Screen the best ionic liquids for keratin dissolution by using COSMO-RS

Liu, Xue; Nie, Yi; Zhang, Suojiang; Skov, Anne Ladegaard

Publication date: 2018

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Screen the best ionic liquid for keratin dissolution by using COSMO-RS

Xue Liu(1)(2), Yi Nie(2), Suojiang Zhang(2)*, Anne Ladegaard Skov(1)*

(1) Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark;
(2) CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China;
Most PDMS used in tissue engineering applications are nonpolar, inert and highly hydrophobic, which lead to the low biocompatibility and interaction responses between implantations and cells.

2.2.3

Structure of keratin and application of keratin in elastomer

Structure of keratin

- Keratin molecules have many inter- and intra-molecular strong bonds and also have no regular repeating units, which lead to it difficult to be dissolved by traditional solvent.
- Keratin has the special amino acid sequence for cell adhesion, which can increase susceptibility to bio-decomposition.
- Keratin can improve the mechanical properties of composites.

Application of keratin in elastomer

It is nevertheless a challenge to identify the best ILs for keratin dissolution;
Experimental measurement of all these systems is not practically feasible;
A rapid and a priori screening method to predict the keratin solubility capacity for ILs is needed

Study of keratin dissolution in ionic liquids

<table>
<thead>
<tr>
<th>Author</th>
<th>ILs</th>
<th>Temperature °C</th>
<th>Time</th>
<th>Solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yimei Xue</td>
<td>[Bmim][Cl]NaSO₃/H₂O</td>
<td>90</td>
<td>1h</td>
<td>6.6</td>
</tr>
<tr>
<td>Haibo Xie</td>
<td>[Bmim][Cl]</td>
<td>100</td>
<td>10h</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>[Amin][Cl]</td>
<td>100</td>
<td>10h</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>[Bmim][Br]</td>
<td>130</td>
<td>10h</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>[Bmim][PF₆]</td>
<td>130</td>
<td>10h</td>
<td>ND</td>
</tr>
<tr>
<td>Yuxian Wang</td>
<td>[H2O][Emim][NTf2][NaHSO4]</td>
<td>80</td>
<td>4h</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>[Bmim][Cl]</td>
<td>130</td>
<td>10h</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>[Amin][Cl]</td>
<td>130</td>
<td>24h</td>
<td>ND</td>
</tr>
<tr>
<td>Aina Idris</td>
<td>[Bis-(2-ethylhexyl)ammonium][ethyloleate]</td>
<td>130</td>
<td>10h</td>
<td>45</td>
</tr>
<tr>
<td>Zhuo Zhang</td>
<td>[Bmim][Cl]</td>
<td>130</td>
<td>10h</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>[Bmim][BF₄]</td>
<td>130</td>
<td>10h</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>[Bmim][PF₆]</td>
<td>130</td>
<td>10h</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>[Na][Cl]</td>
<td>130</td>
<td>10h</td>
<td>ND</td>
</tr>
</tbody>
</table>
Screen the best ionic liquid for keratin dissolution by using COSMO-RS

Xue Liu (1), Yi Niu (2), Sunjiang Zhang (2)*, Anne Ladegaard Skov (1)*

(1) Danish Polymer Institute, Department of Chemical and Biological Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark.
(2) CAS Key Laboratory of Kinetic Process Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.

Abstract

Keratin-based materials (KBM), which are often referred to as “artificial keratin” presents many medical advantages, such as lower costs, better serviceability and better treatment for skin injuries. However, keratin dissolution remains a challenge in keratin-based materials. In this study, we used a novel COSMOR-S simulation method to investigate the keratin dissolution process. We found that 462C was the best ionic liquid for keratin dissolution and had good selectivity compared to other ionic liquids. The results indicated that 462C could selectively dissolve keratin without affecting the protein structure. The study provides a new approach for the development of keratin-based materials with improved properties.

1. Application of keratin in elastomer materials

2. Structures of keratin and keratin models in this study

3. Predict model results

4. Conclusions and Advances

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (NSFC, Chinese Academy of Sciences (CAS)) for financial support.

References