Electrical breakdown phenomena of dielectric elastomers

Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

Publication date: 2017

Document Version
Peer reviewed version

Citation (APA):
2.3.19 Electrical breakdown phenomena of dielectric elastomers

Liyun Yu, Ramona Valentina Mateiu, Anne Ladegaard Skov*
Technical University of Denmark, The Danish Polymer Centre
al@kt.dtu.dk

Figure 1. Electrical breakdown causes a pinhole formation on DEs film leading to major damage of the DE based devices.

Figure 2. The structure of chloro propyl functional silicone elastomer.\(^1\)

2.3.19

Electrical breakdown phenomena of dielectric elastomers

Liyun Yu, Ramona Valentina Mateiu, Anne Ladegaard Skov*

Technical University of Denmark, The Danish Polymer Centre

al@kt.dtu.dk

Figure 4. SEM images of breakdown zones for reference samples, Co-1 and Co-2 silicone elastomers. The black areas correspond to areas where the elastomer was completely removed during breakdown, i.e. pinholes.

Breakdown zones vary dimensionally with narrowest width to largest width:

Reference: 100-300 µm
Co-1: 60-100 µm
Co-2: 20-80 µm

Figure 5. Illustration of boiling nature of the crosslinked copolymer Co-1 in different magnifications. Droplets of condensing degradation products are formed on the surface of the breakdown zone.
2.3.19

Electrical breakdown phenomena of dielectric elastomers

Liyun Yu, Ramona Valentina Mateiu, Anne Ladegaard Skov*
Technical University of Denmark, The Danish Polymer Centre al@kt.dtu.dk

Energy Dispersive X-Ray Spectroscopy (EDS) - Elemental Distribution

Figure 6. EDS mapping of Co-2 elastomer surface where Cl is *uniformly distributed* (left), breakdown zones for Co-1 (middle) and Co-2 (right). The material in the *vicinity* of the *void* contains excess of Cl (blue color), which support the hypothesis that *silicon-containing substances have been evaporated off*.

Figure 7. An increased concentration of Cl is recorded at the breakdown zones for the crosslinked copolymer Co-1.