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A Non-Cooperative Framework for Coordinating
a Neighborhood of Distributed Prosumers

Armin Ghasem Azar, Hamidreza Nazaripouya, Members, IEEE, Behnam Khaki, Student Member, IEEE,
Chi-Cheng Chu, Rajit Gadh, Member, IEEE, and Rune Hylsberg Jacobsen, Senior Member, IEEE

Abstract—This paper introduces a scalable framework to
coordinate the net load scheduling, sharing, and matching in a
neighborhood of residential prosumers connected to the grid. As
the prosumers are equipped with smart appliances, photovoltaic
panels, and battery energy storage systems, they take advantage
of their consumption, generation, and storage flexibilities to ex-
change energy with neighboring prosumers through negotiating
on the amount of energy and its price with an aggregator.
The proposed framework comprises two separate multi-objective
mixed integer nonlinear programming optimization models for
prosumers and the aggregator. Prosumers’ objective is to max-
imize the comfort level and minimize the electricity cost at
each instant of time, while aggregator intends to maximize its
profit and minimize the grid burden by matching prosumers’
supply and demand. The evolutionary Non-dominated Sorting
Genetic Algorithm-III (NSGA-III) is employed to generate a set
of feasible non-dominated solutions to the optimization problem
of each individual prosumer and the aggregator. As a bilateral
negotiation between each prosumer and the aggregator results in
significant computational and communication overhead, a virtual
power plant is introduced as an intermediator on behalf of
all prosumers to proceed the negotiation with the aggregator
in a privacy-preserving non-cooperative environment, where no
private information is shared. Hence, an automated negotiation
approach is embedded in the framework, which enables the
negotiators to reactively negotiate on concurrent power and
price using private utility functions and preferences. To converge
to an acceptable agreement, the negotiation approach follows
an alternating-offer production protocol and a reactive utility
value concession strategy. The effectiveness of the framework
is evaluated by several economic and environmental assessment
metrics through a variety of numerical simulations.

Index Terms—Distributed coordination, energy negotiation,
multi-objective optimization, pricing, prosumers, smart grid.
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a An appliance
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Digital Object Identifier XXX

β, θ, α Desired operating end time, flexibility, and start
time of an appliance

n Number of appliances
Bcap BESS capacity (kWh)
δ Negotiation convergence tolerance
ε Decay rate controller for the time-dependent con-

cession values
T Number of negotiation iterations
ρ A prosumer
m Number of prosumers
K Number of solutions to the optimization problem
PVcap Power generation capacity of a PV (kW)
∆t Time interval resolution
T Number of time intervals
ψ Utility function
Bc(d) Maximum (dis)charging power of a BESS (kW)
Indexes
k̃, k, j, ι, i Behavior matrix, behavior pair, appliance, negoti-

ation iteration, prosumer, and time interval
Sets
AP,P Set of appliances, and prosumers
lp Load profile of an appliance
R,B,N Real, Binary, and Natural numbers
Variables
Z (t) The zone of agreement in the negotiation
τ (t) Load demand of an appliance (kW)
Be (t) Amount of energy stored in a BESS (kWh)
Bc(d) (t) (Dis)Charging power of a BESS (kW)
υc(d) (t) Binary (dis)charging status of a BESS
B̃M (t) A behavior matrix
BP (t) A behavior pair
dec (t) Binary decision variable of operating an appliance
ω (ι) Reactive concession value
Π (ι) Desired utility value
p (t) Electricity price ($/kWh)
Z (t) Set of feasible desired offer packages
Z (ι) Subset of feasible desired offer packages
flex (t) Binary flexibility status of an appliance
σ (ι) Offer package
ℵ (t) , ℵ̃ (t) Power exchanged between a prosumer/aggregator

and the grid (kW)
ϕ (ι) Offer package projection weight
PVg (t) PV generation (kW)
SI (t) Satisfaction index
ς (ι) Time-dependent concession value
χ (ι) Weighted offer package
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I. INTRODUCTION

A. Motivation and Problem Statement

OWING to advanced communication, data processing, and
control systems, the smart grid from a global perspective

is a promising technology for increasing the grid integration
of Renewable Energy Sources (RESs), such as Photovoltaics
(PVs), as well as Battery Energy Storage Systems (BESSs) [1].
Such integration leads to the enhancement of grid services,
e.g., peak demand reduction, and, therefore, provides system
operators with a capability of an efficient and optimal man-
agement of the power grid. Although electricity prosumers are
also benefiting from the smart grid technology by flexibility
utilization and electricity bill reduction as a consequence of re-
sponding to demand response incentives, they are not involved
directly in the benefits of this technology [2]. In other words,
prosumers, without having collaboration with aggregators, do
not have enough authority, in terms of flexibility, to be able to
individually participate in a dynamic bilateral decision-making
procedure, which could provide them with the opportunity to
influence the amount of electricity they receive (inject) from
(to) the grid as well as the electricity price [3].

Realizing such an interactive and fair bilateral trade is chal-
lenging due to lack of: i) a scalable framework, in terms of the
number of consumers, to coordinate the scheduling, sharing,
and matching tasks, ii) a practical real-time decision-making
model to consider the dynamic behavior of the prosumers’ load
demands and RESs’ generation, and iii) an efficient negotiation
approach to enable the coordination in a privacy-preserving
environment, in which neither prosumers nor aggregators (or
system operators) share their sensitive information, such as
flexibility information and objective functions, with each other.

B. Related Work

Efforts have been devoted to solving the coordination
problem in two interrelated zones: i) transmission-distribution
system operators (by e.g., proposing decentralized decision-
making algorithms for optimal power flow implementation
while respecting the operators’ autonomy and information
privacy [4]), and ii) scheduling, sharing, and matching be-
tween a set of end users. The latter has recently received
much attention, where the proposed solutions in the literature
fall into two categories, i.e., centralized and distributed. In
the former, a centralized coordinator receives load demand
scenarios accompanied with available flexibility of prosumers
and attempts to match supply and demand according to peer-
to-peer energy sharing model with price-based demand re-
sponse. Such approaches comprise a single- or multi-objective
optimization model to reduce prosumers’ electricity bills,
flatten the aggregated peak demand, or maximize comfort
level [5]–[11]. The main issues with the centralized approaches
include having no guarantee in balancing demand and supply,
nonscalability, unfair energy trading pricing, and prosumers’
privacy violation. Distributed approaches, which attempt to
address the issues raised for centralized approaches, propose
distributed energy management systems based on model pre-
dictive control methodologies under a dynamic pricing sys-
tem. [12]–[20] are some examples of proposing day-ahead or

real-time demand-side management systems for peer-to-peer
exchanging of electricity between prosumers, equipped with
PVs and BESSs, where the pricing and trading contracts are
handled by submission-based, iterative or (non-)cooperative
game theory mechanisms. Even though these mechanisms
are able to achieve an exact demand supply balance based
on a dynamic pricing scheme, they should, however, access
to a complete list of preferences, full information of aggre-
gated consumption/generation profiles, which violates privacy.
Moreover, no negotiation takes place between prosumers and
excess energy is injected to the grid at a fixed price rate defined
by the grid rather than prosumers.

C. Contributions and Organization of the Paper

This paper, to address the above-mentioned challenges and
fulfills the existing gaps, makes the following contributions:
1) We propose a scalable non-cooperative framework to
coordinate the scheduling, sharing, and matching tasks of
prosumers and the aggregator. Its principal advantageous is
that the trading amount, which depends on prosumers’ real-
time available flexibility, and trading price, which is subject
to considerable fluctuations in the market, are co-decided by
all the prosumers. This implies that each prosumer has an
equal privilege and is able to switch its interaction mode
(buyer/seller) at any time instant. Fig. 1 shows an overview of
the proposed framework.
2) We develop two practical Multi-Objective Mixed Integer
Nonlinear Programming (MO-MINLP) optimization models
for prosumers and the aggregator enabling them to negotiate
their energy in the framework. They are tailored the framework
in such a way that help prosumers and the aggregator quantify
their possible social and financial benefits throughout the
negotiation. The first model assists prosumers in scheduling
their appliances and sharing/satisfying their surplus/demand
with/through the grid. It confronts the conflicting objectives
of maximizing the comfort level and benefit considering the
available flexibility of each prosumer [10], [21]. The second
model serves the aggregator to simultaneously maximize the
profit and minimize the grid purchase [22]. It enables the
aggregator to match supply and demand in the grid considering
prosumers’ interaction mode. We employ the Non-dominated
Sorting Genetic Algorithm-III (NSGA-III) [23] to help pro-
sumers and the aggregator strategically make trade-offs over
non-dominated solutions, where each solution declares the
amount of power to sell/buy and the corresponding price.
3) We introduce a bilateral multi-issue negotiation approach
incorporated into the framework to enable the aggregator to
negotiate with a Virtual Power Plant (VPP), as an intermedi-
ator on behalf of prosumers. An alternative solution, though
with high overheads, is concurrent bilateral negotiations be-
tween prosumers and the aggregator. Such approach might not
facilitate such a complicated decision-making process, since:
i) computationally, it would be a high-burden mechanism to
reach an overall agreement during the negotiation procedures,
and ii) infeasible aggregated matching solutions might be
obtained when the amount of power traded by each prosumer
changes over the negotiation process. Of particular interest
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Fig. 1. System model of the proposed framework.

is that the proposed negotiation approach is conducted in
a non-cooperative environment [24], where no private infor-
mation (i.e., flexibility information and utility functions) is
shared between the negotiators. This approach is based on
an alternating-offer production protocol and a novel reactive
utility value concession strategy guaranteeing convergence
to a unanimous feasible agreement. Negotiators own nonlin-
ear, continuous, and strictly concave utility functions. They
start the negotiation with an offer package (made with non-
dominated solutions) providing the highest possible utility
value. They reactively concede to their pre-defined reservation
offer packages (the degraded but still feasible) within a prede-
fined number of negotiation iterations. They neither propose
nor accept any offer package with utility values lower than
their reservation utility values. To help negotiators identify
the most beneficial offer package, a novel evaluation metric,
named satisfaction index, is presented to quantify each offer
package according to the amount of flexibility used and the
profitability of the price offered.

The rest of paper is structured as follows: Section II presents
the system architecture of the framework; Section III intro-
duces the NSGA-III for solving the MO-MINLP problems;
Section IV describes the negotiation approach; Section V
provides the simulation setup and discusses the results; and,
Section VI concludes the paper and outlines the future work.

II. SYSTEM ARCHITECTURE

This paper considers a smart grid including m ∈ N pro-
sumers P = {ρ1, . . . , ρi, . . . , ρm}, which communicate with
an aggregator through a VPP (modeled in Section IV-A).

A. Prosumers

Fig. 2 shows power actions of prosumer ρi at time inter-
val t ∈ N. Let APi be the set of appliances of prosumer ρi.
Appliance aj,i ∈ APi, 1 ≤ j ≤ ni ∈ N is either non-
shiftable (e.g., refrigerator) or shiftable (e.g., electric vehicle).
Shiftability feature provides the prosumer with a flexibility
degree to interrupt the operation of appliances [10], [25]. Let

βj,i∑
t=αj,i

τj,i (t) · decj,i (t) =
∣∣lpj,i∣∣ , (1)

ni∑
j=1

τj,i (t) · decj,i (t) = ℵP2L
i (t) + ℵB2L

i (t) + ℵG2L
i (t) , (2){

decj,i (t) ∈ {0, 1} flexj,i (t) = 1,
decj,i (t) = 1 otherwise,

(3)

flexj,i (t) =

{
0 (βj,i − αj,i) ≤ (θj,i − t) ,
1 otherwise, (4)

where αj,i, βj,i ∈ Z≥0 are the “desired operation start” and
“normal operation end” times of appliance aj,i, following a
specific load profile lpj,i. Then, τj,i (t) ∈ R≥0 (kW) specifies
the amount of power the appliance needs to operate between
each two time intervals t and t+ ∆t. Note that ∆t ∈ N is the
time interval resolution. decj,i (t) ∈ B is the binary decision
variable of the corresponding load. Decision variables for non-
shiftable appliances are always one. Eq. (1) ensures that the
energy needed for each appliance over a given time horizon is
fully satisfied. Eq. (2) states that load demands at each time
interval are satisfied through ℵP2L

i (t) , ℵB2L
i (t) ,ℵG2L

i (t) ∈
R≥0 (kW), denoting the power transferred from the PV,
the BESS, and the grid to appliances, respectively. decj,i (t),
as modeled in (3), is affected by the corresponding binary
flexibility status flexj,i (t) ∈ B. The status is updated according
to the flexibility deadline θj,i ∈ Z≥0, which is adjusted by the
prosumer, defining for how long the prosumer is flexible in
having the appliance’s operation finished after its normal end
time [26]. Each prosumer is equipped with a locally installed
PV system (behind the meter). Let

PVgi (t) = ℵP2L
i (t) + ℵP2B

i (t) + ℵP2G
i (t) ≤ PVcap

i , (5)

where PVgi (t) ,PVcap
i ∈ R≥0 (kW) are the amount of power

generated by PV at time interval t and PV’s maximum gen-
erating capacity, respectively. ℵP2B

i (t) ,ℵP2G
i (t) ∈ R≥0 (kW)

are the amount of power transferred from the PV into the
BESS and the grid, respectively [27]. Demand for electricity
changes through the day and does not necessarily match with
the PV production. BESSs, by storing the energy during off-
peak, utilizing it during peak periods, or selling it to the grid,
can alleviate such challenges. Let

Bei (t+ 1) = Bei (t) +
(
Bci (t) · υci (t)−Bdi (t) · υdi (t)

)
·∆t,

(6)
Bei (t) ≤ Bcap

i , (7)

Bci (t) = ℵP2B
i (t) + ℵG2B

i (t) ≤ Bci , (8)

Bdi (t) = ℵB2G
i (t) + ℵB2L

i (t) ≤ Bdi , (9)

υci (t) + υdi (t) ≤ 1, (10)

where Bei (t) , Bcap
i ∈ R>0 (kWh) are the amount of energy

stored in the BESS until time interval t and the BESS capacity,
respectively. Notations Bci (t) , Bdi (t) ∈ R≥0 (kW) denote the

PV

GridAppliances

BESS

ℵP2G
i (t)ℵP2L

i (t)

ℵB2G
i (t)

ℵG2B
i (t)

ℵB2L
i (t)

ℵG2L
i (t)

ℵP2B
i (t)

Fig. 2. Model diagram of the power actions of prosumer ρi.
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amount of power the battery is “charged” and “discharged”
with, respectively. The operation of the BESS is controlled
by υci (t) , υdi (t) ∈ B, as binary charging and discharging
variables respectively. Eq. (10) prevents the BESS from being
charged and discharged simultaneously. Thus, the BESS, at
each time interval, can either be charged, discharged, or remain
silent. Notations ℵB2G

i (t) ,ℵG2B
i (t) ∈ R≥0 (kW) denote the

amount of power transferred from the BESS to the grid and
vice versa, depending on Bci , B

d
i ∈ R>0 (kW), as maximum

possible charging and discharging power, respectively [28].

Thus, the following defines the optimization model, which
is applicable to each independent prosumer ρi ∈ P:

maximize
{decj,i(t)}

ni
j=1,B

c
i (t)

ni∑
j=1

τj,i (t) · decj,i (t) +Bci (t), (11)

maximize
ℵi(t),pi(t)

ℵi (t) · pi (t) ·∆t, (12)

subject to

(1)− (10),

ℵi (t) ≤ ℵi (t) ≤ ℵi (t) , (13)

pl (t) ≤ pi (t) ≤ pu (t) , (14)

ℵi (t) = PVgi (t)−
ni∑
j=1

τj,i (t)−Bci , (15)

ℵi (t) = PVgi (t) +Bdi −
∑

flexj,i(t)=0,

∀aj,i∈APi

τj,i (t), (16)

ℵi (t) = ℵB2G
i (t) + ℵP2G

i (t)− ℵG2B
i (t)− ℵG2L

i (t) , (17)

where the prosumer faces a multi-objective optimization prob-
lem involving two objective functions solved simultaneously.
Eq. (11) aims at maximizing the prosumer’s comfort level by
satisfying as many load demands as possible and charging its
BESS as much as possible. The reason for considering the
charging completeness of the BESS [29] in (11) is twofold:
i) to allow wide solution-space exploration by making the
corresponding objective function continuous. With empty bat-
tery, due to the discrete nature of appliances (on and off), the
demand profile would also be discrete, and ii) to store energy
during low-price and utilize it (to either satisfy load demands
or inject it back to the grid) during high-price periods. Eq. (12)
intends to maximize the prosumer’s profit by selling more
power to the grid. These two objectives are in conflict with
each other, since trying to inject more power to the grid
results in jeopardizing the prosumer’s comfort level and vice
versa. ℵi (t) ∈ R (kW) is the desired amount of power the
prosumer strives to exchange with the grid coupled with a
price offer pi (t) ∈ R>0 ($/kWh). This price is selected
between

[
pl (t) , pu (t)

]
∈ R>0 ($/kWh) as the minimum and

maximum offerable price for trading energy, respectively.

ℵi (t) and ℵi (t) are the optimum values for trading the
power, which can maximize the comfort level, and profit,
respectively, where ℵi (t) ≤ ℵi (t) ≤ ℵi (t). When ℵi (t) =
ℵi (t), all demanding appliances are allowed to operate
and the BESS is fully charged. When ℵi (t) = ℵi (t),
the profit is maximized and appliances, with no flexibility

(
flexj,i (t) = 0,∀aj,i ∈ APi

)
, are only allowed to operate. The

remaining is sold to the grid. Prosumers are not allowed
to buy and sell at the same time. Each prosumer at each
interval can either be: i) a buyer, i.e., ℵi (t) ≤ ℵi (t) < 0,
where ℵG2B

i (t)+ℵG2L
i (t) > 0 and ℵB2G

i (t) = ℵP2G
i (t) = 0, ii)

a seller, i.e., 0 < ℵi (t) ≤ ℵi (t), where ℵB2G
i (t)+ℵP2G

i (t) > 0
and ℵG2B

i (t) = ℵG2L
i (t) = 0, or iii) flexible (can either be

buyer or seller), i.e., ℵi (t) < 0,ℵi (t) > 0.

B. Aggregator

The aggregator holds no physical connection with the grid
and is only responsible for trading prosumers’ flexibility
in the market while making profitable contracts [30]. The
aggregator makes decisions in response to prosumers’ surplus
and shortage based on the following optimization model:

maximize
{ℵ̃i(t),p̃i(t)}m

i=1

∆t ·
m∑
i=1

{
ℵ̃i (t) ·

(
plG (t)− p̃i (t)

)
ℵ̃i (t) > 0,

ℵ̃i (t) · (p̃i (t)− puG (t)) ℵ̃i (t) < 0,

(18)

minimize
{ℵ̃i(t)}m

i=1

−
m∑
i=1

ℵ̃i (t), (19)

subject to

[
0 < ℵ̃i (t) ≤ max

∀ρi∈P
ℵi (t)

pl (t) ≤ p̃i (t) ≤ plG (t)
ℵi (t) > 0,∀ρi ∈ P,[

min
∀ρi∈P

ℵi (t) ≤ ℵ̃i (t) < 0

puG (t) ≤ p̃i (t) ≤ pu (t)
ℵi (t) < 0,∀ρi ∈ P,

(20)
m∑
i=1

ℵ̃i (t) + ℵ̃A (t) = 0, (21)

where the aggregator, similar to prosumers, confronts with a
multi-objective optimization problem making trade-off over
two objectives. Eq. (18) attempts to maximize the aggregator’s
profit by selling more power to buyer prosumers with high
price and buying less power from seller prosumers who offer
prices higher than grid. This leads to buying more power
from the grid. Eq. (19), however, aims at minimizing the
grid burden. ℵ̃i (t) ∈ R (kW) is the amount of power the
aggregator is interested in trading with prosumer ρi with
a price offer p̃i (t) ∈ R>0 ($/kWh). Eq. (20) prevents the
aggregator from requesting buyer prosumers to sell and vice
versa. ℵ̃A (t) ∈ R (kW) is the amount of electric power that
the aggregator exchanges with the grid (matching supply with
demand). plG (t) , puG (t) ∈ R>0 ($/kWh) are the grid’s prices
for buying/selling energy from/to the aggregator, respectively.

III. NSGA-III: AN EVOLUTIONARY MULTI-OBJECTIVE
OPTIMIZATION ALGORITHM

Typically, there exists no unique optimal solution to multi-
objective optimization problems of prosumers and the aggrega-
tor including multiple conflicting criteria. Hence, the concept
of an optimal solution is replaced by the set of non-dominated
solutions in the objectives space. A non-dominated solution is
a solution from which moving to any other solution requires
a trade off with at least one objective value.
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This paper employs the evolutionary NSGA-III [23], [31]
to produce K ∈ N feasible and well-spread solutions to
the optimization problem of each independent prosumer as
well as the aggregator, using a systematic decomposition-
based reference-point-based non-dominated sorting approach.
These solutions lie on the first Pareto-front (after running
a pre-defined number of generations). The NSGA-III places
reference points on a rectangle with a number of divisions
along each objective axis in the objective space [23]. This
approach is maintained by making one individual solution
associated with one reference point. Therefore, the generated
solutions are likely to be widely distributed on the Pareto-
front, since the reference points are widely distributed on
the objective space. The computational complexity of one
generation of the NSGA-III is O

(
2 ·K2

)
, whereas for the

NSGA-II, it is O
(
2 ·K3

)
[32].

The main part in the NSGA-III is to generate an initial set
of feasible solutions. For each prosumer ρi ∈ P , let

BPki (t) ,
(
ℵki (t) , pki (t)

)
, (22)

SIki (t) ,


ℵki (t)
ℵi(t)

+
pki (t)
pu(t) ℵki (t) > 0,

ℵki (t)
ℵi(t)

+ pl(t)

pki (t)
ℵki (t) < 0,

(23)

where behavior pair BPki (t) , 1 ≤ k ≤ K is a feasible
solution to the prosumer’s optimization problem. Fig. 3 shows
how such behavior pair, according to (1)-(10) and (13)-(17), is
randomly generated. Depending on the prosumer’s status (i.e.,
buyer, seller, or silent), satisfaction index SIki (t) ∈ (0, 2]
is a measure, which shows to which extent BPki (t) uses
the available flexibility and provides a more beneficial price
offer [8], [12]. This index is maximized when: i) a buyer
prosumer purchases the lowest possible amount of power
(ℵi (t)) at the lowest possible price (pl (t)), or ii) a seller
prosumer sells the maximum possible amount of electricity
(ℵi (t)) at the highest possible price (pu (t)).

Similar to prosumers, the aggregator also benefits from the
NSGA-III to generate K feasible non-dominated solutions to
its optimization problem. Let

B̃M
k̃

A (t) ,


B̃P

k̃

1 (t)
...

B̃P
k̃

m (t)

 , (24)

B̃P
k̃

i (t) ,
(
ℵ̃k̃i (t) , p̃k̃i (t)

)
, (25)

SI k̃A (t) ,
1

m
·
m∑
i=1


ℵ̃k̃i (t)

max
∀ρi∈P

ℵi(t)
+ pl(t)

p̃k̃i (t)
ℵ̃k̃i (t) > 0,

ℵ̃k̃i (t)
min

∀ρi∈P
ℵi(t)

+
p̃k̃i (t)
pu(t) ℵ̃k̃i (t) < 0,

(26)

where behavior matrix B̃M
k̃

A (t) , 1 ≤ k̃ ≤ K includes

m behavior pairs B̃P
k̃

i (t) ,∀ρi ∈ P . Fig. 4 shows how
a feasible behavior matrix, according to (20), is randomly
generated. Each of which is the aggregator’s action in re-
sponse to the behavior pair of a prosumer. Satisfaction in-

Start
Generate a

random ℵki (t)
subject to (13)

ℵP2L
i (t) = min {

∑
τj,i (t),PVgi (t)}

ℵki (t) = 0ℵki (t) < 0

ℵB2L
i (t) =

∑
τj,i (t) − ℵP2L

i (t)

ℵG2L
i (t) = min{

∑
τj,i (t) − ℵP2L

i (t) ,ℵki (t)}

ℵB2L
i (t) =

∑
τj,i (t) − ℵP2L

i (t),
ℵP2G
i (t) = min

{
PVgi (t)− ℵP2L

i (t) ,ℵki (t)
}

,
ℵB2G
i (t) = ℵki (t) − ℵP2G

i (t)

Run the EDF and
update relevant
power actions
accordingly

Feasibility
validated?

Generate a
random pki (t)
subject to (14)

End

Yes

No

Yes

No

Yes No

Fig. 3. Flowchart of generating a feasible behavior pair BPk
i (t),

where
∑
τj,i (t) is the summation of load demands of appliances with insuffi-

cient flexibility. Earliest Deadline First (EDF) mechanism [9] is applied on the
remaining appliances and relevant power actions are, then, updated. Feasibility
is related to constraints formulated in each prosumer’s MO-MINLP.

dex SI k̃A (t) ∈ (0, 2] determines how much the aggregator is

satisfied with B̃M
k̃

A (t).

Start i = 1 i ≤ m

Generate a
random B̃P

k̃

i (t)

subject to (20)

i = i+ 1

Update ℵ̃A (t)
by (21)

End

Yes

No

Fig. 4. Flowchart of generating a feasible behavior matrix B̃M
k̃

A (t).

IV. NEGOTIATION APPROACH

Prosumers’ rational behaviors are more conspicuous when
the uncertainty about the aggregator’s decision space increases.
This paper employs a novel negotiation approach, proposed
in [24]. This approach facilitates the concurrent negotiation
on power and price with offer packages between negotiators
provably coming to an agreement, given that negotiators are
reactive and no private information is shared. To the best of our
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knowledge, this paper is among the first attempts, that tack-
les the peer-to-peer automated energy trading problem with
designing (close to real-life) MO-MINLP models integrated
with a fully adaptive real-time negotiation approach.

A. Formulation of Offer Packages and Utility Functions

This paper, to alleviate the challenges of parallel bilateral
negotiations between m prosumers and the aggregator, utilizes
an intermediate VPP to negotiate on behalf of prosumers.
The negotiators (i.e., the VPP and the aggregator) conduct
the negotiation procedure between each two time intervals t
and t + ∆t for maximum T ≥ 2 ∈ N iterations, which is
set arbitrarily. The following defines how an offer package
for each negotiator is formulated and evaluated through its
relevant utility function defined.

1) VPP: Let

σV (ι) =

 BP
k
1 (t)
...

BPk
′

m (t)

 , (27)

where σV (ι) is an offer package that the VPP produces and
sends to the aggregator at negotiation iteration 1 ≤ ι ≤ T . Su-
perscripts k in BPki (t) ,∀ρi ∈ P and k′ in BPk

′

i′ (t) ,∀ρi′ ∈
P , where 1 ≤ k, k′ ≤ K, are not necessarily equivalent. Let

ψV (SIV (ι)) = 1−

m∑
i=1

(
1
2 · SI

k
i (t)

)2
m

, (28)

SIV (ι) ,
m⋃
i=1

SIki (t), 1 ≤ k ≤ K, (29)

where ψV ∈ [0, 1) is the VPP’s private, continuous, and strictly
concave utility function [24], [33]. Due to privacy concerns,
negotiators have no knowledge about each other’s utility
function. Basically, such functions return the utility value of a
single offer package, e.g., σV (ι) ,∀ι ≤ T , by receiving its cor-
responding satisfaction index, i.e., SIV (ι). This satisfaction
index is the union of satisfaction indexes SIki (t) ,∀ρi ∈ P
of BPki (t) ,∀ρi ∈ P stored in σV (ι). Let

σres
V (t) =

 BP
res
1 (t)
...

BP res
m (t)

 , (30)

BP res
i (t) = (ℵres

i (t) , pres
i (t)) , (31)

ℵres
i (t) =


ℵi (t)

∑
flexj,i(t)=0,

∀aj,i∈APi

τj,i (t) ≤ PVgi (t) ,

ℵi (t) otherwise,
(32)

pres
i (t) =

{
pl (t) ℵres

i (t) > 0,
pu (t) ℵres

i (t) < 0,
(33)

where σres
V (t) is the reservation offer package of the VPP in-

cluding prosumers’ reservation behavior pairs BP res
i (t) ,∀ρi ∈

P . ℵres
i (t) ∈ R (kW) and pres

i (t) ∈ R>0 ($/kWh) are the
reservation power and price offers of prosumer ρi at time
interval t. Prosumers in the worst case have to: i) satisfy
appliances with no flexibility remained (flexj,i (t) = 0,∀aj,i ∈

APi,∀ρi ∈ P), and ii) utilize the electric power generated
by the PV completely. Then, the reservation price offer,
depending on the status of the reservation power, will either
be the lowest or highest possible offerable electricity price.
SIres
V (t) ∈ (0, 2], as the satisfaction index of σres

V (t), is the
union of SIres

i (t) ∈ (0, 2] ,∀ρi ∈ P (calculated by (23))
associated with BP res

i (t) ,∀ρi ∈ P . VPP will not accept any
offer package with the utility value less than ψV (SIres

V (t)).
2) Aggregator: Let

σA (ι) = B̃M
k̃

A (t) , (34)

where σA (ι) (equivalent to k̃-th behavior matrix, see (24)) is
an offer package that the aggregator produces and sends to the
VPP at negotiation iteration ι. Let

ψA

(
SI k̃A (t)

)
= 1−

(
1

2
· SI k̃A (t)

)2

, (35)

where ψA ∈ [0, 1) is the aggregator’s private, continuous, and
strictly concave utility function [24], [33]. Let

σres
A (t) =


B̃P

res
1 (t)
...

B̃P
res
m (t)

 , (36)

B̃P
res
i (t) =

(
min
∀ρi∈P

ℵi (t) , pl (t)

)
, (37)

where σres
A (t) is the reservation offer package of the aggregator

denoting m · min
∀ρi∈P

ℵi (t) amount of electric power must be

exchanged (in the worst case) with the grid for pl (t). It is
coupled with a satisfaction index SIres

A (t) ∈ (0, 2] (calculated
by (26)). Similarly, the aggregator will not accept any offer
package with the utility value less than ψA (SIres

A (t)). The
negotiation approach, to guarantee the convergence to an
acceptable agreement in a non-cooperative environment within
a reasonable time frame, requires negotiators to define private
reservation offer packages, formulated as the worst but still
feasible offer packages [24]. The VPP, by (30), ensures all
prosumers that their non-flexible appliances operate uninter-
ruptedly until completion. The aggregator, on the other hand,
is guaranteed by (36) to receive the lowest possible profit,
despite having the lowest possible amount of exchange.

B. Negotiation Protocol and Strategy

We employ an alternating-offer production protocol [34],
where the VPP produces an offer and the aggregator either ac-
cepts it or makes a new one. The negotiation begins with offer
packages produced with the highest possible utility values and
continues with offer packages with lower utility values until
reaching the reservation offer packages. It terminates when
both negotiators accept the offer on the table or it reaches
iteration T . Negotiators, at each negotiation iteration, produce
(and only accept) an offer package that provides a utility
value equivalent to or higher than their desired utility value
at that iteration (or their reservation utility value). To produce
new offer packages over negotiation iterations, they follow
reactive utility value concession strategy [24]. It assumes



1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2018.2867748, IEEE
Transactions on Industrial Informatics

7

negotiators are reactive to the concession strategies of the
other agents. Their concession rate depends on: i) whether
the current offer of the opponent negotiator provides higher
utility value than the negotiator’s reservation utility value, and
ii) the negotiator’s perception of how much the other party
has conceded. It is also assumed that each negotiator’s utility
value obtained by an agreement is higher than the one with
no agreement. Therefore, they prefer to concede over risking
negotiation breakdown. Let

ςV (ι) = ψV (SIV (1))− σres
V (t) ·

( ι
T

) 1
ε

, (38)

ςA (ι) = ψA (SIA (1))− σres
A (t) ·

( ι
T

) 1
ε

, (39)

where ςV (ι) , ςA (ι) ∈ [0, 1) are monotonically decreasing
time-dependent concession values of the VPP and aggregator,
respectively. Their values only depend on each negotiator’s
reservation utility value and the number of negotiation itera-
tions passed with the decay rate ε ∈ R>0 [35]. One reason
for a negotiator to stop decreasing its desired utility value over
time is to gain higher utility. This happens when the other
negotiator, without realizing that the negotiator has stopped
conceding, accepts time-dependent concession values at all
negotiation iterations. This behavior is called the “deliberate
stopping of concession.” As a result, let

ωV (ι) =
(
ψV
(
SI temp
V
)
− ψV

(
SI temp′

V

))+
, (40)

ωA (ι) =
(
ψA
(
SI temp
A
)
− ψA

(
SI temp′

A

))+
, (41)

where ωV (ι) , ωA (ι) ∈ [0, 1) are reactive concession
values of the VPP and aggregator, respectively. Note
that y+ = max {0, y}. The VPP, using (23), calculates SI temp

V
and SI temp′

V for σA (ι) and σA (ι− 1), respectively. The ag-
gregator, by using (26), follows a similar procedure. Then, let

ΠV (ι) = min {ςV (ι) ,ΠV (ι− 1)− ωV (ι)} , (42)
ΠA (ι) = min {ςA (ι) ,ΠA (ι− 1)− ωA (ι)} , (43)

where ΠV (ι) ,ΠA (ι) ∈ [0, 1) are desired utility values of the
VPP and the aggregator at iteration ι, respectively. To produce
a new offer package based on ΠV (ι) ,ΠA (ι), ∀ι ≤ T , let
us assume ZV (t) (including maximum Km offer packages)
and ZA (t) (including maximum K possible feasible offer
packages) are the convex feasible offer package sets of the
VPP and the aggregator, respectively. These offer packages
provide negotiators with utility value equivalent to or no less
than their reservation offer package’s utility value. For an
agreement to exist, let Z (t) = ZV (t)

⋂
ZA (t) 6= ∅,∀t

remain unchanged during the negotiation, where Z (t) is the
zone of agreement denoting the common intersection of the
feasible offer package sets. If an offer package is within Z (t),
a negotiator may not accept it if it yields a utility value lower
than the negotiator’s current desired utility value [24]. To
make an acceptable agreement, negotiators keep conceding to
their reservation utility values subject to the nonempty zone of
agreement at each time interval. Geometrically speaking, the
main goal is to find a point in the zone of agreement, under
the restriction that this zone is unknown to negotiators and

none of them has any explicit knowledge about each other’s
utility functions [24].

Let ι be the negotiation iteration when it is the VPP’s turn
to produce a new offer package. Let BPki (t) ∈ σV (ι− 1),
where ∃ρi ∈ P . The VPP (temporarily) updates σV (ι− 1)

with behavior pairs BPk
′

i (t) ,∀k + 1 ≤ k′ ≤ K and ex-
pands ZV (ι) with the updated offer packages individually
only if each returns a utility value equivalent to ΠV (ι).
ZV (ι) ⊆ ZV (t) ,∀ι ≤ T is the continuously expanding
feasible offer package subset of the VPP. The aggregator
at iteration ι + 1 updates ZA (ι+ 1) with new offer pack-

ages B̃M
k̃+1

A (t) ,∀k̃ + 1 ≤ K, where each provides the
aggregator with a utility value equivalent to ΠA (ι+ 1).
ZA (ι) ⊆ ZA (t) ,∀ι ≤ T is the continuously expanding
feasible offer package subset of the aggregator. Let

σV (ι) = PZV(ι) [χ (ι)] = arg min
q∈ZV(ι)

‖q − χ (ι)‖ , (44)

σA (ι) = PZA(ι) [χ (ι)] = arg min
q∈ZA(ι)

‖q − χ (ι)‖ , (45)

χ (ι) = ϕV (ι) · σV (ι− 1) + ϕA (ι) · σA (ι− 1) , (46)
ϕV (ι) + ϕA (ι) = 1, (47)

where P is the operator of projecting the weighted offer
package χ (ι), created based on the latest offers made by
all agents, on current continuously expanding feasible offer
package subsets ZV (ι) and ZA (ι) [36]. arg min ‖·‖ is the
Frobenius norm with argument of minimum. This method
generates an offer that is acceptable to the relevant negotiator
and is closest (in terms of Euclidean distance) to the weighted
offer package χ (ι). Notations ϕV (ι) , ϕA (ι) ∈ (0, 1) are the
weights that each negotiator puts on the other’s offer package.

C. Algorithms of the Overall Computational Steps and the
Negotiation Approach

Algorithms 1 provides the pseudo-code for the overall
computational steps in the framework between each two time
intervals t and t+ ∆t. Prosumers, e.g., via their home energy
management gateways, independently forward their behavior
and the reservation pairs to the VPP. At the same time, the
aggregator produces its own behavior and reservation matrices.
Both the VPP and the aggregator are most likely hosted e.g.,
in the cloud. Then, as Algorithm 2 describes, the negotiation
approach starts with the second iteration and continues for
maximum T iterations. Finally, the VPP returns the indexes of
agreed behavior pairs to the prosumers. Algorithm 2 basically
follows the negotiation protocol and strategy developed in
Section IV-B. We define a binary flag IsConverge to deter-
mine when the negotiation approach, apart from reaching the
maximum number of iterations T , terminates. Depending on
the negotiator’s turn determined by S ∈ B, the corresponding
negotiator attempts to produce a new offer package whereas
the other negotiator remains with its previous offer package.
Following the same principle, Found ∈ B assures whether a
temporarily produced offer package is equal to the desired
utility value. Fig. 5 conceptualizes the offer package space
showing how the VPP and the aggregator negotiate with each
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Algorithm 1: Communication steps in the framework
between time each two intervals t and t+ ∆t

// Prosumers’ part;
1 for i = 1 to m do

2 Run the NSGA-III to produce
{
BPki (t)

}K
k=1

;

3 Determine the reservation behavior pair BP res
i (t);

4 end
// VPP’s part (i);

5 Determine the reservation offer package σres
V (t);

6 Produce the first offer package σV (1);
// Aggregator’s part;

7 Run the NSGA-III to produce
{
B̃M

k̃

A (t)

}K
k̃=1

;

8 Determine the reservation offer package σres
A (t);

9 Produce the first offer package σA (1);
// Negotiation approach;

10 Run Algorithm 2;
// VPP’s part (ii);

11 Return the indexes of agreed behavior pairs to prosumers;

other over, for example, T = 9 iterations [24]. Offer packages
existing on each concession curve have equal utility values (see
lines 16 and 35 in Algorithm 2). The negotiation terminates
when the maximum of Euclidean distances between the current
iteration’s offer packages and the weighted offer package are
less than a constant convergence tolerance δ ∈ R>0 (see
line 48 in Algorithm 2). The computational complexity of the
negotiation approach is O (T ·m ·K) [24].

Power Issue
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e
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Fig. 5. Conceptual example of the offer package space during the negotiation.

D. Solution Concept for the Negotiation Approach

The authors in [24] analytically demonstrate that the so-
lution concept for the proposed negotiation approach is in
the spirit of Herbert Simon [37]. The negotiation approach,
without computing all solution points (i.e., offer packages),
yields a performance sufficiently close to the Nash bargaining
solution [38]. The scale of the utility value of each negotiator
is of no critical importance, as long as the reservation utility
value and the scale of concession are consistent with the utility

Algorithm 2: The negotiation approach

1 IsConverge=False;
2 ι = 2;
3 while ι ≤ T and IsConverge=False do
4 Determine the negotiator’s turn by S = mod (ι, 2);
5 if S = 0 then // VPP’s turn to offer
6 σA (ι) = σA (ι− 1);
7 ΠA (ι) = ΠA (ι− 1);
8 Calculate ΠV (ι) by (42);
9 for i = 1 to m do

10 Determine k, where BPki (t) ∈ σV (ι− 1);
11 σtemp

V = σV (ι− 1);
12 Found=0;
13 while k + 1 ≤ K do
14 Update σtemp

V with BPk+1
i (t);

15 Calculate SI temp
V for σtemp

V by (29);
16 if ψV

(
SI temp
V
)

= ΠV (ι) then
17 Add σtemp

V to ZV (ι);
18 Found=1;
19 k = k + 1;
20 else if Found=1 then
21 k = K;
22 else
23 k = k + 1;
24 end
25 end
26 end
27 Set σV (ι) by (44);
28 else // Aggregator’s turn to offer
29 σV (ι) = σV (ι− 1);
30 ΠV (ι) = ΠV (ι− 1);
31 Set ΠA (ι) by (43);

32 Determine k̃, where B̃M
k̃

A (t) ∈
{
B̃M

k̃

A (t)

}K
k̃=1

;

33 Found=0;
34 while k̃ + 1 ≤ K do
35 if SI k̃+1

A (t) = ΠA (ι) then
36 Add σk̃+1

A to ZA (ι);
37 Found=1;
38 k̃ = k̃ + 1;
39 else if Found=1 then
40 k̃ = K;
41 else
42 k̃ = k̃ + 1;
43 end
44 end
45 Set σA (ι) by (45);
46 end
47 Set χ (ι) by (46);
48 if max {‖σV (ι)− χ (ι)‖ , ‖σA (ι)− χ (ι)‖} < δ then
49 IsConverge=True;
50 else
51 ι = ι+ 1;
52 end
53 end
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value. The negotiation converges in maximum T iterations, if
they concede to reservation utility values in the worst case and
the zone of agreement is nonempty. The convergence holds for
all strictly concave utility functions irrespective of the specific
concession strategy the negotiators adopt.

V. NUMERICAL SIMULATION AND DISCUSSION

This section evaluates the performance of the proposed
framework, which has been implemented in Matlab® R2017a
running with 16 Intel 2.3 GHz Xeon® E5-2686 CPUs and
64 GB memory. All simulation results have been averaged
over 100 independent runs.

A. Performance Assessment Metrics

To assess the performance of the framework, we define
the following metrics: Peak Demand Reduction (PDR) to
determine how much the peak demand is shaved; Peak-to-
Average Ratio (PAR) to measure how much higher the peak
demand is than average demands in a single simulation;
Average Appliance Operation Delay (AOD) to measure the
delay in delivering appliances in the completed status; Average
Flexibility Usage Rate (FUR) to determine how much of pro-
sumers’ flexibility is traded in the market; Average Prosumer
Cost-Benefit (PCB) to study how much money the prosumers
averagely earn/spend with and without exchanging power
with the grid; Average Self Load-Satisfaction Rate (SLR) to
measure the local self satisfaction of prosumers; and Average
Self Sufficiency Rate (SSR) to evaluate PVs’ capability in
maximizing the comfort level of prosumers without purchasing
any amount of power from the grid.

B. Simulation Setup and Scenario

Table I lists the inputs and Table II describes consumption
scenarios, assumed constant in simulations, unless otherwise
stated. For the PV generation profile, the real data is cap-
tured from the UCLA Ackerman Union and scaled down
from the capacity of 35 kW to 7 kW [39]. Operation and
flexibility times are randomly generated by the normal dis-
tribution N (µ, σ2) with mean µ ∈ R and variance σ2 > 0.
Load profiles of appliances are captured from [40], [41] with
time resolution of ∆t = 1 hour. Nissan Altra is chosen as
the electric vehicle with an empty battery at arrival and fully
charged battery at departure. The deadline flexibility concept
from the perspective of an air conditioner is the comfortable
temperature range, where 25°C and ±3°C are prosumers’
desired temperature set point and flexibility, respectively.
Note that a full simulation starts at midnight and terminates
when the last appliance finishes operating. Real-time hourly
electricity prices are captured from Nord Pool Spot [42],
where

{
pl (t) , pu (t)

}
,
{
plG (t) , puG (t)

}
,∀t are adjusted by

fluctuation rates of ±50% and ±20%, respectively.

C. Analysis and Discussion

Fig. 6 shows the offer package and utility value concession
spaces of randomly picked time intervals in different circum-
stances for 100 prosumers. Points in the offer package spaces,

TABLE I
CONSTANT INPUTS IN ALL SIMULATIONS, UNLESS OTHERWISE STATED.

Parameter Value Parameter Value Parameter Value

∆t 1 hour PVcap†∗
i 7 kW Bcap∗

i 13.2 kWh
Bc∗i 5 kW Bd∗i 5 kW T 100
ε 0.8 δ 0.01 ϕV (ι)

‡
, ϕA (ι)

‡ 0.5
* ∀ρi ∈ P . † Data for a sunny day is used. ‡ ∀ι ≤ T .

TABLE II
TIMETABLE OF GENERATING LOAD DEMAND SCENARIOS OF APPLIANCES.

aj,i ∈ APi,∀ρi ∈ P αj,i βj,i θj,i

Refrigerator (RG) 00:00 24:00 24:00

Washing Machine (WM) N (10, 3) αj,i + 02:00 N (16, 4)
Laundry Dryer (LD) N (15, 1) αj,i + 01:30 N (21, 5)
Dishwasher (DW) N (17, 2) αj,i + 01:40 N (23, 2)
Electric Vehicle (EV) N (19, 10) αj,i + 05:00 N (7.5, 1)∗

Air Conditioner (AC) N (9, 1) N (21, 2) 25°C ± 3°C
* The next day.

for the sake of simplicity, represent the summation of power
and the average of price values of columns in the behavior
matrices. Utility values are unitless, (see (28) and (35)). In
Fig. 6(a), no PVs and BESSs are considered. The VPP, for
example at negotiation iteration ι = 15, is interested in buying
1630 kW of electric power for 0.0145 $/kWh. The aggregator,
then, rejects this offer and makes a new one intending to sell
2180 kW of electric power for 0.022 $/kWh. They continue
negotiating until iteration ι = 31, at which they come to
an agreement on exchanging 2000 kW of electric power for
0.016 $/kWh. Fig. 6(b) shows the negotiation process, where
all prosumers own PV and BESS. They reach an agreement
after exactly 100 negotiation iterations. Having an equal utility
value at iteration ι = 85 does not terminate the negotiation,
since the VPP provides an offer package with selling 8385 kW
of electric power for 0.0227 $/kWh whereas the aggregator
returns another offer package with buying 4738 kW of electric
power for 0.0212 $/kWh. Fig. 6(c) experiences the same
setting as Fig. 6(b) does, where negotiators reach an agreement
after 71 negotiation iterations. Reasons for having unequal
number of buyer and seller prosumers are the absence of
PV generation (when there is no sun), presence of BESSs
with average state of charge of 48%, and all refrigerators, 23
dishwashers, 12 newly arrived electric vehicles, and all air
conditioners in operation.

Fig. 7 demonstrates how increasing the number of pro-
sumers influences the average computation time and the ne-
gotiation convergence at each time interval. It proves that the
proposed framework is scalable, since in practice, as described
in Section IV-B, it will be executed in a fully distributed
manner. In that case, the NSGA-III for each prosumer (or the
aggregator), would approximately take 0.6 second. To evaluate
the practicality of the framework, we revise the framework
to have parallel bilateral negotiations between prosumers and
the aggregator (without VPP), enabling us to compare with
the concept of the single bilateral negotiation introduced in
this paper (with VPP). Table III compares these scenarios
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(a) 100 buyer prosumers (all equipped with no PVs and BESSs).
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(b) 100 seller prosumers (all equipped with PVs and BESSs).
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(c) 38 buyer and 62 seller prosumers (all equipped with PVs and BESSs).

Fig. 6. Offer package (left) and utility value concession (right).
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(b) Convergence iteration.

Fig. 7. Average computation time of the overall framework and negotiation
convergence at each time interval based on different number of prosumers.

with respect to the average computation time of the overall
framework and negotiation convergence at each time interval.
For example with m = 900 prosumers, having no VPP results,
in average, 37.04% more computation time. The computation
time of the NSGA-III is independent of the presence of the
VPP. Furthermore, in this scenario, CPU and memory usages
of the whole simulation are 79% and 42 GB, respectively.
However, these values for the computation device of each
party, in the presence of the VPP, are 34.6% (of a single core
CPU) and 960 MB, respectively.

Table IV evaluates the assessment metrics with respect to
different number of prosumers. As more prosumers are in-
volved, the VPP has more opportunities in utilizing prosumers’

TABLE III
AVERAGE COMPUTATION TIME AND NEGOTIATION CONVERGENCE WITH

RESPECT TO THE PRESENCE OF THE VPP.

Average computation time at each time interval [sec] Average convergence iteration
at each time intervalOverall Negotiation NSGA-III

m w∗/ VPP wo†/ VPP w/ VPP wo/ VPP w/ or wo/ VPP w/ VPP wo/ VPP

100 9.25 15.10 3.72 5.75 5.48 45 58
300 32.44 52.96 13.85 21.42 18.40 52 63
500 52.59 85.85 24.84 38.42 27.40 57 73
700 73.82 120.51 33.03 51.10 40.33 72 89
900 96.69 157.83 44.78 69.27 51.29 84 98
∗ with. † without.

flexibilities enabling it to: i) decrease the delay in satisfying
load demands of appliances in average, ii) increase the PCB,
and iii) increase the PDR. Increase in SLR and SSR also
depends on the generation profiles of PVs in different weather
conditions and the BESS capacities, and decrease in FUR.

TABLE IV
FRAMEWORK EVALUATION WITH DIFFERENT NUMBER OF PROSUMERS.

m PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

100 15.19 2.76 3.30 42.00 65.40 10.10 14.03
300 25.90 2.23 2.57 37.39 99.34 12.47 21.29
500 32.19 2.13 2.29 31.91 147.97 15.08 32.51
700 34.78 2.37 1.43 23.12 179.49 19.17 47.46
900 38.46 2.01 1.13 18.75 209.47 24.45 51.21

Table V evaluates to which extent the random distribution
of PVs and BESSs influences the values of metrics. Compared
to the setting, where all prosumers own PVs and BESSs (see
the first row in Table IV), here, the grid experience lower PDR
since the amount of flexibility is restricted. Decrease in AOD
and FUR (due to limited flexibility) increases SLR and SSR
(desire to increase the comfort), since the VPP cooperates with
the aggregator to increase the PDR and PCB.

TABLE V
FRAMEWORK EVALUATION IN THE PRESENCE OF PVS AND BESSS.

∀ρi ∈ P PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

Only PV 11.43 2.95 1.56 28.18 46.73 20.16 20.16
Only BESS 33.29 2.08 1.20 11.67 35.46 0.83 0.00
Random 16.32 2.60 1.25 12.91 39.97 6.06 6.51

Table VI analyzes the behavior of framework in different
weather conditions. Fluctuations in the PV generation limit
the VPP, in terms of available flexibility, in the negotiation.

TABLE VI
FRAMEWORK EVALUATION WITH DIFFERENT WEATHER CONDITIONS.

Weather PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

Sunny 15.19 2.76 3.30 42.00 65.40 10.10 14.03
Cloudy 09.42 2.99 1.33 14.04 37.78 07.15 13.30

Table VII evaluates the assessment metrics with respect to
the various BESS capacities (in addition to the base BESS
capacity). High BESS capacity provides prosumers with: i)
more flexibility in storing energy, ii) lower AOD, and iii)
higher PCB by selling more to the grid. The VPP, by such
increase in the capacity, is able to provide the grid with more
flexibility, which in turn, results in having higher PDR.
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TABLE VII
FRAMEWORK EVALUATION WITH VARIOUS BESSS CAPACITIES.

Bcap
i ,∀ρi ∈ P PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

13.2 kWh 15.19 2.76 3.30 42.00 65.40 10.10 14.03
26.4 kWh 24.36 2.38 2.00 34.68 102.72 14.84 14.66
39.6 kWh 39.62 1.98 0.58 25.36 165.57 18.12 14.34

Table VIII evaluates the assessment metrics based on differ-
ent appliance sets of 100 prosumers. A non-shiftable refrigera-
tor yields no PDR and delay. Adding more shiftable appliances
help prosumers provide the VPP with more consumption
flexibility. Such increase has a direct correlation with the AOD
and PCB, where prosumers benefit more whereas waiting for
a longer time to ensure have their appliances completed the
operation. Simulation results confirm that a shiftable appliance
contributes to the PDR in the grid and to the prosumer’s PCB
with averagely 0.1% and 0.37%, respectively.

TABLE VIII
FRAMEWORK EVALUATION WITH DIFFERENT SETS OF APPLIANCES.

APi,∀ρi ∈ P PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

{RG} 0 3.15 0.00 0.00 6.10 2.94 16.58
{RG, WM} 03.42 3.11 0.14 2.39 10.68 3.32 16.35
{RG, WM, LD} 09.22 3.01 0.58 13.19 26.98 6.20 15.39
{RG, WM, LD, DW} 11.63 2.92 1.37 20.90 34.33 8.06 15.14
{RG, WM, LD, DW, EV} 13.24 2.85 2.26 30.27 49.88 9.44 12.24
{RG, WM, LD, DW, EV, AC} 15.19 2.76 3.30 42.00 65.40 10.10 14.03

Table IX makes a qualitative (system architecture) and
quantitative (simulation results) comparative analysis between
a number of relevant works and the proposed framework.
Simulation results are captured/calculated directly from the
references. However, some fail to provide adequate perfor-
mance analysis considering the assessment metrics selected
for comparison. The comparison validates that the developed
framework outperforms the similar approaches in the literature
considering the size of simulated system.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a non-cooperative framework for co-
ordinating a neighborhood of distributed prosumers, which
possess smart appliances, photovoltaics, and battery energy
storage systems. Prosumers intend to maximize their comfort
level and profit at the same time whereas the aggregator aims
at maximizing its profit and minimizing the grid purchase,
simultaneously. Prosumers are able to schedule their appli-
ances and share surplus power with the grid. The aggregator
controls the power matching over time. As a result, the
framework faces two multi-objective mixed integer nonlinear
programming models for prosumers and the aggregator.

To relieve the burden of parallel bilateral communications,
between prosumers and the aggregator, a virtual power plant
communicates with an aggregator on behalf of prosumers to
take advantage of their consumption, generation, and storage
flexibilities. This paper employs an efficient negotiation ap-
proach, in which the virtual power plant and the aggregator
negotiate on packaged power and price offers subject to having
no knowledge about each other’s preferences and utility func-
tions. This approach utilizes an alternating offer package pro-
duction protocol and a reactive utility value concession strat-

egy, where negotiators have no incentive to deliberately stop
conceding while the zone of agreement remains nonempty.

Future work will focus on incorporating industrial and
commercial prosumers, and adding a negotiation level between
various aggregators.
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“Distributed and Decentralized Control of Residential Energy Systems
Incorporating Battery Storage,” IEEE Trans. Smart Grid, vol. 6, no. 4,
pp. 1914–1923, 2015.

[7] N. Liu, X. Yu, C. Wang, C. Li, L. Ma, and J. Lei, “Energy-Sharing
Model With Price-Based Demand Response for Microgrids of Peer-to-
Peer Prosumers,” IEEE Trans. Power Systems, vol. 32, no. 5, pp. 3569–
3583, 2017.

[8] T. AlSkaif, M. G. Zapata, and B. Bellalta, “A Reputation-Based
Centralized Energy Allocation Mechanism for Microgrids,” in IEEE
International Conf. on Smart Grid Communications (SmartGridComm),
2015, pp. 416–421.

[9] A. G. Azar and R. H. Jacobsen, “Agent-Based Charging Scheduling
of Electric Vehicles,” in IEEE Online Conf. on Green Communications
(OnlineGreenComm), 2016, pp. 64–69.

[10] ——, “Appliance Scheduling Optimization for Demand Response,”
International Journal on Advances in Intelligent Systems, vol. 9, no.
1&2, pp. 50–64, 2016.

[11] A. G. Azar, M. Afsharchi, M. Davoodi, and B. S. Bigham, “A Multi-
Objective Market-Driven Framework for Power Matching in the Smart
Grid,” Engineering Applications of Artificial Intelligence, vol. 70, pp.
199–215, 2018.

[12] T. AlSkaif, A. C. Luna, M. G. Zapata, J. M. Guerrero, and B. Bellalta,
“Reputation-Based Joint Scheduling of Households Appliances and
Storage in a Microgrid With a Shared Battery,” Energy and Buildings,
vol. 138, pp. 228–239, 2017.

[13] T. AlSkaif, M. G. Zapata, B. Bellalta, and A. Nilsson, “A Distributed
Power Sharing Framework Among Households in Microgrids: A Re-
peated Game Approach,” Computing, vol. 99, no. 1, pp. 23–37, 2017.

[14] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang, and E. Hossain,
“Enabling Localized Peer-to-Peer Electricity Trading among Plug-In
Hybrid Electric Vehicles using Consortium Blockchains,” IEEE Trans.
Industrial Informatics, vol. 13, no. 6, pp. 3154–3164, 2017.

[15] I. Atzeni, L. G. Ordóñez, G. Scutari, D. P. Palomar, and J. R. Fonollosa,
“Noncooperative and Cooperative Optimization of Distributed Energy
Generation and Storage in the Demand-Side of the Smart Grid,” IEEE
Trans. Signal Processing, vol. 61, no. 10, pp. 2454–2472, 2013.

[16] Y. Zhou, S. Ci, H. Li, and Y. Yang, “A New Framework for Peer-to-
Peer Energy Sharing and Coordination in the Energy Internet,” in IEEE
International Conf. on Communications (ICC), 2017, pp. 1–6.

[17] Q. D. La, Y. W. E. Chan, and B.-H. Soong, “Power Management of
Intelligent Buildings Facilitated by Smart Grid: A Market Approach,”
IEEE Trans. Smart Grid, vol. 7, no. 3, pp. 1389–1400, 2016.

[18] K. Rahbar, C. C. Chai, and R. Zhang, “Energy Cooperation Optimization
in Microgrids with Renewable Energy Integration,” IEEE Trans. Smart
Grid, 2016.



1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2018.2867748, IEEE
Transactions on Industrial Informatics

12

TABLE IX
QUALITATIVE AND QUANTITATIVE COMPARATIVE ANALYSIS BETWEEN A NUMBER OF RELEVANT WORKS AND THE PROPOSED FRAMEWORK.

Reference High-level description System architecture Simulation analysis

Control
mechanism

Optimization
model Objective(s)

Flexibility per
prosumer Negotiation Scalable

Simulation scenario
(System Size) PDR (%) PCB (%)

Computation
time (sec.)

N. Paterakis et al. [5] A formulation for the simultaneous
operation of prosumers via a two-
step coordination strategy consider-
ing bi-directional power flow and
hourly-varying pricing scheme

Centralized MILP A single objective of
minimizing the total en-
ergy procurement cost

Consumption by ap-
pliances, generation
by the PV, and stor-
age by the BESS

No No 3 households, each
equipped with 3
appliances, a PV, and
a BESS

26 1 24

K. Worthmann et al. [6] A control methodology for dis-
tributed RESs to mitigate difficulty
in supply-demand balance relying on
load and generation forecasting

Centralized LP
(E-MPC)

A single objective of
flattening the aggregate
power usage of the RESs

Consumption by ap-
pliances, and storage
by the BESS

No No 3 RESs, each
equipped with a
BESS

19.10 – High

N. Liu et al. [7] An day-ahead energy-sharing model
with dynamical price-based demand
response for peer-to-peer neighbor-
ing PV prosumers

Centralized Convex
(Bi-level)

A single objective of
minimizing prosumers’
inconvenience and elec-
tricity cost

Generation by the
PV

No No 5 buildings, each
equipped with a PV
system

2.52 5.01 200

T. AlSkaif et al. [12] A reputation-based energy manage-
ment system for prosumers to con-
trol the reallocation of available en-
ergy in the shared storage unit

Distributed MILP A single objective of
minimizing the amount
and price of energy ab-
sorbed from the grid

Consumption by ap-
pliances and genera-
tion by the PV

No No A single BESS shared
with 3 households,
each equipped with 4
appliances and a PV

11.5 68 10

I. Atzeni et al. [15] A day-ahead demand-side manage-
ment mechanism based on a general
dynamic energy pricing model regu-
lated via an independent central unit
preserving the prosumers’ privacy

Distributed NLP A single objective of
reducing (accumulated)
monetary expenses for
each (all) prosumer(s)

Consumption by ap-
pliances, generation
possibility, and stor-
age by the BESS

Yes
(Nash)

Yes 120 households, each
with generation pos-
sibility and equipped
with a set of appli-
ances and a BESS

12.6 20.76 –

Y. Zhou et al. [16] A framework for the time-slotted
peer-to-peer energy sharing and co-
ordination aiming at achieving flex-
ible and efficient distributed energy
management and control

Distributed Convex
(ADMM)

A single objective of
minimizing the aggre-
gate economic cost of all
prosumers

Consumption by ap-
pliances, generation,
by e.g., the PV, and
storage by the BESS

No Yes 36 prosumers, each
equipped with a set of
appliances, a PV and a
BESS

20.73 27 –

A. Sha et al. [20] A strategy for optimizing distributed
energy exchange considering pro-
sumers’ involvement, energy loss
of delivery, network topology, and
physical constraints of distribution
networks approached by a graph
theory-based algorithm

Distributed LP A single objective of
minimizing the cost of
buying energy and the
loss in energy delivery

Generation by either
a small wind turbine
or PV

No No 13 prosumers, each
equipped with either a
small wind turbine or
PV

97.5 66 –

This work A scalable non-cooperative frame-
work for coordinating a neighbor-
hood of prosumers, equipped with
appliances, PVs, and BESSs, en-
gaged with a reactive bilateral multi-
issue negotiation approach subject to
sharing no private information

Distributed MO-MINLP Two objectives of maxi-
mizing the comfort level
and profit for each pro-
sumer as well as max-
imizing the profit and
minimizing the grid pur-
chase for the aggregator

Consumption by ap-
pliances, generation
by the PV, and stor-
age by the BESS

Yes Yes 900 prosumers, each
equipped with 6 ap-
pliances, a PV, and a
BESS

38.46 209.47 96.69

Abbreviations for the optimization models denote: MILP: Mixed Integer Linear Programming; LP: Linear Programming; E-MPC: Economic Model Predictive Control; NLP: Nonlinear Programming; ADMM: Alternating Direction
Method of Multipliers; and MO-MINLP: Multi-Objective Mixed Integer Nonlinear Programming. Furthermore, some references fail to provide adequate performance analysis considering the assessment metrics selected for comparison.

[19] T. Taniguchi, K. Kawasaki, Y. Fukui, T. Takata, and S. Yano, “Automated
Linear Function Submission-Based Double Auction as Bottom-Up Real-
Time Pricing in a Regional Prosumers’ Electricity Network,” Energies,
vol. 8, no. 7, pp. 7381–7406, 2015.

[20] A. Sha and M. Aiello, “A Novel Strategy for Optimising Decentralised
Energy Exchange for Prosumers,” Energies, vol. 9, no. 7, p. 554, 2016.

[21] R. Zafar, A. Mahmood, S. Razzaq, W. Ali, U. Naeem, and K. She-
hzad, “Prosumer based energy management and sharing in smart grid,”
Renewable and Sustainable Energy Reviews (In Press), 2017.

[22] X. Ayón, J. Gruber, B. Hayes, J. Usaola, and M. Prodanović, “An
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