received or milled. The 

test binders were named Binder_ 20%SSA and Binder _ 20%SSA10min. 

 

 

 
2.5 Workability 

 

The flow value expresses the workability of mortar with un-treated and milled SSA. Preparation of mortars 

followed DS/EN 191-3+A3(DS 2009) and the tested mortars are those listed in Table 1. The flow value was 

determined according to DS/EN 1015-3 [20]. A truncated conical mould (50 mm high, internal diameter 100 

mm at the bottom and 70 mm at the top) was uniformly filled with mortar. The mould was removed, and the 

mortar exposed to jolting by slowly raising the mould 2 cm vertically and dropping it, 15 times at a rate of 

one pr. second at a flow table. The mean diameter (dmean) from two measurements of the subsequent mortar 

diameter in two directions at right angles was found. The procedure was repeated twice for each mixture. 

The flow value is defined as Dmean of second measurement and accepted, if Dmean differs less than 10 % 

between the two mixtures. 

 

 

 
2.6 Colour samples 

 

The seven mortars in Table1 were prepared for the production of samples for colour evaluation. The mixing 

followed the same procedures as for compressive strength testing. However, the moulds used were three 

compartment moulds made from film faced ply wood where each compartment had the internal dimensions 

100x100x30mm. The mortar was uniformly distributed in the mould by means of a vibrator table, covered in 

plastic and kept in the wooden mould for 24 h. The samples were ejected and stored at room temperature 

without any exposer to daylight. 
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3. Results 

 

3.1 Material characteristics 

 

The characteristics of the test materials: SSA, SSA10min, cement, Binder_20%SSA and Binder_20%SSA10min 

are shown in Table 2. The results showed that all test materials were alkaline. However, the pH of SSA and 

SSA10min were lower than the pH of cement and test binders, as these were pH 9.9 and 9.4 against pH 12.6 

respectively. Thus the pH of the two test binders was the same as in the pure cement sample. This finding 

was supported by findings provided by the determination of the buffering capacity (Figure 1).The graphs 

monitoring the buffering capacity of cement displays a high resistance against acidification as the pH 

dropped slowly. Even though the buffer capacity of SSA and SSA10min  were significantly lower in 

comparison to cement, the buffer capacity of the two test binders showed to some extent equal resistance 

against acidification as for cement despite the fact that 20% of cement was replaced by SSA of lower pH and 

buffer capacity. 

Figure 1 Buffer capacity of SSA, SSA10min, cement and test binders (Binder_20%SSA and Binder_20%SSA10min 
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The SSA had a water soluble fraction of about 1.5% per weight (Table 2). Determination of water solubility 

gave negative values for cement and the two test binders. The negative values represent an increase in mass 
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due to the hydration process. The values found display that the hydration process of the test binders was less 

reactive as these values were less negative than for cement. 

The chemical analysis showed that the concentrations of trace elements Cu, Zn and Pb were significantly 

higher in the test binders than in cement due to the higher concentration levels in the SSA. The 

concentrations of Cr and Ni, on the other hand, were only slightly elevated in the test binders compared to 

cement. 

Table 2 Characterisation of SSA, SSA10min, Cement and test binders (Binder_20%SSA and Binder_20%SSA10min) 

 

 SSA SSA10min cement Binder_20%SSA Binder_20%SSA10min 

water content % 0.63 ± 0.13 0.06 ± 0.10 0.28 ± 0.11 0.24 ± 0.09 0.47 ± 0.16 

water solubility % 1.27 1.5 − 3.56 − 1.93 −2.01 

pH 9.9 ± 0.00 9.4 ±0.00 12.6 ± 0.02 12.6 ± 0.01 12.6 ± 0.02 

Loss on ignition (%) 1.35 ± 0.04 1.62 ± 0.08 7.04 ± 0.09 5.81 ± 0.05 5.72 ± 0.62 

Major oxides (%)      

Al2O3 5.1 − 4.91 4.95* − 

CaO 23.8 − 65.7 57.5* − 

Fe2O3 15.7 − 5.43 7.48* − 

K2O 1.57 − 0.81 0.96* − 

MgO 2.32 − 0.53 0.89* − 

MnO 0.09 − 0.04 0.05* − 

Na2O 1.15 − 0.67 0.77* − 

P2O5 20.2 − 0.23 4.22* − 

SiO2 17.1 − 20.1 19.5* − 

SO3 2.02 − 4.74 4.2* − 

TiO2 0.83 − 0.35 0.45* − 

Cl 0.01 − 0.1 0.08* − 

trace elements (mg/kg)      

Ni 57.5 ± 1.53 57.7 ± 4.29 27.0 ± 5.55 35.6 ± 1.15 35.0 ± 1.23 

Cr 38.7 ± 0.76 43.6 ± 2.96 26.0 ± 4.85 30.7 ± 2.11 29.8 ± 1.64 

Cu 688 ± 17.3 703 ± 54.9 67.5 ± 13.1 183 ± 8.12 183 ± 6.98 

Zn 1930 ± 26.8 1960 ± 67.5 115 ± 22.0 415 ± 17.0 413 ± 17.2 

Pb 144 ± 2.00 146 ± 7.65 21.6 ± 4.49 46.3 ± 1.56 45.9 ± 1.48 

* calculated oxide content on basis of the detected content values of SSA and cement 

 

 
 

The distribution of the major oxides for SSA was: CaO > P2O5 > SiO2 > Fe2O3 > Al2O3 (Table 2). The content 

of P2O5  was 20 % and was at the same level as CaO (23.8 %) and Fe2O3  (17.5 %). When SSA and the 

content of four main constituents of cement: CaO, SiO2, Fe2O3 and Al2O3, are compared, only the content of 

SiO2  was at a comparable level in the SSA to the content found in cement. MgO and MnO were found to be 
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between 2- 4 times higher in SSA than the levels found in cement. Only the content of SO3 was higher in 

cement than in SSA which was 2.02 % against 4.74 % for cement. The major oxides composition for 

Binder_20%SSA was calculated on basis of the measured compositions for the two parts SSA and cement 

(Table 2) and it had quite similar composition as cement. The concentration of P2O5 was however, much 

higher (4.2% against 0.2%) for Binder_20%SSA due to the high content in SSA. The complete lists of order 

in weight percentage of the major oxides in SSA, cement and Binder_20%SSA are: 

 

 

 

 
SSA: CaO>P2O5>SiO2>Fe2O3>Al2O3>MgO>SO3>K2O>Na2O>TiO2>MnO>Cl 

Cement: CaO>SiO2>Fe2O3>Al2O3>SO3>K2O>Na2O>MgO>TiO2>P2O5>Cl>MnO 

Binder_20%SSA CaO>SiO2>Fe2O3>Al2O3>P2O5>SO3>K2O>MgO>Na2O>TiO2>Cl>MnO 

 

 

 

The results of the particle size distribution analysis seen in Figure 2 showed that finer particles were obtained 

if SSA was dried before milling regardless the applied temperature. Samples of SSA were dried either before 

(Bef) or after (Aft) milling at 50°C and 105°C. At 50 % of volume for Aft50°C the accumulated volume had 

increased by approximately 10 % in comparison with Bef:50°C. Thus finer particles were obtained when the 

SSA was dried before the milling. The applied temperature did not affect the particles size distribution. 

Based on this result, the SSA was dried at 50°C before it was milled in order to obtain the smallest possible 

particle sizes in the remaining experiments. 
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Figure 2 Particle size distribution of cement, SSA as-received, and milled (30 Sec) SSA dried either before (Bef) or After (Aft) the 

milling 
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Figure 3 Particle size distribution of cement and SSA milled in interval between 0 sec and 10 min 
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The effect of the milling process for different durations was analysed by comparing the particle size 

distribution and morphology of the milled SSA with the particle size distribution and morphology of cement 
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(Figures 3 and 4). The effect of milling SSA can be seen in Figure 3. A comparison of the particle size 

distribution for the milled SSA shows that the slopes of the curves and the medium size particles (d50) move 

closer to that of cement as the duration of milling increases. The increase in particle fineness is slower in the 

duration from 3 to 10 min (Figure 3). SEM images of the morphology of un-treated, milled SSA and cement 

(Figure 4) support the findings from Figure 3. The effect of the milling on the coarse particles of un-treated 

SSA, which were steadily crushed as the duration of the milling increases, were observed. As a result of the 

milling, the finely grounded ashes milled for 6-10 min (Figure 4) attained uniformity, which is equivalent to 

cement. 

Figure 4 SEM images of cement and milled SSA in interval 0sec- 10min 
 

 

 
 

3.2 Material properties: compressive strength, workability and colour 

 

The results of the compressive strength test (Figure 5) showed a positive effect from milling the SSA. A 

decrease in compressive strength was found when 20 % of cement was replaced by untreated SSA. The 

measured compressive strength of the control (1.ref) was around 60 MPa and decreased by 13.4% to the level 

of 52 MPa (2untreated) when cement was replaced by SSA as receieved. However, the compressive strength 

improved immediately when SSA had been milled, even for only 10 sec. The compressive strength for 310sec 

was approximately 58Mpa, a decrease of only 3.4% compared to the compressive strength of 1.ref. Test 

mortars containing SSA milled for 3- 10 min achieved the same level as 1.ref. 



50  

Figure 5 Compressive strength of reference mortar and test mortars after 28 days of curing at 20°C 
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The workability, evaluated by determining the flow value of test mortars, is seen in Figure 6. The particle 

size distribution of SSA was essential to the workability of the six test mortars. The flow value of 2.0sec, 

where 20 % cement was replaced by SSA as received, decreased by 35% in comparison to 1.ref . As the 

milling duration increased, the flow values increased correspondingly. For sample 66min, the flow value was 

close to that of 1.ref . 

Figure 6 Flow value -Workability of control and test mortar 
 

mm 

180 

160 

140 

120 

100 

80 

60 

40 

20 

0 

 
 

1.ref 2.0sec 3.10sec   4.30sec 5.3min 6.6min    7.10min 

mortar 
 

Figure 7 shows the colour samples. It shows that the colour of mortar containing milled SSA evolved 

simultaneously to an increased duration of the milling (Table 1). The images also display that the colour tone 
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of 20sec was comparable to the grey colour of 1.ref which had a grey colour with a slight red tint. This supports 

the findings in Kappel et al [14]). This study showed that a precondition for having a pronounced change of 

colour for mortar containing an iron rich SSA was to mill SSA into finer fractions. In Figure 8 the three 

samples: 2.0sec, 3.10sec  and 6.6min are displayed together with 1.ref, and it illustrates that the colour progression 

of the six samples containing SSA can be ordered in a three step colour scale. In the colour scale each of the 

samples has a distinct colour different from the neighbouring sample. The remaining samples which are not 

included in the colour scale in Figure 8 have tones which are similar to the samples: 2.0sec, 3.10sec and 6.6min. 

Figure 7 Colour samples of reference mortar, as received and milled SSA arranged in the following order. 1.ref – 7.10min 
 

 

Figure 8 Colour samples 1.ref 2.0sec, 3.10sec and 6.6min 
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4. Discussion 

 

The use of SSA as SCM in blended cement may not seem so obvious when you compare SSA to the use of 

other residues with more evident properties such as lubricant effect of coal fly ash particles or the high 

reactivity of silica fume. On the contrary result reported in literature have generally showed that properties of 

mortar such as the compressive strength and workability are impaired when SSA is used partly to replace the 

cement [7, 9 ,20–23]. The reason is the parameters which are important for the pozzolanic activity of SSA 

are not optimal in SSA. Firstly , the content of reactive silica and aluminous are generally lower for SSA 

than other known SCMs [7], and secondly, SSA are characterized by irregular, coarse and porous particles 

which affect the fluidity of the fresh mortar and lowers the available water for the hydration process in the 

system  [9,10]. However, results on compressive strength tests and determination of the workability of the 

test mortars in this present study indicate that it is possible to obtain a material which is suitable as SCM by 

applying simple pre-treatments methods such as drying and milling. 

Generally, the reaction rate of most SCMs is slower than the reaction of clinker phases, and the filler effect is 

main parameter contributing to formation of hydrations products at an early stage [24] . The fineness of the 

SCM is therefore important, as fine materials with large surfaces enhance nucleation sites and provide more 

space in the system for the clinker phases to form hydration products. The findings of the present study 

supports the findings of Donatello et al. [11] and Pan et al. [10] as the results produced in all three studies 

showed that the compressive strength improved when SSA was milled. Contrarily to the results obtained in 

the study of Donatello et al. [11], the time intervals in the present study did not result in particle size 

distributions that exceeded the fineness of cement. On the other hand the milling time applied did provide a 

material which could replace the cement by 20 % and at the same time obtain compressive strengths and 

flow values which were comparable and reached the level ofreference mortar. The results on the compressive 

strength development in the studies by Donatello et al. [11] and Pan et al. [10] reached to 94 % and 77 % of 

the reference mortar respectively. 
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Besides the chemical composition, the amount of reactive phases and the fineness of the particles; the 

composition of the interacting solution is equally important for the reactivity of pozzolane [24]. However, for 

the majority of studies the reactivity of SSA has not been discussed in relation to the interacting solution. 

Exceptions are two previous studies by Monzó et al. [21, 25] in which SSA was tested as partly cement 

replacement in mortar and tested in relation to four different types of cement. The results reported from the 

compressive strength test showed that the strength development was dependent on the cement used. Even 

though the results from the present study and the study of Donatello et al. [11] are not directly transferable 

for a comparison due to the differences in the cement, sand and SSA used, it may exemplify the relevance to 

include the role of the interacting solution to assess the pozzolanic activity since the compressive strength of 

53min, 66min and 710min reached the compressive strengt of 1ref. In order to broaden the discussion on SSA as 

secondary resource suitable as SCM, we consider it necessary to assess all the parameters brought into play 

collectively both the specific SSA and clinker phases present. To answer and understand how SSA interact 

with the clinker phases it may require as Scrivener & Nonat [6] suggest more advanced assessments methods 

as parametric modelling based on profound knowledge on thermodynamics of the compounds to determine 

the hydration products formed and thus be able to predict the long term performance of the cement based 

material produced. 

Furthermore, colour and the colour change due to the SSA may have to be overcome before SSA will obtain 

the status as SCM. In the project Biocrete [12] colour was used as marker for the quantities to be used in 

order to avoid the colour of concrete to change, even though concrete with a reddish colour containing a 

higher amount of SSA met the technical requirements set for the concrete [26]. The colour samples produced 

in this study display that the colour changed from the normal grey to a reddish colour when the SSA was 

milled and increased when the fineness of the particles increased. If the motivation for utilizing SSA is to 

reduce the amount of the CO2 intensive clinker by substitution of SSA, the colour of the concrete seems less 

important as a measure to control the substitution rate. In general however, colour does not play a major role 

in research on SSA utilisation, as the studies conducted do not refer to any colour change due to the SSA 

used. This could be due a disengagement with the subject as the colour is not important for the application [ 
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[27]. However, exemplified by the Biocrete project, the colour change may be regarded as a limiting factor 

for a general application in concrete, and therefore we believe that the colour of SSA containing mortar and 

concrete is relevant to address to unfold the colour potential of milled SSA which intentionally can be used 

aesthetically and/or integrated in the design solution. 

 

 

 
5. Conclusion 

 

 Finer particles can be obtained if SSA is dried before milling regardless the applied temperature. 

 

 The milling of the SSA improves the strength development and the workability of SSA containing 

mortar. 

 The use of 20 % of SSA milled between 3- 10 min provided compressive strength and flow values 

that were comparable to the compressive strength and the flow value of ordinary mortar. 

 The colour change of mortar is not significant unless the SSA is milled. However, mortar containing 

20 % of SSA0sec obtained a grey colour with a slightly red tint, which evolved as the duration of 

milling increased to the extent that mortar changed colour from light grey to a reddish colour for 

mortar containing SSA6-10min. 

 It is possible to obtain a material which may be suitable as supplementary cementitious material by 

applying these simple pre-treatments of SSA: drying and milling. However, the question of the 

reactivity of SSA and its long term performances may have to be settled before SSA can obtain the 

status as secondary resource suitable as SCM in blended cement. 
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5.2 Acid washed SSA in mortar 

 

The experimental work of the second study was conducted as part of a collaboration project “Genanvendelse 

af fosfor fra slamaske” between the engineering consultant company Rambøll, University of Southern 

Denmark (SDU) and Technical University of Denmark (DTU). The project was supported by the Danish 

Environmental Protection Agency (EPA). The overall aim of this project was to further develop a wet 

chemical extraction method to recover phosphorous by using hydrochloric acid to extract the phosphorous 

from the SSA (Ottosen et al. 2013). This method was previously found to be an efficient method to solubilise 

the phosphorous and separate it from the solid residue. However one important challenge was identified, 

which was the impurity of the final phosphorous product due to high levels of heavy metals. Therefore, 

further development was required to optimize the crystallisation process to be able to form large calcium 

phosphate crystals having low levels of heavy metals. 

At the same time, the present investigation of the residue left after acid extraction was included to examine 

whether it could be used as partial cement replacement in mortar. The task of the second study was therefore 

to investigate how the basic properties of mortar were affected by the acid washed SSA (section 5.2.1). The 

results of the study showed that mortar with acid washed SSA obtained a compressive strength which was 

comparable to ordinary mortar. Similar behaviour was seen for the workability of the fresh mortar which was 

less fluid. The workability improved, however, when the acid washed SSA was milled. Due to the acid 

washing of the SSA the colour of the mortar changed significantly from the ordinary grey to a red earth tone. 

But the colour did not evolve any further when milled acid washed SSA was used in the mortar. 

 

 

5.2.1 Technical, Aesthetical and Environmental Potentials and Constraints of Utilizing Acid 

Washed Sewage Sludge Ash as Partial Cement Replacement in Mortar 
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Abstract: 

Phosphorous is an indispensable nutrient necessary for crops growth. Since the present sources for 

phosphorous are depleting, recirculation of phosphorous and the need to develop sufficient 

extraction methods are increasingly brought into focus at a political level. Currently, sewage sludge 

ash (SSA) is an untapped source for phosphorus which potentially could be retrieved by acid 

extraction. Over the years research has extensively studied possibilities to utilise SSA as substitute 

for cement in concrete and mortar, equal to other industrial residues like coal fly ash. However, 

only few studies have included the aspects of phosphorous recovery. The purpose of this study was 

to examine how basic material properties of mortar were affected when 20% of cement was 

replaced by treated SSA. To extract phosphorous the SSA was washed in HCl before it was milled 

into six different finenesses (time intervals from 0- 10 min). For comparison untreated SSA was 

milled into the same six fractions. The experimental framework covered a study of which the effect 

the treated and the untreated SSA had on basic material properties of technical and aesthetical 

relevance: compressive strength development, workability, setting time and colour. The 

performance of the test mortars was assessed together with the environmental impact of acid 

washed and SSA as-received by comparing the concentration levels of toxic elements and values of 

eluate present in the two different processed SSA with Danish limit values set for residues used in 

geotechnical construction work. Overall, the results of the conducted experiments showed that the 

compressive strength and setting time of mortar containing acid washed SSA were comparable to 

ordinary mortar. However, the workability and colour were exceedingly affected. The colour 

changed from grey to a red brown colour and the flow value of the test mortar dropped when 

cement was partially substituted by the acid washed SSA. Furthermore, the study revealed that 

several of the relevant elements measured exceeded the permissible limit values. 

 
Keywords: Mortar, material properties, sewage sludge ash, acid extraction, phosphorous 
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1. Introduction: 

Utilization of sewage sludge ash (SSA) in cement based materials as partial cement replacement 

may be beneficial when the emission of CO2 related to cement production is taken into 

consideration. Depending on the type and age of technology applied at the cement plant, app. 0. 92 

ton of CO2 [1] is produced for each ton of clinker. As a consequence, cement production is 

responsible for app. 5-7 % of the global emission of CO2 [2–4]. Use of SSA as partial cement 

replacement could lower this emission. SSA is however, a rich source for phosphorous which is a 

nutrient necessary for crop growth [5, 6]. Since the existing sources for phosphorous in fertilizer 

production are depleting, phosphorous depletion is identified as an important issue to solve to 

sustain food security globally [6]. As a consequence it is essential to address SSA as a resource for 

phosphorous simultaneously with the potentials of utilizing SSA in cement based materials for the 

purpose of lowering the environmental impact of cement production. 

Studies have been initiated for the purpose of investigating the possibilities to utilize SSA as- 

received in cement based materials. Reviews of conducted research are found in the studies of [5,7, 

8]. In general, SSA is characterised as a material consisting mainly of SiO2, Al2O3, Fe2O2 and CaO 

and with a high content of P2O5. The morphology of SSA is characterised by coarse and porous 

particles which has shown to decrease the compressive strength development and affect the 

workability of the mortar [7, 9, 10]. 

 
The overall discussion of the conducted studies have addressed the question of the pozzolanic 

activity of SSA and whether it is, equal to other industrial residues, suitable as supplementary 

cementitious material. In the review by [8] 157 different samples of SSA from 76 studies were 

plotted into a ternary diagram which for the majority showed that the content of relevant SiO2, 

Al2O3 and CaO were within bounds of the latent hydraulic and pozzolanic region. In the study of [7] 

an assessment of 32 studies lead to the conclusion that the content SiO2 and Al2O3 were less than 

50% which was significantly lower than other classical admixtures such as coal fly ash, silica fume 

or metakaolin. The conducted experiments designated to determine the pozzolanic activity of SSA 

have kept the discussion going and led to ambiguous conclusions about the different parameters that 

possibly can  inflict upon the reactivity of the SSA; temperature during curing [9]; the processing, 

the fineness and the chemical composition of the specific SSA [10, 11]. Another aspect which has 

contributed to the discussion of the pozzolanic activity and whether SSA belong to the category of 
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pozzolanic materials or not, is the fact that different determination methods provide different results 

[7, 8, 12]. 

 
Yet, the majority of the conducted studies have singly focused on the utilisation of SSA as received 

without confronting the fact that SSA is a potential source for phosphorus which could be retrieved 

if sufficient recovery methods are developed. Previously, only one study (to the authors’ 

knowledge) by Donatello et al. [11] has examined the pozzolanic activity of sulfuric acid treated 

SSA and compared it to the pozzolanic activity of SSA as-received and milled SSA. The results of 

the study showed that the sulfuric acid affected the pozzolanic activity of the SSA, and the 

compressive strength of mortar containing acid washed SSA was found to be lower than for mortar 

containing milled SSA but higher than the compressive strength of mortar containing SSA as- 

received. 

In this study phosphorous was extracted by means of HCl, which in previous study had shown to be 

an efficient method to provide a soluble, high quality calcium phosphate product suitable as 

fertilizer [13]. The aims of the present study were to investigate 1) technical, 2) environmental 3) 

aesthetical aspects, which could unfold potentials and restrictions attached to mortar containing acid 

washed SSA. 

 

 
2. Materials and methods: 

 
 

2.1 Experimental test materials: 

The investigated SSA was provided by BIOFOS, a municipal owned wastewater company 

operating in the Copenhagen area, Denmark. The SSA was taken from one of its wastewater 

treatment facilities in Avedøre. It was collected directly from the process line and stored in sealed 

plastic containers at room temperature (sample named SSAreceived). The wastewater plant processes 

wastewater from 255.000 person equivalents (PE) with a subsequent ash production of app. 2500 

tons annually. Phosphorous is removed from the wastewater by chemical precipitation primarily 

with Fe. The dewatered sludge is incinerated in a fluidized bed combustor at about 850°C and the 

resulting ash has a red brownish colour. 

The cement which was used for mortar preparation was a CEM II/A-LL 52.5R with a content of no 

more than 20 % of limestone filler. This particular cement was chosen because the content of 
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limestone filler is an additional step towards the reduction of CO2 related to clinker production. The 

sand was a natural sea sand 0-4mm with technical specification following DS/EN 12620 ( 2008) 

[14]. For determination of setting time, a finer sand 0- 2 mm was used in order to limit errors to 

occur during the test. 

 

 
2.2. Acid wash and milling 

HCl was used to extract phosphorous from the SSA: 250 g of SSA were weighed into 1 l plastic 

bottle and mixed with 425 ml distilled water before 325 ml of concentrated HCl (37%) was added  

to the slurry. The plastic bottle was sealed, shaken for 10 min before the slurry was filtered through 

30 µm filter paper under vacuum. The remaining solids were rinsed in 425 ml distilled water 

(shaken in a plastic bottle) and then filtered again under vacuum. The solids retained from the filter 

were dried for 24 hour at 50 ˚C and hand crushed by using a mortar and pestle to the point where no 

major coagulation was left. The hand crushed residue was stored in an oven at 50 ˚ (one week) (to 

ensure complete evaporation of water in the material). The dried residue was then milled at different 

time intervals into 6 fractions (0 sec, 10 sec, 30 sec, 3 min, 6 min, and 10 min) by a vibratory cup 

mill (FRITSCH – Pulverisette 9). The SSAreceived was dried at 50˚ for 24 hours before it was milled 

into the same 6 fractions as the acid extracted SSA (SSAacid). 

 
2.3. Analytical procedures: 

Characterisation of SSArecieved, SSAacid and cement (test materials) included determination of water 

content, pH, conductivity, water solubility, loss on ignition, total concentration of trace elements 

and eluates. The results documented in this study were based on a triple test determination. 

However, a double test was used to determine the water content, pH, conductivity and loss of 

ignition for SSAacid. 

The water content was found as weight loss by dying the test material at 105˚ for 24 hours. The pH 

and electrical conductivity were measured by suspending 10.0 g of test material in 25 ml distilled 

water. After 1 h agitation pH and electrical conductivity were measured directly in the suspension 

by Radiometer electrodes. Loss on ignition (LOI) was determined both at 550˚C and 950 ˚C, and for 

both temperatures applied LOI was found after 30 min of heating at max temperature. Grain size 

distribution was determined on the basis of dry material with laser diffractometry. Solubility in 

water was evaluated by adding 100 g test material in 500 ml distilled water and agitate the 

suspension for 1 min. After settling the water was decanted and 500 ml new distilled water was 
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added. This was repeated and the ash was washed three times. Finally the suspension was filtered, 

dried and finally weighed. For SSAacid 10 g and 150 ml water was used for measuring the water 

solubility and was only washed one time. 

The concentrations of trace elements in the test materials were measured by following the 

description in DS/EN 259 [15]: 1.0 g material and 20.0 ml (1:1) HNO3 was digested at 200 kPa  

(120 °C) for 30 min. The material was filtrated through a 0.45 µm filter after the digestion, and the 

solution was used for analysing the content of the trace elements (Al, As, Ba, Ca, Cd, Cr, Cu, Fe, K, 

Mg, Mn, Na, Ni, P, Pb, Se, Zn). The concentrations in the filtrate were measured by ICP–OES 

(Induced coupled plasma – optical emission spectrometry). Hg was measured on the solid samples 

after digestion by HNO3 by ICP-MS (Induced coupled plasma – mass spectrometry) by an external 

laboratory. Cr (VI) was measured after extraction by colormetrically UV-VIS spectrophotometry by 

an external laboratory. Major oxides composition was estimated from semi quantitative analysis by 

X-ray fluorescence (XRF) on powder samples. 

Leaching experiments were following the procedures as described in DS/EN 12457-3 part 1 [16]:  

40 g of the test material and 80 g of distilled water were mixed, and shaken for 6 hours on an end- 

over shaker before vacuum filtration through a 45 µm filter. For SSAacid only 10 g was mixed in 20  

g of distilled water. The filtrate was divided into two subsamples. One subsample was used for 

measuring anions by an ion chromatography (IC) and the other subsample was used for analysing 

the concentration of heavy metals and minor elements by ICP-OES. Hg was measured by ICP-MS 

by an external laboratory. 

Buffering capacity is defined as the ability of a material to resist changes in pH. Acid buffering 

capacity of the SSArecieved and SSAacid was assayed by titration and followed the same producers 

described by Reddy et al. [17]. A suspension of SSA in water (6.7% w/v) was stirred for 30 min and 

the pH was analysed. Successive 1ml additions of concentrated HCl were made every 30 min and 

pH was measured thereafter. This procedure was repeated until the pH value was constant. 
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2.4. Mortar preparation and tests: 

In this experimental study mortar containing SSAacid  (M-SSAacid) was compared to mortar 

containing SSAreceived (M-SSAreceived).The mortar mixes consisted of 25 % binder and 75 % sand and 

a water/binder ratio of 0. 5 Two test series were produced one with SSAAcid (M-SSAacid) and one 

with SSAreceived (M-SSAreceived). Each series consisted of seven mixes (table 1). For six of the seven 

mixes 20 % of cement was replaced by the milled SSA. One mix was an ordinary mortar without 

any cement replacement (Reference). The mixing and casting procedures followed DS/EN 196-1 

[18]. For determination of the compressive strength six specimens of each test mortars were tested. 

The specimens were cured in water for 28 days vertically placed in a sealed plastic box. 

 
Table 1 Recipe for test mortars 

 

 
Labelling 

 
SSA* 

Milling 

interval 

 
Cement 

 
Sand 

 
Water 

Reference ÷ ÷ 450 g 1350 g 225 g 

M-(…*)0 sec 90 g 0 sec 360 g 1350 g 225 g 

M-(…*)10 sec 90 g 10 sec 360 g 1350 g 225 g 

M-(…*)30 sec 90 g 30 sec 360 g 1350 g 225 g 

M-(…*)3 min 90 g 3 min 360 g 1350 g 225 g 

M-(…*)6 min 90 g 6 min 360 g 1350 g 225 g 

M-(…*)10 min 90 g 10 min 360 g 1350 g 225 g 

* either SSAreceived or SSAacid 

 

Determinations of setting time were performed using Vicatronic automatic recording apparatus 

(Matest). The test performance followed the procedures of DS/EN 196-3 + A1 [19] designated for 

determining the setting time of cement paste. However, in order to economise with the available test 

material the procedure of DS/EN 196-3 + A1 [19] was used on mortar samples, and to fulfil the 

function as filler a 0 - 2mm sand were used. A plastic container (105 x 40 mm] was uniformly filled 

immediately after mixing, and the test was started. During the each test 86 penetrations were 

performed with an interval of 10 minutes. The distance between two penetrations was minimum 10 

mm. The initial setting time was found as the first time the needle penetrated the sample 6±3 mm 

and the final setting time was found as the first measurement where the needle penetrated only 0.5 

mm of the sample [19]. 
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The workability, defined by the flow value of the mortar, was measured by using a flow table as 

described in DS/EN 1015-3 [20]. From each of the seven mixes two samples were produced to 

perform two tests. A truncated conical mould (50 mm of height, internal diameter of 100 mm at the 

bottom and 70 mm at the top) was uniformly filled with mortar and exposed to jolting by slowly 

raising the mould by 2 cm vertically and dropping it, 15 times at a rate of one pr. second. The flow 

value of each mortar was found firstly by measuring the diameter of each test samples in two 

directions crossing orthogonal each other and secondly by calculating the mean diameter of each 

test. If the mean diameter of the two tests didn’t exceed more than 10%, the mean diameter of the 

second test sample was reported as the flow value of the mortar. Excess of mortar used for 

determination of the flow value was used for producing colour samples. The samples for evaluation 

colour were mixed after the same recipe, but were casted in moulds (100 × 100 × 30 mm internal 

dimensions) made of film faced ply wood. 

 
3. Results and discussion 

 
 

3.1. Test material characterisation 

Table 2 gives the characteristics of the test materials, table 3 total concentrations of trace elements 

and tabel 4 leaching concentrations of the test materials. From table 2 it shows that the 

characteristics of SSA were significantly affected by the HCl extraction. Firstly, the pH was 

changed from alkaline to acidic. The change in pH was accompanied by a change of the 

conductivity which consequently increased by a factor of 15. Furthermore, the extraction of the 

SSA decomposed the remaining solid and led to higher water solubility, higher loss of ignition and 

significant changes in the concentration levels of trace elements and values for eluate. 
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Table 2 SSAreceieved, SSAacid and cement characteristics 
 

 SSAreceived SSAacid Cement 

Water content 

(%) 
0.31 8.89 0.28 

pH 9.29 1.94 12.6 

Conductivity 

(mS/cm) 

 

2.42 
 

38 
 

13.7 

Water solubility 

(%) 

 

1.54 
 

16.6 

 

LOI (%) 550˚ 0.5 10.6 0.83 

950˚ 1.55 14.9 7.04 

 

The total concentrations of major and minor trace elements and eluates for SSAreceived, SSAAcid and 

cement are shown in table 3 together with the limit values set by Danish regulations [21]. The limit 

values fall into three categories. Residues are categorized first by examining whether the residue 

meets the requirements for Category 1 (C1) for solid content and concentrations in eluate of trace 

elements. If the values exceed the limit values of Category 1, these are compared to the values 

given in Category 2 (C2) and Category 3 (C3). The three categories determine if, where and for 

which purpose the residues can be used in geotechnical constructions without any further 

permission. Those values which exceeded the permissible limits are marked dark grey in the table. 

By the HCl extraction of the SSA the concentrations levels of Al, Ca, Cd, Cu, Fe, K, Na, Mg, Mn, 

Na, P and Zn decreased, whereas the concentration of As, Ba, Cr, Cr VI, Hg, Ni, and Pb increased. 

The concentrations levels that exceeded the permissible limit values of Category 3 were Cd, Cu, 

Hg, Ni, Pb and Zn for SSAreceived and only included Hg, Ni, Pb and Zn for SSAacid. All relevant 

concentration levels found for cement were below the limit values set for Category 1. 
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Table 3 Trace element concentrations in SSAreceieved, SSAacid and cement 
 

Trace elements 

(mg/kg) 
SSAreceived SSAacid Cement C1 C2 C3 

Al 32000 ± 678 17700 ± 465 18600 ± 3850    

As 9.59 ± 1.05 0.42 ± 0.47 10.8 ± 2.67 0-20 >20 >20 

Ba 724 ± 23.3 1410 ± 25 240 ± 45    

Ca 124000 ± 3980 17400± 89 360000 ± 81200    

Cd   2.77 ± 0.08  0.43 ± 0.04 0.45 ± 0.16 0-0.5 >0.5 >0.5 

Cr 40.2 ± 1.17 61.3 ± 1.38 26 ± 4.85 0-500 >500 >500 

Cr VI 0.5 2.4 3.6 0-20 >20 >20 

Cu   590 ± 20.4  359 ± 11.4 67.5 ± 13.1 0-500 >500 >500 

Fe 74300 ± 1300 76800 ± 2490 16900 ± 3210    

K 6140 ± 153 4130 ± 58.8 2650 ± 575    

Hg 4.33 7.73 0.4 0 - 1 > 1 > 1 

Mg 16000 ± 371 4150 ± 103 2840 ± 529    

Mn 688 ± 12.9 285 ± 6.71 127 ± 24.1    

Na 3440 ± 104 1480 ± 50.6 1210 ± 231    

Ni 60.9 ± 1.8 71.7 ± 1.36 27 ± 5.55 0 - 30 > 30 > 30 

P 126000 ± 3160 14400 ± 266 876 ± 167    

Pb 172 ± 4.89 234 ± 7.67 22 ± 4.89 0 - 40 > 40 > 40 

Se 6.16 ± 3.15 7.31 ± 1.35 4.54 ± 1.97    

Zn 2100 ± 52.8 1890 ± 52.9 115 ±22 0-500 >500 >500 

 

 

Three out of the fourteen elements: SO4, Ba, and Se, exceeded the permissible limit values of 

Category 3 for the eluate from SSAreceived, as shown in table 4 . This number increased to nine for 

SSAacid and comprised: Cl, SO4, Ba, Cd, Cu, Cr, Hg, Mn, Na, Ni, Pb and Zn. For cement only the 

two elements Se and Ba were above the permissible limit values of Category 3. The eluate values 

measured for SSAacid showed that the measured elements became progressively more mobile due to 

the acidic pH. In fact, a decrease in the eluate concentration was only observed for As and Se, and it 

was only the eluate of Se, which reached below the permissible limit values of Category 3. 

Furthermore, the results confirm an expected significant increase in chloride by the use of HCl. 

However, the extraction of P by means of HCl was effective since nearly 90 % P was removed from 

the SSA. 
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21400 ± 3990 0 - 250000 0 - 250000 

Table 4 Leaching concentrations of metals and major element from SSAreceieved, SSAacid and cement 
 

Leaching (ug/l) SSAreceived SSAacid Cement C1 C2 C3 

  
23300 ± 437 

23900000  
130000 ± 5500 

 
0 - 150000 

 
0 - 150000 

150000 - 

Cl  ±309000 3000000 

 2520000 ± 2610000 ± 250000 - 

SO4 78700 137000  4000000 

 
Na 

210000 ± 6610 375000 ± 9340 707000 ±15700 0 - 100000 0 - 100000 
100000 - 

1500000 

Al 527 ± 322 140000 ± 44900 590 ±772    

As 21.7 ± 1.48 <20i
 <20i

 0 - 8 0 – 8 0 - 50 

Ba   1020 ± 1237  1360 ±13.1 11300 ± 235 0 - 300 0 - 300 300 - 4000 

 
Ca 

637000 ±18500 
6490000 ± 

261000 
54500 ± 19100 

   

Cd <20i
 178 ± 0.62 <20i

 0 - 2 0 - 2 2 - 40 

Cr 0.18 ± 0. 32 135 ± 1.31 40. 9± 1.8 0 -10 0 - 10 10 - 500 

Cu 4.43 ± 0. 89 78300 ± 696 7.28 ±1.05 0 – 45 0 - 45 45 - 2000 

Fe <2000i
 26700 ±361 <2000i

    
  

145000 ±3380 

 
848000 ± 24900 

1480000 ± 
   

K 24400 

Hg <1ii 128 <1ii 0 – 0.1 0 – 0.1 0.1 - 1 

 
Mg 

187000 ±4380 
1110000 ± 

11542 
<2000i

 
   

Mn 9.57 ± 4.15 63100 ± 422 <20i
 0 - 150 0 - 150 150 - 1000 

Ni <20i
 6690 ±8.89 0. 82 ± 0.71 0 - 10 0 - 10 10 - 70 

P <2000i
 39500 ±312 <2000i

    
 

i 
below ICP standards 

ii 
below limit of  detection 

 

In table 5 the major oxides from the XRF analysis in SSArecevied, SSAacid and cement are listed. The 

review provided by [7] reports oxide content of other SSAs. These data were taken from between 

31 and 80 oxide content values of SSA found in 31 studies. In the present study, the order by 

content of major oxides for SSAreceived was: CaO, P2O5, SiO2, Fe2O3, and Al2O3, and for SSAacid it 

was: Si2O, Fe2O3, CaO, Al2O3 and P2O5. Due to the acid washing the content of CaO and P2O5 

decreased significantly by a factor of five and seven, respectively, whereas the content of SiO2 

increased to the double. An increase in the content of Fe2O3 was also seen. In comparison to cement 

Pb <20i
 273 ± 6.99 <20i 0 - 10 0 - 10 10 - 70 

10 - 30 

100 - 1500 

Se   507 ± 6.47  26.9 ± 16.7 38.3 ± 9.15 0 - 10 0 - 10 

Zn <20i
 319000 ± 10500 <20i 0 - 100 0 - 100 
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the content of CaO was significantly lower for SSAreceived and subsequently even lower for SSAacid. 

The CaO was removed by the acid washing and increased the amount of SiO2. The content of SiO2 

in SSAacid  reached the mean value for SSA found in the literature, whereas the content for 

SSAreceived was closer to the minimum value. The content of Al2O3 was below the mean value for 

both types of SSA, but the content of P2O5, was for SSAreceived close to maximum values, whereas it 

successfully reached the minimum value after the acid washing. The change in the composition of 

major elements could qualify SSAacid as supplement to cement since SiO2  in combination with 

Al2O2  are important for the pozzolanic activity of the material [7]. 

 
Table 5 Major oxide complexes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* 

SSA literature [7] 

 

The acid buffering capacity of SSAreceived, SSAacid and cement are plotted (figure 1). SSAacid had no 

buffering capacity as it was already acidic due to the acid wash. For SSAreceived, the pH decreased 

fast by the first addition of HCl from about 8 to 4, and it seems as if there is an active buffering 

system in SSAreceived at just above pH 2 as it took an addition of 11ml to reach a pH below 2. 

% SSAreceived SSAacid cement 
*
mean 

*
min 

*
max 

Al2O3 8.31 6.99 4.91 14.2 4.4 34.2 

CaO 21 3.78 65.8 14.8 1.1 40.1 

Fe2O3 15.7 20 5.43 9.2 2.1 30.0 

K2O 1.69 1.93 0.81 1.3 0.1 3.1 

MgO 2.32 1.18 0.53 2.4 0.02 23.4 

MnO 0.09 0.01 0.04 0.3 0.03 0.9 

Na2O 1.2 2.7 <0.67 0.9 0.01 6.8 

P2O5 20.6 2.98 0.23 11.6 0.3 26.7 

SiO2 18.6 36.4 20.1 36.1 14.4 65.0 

SO3 1.92 0.77 4.74 2.8 0.01 12.4 

TiO2 0.88 1.55 0.35 1.1 0.3 1.9 

Cl 0.02 5.0 0.10    
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Figure 1 Buffer capacity for SSAreceived, SSAacid and cement 

 
Particle size distributions for SSAreceived milled in interval 0 sec -10 min were homogenously 

distributed (figure 2a). The fineness of the particles increased when the duration of the milling 

increased. Furthermore, the curves for all fractions of SSAreceived were similar to the curve shape of 

cement. The curve for SSAacid10 sec was uneven and did not resemble the curve of the particle size 

distribution for cement (figure 2b), and as 10 sec is the shortest milling time tested, it seems as if 

this milling time is too short to obtain a smooth grain size distribution curve. 

The volume of particles under the size of 100 µm was much higher for the unmilled samples 

SSAacid0sec than for the corresponding references SSAreceived 0sec. At 50 % of volume the maximum 

particles size for SSAacid0sec was 50 µm (figure 2b) and approximately 120 µm for SSAreceived0sec 

(figure 2a). Figure 2a shows that for SSAreceived the maximum particle size of 50 µm at volume of 50 

% was obtained between time intervals 10 – 30 sec. It is important to notice that the actual grain 

size distribution for SSAacid can be discussed since the water solubility of SSAacid was rather high 

(16.6 %) when comparing it to SSAreceived (1.54 %). The soluble fraction of SSAacid might be due to 

the formation mainly of salt crystals which was induced by the use of HCl to extract phosphorous. 

In the dry material the soluble crystals could completely dissolve, attach to the surface of insoluble 

particles or precipitate as crystals independently distributed in the SSAacid, which would both 

influence on the particle size distribution. 
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Figure 2 Particle size distribution curves for a) SSAreceived, b) SSAacid compared to cement 
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3.2. Mortar testing 

 
3.2.1. Compressive strength 

The compressive strength at 28 days for mortar samples containing 20 % of SSAreceived or SSA acid 

are compared in figure 3. Two references of each series were produced. In the figure the references 

carry the colour of the series they belong to. This is due to the curing conditions as it was expected 

that leaching from the two series were different and would provide different curing environment. 

Thus, the two series were intentionally separated during curing in order to limit parameters 

inflicting on the results. Whether the minor difference between the two references was due to 

differences in the curing conditions cannot however, be concluded on the basis of the existing 

result. However, from the figure it can be derived that the acid washing of the SSA had a positive 

effect on the compressive strength development. For M-SSAreceived the ash needed to be milled 

between 3 – 10 min in order to obtain comparable compressive strength development as ordinary 

mortar without any substitution of cement (Reference). The compressive strength dropped relatively 

dramatically for M-SSArecieved 0sec compared to the reference. Contrarily, the compressive strength 

for mortars containing SSAacid were almost comparable to the reference regardless of that SSAacid 

was also milled into the same 6 different fractions. Only a small drop in compressive strength was 

seen for M-SSAacid milled in the intervals 0sec –30 sec. 
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Figure 3 Compressive strength 28 days for M-SSAreceived, M-SSAacid and reference 
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3.2.2. Workability 

The workability of the test mortars was determined from the flow value (FV) (figure 4). The flow 

value is expressed by the value of test 2 (second test conducted) when the value of test 2 did not 

differentiate more than 10 % from the value of the test 1 (first test conducted). In figure 4 the results 

of both tests (test 1 and 2) are included because they display the implication of time spend during 

test performance and how it influenced the flow value. In this way the results for mixes M-SSAacid 

had a significant loss of consistence between the two test performances. This reveals that SSA acid 

due to the acid washing initially was much more reactive than SSAreceived. In general, the flow 

values for mixes M-SSAreceived and M-SSAacid did not at any time reach the same flow value as the 

reference. However, the results in figure 4 shows that the process of the milling SSAreceived and 

SSAacid was as an important parameter for the flow value as it increased parallel to an increase of 

the time applied to the milling. The flow values found for M-SSAreceived increased stepwise and for 

M-SSAacid it increased somewhat gradually. However, the largest flow value which was found for 

M-SSAacid was the flow value of M-SSAacid10 sec. This flow value stands out and suggests either an 

error or that the specific SSAacid had obtained an optimal grain size distribution. However, an 

irregular behaviour of SSAacid10 sec was also seen in the analyses of the particle size distribution as 

the curve was uneven and less smooth than the particles size distributions of un-milled SSAacid 

(SSAacid0sec) and SSAacid milled in intervals between 30sec - 10 min. 
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Figure 4 Flow value for M-SSAreceived, M-SSAacid and reference 

 
 
3.2.3. Setting time 

The setting process for the different mortar samples are shown in figure 5, with initial and final 

setting times shown in table 6. The initial setting time for M-SSAacid occurred much faster than for 

M-SSAreceived, and closer to the initial setting time of the reference. This can be seen in figure 5 in 

which selected graphs for M-SSAreceived and SSAacid together with the graph of the reference are 

displayed for comparison. Generally, for M-SSAreceived the graphs monitoring the phase change were 

much more uneven than it was seen for M-SSAacid. This may be due to the fact that the mixes 

containing SSAreceived were less workable and thus less fluid, which may have contributed to the 

occurrence of voids in the mortar and thus, allowed the needle to fall free during test execution. 

However, irregularities were also seen for mixes of M-SSAacid, particularly M-SSAacid0sec. 

The initial setting time nearly doubled for M-SSAreceived0sec when comparing it to the initial setting 

time of ordinary mortar. However, from the results it can be seen that the milling had an impact on 

the setting time for both types of mortars M-SSAreceived and M-SSAacid. .The reactivity increased in 

conjunction with the time applied to the milling process. However, even though the milling of 

SSArecieved shortened the setting time to some extent, the setting time did not at any point resemble 

the lower setting time of the reference mortar and M-SSAacid. The impacts of phosphate on the 

hardening process of cement have previously been studied [22, 23]. The study of Lin et al. [23] 
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investigated options to replace raw materials in clinker production with different types of SSA. The 

study documented that the setting time significantly increased when the amount of phosphate in 

cement increased by 0.85%. The results of the present study comply with this trend. 
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Figure 5 Setting process for selected M-SSAreceived, M-SSAacid and reference mortar 

 

 
 

Table 6 Initial and final setting times for selected M-SSAreceived, M-SSAacid and reference mortar 
 

Sample Initial setting time (min) Final setting time (min) 

Reference 150 550 

0 sec/received 290 640 

0 sec/acid 200 420 

30 sec/received 240 530 

30 sec/acid 140 400 

10 min/received 260 550 

10 min/acid 130 300 

 
3.2.4. Colour 

The effect of SSAreceived  on the colour of the samples was much less distinct than for the samples 

with SSAacid. In figure 6 the two series are collectively displayed. SSAreceived induced slightly darker 

tones as the fineness of the particles increased due to the milling. The same colour development was 

not seen for the M- SSAacid. The colour was much more significant and the colour was the same for 

all samples containing SSAacid. Thus, the fineness of the particles of SSAAcid  did not influence the 
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colour as it was seen for the M-SSAreceived. The brown reddish colour of the SSAreceived can be 

related to the high content of iron. For SSAacid the content of iron increased as seen in the XRF 

analysis (table 3) and at the same time Fe became unstable as the leaching tests showed (table 2). 

The significant colour change of M-SSAacid suggests that Fe formed new complexes e.g. anionic 

ferric chloride complexes [24] which in a solution could have generated the saturated reddish 

colour. 

 
 

Figure 6 colour samples of M-SSAreceived, M-SSAacid and reference 

 

3.3 Technical, environmental and aesthetical potentials and constraints 

 
 

3.3.1. Technical aspects 

The milling of the SSA was of significant importance for the compressive strength development of 

M-SSAreceived. Milling of SSA has shown to have a positive effect on the compressive strength 

development and on the pozzolanic reactivity [10, 11]. In the study of Pan et al. [10] a compressive 

strength development was correlated to the size of the outer surface area of SSA particles and even 

though the fineness of the particles increased due to the milling, the specific surface area did not 

increase to the same extend. Thus, it was suggested that the porous particles of SSA had many open 

pores and that these open pores are blocked during early hydration and the pozzolanic reactivity is 

only promoted at the outer surface of the particles. Donatello et al. [11] showed that the 

compressive strength of mortar containing milled SSA reached 96 % of the compressive strength of 

reference mortar, which resembles the result found in the present study in which the M- 

SSAreceived10min reached app. 98% of the strength. The d50  was 119 µm in the present study and 
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106.8 µm for SSA used in study of Donatello et al. [11]. However, the particle size distribution of 

the milled SSA in this and the study of Donatello et al. [11] were not comparable as d50 was 23 µm 

for SSAreceived10 min against 4.8 µm regardless of a longer milling time in the present study. Thus, it 

may be possible that the reactivity of SSA is not only related to physical changes and an increase of 

the specific surface area but also to a transformation of the material’s chemical and physiochemical 

composition induced by the mechanical energy applied or mechano-chemical treatement. Mechano- 

chemical treatment methods have been investigated for the purpose of preparing new construction 

materials [25] and to modify waste materials to qualify them for further use in construction 

materials [26]. 

 
The morphology of unmilled SSA is generally found to affect the consistence and the workability 

negatively when SSA is used to partially replace cement in mortar corresponding to a higher water 

demand for mixes containing SSA as received [7, 11, 27]. The increase of the flow value which was 

seen for mortar with milled SSArecevied supplemented the findings of Donatello et al. [11]. In the 

study it was found that the water demand was lower for mixes containing milled SSA. Since the 

water/cement ratio is the single most important parameter for the strength development, the reduced 

water demand for mortar with milled SSA consequently has a positive effect on the final 

compressive strength[11]. However, other factors related to the milling of the SSA besides reduced 

water demand may have affected the strength development: improved filler properties and 

promotion of amorphous silica (a parameter relevant for the pozzolanic activity), or a combination 

of all three factors [11]. The compressive strength of M-SSAacid  did not evolve parallel to an 

increase of the milling time. The compressive strength of M-SSAacid0sec was comparable to both 

the reference mortar and M-SSAacid10min. 

 
Collectively, the results of the conducted experiments all showed that HCl extraction of 

phosphorous promoted increased reactivity of the residual SSA. The major elemental and chemical 

changes of the SSA induced the rapid loss of consistence which was seen in the flow value 

determinations and accelerated the hardening process. The process of milling the SSAacid did also 

affect the flow value and the setting time of the mortar as these two test parameters improved when 

the time interval of the milling increased. 

The compressive strength increase of M-SSAacid may be related to that the reactive part of a 

pozzolane SiO2 and Al was promoted by the acid washing. The content of SiO2  increased from 
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18.6% to 36.4% whereas the total concentration of Al decreased. However, the leaching values for 

SSAacid showed that the availability of Al increased as the concentration of the eluate was 

significantly higher for SSAacid than for SSAreceived. Furthermore, the high concentrations of 

aluminate and sulphate ions may have promoted early formation of ettringite [28] and induced the 

rapid loss of consistence, which was seen in the flow value experiment. 

High alkalinity stabilises the hydration products formed in the cementitious system, the leaching 

behaviour of heavy metals and preserves the steel of reinforced concrete. If the pH drops below 

11.5 the passivity of steel would be destroyed and corrosion occurs. However, an excess of chloride 

ions in the matrix could be destructive for the steel even at pH higher than 12 [28]. For that reason it 

would not be feasible to use SSAacid for reinforced concrete. Furthermore, the high content of 

chlorides caused problems during the processing of SSA. The equipment which was used to process 

the SSAacid corroded after having been in contact with the material. However, a high percentage 

(16.6% ) of SSAacid was soluble and it is likely that a significant amount of soluble salt crystals can 

be removed simply by using water. But it would be necessary to investigate this before any valid 

conclusions can be made. 

 
3.3.2. Environmental aspects 

Donatello et al. [29] evaluated the leaching of heavy metals of SSA as received and compared the 

values with the waste acceptance criteria threshold limits set by the European Union for landfill 

application of waste. Seven different SSAs were tested and the results showed that leaching of Mo, 

Se and/or Sb designated the SSA to be placed at hazardous waste landfills. This was also supported 

by the study of Chen et al. [27] who found that the leaching of most heavy metals was far below the 

limit values except for the values of Mo and Se. 

In the present study the leaching behaviour of SSAacid showed that the leaching increased for Cu, 

Cd, Hg, Pb and Zn after the acid extraction, even if the total concentrations had only slight changes 

for these elements before and after the acid extraction. Contrarily, the leaching of As, Ba and Se 

decreased after acid extraction and together with Cr leaching, were the metals that was below the 

Category 3 limit values. Since unlimited use of the SSA for geotechnical construction purposes 

requires that all values are below the Danish limit values of Category 1, and restricted use requires 

values below Category 3 special permission is required in order to use both SSAref and SSAacid in 

constructions. 
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Heavy metals in SSA as received are stabilized and only minor leaching of heavy metals can be 

expected when SSA is incorporated into a cement paste [7, 27]. Leaching from monolithic concrete 

(replacing rate 10 % of cement and 2 % of sand) showed higher leaching of Cr, Cl and SO4 for 

ordinary concrete compared to SSA concrete [27]. Whereas the level of Zn was higher for the SSA 

concrete and all leached metal concentrations for the SSA mortars were below threshold limits [27]. 

Comparing leaching from monolithic and crushed SSA mortar (replacing rate 25% and 50%) 

showed as expected that the leaching of heavy metals increased when the mortar was crushed [7]. 

As the leaching behaviour of SSAacid is significantly changed in comparison to SSArecevied, it can be 

expected that mortar containing SSAacid  would lead to higher leaching values of heavy metals. 

 
3.3.3. Aesthetical aspects 

Until now a general application of SSA-containing mortar and concrete has failed. The reason could 

be related to the uncertainties of the pozzolanic potentials of SSA and thus, the feasibility to utilise 

SSA to partially substitute for cement, or the fact that SSA contains a significant amount 

phosphorous. However, another obstacle may possibly be related to the variation of SSA and 

possible colour change when especially milled SSA is used in cement based materials. In a Danish 

large scale pilot project Biocrete [30] utilisation of SSA as a resource in concrete production was 

assessed by testing the use of milled SSA to partially substitute coal fly ash. In this project it was 

found that concrete containing an iron rich SSA, similar to the SSA tested in this present study, 

would limit the application potentials due to the red colour [30]. 

A previous study by Kappel et al. [31] demonstrated if unmilled SSA replaced 20% of cement in 

mortar the colour only slightly changed from grey to grey with a red tint. Furthermore, it was found 

that the colour intensity of mortar containing milled SSA increased parallel to an increase of 

fineness of the SSA particles. Thus, the milling of the SSA was a precondition for the colour to 

evolve. For mortar containing SSAacid the colour change was significant as the mortar obtained a 

saturated red brown colour and the colour intensity did not increase when the fineness of the 

particles increased as it did for mortar containing SSAreceived. The distinct colour of SSAacid mortar 

may challenge the assumption that cement based materials containing SSAacid is considered of 

secondary quality compared to ordinary mortar and concrete, but instead has aesthetical potentials 

which are particularly suitable for visible structures. 
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4. Conclusion: 

There are two main concerns related to the utilisation of SSAacid as cement replacement and its 

further use for constructional purposes. These are the large introduction of chlorides to the matrix 

and the high concentration levels of toxic elements and leaching values. However, mortar 

containing HCl washed SSA also showed aesthetical and technical potentials. 

 

 

 The compressive strength of mortar containing SSAacid is comparable to normal mortar at 63 

MPa. A minor drop in the compressive strength to 58 – 58.5 MPa was seen for the mortar 

containing acid extracted SSA milled between 10 – 30 sec. 

 
 The workability determined by the flow value of the test mortars containing SSAacid and 

SSArecevied improved as finer particles were obtained by milling the two types of SSA. 

However, the flow value of the test mortars did not reach the flow value found for the 

reference mortar. 

 
 The setting times of mortar containing SSAacid were comparable to the reference mortar. The 

acid washing of SSA significantly reduced the setting time in comparison to the setting time 

of mortar with SSAreceived. 

 
 The concentration levels of toxic elements exceeded Danish limit values for several toxic 

elements in both SSAacid and SSArecieved. Furthermore, the concentrations in the eluate 

showed that the relevant elements became much more mobile by the acid extraction of the 

SSA, and transformed the SSA to a more instable material. 

 

 
 The colour of mortar with SSAacid changed from grey to a red brown colour. The milling of 

the SSAacid did not have any visual effects, as the colour did is not change disregarding 

increasing duration of the milling time. The red brown colour of mortar containing SSAacid 

was more evident in comparison to mortar containing SSAreceived. The significance of the 

colour may expand the perception of mortar and concrete generally associated with the 

colour grey. 
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9. Monzó J, Payá J, Borrachero MV, Córcoles A. Use of sewage sludge ash(SSA)-cement 

admixtures in mortars. Cem Concr Res. 1996;26(9):1389–98. 

10. Pan S-C, Tseng D-H, Lee C-C, Lee C. Influence of the fineness of sewage sludge ash on the 

mortar properties. Cem Concr Res. 2003;33(11):1749–54. 



82  

11. Donatello S, Freeman-Pask A, Tyrer M, Cheeseman CR. Effect of milling and acid washing 

on the pozzolanic activity of incinerator sewage sludge ash. Cem Concr Compos. 

2010;32(1):54–61. 

12. Donatello S, Tyrer M, Cheeseman CR. Comparison of test methods to assess pozzolanic 

activity. Cem Concr Compos. 2010;32(2):121–7. 

13. Ottosen AR, Malmros O, Johnsen T, Holtze E, Eker T, Tychsen P, et al. Fra spildevand til 

fosforholdige produkter. København; 2013. 

14. Danish Standards Foundation. DS/EN 12620 + A1:2008 : Aggregates for concrete. 2008 

 
15. Danish Standard Foundation. DS 259 Determination of metals in water, sludge and sediments 

– General guidelines for determination by atomic absorption spectrophotometry in flame. 

2003. 

16. Danish Standards Foundation. DS 12457-3 Characterisation of waste – Leaching – 

Compliance test for leaching of granular waste materials and sludges – Part 3: Two stage 

batch test at a liquid to solid ratio of 2 l/kg and 8 l/kg for materials with high solid content 

and with particle s. 2002; 

17. Reddy KR, Donahue M, Saichek RE, Sasaoka R. Preliminary Assessment of Electrokinetic 

Remediation of Soil and Sludge Contaminated with Mixed Waste. J Air Waste Manage 

Assoc . Taylor & Francis Group; 1999;49(7):823–30. 

18. Danish Standards Foundation. DS/EN 196-1 Methods of testing cement – Part 1: 

Determination of strength. 2005. 

19. Danish Standards Foundation. DS/EN 196-3 +A1 Methods of testing cement - Part 3: 

Determination of setting time. 2009. 

20. Danish Standards Foundation. DS/EN 1015-3 Determination of consistence of fresh 

mortar(by flow table). 1999. 

21. BEK nr 1414 af 30/11/2015 [Internet]. Available from: 

https://www.retsinformation.dk/forms/R0710.aspx?id=175523[Accessed July 30 2016] 

22. Nurse RW. The effect of phosphate on the constitution and hardening of portland cement. J 

http://www.retsinformation.dk/forms/R0710.aspx?id=175523
http://www.retsinformation.dk/forms/R0710.aspx?id=175523


83  

Appl Chem. 2007;2(12):708–16. 

 
23. Lin K-L, Lin DF, Luo HL. Influence of phosphate of the waste sludge on the hydration 

characteristics of eco-cement. J Hazard Mater. 2009;168(2-3):1105–10. 

24. Nakanishi C, Ikeda S, Isobe T, Senna M. Silica–[Fe(bpy)3]2+ composite particles with 

photo-responsive change of color and magnetic property. Mater Res Bull. 2002;37(4):647– 

51. 

25. Boldyrev V V. Mechanochemistry of solids: Past, present, and prospects. J Mater Synth 

Process . 2000;8(3-4):121–32. 

26. Guo X, Xiang D, Duan G, Mou P. A review of mechanochemistry applications in waste 

management. Waste Manag. 2010;30(1):4–10. 

27. Chen M, Blanc D, Gautier M, Mehu J, Gourdon R. Environmental and technical assessments 

of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in 

construction. Waste Manag. 2013 May;33(5):1268–75. 

28. Mehta PK, Monteiro PJM, Ebrary I. Concrete: microstructure, properties, and materials. 4 

edition. Concrete. McGraw-Hill; 2014. 684 p. 

29. Donatello S, Tyrer M, Cheeseman CR. EU landfill waste acceptance criteria and EU 

Hazardous Waste Directive compliance testing of incinerated sewage sludge ash. Waste 

Manag. 2010 ;30(1):63–71. 

30. Technical final report: Utilisation of Ash from Incineration of Wastewater sludge (Bio ash) i 

Concrete production [Internet]. 2008. Available from: http://www.biocrete.dk/[Accessed 

June 29 2016] 

31. Kappel A, Ottosen LM, Kirkelund GM, Goltermann P, Bache AM. The colour potentials of 

SSA-containing mortar. Fib Symp Proc. 2015. 

http://www.biocrete.dk/


84  

5.3 Electrodialytically treated SSA in mortar 

 

The focus of the third study was to examine the use of electrodialytically treated SSA in mortar. 

Electrodialytic separation is another method for extracting the phosphorous from the SSA before using the 

ash residue as partial cement replacement in mortar. This method designates from a technology which was 

developed at DTU for cleaning polluted soil by using the principals of electrokinetics (Ottosen et al. 1997) 

However, electrodialytic treatment processes have also been found suitable for separating useful elements 

from problematic elements in waste materials like SSA. The principal behind the method is to lower the pH 

in a SSA suspension consisting of water and SSA by applying a low DC current to the suspension. When pH 

is below 2 most of the heavy metals will be released to ions in the solution and the phosphorous uncharged. 

The positively charged heavy metals are attracted to the negative electrode and will move towards the 

cathode by passing a cation exchange membrane. As the phosphorous stays in the suspension, heavy metals 

and phosphorous are efficiently separated. Results of previous studies have showed that 90 % of 

phosphorous can be recovered from SSA (Ebbers et al. 2015; Ottosen et al. 2016). 

 
 

The results of this study showed that the compressive strength decreased by 8 %, the workability was 

affected as the fresh mortar became dry, and the colour changed to a red earth tone for mortar with 

electrodialytically treated SSA compared to reference mortar. The milling of the electrodialytically treated 

SSA had a slight impact on the compressive strength, which increased, but it did not have any further impact 

on the workability or the colour of the mortar. 

 
 

5.3.1 Utilisation of electrodialytically treated Sewage Sludge Ash in Mortar 

 

(Kappel, A., Viader, R. P., Kowalski, K. P., Kirkelund, G. M., & Ottosen, L. M. (2018). 

Utilisation of Electrodialytically Treated Sewage Sludge Ash in Mortar. Waste and Biomass 

Valorization, 1-13.) 
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ABSTRACT 

 

Phosphorous is a scarce resource and there is a need to develop methods for recovery of this 

irreplaceable nutrient from secondary resources, e.g. from sewage sludge ash (SSA). Today SSA is 

most often disposed of and the resource is lost. In the present study, about 90 % phosphorous was 

recovered from SSA by electrodialytic separation in a bench scale set-up, and the particulate residue 

after the extraction (SSA-ED) was evaluated for use as cement replacement in mortar. The SSA-ED 

and untreated SSA were grinded for 0sec, 30 sec and 10 min in order to obtain fractions with 

different degrees of fineness. Each fraction was tested as cement replacement with 20% substitution 

in mortar. The technical and aesthetical properties of mortars containing the two SSAs were 

compared to the properties of ordinary mortar. The SSA-ED was acidic; however, this did not 

significantly influence the mortar properties on short term investigated here. For example, the 

compressive strength of the mortar with SSA-ED only decreased by 8% compared to ordinary 

mortar. The workability of mortars with SSA or SSA-ED was reduced compared to the reference. 

The colour of mortar with SSA-ED was warm reddish, and more intense than the colour of the 

mortar with SSA. The intense colour was due to the increased concentration of hematite during ED. 

This study showed potential for separating SSA to two resources by combining electrodialytic 

extraction of phosphorous and subsequent utilize the residual mineral ash in mortar. 

Keywords: SSA, electrokinetic remediation, phosphorous, heavy metal, fineness 
 

INTRODUCTION 
 

Sewage sludge ash (SSA) is the residue from incineration of sewage sludge at wastewater treatment 

plants. Phosphorous in SSA is generally not plant available, and thus the SSA has no fertilizer value 

and thus the common practice is landfilling of the SSA. The natural deposits of phosphorous are 

rapidly depleting with the current consumption rate, and in such a speed that phosphorous already 

today is regarded as a scarce element. This is alarming as phosphorous is an irreplaceable element 

for all living organisms. Drivers to find appropriate applications for SSA instead of landfilling was 

initially to solve a waste problem due to increasing quantities of SSA [1-3] rather than the 

phosphorous reuse. Extensive research was carried out for the purpose of investigating possibilities 

to use SSA in production of construction materials in general and in cement based materials 

specifically [4-6]. Over the last decade, research on SSA utilisation has developed alongside the 

developments of waste management policy. The overall aim of the waste hierarchy in the European 

directive on waste [7] is to encourage EU member states to “reintroduce as much material as 

mailto:gunki@byg.dtu.dk
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possible into production processes” [8]. By the introduction of the waste hierarchy, the conception 

of waste has also changed from the perception of waste as a problem to regarding waste as a 

resource [8]. This change is also reflected in studies on SSA utilisation, in which SSA is referred to 

as “secondary material” [6] and “useful material” [4]. When considering SSA as a resource, the 

main resource of interest in SSA is the relatively high content of phosphorous, which generally is  5 

– 10 wt% [5]. 
 

In the Resource Strategy by the Danish Government in 2013, the target is to reuse 80 % of all 

phosphorous by 2018, including phosphorous from SSA. To reach this goal, efficient methods to 

recover the phosphorous from SSA are required and different methods are currently under 

development. The methods are grouped in two: thermochemical treatment or wet chemical 

extraction [4]. A drawback for the latter method is that in acid extraction the heavy metals are 

extracted together with the phosphorous [9, 10], which hampers the use of the recovered 

phosphorous in fertilizer production. To obtain a clean phosphorous product, different processes for 

separation of phosphorous and heavy metals have been suggested, such as pH adjustment [11, 12], 

sulphide precipitation [11], cation exchange [9, 11] and electrodialytic separation [13, 14]. The first 

three separation methods require a two-step treatment: first extraction then separation. In 

electrodialytic separation, the phosphorous extraction and heavy metal separation occur 

simultaneously. 

Electrodialytic separation first developed for soil remediation, and was recently further developed 

for extraction of phosphorous from SSA with simultaneous heavy metal separation. Fig. 1 shows  

the patented two-compartment electrodialytic cell [15]. 
 

Fig. 1 The two compartment electrodialytic set-up for treating a material suspension. CEM-cation 

exchange membrane 

The anode is placed directly in a suspension of SSA and water. The cathode is placed in a separate 

compartment and a cation exchange membrane separates the two compartments. When  a  DC 

current is applied, the pH of the suspension decreases as protons are generated at the anode from 

electrolysis. Once pH reaches below 2, P and a part of the heavy metals are extracted. The heavy 

metal cations electromigrate to the catholyte passing the cation exchange membrane and thus the 

heavy metals are separated from the suspension, where phosphorus remains. Studies by Ebbers et 
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al. [16] and Ottosen et al. [13] have shown that it is possible to recover more than 90% P with this 

experimental set-up in laboratory scale (25-50 g SSA treated) and that the extracted phosphorous is 

pure from heavy metals and can be processed further to fertilizer [13]. 

A question now arises, whether the remaining mineral residue is an additional resource. A possible 

application for the SSA-ED could be as cement replacement in concrete. The CO2 emission from 

cement production is responsible for about 5% of the anthropogenic emission. Cement is the 

essential “glue” in concrete, and one way to lower the general CO2 emission related to concrete is to 

use materials with pozzolanic activity or filler effect as partly cement replacement. Research 

combining extraction of phosphorous and using the treated SSA as cement replacement is scarce. 

Donatello et al. [4] studied the use of sulfuric acid to recover phosphorous from SSA and use the 

acid washed SSA in mortar. They found that the sulphate from the acid influenced the properties of 

the mortars negatively compared to the untreated SSA. SSA-ED will not contain similar high 

sulphate content. The aim of the present work is to investigate the potential for combining 

electrodialytic extraction of phosphorous from SSA and the use SSA-ED as cement replacement in 

mortar. 

MATERIALS AND METHODS 
 

SSA from Avedøre, BIOFOS was used in the experiments, a wastewater treatment plant operating  

in the Copenhagen area, Denmark. The SSA was from mono-incineration of sewage sludge and it 

was sampled in May 2014. Iron was used at the wastewater treatment facility to precipitate P and 

the sewage sludge was incinerated in a fluidized bed combustor at about 850°C. 

Analytic procedures in ach characterization 
 

Characterization was made with dried ash and cement. Concentrations of Cu, Pb, Zn and Cd were 

measured with ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) after pre- 

treatment in accordance to DS259: 1.0 g ash and 20.0 ml (1:1) HNO3 was heated at 200 kPa  

(120C) for 30 minutes and filtered through a 0.45 m filter prior to the analysis. Ash pH and 

conductivity were measured by suspending 10.0 g ash in 25 ml distilled water. After 1 hour 

agitation pH and conductivity were measured directly in the suspension with Radiometer electrodes. 

Water content was measured as weight loss after 24 hours at 105ºC (calculated as weight loss over 

the weight of the wet sample). Loss on ignition (LoI) was found after 30 minutes at 550ºC. Five 

replicates of each of these analyses  were made.  Solubility in water was  evaluated by    suspending 

50.0 g ash in 500 ml distilled water and agitated for 1 min, after settling the water was decanted and 

another 500 ml distilled water added. This was repeated until the ash was washed three times. 

Finally, the suspension was filtered and the ash dried and weighed. Major oxide composition was 

estimated from semi-quantitative analysis by X-ray fluorescence (XRF) on powder samples by an 

external laboratory. The particle size distribution was measured by laser diffractometry. Ash 

mineralogy was studied by X-ray powder diffraction (XRD), for identification of major crystalline 

phases. The instrument was a PANalytical X’Pert Pro operating at 45 mA and 40 kV applying Cu 

Kα radiation with a 2Θ X’Celerator detector. The samples were scanned in the range of 4-100 2 Θ 
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within 2.5 hours. The diffractograms were interpreted by using the ICDD PDF-4 database for 

minerals and the main peaks were identified. 

Electrodialytic bench-scale experiment 
 

Fig. 2 shows the ED bench-scale set up. It was built in a plastic container (60x40x32 cm). Two 

anodes were placed directly in the suspension. The cathodes were placed in cathode units, which 

were boxes with circulating catholyte. One side of the box (facing into the container) was a cation 

exchange membrane (27 x 37 cm
2
) from Ionics. Both cathodes and anodes were platinum coated 

titanium meshes (4 x 20 cm
2
). 

 

Fig. 2 The bench scale electrodialytic experimental setup, CEM-cation exchange membrane 
 

The catholytes (25 l each) were prepared by mixing 21.5 g of NaNO3 with 50 ml of 1:1 HNO3 into 

25 l of distilled water. Each of the two cathode units had a separate catholyte circulation system. 
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The SSA suspension prepared for the experiment had a liquid to solid (L:S) ratio of 10.3. First, 28 l 

distilled water was added to the anolyte compartment. Thereafter 3 kg of SSA was mixed into 3 l of 

distilled water in a separate tank and added gradually to the anolyte to make the full suspension.  

The SSA was kept suspended to avoid sedimentation in the container by three overhead stirrers (vos 

14 /VWR). 

A power supply (Blanko- Model Q J-3003C III) maintained a constant current. Each pair of 

electrodes shared the same power supply, however, independently connected to separate outlets.  

The duration of the experiment was 24 days and a constant current of 0.4 A was applied to each 

electrode pair for the first two days and 1.0 A for the remaining 22 days. The pH of the catholytes 

was adjusted with 1:1 HNO3 after 2, 4, 11 and 15 days, when the pH of the catholyte was above 2. 

The pH and electrical conductivity (EC) were measured regularly in the SSA suspension at two 

places (named back and front, see Fig. 2). Samples of the SSA suspension were collected regularly, 

filtered, and the target elements were measured in the filtrate by ICP-OES. 

After the ED experiment, the SSA suspension was filtered, dried at 50˚C until the liquid had 

evaporated, crushed lightly by hand in a mortar, and finally stored in sealed plastic bags. Target 

elements, pH and conductivity were measured in the filtrate, SSA and catholyte at the end of the 

electrodialytic experiment. LoI, water content, water solubility, concentrations of Cd, Cu, Pb and   

Zn (ICP-OES) and P (XRF) and mineralogy (XRD) were measured in the ED treated and dried ash. 

Mortar preparation and testing 
 

Before the SSA and SSA-ED (here refered to as test materials) were used in mortar, they were 

grinded for 0 sec, 30 sec and 10 min using a vibratory cup mill (FRITSCH - pulverisette 9). The 

grain size of the SSA and grinded samples are shown in Table 1. The grinded test materials were 

used for the production of test binders that consisted of 80 % of Cement and 20 % either SSA or 

SSA-ED. In total mortar 8 mixes were produced (Table 2) The basic recipe, which was used for the 

mortar production, was 75 % sand, 25 % binder and a water/binder ratio of 0.5. The sand was a 

coarse grained sea-sand (0 – 4 mm) and the cement used was CEM II/A-LL 52.5R. This particular 

type of cement has a reduced CO2 footprint compared with ordinary portland cement as up to 20 % 

of the cement clinker is replaced by limestone filler. 

Table 1 Grain distribution of the tested materials 
 

 d10 (µm) d50 (µm) d90 (µm) 

Cement 1.72 8.45 26.2 
SSA 0sec 14.1 124 356 
SSA 30 sec 5.59 39.8 182 
SSA10 min 3.54 24.1 89.0 

SSA-ED 2.79 101 817 

SSA-ED30 sec 2.22 44.1 556 

  SSA-ED10 min  1.34  9.50  142  

 

Table 2 Recipes of the mortars. * indicating either SSA or SSA-ED 
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Labelling 

 

Ash* 
Grinding 

interval 

 

Cement 

 

Sand 

 

Water 

M -Reff ÷ ÷ 450 g 1350 g 225 g 

M-(…*) 0 sec 90 g 0 sec 360 g 1350 g 225 g 

M-(…*)30 sec 90 g 30 sec 360 g 1350 g 225 g 

M-(…*)10 min 90 g 10 min 360 g 1350 g 225 g 
 

 

The mortar was prepared in a Hobart mixer with the capacity of 5 liters. Binder (either cement or 

cement and SSA) was placed in the bowl, and the water was added. The mixer was switched on for 

30 sec at low speed. The sand was added during the next 30 sec, and then the mixer was switched to 

high speed and the mixing continued for another 30 sec. The mixer was stopped and the paste 

adhering to the inside of the bowl was within the next 30 sec removed by a scraper. After 60 sec of 

rest, the stirring process proceeded and the paste was stirred at high speed for another 60 sec. 

The compaction procedure was executed by a vibrating table at a frequency of 53 Hz. The mortar 

was placed in the mould within the first 30 sec and the mortar was vibrated for another 90 sec. The 

mortar samples were sealed in plastic for 24 hours, demolded and cured in water vertically placed in 

a sealed plastic box. The two series were cured in separate boxes because the leaching of the  

mortars in the two series was expected to be different. M-SSA0sec -10 min were cured for 28 days and 

M-SSAED0sec -10 min for 40 days. The extended curing time applied for M-SSAED0sec -10 min may have 

influenced the compressive strength result. But because the strength increase levels out after 28 

days, the two series, M-SSA0sec -10 min and M-SSAED0sec -10 min, are roughly compared though taking 

the difference in the curing time applied into account. 

Three prismatic specimens (160mm x 40mm x 40mm) were cast in each mould. After curing they 

were cut into 6 equal test samples (80mm x 40mm x 40mm). For the determination of the 

compressive strength a Toni 3000 compression machine was used. The pH was measured and 

mineralogy investitaged on crused samples for the three different mortars. 

The flow value expresses the workability of mortar with untreated and grinded SSA. Preparation of 

mortars followed DS/EN 191-3+A3 (DS 2009) and the tested mortars are those listed in Table 2. 

The flow value was determined according to DS/EN 1015-3 (DS 1999). A truncated conical mould 

(50 mm high, internal diameter 100 mm at the bottom and 70 mm at the top) was uniformly filled 

with mortar. The mould was removed, and the mortar exposed to  jolting by slowly raising the 

mould 2 cm vertically and dropping it, 15 times at a rate of one pr. second at a flow table. The mean 

diameter (dmean) from two measurements of the subsequent mortar diameter in two directions at 

right angles was found. The procedure was repeated twice for each mixture. 

For evaluation of the colour differences another type of samples were casted in moulds made from 

film faced ply wood as desribed in detail in [17]. The dimensions of these moulds were 

100x100x30mm. Paper cuttings were used to make both rough and smooth surfaces of the hardened 

mortar, and a circular shape was cut out of the lining paper using a circle cutter. The paper was 

moistened under running water for a few seconds. Before the frame was mounted, the wet paper 

cutting was placed at the base of the mould and evened out with the means of a wall paper brush. 
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RESULTS AND DISCUSSION 
 

Phosphorous and heavy metals in the SSA before and after ED 
 

The investigated SSA contained 20.6 wt% P2O5 (found from the XRF analysis), which corresponds 

to 9.0 wt% P (Table 3). The P concentration in the investigated ash is slightly lower than in the 

previously investigated SSA batches from the same facility, 10wt% [10], 12wt% [16] and 11wt% 

[13], however, the concentration is within the general range (5 – 10 wt% P) reported by Cyr et al. 

[5]. 

The initial SSA amount in the experiment was 3 kg, and with a P concentration of 9 wt% the total 

mass of P was 270 g. During ED, P was extracted from the SSA, and the concentration was 

decreased to about 1.0 wt% P (2.3 % P2O5) in SSA-ED. In ED lab scale experiments from [13] 

where successful P extraction was obtained from SSA from the same incineration plant, about 50% 

SSA dissolved, and the same range of dissolution is expected in the present bench-scale experiment. 

Thus approximately 15 g P was still bound in the SSA after ED, corresponding to 6% of the total. 

The concentration of Cd and Cu decreased in the SSA during ED (Table 3). The Cd concentration 

decreased from 2.8 mg/kg to 0.5 mg/kg (corresponding to 91% removal taking the 50% dissolution 

of SSA into account) and the Cu concentration decreased from 590 mg/kg to 460 mg/kg (61% 

removal). This is on the contrary to the concentrations of Pb and Zn, which both increased in the 

SSA during ED; Pb from 170 to 420 mg/kg and Zn from 2100 to 2600 mg/kg. While the decreased 

concentrations of Cd and Cu show that they were extracted to a higher extent than the overall ash 

dissolution, the increased concentrations of Pb and Zn showed that they were extracted to a lesser 

extent. Taking the SSA dissolution into account, the Pb content was higher in SSA-ED than in the 

original SSA, which reflect an inhomogeneity in Pb concentration and that the initial sample did not 

represent the SSA treated by EDR. For Zn, about 38% was removed. The heavy metal mobilization 

was significantly less than in the lab experiments with SSA from the same plant [13], where 85% 

Cu, 40% Pb and 77% Zn were mobilized. 
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Table 3: Characteristics for the experimental materials. * P content in % from the XRF analysis. 
 

 
Cement SSA SSA-ED 

DS/EN-450-1 
Requirement 

Water content % 0.3 0.3 2.7  

pH 12.6 9.3 3.5  

Water solubility % -3.6 1.5 1.3  

LOI %     

550˚ 0.8 0.5 4.4 Max. 9.0 

950˚ 7.0 1.6 4.7  

Oxides %     

P2O5
*
 0.2 (0.1*) 20.6 (9*) 2.3 (1*) - 

Al2O3 4.9 8.3 6.6 
SiO2+ Al2O3+ 

Fe2O3 >70 % 
SiO2 20.1 18.6 39.4 

Fe2O3 5.4 15.7 27.3 

SO3 4.7 19.2 0.3 < 3.0 % 

Na2O 0.7 1.2 0.8 
Alkalies < 5 % 

K2O 0.8 1.7 1.8 

MgO 0.5 2.3 1.0 - 

MnO 0.04 0.1 0.01 - 

CaO 65.8 20.9 1.0 - 

TiO2 0.4 0.9 1.7 - 

Cl 0.1 0.02 0.1 Max. 0.1 % 

 

The ED recovery process 
 

As a constant current was applied to the electrodes during the ED experiment, the voltage varied as 

a result of varying resistivity. The voltage generally decreased between both sets of electrodes,  

from 30.8 V to about 10 V for Cat-An1 and 30.2 V to 10.8 for Cat-An 2, i.e. the voltage was in the 

very same range in the two electrode sets. The pH decreased due to the electrolysis at the anodes, 

and the conductivity of the SSA suspension did subsequently increase. Conductivity and pH in the 

suspension during the experiment are shown in Fig. 3, and the measurements in the two sampling 

points (back and front) are varying only very little at every time of analysis. 

The experiment can be separated into four zones based on pH: (I) pH decreases from 7 to 3 during 

over the first approximately 69 hours, (II) pH stabilizes between 2 and 3 until 356 hours, (III) pH 

decreases gradually to 1 until about 475 hours (approximation as data points were not analysed 

here), and (IV) pH stabilizes at 1 for the remaining hours of the experiment. The oxidation rate of 

H2O at the anode was constant (after 2 days) due to the constant current applied, and thus the rate of 

H
+ 

produced was constant. The pH in the suspension is buffered by the SSA in Zone II, and this 

corresponds to the finding in (Kappel et al. 2017, submitted), where a titration curve showed an ash 

buffering capacity around pH 2-3. In zone III, this buffering capacity was overcome, at pH 

decreases. In zone IV it is expected that the current is nearly exclusively carried by H
+ 

ions, which  

at this point are present to a very high extent in the suspension. The conductivity of the   suspension 
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Zone I Zone II Zone III Zone IV 

is almost linearly increasing over the duration of the experiment irrespectively of pH, showing the 

release of ions from the SSA during the buffering period in zone II. 
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Fig. 3 pH and conductivity on the SSA suspension during the ED experiment 
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Fig. 4 Concentration of Cu, Zn and P during ED in the liquid of the SSA suspension. The horizontal 

lines corresponds to the zones in acidification (Fig. 3) 

The concentrations of Cu, Zn and P in the filtrate of the SSA suspension during the ED experiments 

are shown in Fig. 4. Cu represents the heavy metals of which the concentration decreased in the  

SSA during the treatment and Zn the heavy metals for which the concentration increased. 

An almost linear release of P over time is seen during the first two zones, where after the P 

concentration in the filtrate remains almost constant. Thus the P extraction was finished with   Zone 
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II, and the experiment could have been stopped here after about 360 hours. The P was thus  

extracted during the period, where the SSA had a buffering capacity around 2-3. It is commonly 

reported, that SSA contains whitlockite, e.g. [9]. Whitlockite is a group of structurally complex Ca- 

metal-phosphates, and as whitlockites are acid soluble, these minerals are dissolved during the ED 

treatment, and may contribute to the buffering capacity in Zone II, however, large amorphous phase 

in SSA makes the pattern difficult to distinguish. The ED experiment could have been stopped at  

the end of zone II, as no more P was recovered after this period. The concentration of P was at this 

point about 8 g/l in the filtrate and with approximately 31 l filtrate this gives about 250 g P totally in 

the filtrate, which is by far the major part of the P initially in the ash (270 g). 

The continuation of the experiment after the maximum extraction of P (zone II) with zone III and  

IV was not only a waste of energy, but it also decreased the quality of the filtrate as the Zn 

concentration increased (mainly in zone IV). The separation if heavy metals in this zone are not 

efficient as the pH is so low, that hydrogen ions will be by far the main charge carrier. Thus it is 

highly important to stop the ED process at the right time. At the end of zone II, the concentrations  

of both Cu and Zn were about 10 mg/l, which corresponds to 310 mg. Initially the 3 kg of ash 

contained 1.8 g Cu and 6.3 g Zn. Thus 18% Cu and 5% Zn was found in the filtrate. 

Characteristics of raw and treated ash 
 

Table 3 shows characteristics for the cement, SSA and SSA-ED. The requirements for use of coal  

fly ash (DS/EN 450-1:2007) in concrete are shown in the table for comparison, to evaluate the 

general quality of the SSAs. The pH of the SSA decreased from 9.3 to 3.5 during ED. The water 

solubility was low for both SSAs and should thus not lead to any volume changes when used in 

mortar. The LoI increase for the cement from 550°C to 950°C is due to the limestone filler in this 

type of cement and all LoIs met the requirements. The XRF analysis shown as oxides in the 

materials (Table 3) showed that while the Fe2O3 concentration increases the Al2O3 concentration 

decreases during ED. The SiO2 concentration increases, showing that Si was mainly present in the 

part of the SSA, which was not dissolved during ED. In SSA-ED the Al2O3, Fe2O3 and SiO2 

concentrations summed up to 73 % of the mass, whereas in the SSA the sum of these major oxides 

was 43 %. Comparing these weight percentages to the requirements for coal fly ash used in concrete 

it was seen that the ED treatment made the SSA more eligible for use in concrete. Also the  

reduction in SO3 due to the ED treatment is favourable for the SSA as material. The content of CaO 

was also greatly reduced in the SSA-ED, which can be linked to the lower pH and that Ca- 

containing minerals and phases will dissolve at acidic pH. This will also mean that the buffer 

capacity of the SSA-ED has been reduced and this together with the acidic pH could negatively 

influence the properties of the mortar when used as substitution for cement. 

The heavy metal content and leaching for the cement and SSAs are seen in Table 4 and the 

concentrations are compared to limit values for reuse of non-hazardous materials for geotechnical 

purposes [18], as there are no limits for reuse in construction materials. The leaching concentrations 

of Cu, Pb and Zn in the SSA-ED exceeded these limits, mostly because the SSA after electrodialytic 

treatment is acidic. Incorporation of ED treated MSWI fly ashes with high leaching   concentrations 
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in mortars have shown comparable leaching levels to a reference mortar for Cd, Cu, Pb and Zn, 

probably because the metals were incorporated in the alkaline mortar matrix [19]. However, the 

leaching of the SSA-ED containing mortars should be studied to ensure that there is no  

unacceptable environmental impact of this use. 

Table 4: Heavy metal content in the experimental materials 
 

Heavy metals (mg/kg) Cement SSA SSA-ED Category 3 [18] 

Cd 0.45 2.8 0.5 >0.5 
Cu 67.5 590 460 >500 

Pb 22 170 420 >40 

Zn 115 2100 2600 >500 

Heavy metal leaching (µg/l) 

Cd <20 <20 35 40 
Cu <20 <20 4,730 2,000 

Pb <20 <20 92 70 

Zn <20 <20 48,500 1,500 
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Fig. 5 XRD diffractograms for cement and SSA samples A- anhydrite, Q – quartz, H- hematite, CP- 

calcium phosphate, Fe – feldspar, C3S – alite, C2S – belite, F - ferrite 

There were no similarities in the mineralogy between cement and the SSA samples, as seen in   Fig. 

5. The cement consisted, as expected, of the main cement minerals C3S (alite), C2S (belite) and 

C4AF (ferrite). Celite (C3A) was not detected in the diffractogram, which could be due to peak 

overlap, having the main peak at 33.15 (°2Ө) and ferrite with major peaks at 33.53 (°2Ө) and 33.92 

(°2Ө). Rietveld analysis on Portland cement has previously shown 6.5 % C3A compared to 63.6 % 

C3S, 8.9 % C2S and 14.2 % C4AF [20]. Anhydrite (CaSO4) was also found in the present cement. 

The main difference between the raw and ED treated SSA, was the removal of calcium phosphate in 
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the ED treated ash, which could be expected due to the overall P removal (Table 3). Otherwise SSA 

and SSA-ED were mineralogically consisting mainly of Q (quartz), Fe (feldspar) and H (hematite). 

Mortar properties 
 

The XRD diffractograms for the three different mortars (M-ref, M-SSA and M-SSA-ED the two 

latter with non-grinded SSA) are seen in Fig. 6. The main mineralogical phases in the mortars were 

similar regardless of the substitution of cement with SSA. Quartz (SiO2), the plagioclase feldspars 

albite (NaAlSi3O8) and K-spar (KAlSi3O8), calcite (CaCO3) and the hydration product portlandite 

(Ca(OH)2) were the main identified minerals. The diffractograms did not show any of the minerals 

found in the SSAs (Fig. 5). This is likely due to the dominating minerals from the sand, the cement 

hydration and the dilution effect since SSA only replaced 20 % of the cement. Quartz and feldspars 

are the most common minerals in sand from Danish sand pits [21] and this is coherent with finding 

these as the main minerals in the mortars. The pH for all the mortars was 12.3, which shows that the 

acidic electrodialytic treated SSA did not significantly affect the pH of the mortar on a short term 

basis. 
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Fig. 6 XRD diffractograms for mortar samples. P- portlandite, Q-quartz, C, calcite, Fe – feldspar 
 

The compressive strength was slightly lower when the mortars contained SSA as well as SSA-ED 

compared to the reference mortar (Fig. 7a), but the SSA-ED still gave compressive strengths above 

50 MPa for all tested mortars, which is sufficient for most uses of concrete. For the mortar with 

SSA, the compressive strength increased in accordance to an increase in the fineness of the SSA 

particles (Fig. 7b). This finding corresponds to results reported in the studies of Pan et al., and 

Donatello et al. [9, 22]. In these two studies, it was found that the specific surface area did not 

increase significantly even though the fineness of the particles did due to the grinding. Therefore, it 

was suggested that the SSA particles had a porous structure with many open pores, adding to the 
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overall specific surface area. As consequence of the high open porosity, the available water in the 

system was reduced, which could have inhibited the hydration process of the clinker minerals [9] as 

well as the workability of the mortars [22]. The improved compressive strength (Fig. 7) and 

workability (Fig. 8) found for M- SSA30 sec and M-SSA10min supports this assumption. Furthermore, 

the fineness of a pozzolanic material is important for the hydration process, because fine particles 

provide extra nucleation sites due to large surface areas and at the same time extra space in the 

system for hydration products to form and develop at the early stage [23]. In case the fine particles 

are without pozzolanic activity, they may improve the strength from a filler effect. 

Even though the d50 were quite similar for SSA and SSA-ED (Table 1) the graduation differs. The 

d10 was 14 µm for SSA and 3 µm for SSA-ED, and thus SSA-ED had the largest fraction of the 

finest particles. At the same time, SSA-ED also had the largest fraction of the coarsest particles, as 

d90 was 817 µm compared to 356 µm for the SSA. Thus, the grain sizes differed more in SSA-ED 

than in SSA. After grinding SSA-ED for 30 sec the d90 is still coarser than in the SSA. The 

increased concentration of Si (Table 3) in SSA-ED, of which a large fraction is present in quarts 

(Fig. 5) may be related to this. The quarts may originate from the sand in the fluidized bed, i.e. 

relatively coarse particles, and quarts is not easily grinded to finer particle sizes. Still after 10 min 

grinding, the SSA-ED has larger d90 than SSA. The increase in compressive strength with 

increasing fineness found for M-SSA0sec-10min was not as apparent for M-SSA-ED0sec-10min due to the 

larger particle sizes (Fig. 7b). The compressive strength increased from 51 MPa to 55 MPa when 

grinding the SSA-ED for 30 sec, but the longer grinding (finer particles) did not give further 

strength increase. This reveals that the grain size graduation obtained with the longer grinding did 

not improve the packing of particles. 
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Fig. 7 Compressive strength of the mortars by a) grinding time and b) d90 in the SSA 
 

The workability expressed by flow value spread (Fig. 8) was lower for all mortars with SSA and 

SSA-ED than for the flow value of the reference mortar. The lower workability was also 

experienced during the mortar mixing where the SSA mortars were dryer. Increased fineness is 

generally expected to improve the workability, which was also seen here, especially for the SSA 

with the grinding time of 10 minutes. The flow value for mortar with grinded SSA increased as 

expected but smaller particle sizes of SSA-ED30sec -10min had no influence on the flow value and did 

not improve the workability of M-SSAED30sec-10min. An irregular morphology of SSA particles is 

likely adding to a lower workability [24] as well as the porous structure of SSA particles must be 

expected to influence the workability negatively, in that the pores absorbs water from the mixture  

[9, 22]. 
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Fig. 8 Workability of the mortars expressed by the flow value spread. The d90 value is for the SSA 

part of the SSA mortars and for the cement in the reference mortar 

Fig. 9 shows the colours of the mortar samples M-SSA0sec-10min and M-SSAED0sec-10min. 

 

Fig. 9 Colours of the experimental mortars 
 

The three mortars with SSA-ED0sec-10min all had a more intense red colour than the mortars with 

SSA0sec-10min. The colour originates from the hematite (Fe2O3, see Fig. 5), and the concentration of 

Fe was higher in SSA-ED than SSA (Table 3). The saturated red colour was similar for all three 

samples with SSA-ED0sec-10min whereas the colours of M-SSA0sec-10min evolved slightly in the 

intensity as the particle size of the SSA decreased. Grinding the ash means larger surface area, 

which results in the slightly stronger colour of the grinded mortars with SSA. Thus, the colours of 

M-SSA0sec-10min were induced by the physical changes of the SSA whereas the colours of M- 

SSAED0sec-10min most likely were due to the chemical changes of SSA-ED. It is possible that a   very 
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low content of CaO together with a higher content of Fe for SSA-ED (Table 3) may have caused the 

significant colour change of M-SSAED0sec-10min compared to faint colours of M-SSA0sec-10min. It is 

known from the composition of minerals in clay that a high content of Fe together with a low 

content of CaO generates the red colour known in bricks [25]. The rough and smooth surfaces made 

by the paper cuttings were made to unfold the aesthetical qualities of the mortar. The rough and 

smooth surfaces are basic elements of architecture and therefore important for architects and to 

experience architecture awareness of these elements are necessary [26]. The difference between the 

smooth parts which are the spherical part of the samples in Fig. 9 and the rough part, accentuate the 

colours of the mortars. From Fig. 9 it can be seen that the visual difference in the colour tones 

between rough and smooth parts are clearer for the samples with SSA than for samples with 

SSAED. The colours of M-SSAED0sec-10min may be conceived as an intrinsic property of the material 

which aesthetically can be used in the build environment for exposed concrete structures. 

 

CONCLUSION 
 

 Electrodialytic separation extracted 90 % of phosphorous from the SSA. The electrodialytic 

treatment reduced the pH of the SSA from 9.3 to 3.5, however, no immediate influence of 

the acidic pH of the ash were seen from the results of the mortar testing. The acidic pH 

though increased the heavy metal leaching of the electrodialytically treated SSA and the 

leaching properties should be studied further for the mortars containing the SSA. 

 Compressive strengths over 55 MPa were achieved for mortars with SSA, although the 

compressive strength decreased when replacing cement with SSA compared to the reference 

(60 MPa). 

 The fineness and mineralogy of the SSA changed due to the electrodialytic treatment, 

probably influenced by the dissolution of the ash constituents at the acidic pH. 

 The red color intensified in the mortar with SSA-ED compared to the SSA, into a color 

similar to red bricks. The red color was homogeneous in the entire mortar sample and on 

both the smooth and rough surfaces. The study showed that electrodialytic treated SSA may 

have potentials to be utilized as resource in cement based materials especially in places 

where the colour aesthetically can add value to the build environment. 
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5.4 Main research findings 
 

This research has shown that the methods to process SSA: milling, acid washing or electrodialysis, had a 

significant effect on the basic properties of mortar when SSA was used as partial cement replacement. As 

such the results of the research cannot determine the feasibility of using SSA as resource in cement based 

material for a specific use. This requires additional tests and targeted experiments to clarify the long term 

implications of using SSA as partial cement replacement both technically and environmentally. However, 

this was not the intention of the research. The intention was to unfold the potential related to the utilisation of 

SSA as partial cement replacement in cement based materials aesthetically and technically. This was done by 

documenting how the basic properties of the SSA itself were altered when the SSA was pre-treated, and how 

ordinary mortar was affected when SSA was processed as a resource and used to replace cement by 20 wt% 

in mortar. The approach taken in the present research was to address SSA utilisation in the context of solving 

a resource problem rather than solving a waste problem. This was done by taking into account that SSA is a 

valuable phosphorous resource before it is as a useful resource for concrete production. This disposition was 

taken as phosphorous is an irreplaceable nutrient which is regarded as a scarce resource. 

 

 

 
5.4.1 The colours of mortar with sewage sludge ash 

 

Selected mortar samples from the three studies conducted are presented coherently embedded in a square 

consisting of 4x4 samples (Fig 5.3). The mortars with the different SSAs are displayed horizontally in four 

columns which include from the right two columns with untreated SSA (SSA1 and SSA2) and two columns 

with phosphorous extracted (SSA2-acid and SSA2-ED). Vertically the duration of the milling increases. The 

4 samples in the top row are ordinary mortar which is the point of origin. The collection of samples gives 

visible evidence of how ordinary mortar responses to the untreated and treated SSA when used as partial 

cement replacement. What it clearly shows is that the SSA transforms the properties of mortar gradually 

when the SSA is milled, and instantaneously when phosphorous extracted SSA is used. 
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Figure 5.2 SEM images of untreated and treated SSA 
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Figure 5.3 mortars shown are from left to right: SSA1, SSA2, SSA2-Acid and SSA2-ED 
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The function of exhibiting the colour samples as a whole was to make potentials of utilising SSA as resource 

in mortars perceptible for the audience. The samples were made with a sphere-shaped smooth part framed by 

a rougher part to enhance the experience of the mortar. The qualities of the mortars such as colour and 

texture are important for a perception of the mortars as sensuous material which also are amongst the 

elements which an architect “ can call into play”(Rasmussen 1962, p.29). Therefore, the collection of 

samples is an important result of the research because it communicates the aesthetical potentials of mortars 

with untreated and treated SSA. What it also directly shows is that the colours of the mortars are not one- 

dimensional but can be elaborated by textural differences of rough and smooth surfaces. The smooth parts 

reflect the light differently and make the colours seem lighter than the rougher parts. This is particularly 

visible for the mortar with SSA1 and SSA2 where the sphere shaped smooth part in the centre of the samples 

are in a lighter colour than the surrounding rougher parts. 

 

 
 

 

Figure 5.4 from left to right SSA1 and SSA2 

 

 

 
The samples in the two left columns are the mortars made from two different SSA (SSA1 and SSA2). Both 

were taken from the same wastewater treatment company Biofos at their facility in Avedøre, Copenhagen, 

Denmark, but sampled at different times. Both SSA1 and SSA2 had a relatively high content of iron oxide 
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15.7 % (Table 5.1) which explains the red tones of the two ashes. The colours of SSA1 and SSA2 were 

slightly different, however. SSA1 had a darker tone whereas SSA2 was in a slightly lighter red orange colour 

(fig 5.4). 

In glaze chemistry it is well established that the colours of glaze are depended on the content of oxides as 

well as temperatures and the conditions during the glaze firing (Hamer & Hamer 1991; Linnet 1996). 

Colouring oxides can be divided into two main groups: the alkaline colouring oxides and the amphoteric 

colouring oxides. The alkaline colouring oxide is self-colouring, which means the colour of the glaze is 

detectable by the colour of the oxide used (Hamer & Hamer 1991). To this group belong oxides such as 

MnO, FeO, CuO. Amphoteric coloring oxides do not always produce the same colour, as this depends on the 

presence of other oxides (Hamer & Hamer 1991). The amphoteric oxides are MnO2, Fe2O3 and Cr2O3. It is 

only the amphoteric colouring oxides, which actually completely can change their colour. Another group of 

oxides are the alkaline or amphoteric colourless oxides, among these belongs oxides such as ZnO, TiO2 and 

Al2O3. These colourless oxides can be used for brightening the colour, opacifying or enhancing the 

transparency of the glazes as well as changing the colours of amphoteric colouring oxides. 

 

 

 
Table 5.1 Ash characteristics and major oxide content 

 

 cement SSA1 SSA2 SSA2-Acid SSA2-ED 

Water% 0.28 0.63 0.31 8.89 2.69 
pH 12.6 9.87 9.29 1.94 2.69 
Water solubility %  1.27 1.54 16.6 1.27 

  Major oxides (%)       

Al2O3 4.91 5.1 8.31 6.99 6.6 
CaO 65.7 23.8 21 3.78 1.0 

Fe2O3 5.43 15.7 15.7 20 27.3 

K2O 0.81 1.57 1.69 1.93 1.8 
MgO 0.53 2.32 2.32 1.18 1.0 
MnO 0.04 0.09 0.09 0.01 0.01 

Na2O 0.67 1.15 1.2 2.7 0.8 

P2O5 0.23 20.2 20.6 2.98 2.3 

SiO2 20.1 17.1 18.6 36.4 39.4 

SO3 4.74 2.02 1.92 0.77 0.3 

TiO2 0.35 0.83 0.88 1.55 1.7 
Cl 0.1 0.01 0.02 5.0 0.1 
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In the case of the SSA1 and SSA2 the content of iron is relatively high because iron salts is used at the 

wastewater plant to precipitate the phosphorous from the effluent. The colour of Fe2O3 ranges from red to 

black colours, depending on the presence of B2O3, Al2O3 and TiO2 (Hamer & Hamer 1991). The high content 

of iron in SSA1 and SSA2 explains the reddish colours of the two SSAs. The difference in the colours of the 

two might be related to the content of Al2O3 being 3 % higher for SSA2 than SSA1. In glaze chemistry Al is 

used to alter the red iron oxide colour to a brownish colour (Hamer & Hamer 1991; Linnet 1996). The 

increased level of Al2O3 in SSA2 could explain the colour difference between the two ashes, for which SSA1 

has a darker tone of red whereas SSA2 instead was in a red-orange colour. 

 
 

The difference between the colours of SSA1 and SSA2 is also detectable in the two different series of 

mortars produced with the ashes (fig 5.3). The colour of the mortar with unmilled SSA1 is less affected than 

the mortar with unmilled SSA2. For both series the colours intensified as the SSA’s were milled, and it 

became more visible that mortars with SSA1 are slightly more reddish than mortars with SSA2. In figure 5.2 

SEM (Scanning Electron Microscopy) images of the morphology of the ashes are shown in accordance to the 

same experimental frame as the mortar samples shown in figure 5.3. From the images it can be seen that the 

particles of unmilled SSA1 are larger than the particles of unmilled SSA2, which, due to larger surface area 

and the distribution of finer particles, could explain why the colour of mortar with unmilled SSA2 is more 

visible than the colour of mortar with the unmilled SSA. Oppositely, in table 5.2 it shows that 90% (d 90) of 

SSA2 consists of particles with sizes up to 356 µm (approximately 0.4 mm) against 244 µm for SSA1. 

However, the smallest fraction d10 is finer for SSA2, which is 14.1 µm against 20.2 µm for SSA1. This 

might sustain the argument that the distribution of finer particles is the explanation for the difference 

between the colour tones of the two mortars with unmilled SSA. Even though the particles size distribution 

of SSA1 and SSA2 seen in table 5.2 cannot confirm what is seen on the images of the morphology in figure 

5.2, both sets of results show clearly that the particles sizes decreases when SSA1 and SSA2 are milled 

which as a consequence provides mortars with increasing red tones. The colours of mortars with untreated 

SSA is determined by the initial condition of the SSA, and therefore variation in the colours of mortars may 
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be precondition related to the utilisation of SSA in cement based materials as the content of oxides may vary 

between different batches, which this research has shown. 

 

 

Table 5.2  Particle size distributions 
 

 d10 (µm) d50 (µm) d90 (µm) 

Cement 1.72 8.45 26.2 

SSA10 sec 20.2 97.5 244 

SSA130 sec 4.44 34 127 

SSA110 min 1.68 10.3 59.1 

SSA20 sec 14.1 124 356 

SSA230 sec 5.59 39.8 182 

SSA210 min 3.54 24.1 89.0 

SSA2-Acid0 sec 7.64 101 1085 

SSA2-Acid 30 sec 5.59 39.8 182 

SSA2-Acid 10 min 2.91 18.8 122 

SSA2-ED0 sec 2.79 101 817 

SSA2-ED30 sec 2.22 44.1 556 

SSA2-ED10 min 1.34 9.50 142 

 

 

 

 

The impact of the acid washing and electrodialytic treatment of the SSA2 (SSA2-acid and SSA2-ED) had a 

significant influence on the colour of the mortar as the colours changed into two different shades of red. The 

colours of the mortars in the two series were saturated and did not evolve noticeable when the treated SSA2s 

were milled (fig 5.3). Some of the main differences between the raw SSA2 and SSA2-Acid and SSA2- ED 

are the pH, the content of CaO, Fe2O3 , SiO2 and P2O5, and for SSA2-Acid also the water solubility and the 

content of Cl. There is a slight difference between the colours of untreated SSA2 and the two phosphorous 

extracted SSA2-Acid and SSA2-ED (fig 5.5). SSA2-Acid is in darker red tone than the original SSA2 and 

electrodialytically treated SSA2-ED. However, the difference of the colours in the mortar is more distinct 

than the colours of the two treated ashes: SSA2-acid and SSA2-ED. The level of iron is higher in SSA2-ED 

than the level found in SSA2-Acid (table 5.1). This might explain some of the reason why the colours of 

mortars with SSA2-ED are more intense and in a darker tone than the series with SSA2-Acid 



110  

 

 
 

 

 
Figure 5.5 left to right: SSA2, SSA2-Acid and SSA2-ED 

 

 

 

 
The significant different colours in the mortars containing these phosphorous extracted SSAs could also be 

due to the decomposition of chemical compounds and changes of the mineralogy of SSA2-Acid and SSA2- 

ED. The major mineral phases of the different SSAs are detected by the XRD diffractograms (figure 5.6). 

The mineralogy shows that calcium phosphate (CP) is the main phosphate mineral in SSA1 and SSA2, and 

that phosphate minerals are not present in SSA2-Acid or SSA2-ED. Instead, only hematite (H), quartz (Q) 

and fledspar (Fe) can be detected in the two phosphorous extracted SSAs. An increase of iron, the much 

lower concentration of phosphorous, removal of calcium and the decomposition of the mineral structure of 

the SSA2 due to the extraction of phosphorous may have been the causes for the intensified colouration of 

the mortars with SSA2-Acid and SSA2-ED. Both phosphorous and calcium can supress the colour of 

amphoteric F2O5 which is a mechanism known from glaze chemistry (Linnet 1996) In regards to SSA2-Acid, 

the high content of chloride from the HCl, which was used to extract phosphorous, could have caused the 

formation of other iron complexes with chloride, such as anionic ferric chloride complexes (Nakanishi et al. 

2002), which in a solution can have generated the saturated reddish colour, significantly different from the 

colour of mortar with untreated SSA2. 
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Figure 5.6 XRD diffractograms for cement and SSA samples A- anhydrite, Q – quartz, H- hematite, CP- 

calcium phosphate, Fe – feldspar, C3S – alite, C2S – belite, F - ferrite 

 

 

 
5.4.2. The Influence of sewage sludge ash SSA on compressive strength and workability 

 

The compressive strength of the mortars are shown in figure 5.8, the flow value in figure 5.9 and the grain 

size distribution of the SSAs in table 5.2. The compressive strength for mortars with untreated SSA1 was 

higher than mortars with SSA2, however, the compressive strength increased to an extent where it reached 

the strength of ordinary mortar when SSA1 and SSA2 were milled. The flow value was lower for the mortar 

with unmilled SSA1 in comparison to the flow value found for mortar with unmilled SSA2. But the flow 

value increased instantly when SSA1 was milled 30sec -10 min, however, without reaching the flow value of 

ordinary mortar. The flow value and the compressive strength development also improved for mortars with 

milled SSA2, but not to the same extend as the flow value and the compressive strength of ordinary mortar or 

mortar with milled SSA1. 
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Previous studies by Pan et al. (2003) and Donatello et al. (2010a) have, similarly to the results of present 

research, found that the milling of SSA has a positive impact on the strength development and the flow value 

of mortars with SSA. In the experiments of the present research the water/cement ratio was kept constant in 

the mix design of the different test mortars. Thus, from the results it can be seen that the improvement of the 

workability expressed by the flow value and the compressive strength development are two parameters 

correlating. There could be several reasons for the increase of compressive strength, however, the fineness of 

particle sizes is evidently important as the compressive strength and the flow value increased when the 

fineness of the SSA increased due to the milling (table 5.2). Another important parameter could be the 

alteration of morphology of the SSA. The SEM images seen in figure 5.2 show the morphology of the 

unmilled SSA1 and SSA2 as coarse, angular and large particles especially in comparison to the particles of 

the powdery cement. In the studies of Pan et al. (2003) and Donatello et al. (2010a) the influence of milling 

SSA on properties of SSA and the strength development were discussed. The two studies measured the 

specific surface area and found it didn’t increase significantly when the fineness of the particles increased. 

An explanation to this was found to be related to the morphology of the SSA, which not only was 

characterised by the coarse and irregular particles but also by having many open pores. The open pores of 

SSA may suck and trap water and as result lower the free water in the system. Furthermore, the shape of the 

particles can affect the internal friction in fresh mortar when particles are as SSA coarse and irregular. 

Therefore if the shapes of the particles are rounded the internal friction is reduced (Pan et al. 2003). As a 

consequence the workability is improved and with that also the compressive strength. For mortars with 

treated SSA; SSA2-Acid and SSA2-ED, the milling of the SSAs did not have the same influence on the 

compressive strength as it did for mortar with SSA1 or SSA2. The initial compressive strength of the mortar 

with SSA2-Acid was high and comparable to the strength of ordinary mortar (fig 5.8). The compressive 

strength did not increase significantly when the SSA2-Acid was milled. The initial compressive strength 

found for mortar with unmilled SSA2-ED was approximately 8 % less than the compressive strength of 

ordinary mortar. The fresh mortar with unmilled SSA2-ED and SSA2-Acid were both very dry and the flow 

values were close to zero, as the initial diameter of the sample only increased by approximately one 

centimetre during the run of the experiment monitoring the flow value of the test mortars (fig 5.9). 
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Figure 5.8 The compressive strength of the mortars after 28 days 
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Figure 5.9 The flow value of the fresh mortars 
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Figure 5.9 also shows that the milling of the SSA2-ED did not have any effect on the workability of the 

mortars, as the flow value did not increase when the SSA2-ED was milled. For mortar with SSA2-Acid the 

milling improved the workability as the flow value increased gradually as the particle sizes decreased, and 

eventually reached the flow value of mortar with untreated SSA2 milled for 10 min. The milling of the 

SSA2 –ED was not the main parameter affecting the properties of mortar, and the milling of SSA2-Acid had 

only impact on the flow values of the mortars with SSA2-Acid. Thus, a correlation between an improved 

compressive strength and workability due to alteration of the morphology of SSA2-Acid and SSA2-ED were 

not seen for mortars with treated SSA. 

As for the colours of the mortars with either SSA2-Acid and SSA2-ED the chemical change and 

consequently the change in mineralogy of the two treated SSAs (fig 5.7) were the main parameters 

influencing the compressive strength developments, and for mortars with SSA2-ED also the flow value. The 

oxides, which were removed in SSA2-Acid and SSA2-ED, were mainly CaO and P2O5 and oxides with 

increased concentrations were SiO2,, Fe2O5. For the acid washed SSA content of Cl and water solubility were 

quite high (table 5.1), and for both ashes the originally alkaline SSA2 was acidified due to the treatments. 

The initial strength of mortars in both series with treated SSA2 (unmilled SSA2-acid and SSA2-ED) was 

higher in comparison to the initial compressive strength of mortar with only unmilled SSA2, even though 

the particles of unmilled SSA2-Acid and SSA2-ED were larger than the particles of unmilled SSA2. This 

confirms that the chemical changes prompted the reactivity of mortars and improved compressive strength 

and for mortars with SSA2-Acid also the workability. 

 

 

 
5.4.3. Environmental considerations 

 

One of the main concerns related to the use of acid washed and electrodialytic treated SSA as partial cement 

replacement is the fact that the leaching of the heavy metals increases when the pH of SSA2-Acid and 

SSA2- ED decreases (table 5.1). 
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Table 5.3 Ash characterisation 
 

Elements mg/kg 
 

cement 
 

SSA1 
 

SSA2 
 

SSA2-Acid 
 

SSA2-ED 

Al 18600 ± 3850 22500 ± 298 32000 ± 678 17700 ± 465 15000 ± 586 

As 10.8 ± 2.67 10.1 ± 0.39 9.59 ± 1.05 0.42 ± 0.47 6.06 ± 0.31 

Ba 240 ± 45 674 ± 0.39 724 ± 23.3 1410 ± 25.9 1660 ± 65.6 

Ca 360000 ± 81200 149000 ± 1470 124000 ± 3980 17400 ± 389 3720 ± 102 

Cd 0.45 ± 0.16 2.63 ± 0.16 2.77 ± 0.08 0.43 ± 0.04 0.50 ± 0.03 

Cr 26 ± 4.85 38.7 ± 0.76 40.2 ± 1.17 61.3 ± 1.38 64.4 ± 1.79 

Cr IVⁱ 3.6  0.5 2.4  
Cu 67.5 ± 13.1 668 ± 17.3 590 ± 20.4 359 ± 11.4 464 ± 14.8 

Fe 16900 ± 3210 57200 ± 1430 74300 ± 1300 76800 ± 2490 83300 ± 3240 

K 2650 ± 575 5640 ± 50.1 6140 ± 153 4130 ± 58.8 3130 ±87.7 

Hgⁱ 0.4 n.d* 4.33 7.73 n.d* 

Mg 2840 ±529 17000 ± 378 16000 ± 371 4150 ± 103 3240 ± 83.5 

Mn 127 ± 24.1 710 ± 7.95 688 ± 12.9 285 ± 6.71 252 ±7.21 

Na 1210 ±231 3930 ± 51.5 3440 ± 104 1480 ± 50.6 1450 ± 46.4 

Ni 27 ± 5.55 57.5 ± 1.53 60.9 ± 1.8 71.7 ± 1.36 96.4 ± 2.66 

P 876 ± 167 130000 ± 2014 126000 ± 3140 14400 ± 266 13100 ± 842 

Pb 22 ± 4.89 144 ± 2.00 172 ± 4.89 234 ± 7.67 423 ± 1.54 

Se 4.54 ± 1.97 n.d 6.16 ± 3.15 7.31 ± 1.35 1.54 ± 0.84 

Zn 115 ±22 1930 ± 26.8 2100 ± 52.8 1890 ± 52.9 2603 ± 115 

Leachings ug/l 
     

Cl 130000 ± 5500 13400 ± 89.1 23300 ± 437 23900000 ± 309000 510000 ± 8350 

SO4 21400 ± 3990 1220000 ± 5240 2520000 ± 78700 2610000 ± 137000 943000 ± 21000 

Na 707000 ± 15700 182000 ± 1680 210000 ± 6610 375000 ± 9340 89000 ± 2270 

Al 590 ± 772 99.7 ± 74.3 527 ± 322 140000 ± 44900 10000 ± 694 

As <20** 8.84 ± 3.42 21.7 ± 1.48   <20**    64.8 ± 1.52  

   Ba  11300 ± 235 548 ± 344 1020 ± 1237 1360 ± 13.1 144 ± 26.8 

Ca 545000 ± 19100 732000 ± 6630 637000 ± 18500 6490000 ± 261000 1050000 ± 19700 

Cd <20** <20** <20** 178 ± 0.62 35.2 ± 0.02 

Cr   40.9 ± 1.8  0.44 ± 0.76 0.18 ± 0.32 135 ± 1.31 47.5 ± 1.60 

Cu 7.28 ± 1.05 3.78 ± 1.10 4.43 ± 0.89 78300 ± 696 4730 ± 179 

Fe <2000** <2000** <2000** 26700 ± 361 749 ±104 

K 1480000 ± 24400 137000 ± 54.8 145000 ± 3380 848000 ± 24900 22700 ± 259 

Hgⁱ <1** n.d* <1** 128   n.d*  

Mg <2000* 29100 ± 991 187000 ± 4380 1110000 ± 11542 244000 ± 5360 

Mn <20** <20** 9.57 ± 4.15 63100 ± 422 9500 ± 242 

Ni 0.82 ± 0.71 <20** <20** 6690 ± 8.89 2920 ± 29.8 

P <2000** <2000** <2000** 39500 ± 312 563000 ± 13600 

Pb <20** <20* <20** 273 ± 6.99 91.9 ± 11.0 

Se   38.3 ± 9.15  n.d* 507 ± 6.47 26.9 ± 16.7 129 ± 11.8 

Zn <20** <20** <20**   319000 ± 10500  48500 ± 794 

*Not determined **below standard 
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In table 5.3 the concentration levels of heavy metals and leaching from untreated and treated SSA are listed. 

They are assessed by comparing the concentration levels of heavy metals and leachings with Danish limit 

values included in the legislation known as “Restproduktbekendtgørelsen” (Miljø- og fødevareministeriet 

2016) set for non-hazardous construction waste, soil and residues reused in geotechnical constructions. These 

limits are used to assess the SSAs here, as there are no limiting values related directly to SCM. The target 

elements included in “Restproduktbekendtgørelsen” are in table 5.3 marked grey. The elements marked light 

pink allows for the waste or residue to be reused however, with restrictions. Elements marked dark pink are 

exceeding the limit values and it is therefore not allowed to use the waste and residue exceeding. 

None of the tested materials comply with the limit values in “Restproduktbekendtgørelsen”, and surprisingly 

cement exceeds the limit value in the leaching of Ba, and has a relatively high leaching of Cr and Se. The 

results in the table also show that in SSA2 Ni, Pb Zn and Hg, are the elements of concern as these exceed the 

total concentration levels accepted in “Restproduktbekendtgørelsen”. In the treated SSA2-Acid and SSA2- 

ED the same elements are found to exceed the accepted limit values. However, the number of elements does 

not increase due to the acid washing or electrodialysis. Oppositely the heavy metals exceeding the limit 

values set for the leaching increase significantly when the SSA2 is either acid washed or electrodialytically 

treated. 

In overall the total metal concentrations in SSA2-Acid was lower than in SSA2-ED, but the metal leaching 

was generally higher in SSA2-Acid. This is linked to the lower pH in the SSA2-Acid (1.94) compared to the 

pH of SSA-ED (2.69), as the metal availability is highly pH dependent in SSA (Ottosen et al, 2013, Guedes 

et al. 2016). The studies conducted in regards to extracting the phosphorous focused only one main aspect, 

which was to produce sufficient amount phosphorous extracted SSA. The success criterion for experiments 

was to meet the goal as formulated in the National Danish strategy “Denmark without waste”, which was to 

be able to recycle 80 % of phosphorous from sludge. In the two studies in which phosphorous was extracted 

either by hydrochloric acid or electrodialysis the criterion was successfully met. However, both methods 

used are not fully developed and research is still undergoing. Research in extraction of phosphorous from 

SSA by electrodialysis have shown that tools to stabilize the acidified SSA are available by increasing pH so 



117  

that SSA becomes alkaline by which most heavy metals are immobile (Viader 2016). This method may solve 

the leaching problem related to electrodialytically treated SSA. In the case of SSA2-acid the water solubility 

was quite high 16.6 % and the additional removal of chlorides compounds may further reduce the leaching 

and content of heavy metals. 
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6 CONCLUSION 

 

Utilisation of SSA as resource in production of cement based materials may challenge the conception of 

concrete as a homogenous construction material commonly associated with the grey colour. First of all, the 

colour of mortars with SSA can vary and intensify in accordance to the properties of untreated SSA, the 

amount and methods used to process the SSA before used in cement based materials. 

Milling of the SSA was found necessary in order to see any significant colour change on mortars with one of 

the batches of untreated SSA (SSA1). However, this was not seen for the mortar containing the second batch 

even though SSA2 was collected from the same wastewater treatment plant. Therefore, variation in the 

colours between batches as found in the results of present research shows that the colours of SSA in general 

can vary in accordance to e.g. the conditions of the sludge, its thermal history and consequently the character 

and the content of oxides. The milled iron rich SSA can provide colours ranging from grey to different red 

tones, and therefore the process of milling the SSA has the potential to alter the grey colour of ordinary 

mortar into several tones of red. Treatments to extract phosphorous significantly changes the colours of 

mortars into saturated red tones, and therefore when phosphorous is recovered from the SSA, the visual 

appearance of the mortars moves away from the visual appearance of ordinary mortar. This fundamental 

transformation of the mortars, in which phosphorous extracted SSA is used as partial cement replacement, 

may also broaden the aesthetical interpretations of cement based materials in the build environment. 

The gradual change of the colour found for mortar with untreated SSA (SSA1 and SSA2) did not follow 

when the acid washed and electrodialytic treated SSA was milled. Instead the mortars changed noticeable 

when the SSA was processed either by acid washing or electrodialytic treatment for recovery of 

phosphorous, and thereafter utilised as partial cement replacement in mortar. Consequently, the grey colour 

of ordinary mortar was instantly overtaken by two shades of red depending on the phosphorous extraction 

method used. The colour of the SSAs and mortars were found to be caused by Fe2O3 that gives a red colour. 

Due to the acid washing and electrodialytic treatment of the SSA the mineralogy changed. Calcium 

phosphate was removed; the content of iron increased and for the acid washed SSA also the content of 
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chlorides. The distinct colours of mortars with acidified SSA where likely influenced by factors mentioned 

above e.g by the removal of calcium and phosphorous, which supresses the colour of amphoteric Fe2O3. 

The tendency for the compressive strength development and workability of mortars with milled, untreated 

SSA was improved performance when the milling duration (i.e. particle fineness) increased. With increased 

milling duration the performance got closer to the performance of ordinary mortar. Therefore, compressive 

strength development and the flow value of mortars with untreated SSA are highly determined by particle 

size distribution. For mortars with acid washed and electrodialytic treated SSA, the dominating parameter 

influencing the performance of the mortars was chemically induced. Only the workability of mortar with 

acid washed SSA was altered by milling the treated SSA. Initially, the compressive strength was higher than 

mortar with untreated SSA, and for mortar with acid washed SSA the strength was comparable to ordinary 

mortar. In regards to the workability of the fresh mortars with the phosphorous extracted SSAs, the mixtures 

were dry and therefore not very workable, and as mentioned it was only mortar with acid washed SSA, 

which benefitted from the milling. The workability of the mortar is an important property for the usage of the 

material in construction and in fabrication of concrete components. Therefore, further investigations are 

needed to specify the limitation or possibilities to utilise electrodialytic treated SSA as partial cement 

replacement. For the utilisation of mortar with acid washed SSA the main concern is related to the content of 

Cl, which was high compared to the electrodialytic treated and the untreated SSA. Chlorides are deleterious 

to steel as it will corrode when exposed to high concentration of chlorides in moist and oxic conditions. 

Therefore, these levels need to be decreased if the acid washed SSA are to be used for reinforced concrete. 

 

 

 

 
Concerns related to the utilisation of the acid washed and the electrodialytic treated SSA are the 

environmental and hazardous risks of the acidified SSA. Incineration of sludge is used as a waste handling 

option with the benefits of not only reducing the volume of the sludge but also to prevent pathogens to 

spread and the stabilisation of containments present in the sludge. The concentration of heavy metals 

increases when sludge is incinerated, but the heavy metals are mainly bound in stable complexes. This was 
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shown in the results on the leaching of the problematic elements such as Pb, Zn and Hg. The leaching of 

these elements was low even though the concentration levels were relatively high in the untreated SSA 

compared to limit values of Restproduktbekendtgørelsen. Due to acidification of the phosphorous extracted 

SSA by the acid washing and electrodialytic treatment, the majority of heavy metals detected were 

mobilised. The results of the present research showed that the hazardous risk increases when phosphorous is 

extracted either by acid washing or electrodialytic treatment compared to the untreated SSA, because of the 

pH decrease and the transition of SSA2 from alkaline to acidic. Further development of methods to stabilise 

the acidified SSA is suggested to ensure safe use and application in the build environment. 

In conclusion, the fact that SSA is valuable source for phosphorous before it is a waste material useful as 

partial cement replacement in mortar and concrete, also establishes the potentials and constrains of its 

utilisation in cement based materials. The result of present research shows that it is possible to produce 

mortars with phosphorous extracted SSA, which are distinct from ordinary mortar. The performance of 

mortars with treated SSA may challenge the practicability of using the materials, as the mortars are 

significantly different from both mortar with untreated SSA and ordinary mortar. However, the research 

shows that the potentials are conditioned by the circumstance that the SSA first and foremost was regarded 

as source for phosphorous, especially the changing colours of the mortars, as these also may broaden the 

perception of cement based materials normally associated to the grey colour. 
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Research in sewage sludge ash (SSA) in concrete has mainly been focusing on 
SSA as partial cement replacement without taking into consideration that SSA is 
valuable source for phosphorous (P). In present research two methods to extract 
P were used, and the overall question of interest was how P extracted SSA affec-
ted basic properties of mortar when used as partial cement replacement. The aim 
of the research was to provide a common ground relevant for different disciplines 
of Civil Engineering and Architecture to discuss aesthetical and technical potenti-
als of concrete with P extracted SSA  
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