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Dark-field X-ray microscopy is a new full-field imaging technique for

nondestructively mapping the structure of deeply embedded crystalline

elements in three dimensions. Placing an objective in the diffracted beam

generates a magnified projection image of a local volume. By placing a detector

in the back focal plane, high-resolution reciprocal space maps are generated for

the local volume. Geometrical optics is used to provide analytical expressions

for the resolution and range of the reciprocal space maps and the associated field

of view in the sample plane. To understand the effects of coherence a

comparison is made with wavefront simulations using the fractional Fourier

transform. Reciprocal space mapping is demonstrated experimentally at an

X-ray energy of 15.6 keV. The resolution function exhibits suppressed streaks

and an FWHM resolution in all directions of �Q/Q = 4 � 10�5 or better. It is

demonstrated by simulations that scanning a square aperture in the back focal

plane enables strain mapping with no loss in resolution to be combined with a

spatial resolution of 100 nm.

1. Introduction

Dark-field X-ray microscopy (DFXRM) is a new full-field

imaging technique for mapping crystallographic features in

bulk specimens in three dimensions (Simons et al., 2015).

Similar to bright-field X-ray microscopy (Schroer et al., 2001),

an objective lens is inserted between the sample and a high-

resolution two-dimensional detector, but in this case in the

Bragg diffracted beam. This enables nondestructive mapping

of structure, orientation and strain within deeply embedded

crystalline elements (Simons et al., 2015). A first imple-

mentation at beamline ID06 at the European Synchrotron

(ESRF) is based on the use of a monochromatic beam in the

15–35 keV range and a compound refractive lens (CRL)

(Snigirev et al., 1996) as objective. The magnification and field

of view can be modified by changing the focal length of this

objective. Lens imperfections currently limit the spatial reso-

lution to �100 nm.

In combination with coarse-scale grain mapping methods

such as three-dimensional X-ray diffraction (Poulsen, 2004,

2012; Hefferan et al., 2012) and diffraction contrast tomo-

graphy (King et al., 2008; Ludwig et al., 2009), DFXRM has

proven to be a powerful method for multi-scale studies of

polycrystals and their dynamics (Simons et al., 2016). First

applications include work on the processing of plastically

deformed metals (Ahl et al., 2015), the distribution of strain

and orientation gradients in ferroelectrics (Simons et al., 2018),
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and the three-dimensional mapping of dislocations (Simons et

al., 2016), as well as studies of biominerals (Cook, 2018).

Poulsen et al. (2017) provided a detailed description of the

optics of the image plane of this microscope, including para-

meters such as numerical aperture, vignetting, and the reso-

lution in both direct and reciprocal space. It was shown that

the resolution function in reciprocal space can be highly

anisotropic and can vary as a function of position within the

field of view. Procedures for sampling and conservation of

integrated intensities were presented. We shall refer to this

work as Paper 1 throughout.

Similar to classical light microscopy and transmission elec-

tron microscopy (Williams & Carter, 2009), the hard X-ray

microscope is associated with a back focal plane (BFP). The

intensity distribution in the BFP is equivalent to the distri-

bution in the Fraunhofer far-field limit. This has been utilized

for bright-field microscopy studies (Bosak et al., 2010; Ershov

et al., 2013; Falch et al., 2018).

Complementary to Paper 1, in this work we provide a

detailed description of the optics of the BFP in the dark-field

mode. Analytical expressions are derived from a thick-lens

ray-transfer-matrix formalism following Simons et al. (2017).

When relevant, this work is supplemented by full-scale

wavefront simulations based on fractional Fourier transforms

(Ozaktas & Mendlovic, 1995; Le Bolloch et al., 2012; Pedersen

et al., 2018). Procedures for reciprocal space mapping based on

placing a two-dimensional detector in the BFP are presented.

Next, we consider placing an aperture in the BFP in combi-

nation with a detector in the imaging plane. It is shown that

high strain resolution may be obtained without losing spatial

resolution. In x4, the reciprocal space mapping is demon-

strated by an experimental study at 15.6 keV.

2. Geometry and formalism

2.1. Dark-field microscopy geometry

The geometry of the dark-field X-ray microscope is illu-

strated in Fig. 1. The sample goniometer provides a base tilt,

�, a rotation, !, and two orthogonal sample tilts, � and �. The

incident beam is defined by a slit close to the source and/or by

a condenser. It is characterized by angular divergences ��v

and ��h in the vertical and horizontal directions, respectively,

and by an energy bandwidth �E/E. The motors �, � and � are

used to orient an embedded crystalline element of choice

(e.g. a grain or domain) such that it is in the Laue condition

with its diffraction vector, Q, parallel to the rotation axis !,

implying that Q remains in the diffraction condition at all

values of ! (the so-called topo-tomography setting). The

direction of the optical axis of the diffracted beam is described

by the scattering angle, 2�, and the azimuthal angle, � (Fig. 1).

The objective is in the following a CRL comprising N

identical parabolic shaped lenslets with a radius of curvature R

and a distance between the centers of adjacent lenslets T. Let

the linear attenuation coefficient and the refractive index

decrement of the lens material be �att and �, respectively. The

objective magnifies the diffracted beam by a factorMCRL and

generates an inverted two-dimensional image in the image

plane. The distance from the sample plane to the front of the

objective is d1, and the distance between sample plane and

image plane is d1 + NT + d2 (see Fig. 1). With NT typically of

the same order as d1, a thick-lens description is required.

Simons et al. (2017) provided a comprehensive thick-lens

description for the bright-field case using a ray-transfer-matrix

(RTM) approach. In Paper 1, the same RTM formalism is used

to provide equations for the dark-field case in relation to

direct and reciprocal space resolution functions and a

discussion of sampling strategies.

Three equations from Paper 1 of key interest for this work

are

fN ¼ f’ cotð’NÞ; ð1Þ

	a ’ �
MCRL

MCRL þ 1

2N

�attR

� �1=2

; ð2Þ

	v ¼
2�

�att	a

N2’2 � sin2
ðN’Þ

� �1=2
: ð3Þ

Here f = R/(2�) is the focal length of one lenslet, ’ = (T/f)1/2,

and fN is the focal length of the CRL and therefore the

distance from the end of the objective to the back focal plane

(cf. Fig. 1). 	a is the r.m.s. width of the angular attenuation

profile, describing the numerical aperture. 	v is the r.m.s. width

of the Gaussian distribution associated with vignetting.

Following Paper 1, for simplicity in the following we assume

! = � = 0. Furthermore we introduce two direct space coor-

dinate systems: the imaging system – defined by x̂x being

parallel to the diffracted beam and ŷy perpendicular to the

incoming beam in the horizontal plane – and a reference

system offset from the imaging system by an angle � around

the common y axis. In both cases we can define colinear

reciprocal space coordinate systems. For the reference system

the coordinates are ðq̂qrock; q̂qroll; q̂qkÞ. Here ‘rock’ refers to the
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Figure 1
Principle of dark-field X-ray microscopy. The red line between the pivotal
point of the goniometer and the detector (image plane) is the optical axis
of the diffracted beam. The laboratory coordinate system (xl, yl, zl) is
shown. See also main text.



transverse in-plane ‘rocking’ direction of classical two-axis

diffractometers, ‘roll’ to the out-of-plane ‘rolling’ around the

incoming beam and k to the longitudinal (radial) direction in

reciprocal space (q̂qk is parallel to Q). The corresponding

coordinates for reciprocal space associated with the imaging

system are defined as ðq̂qrock0 ; q̂qroll; q̂q2�Þ. For more general

settings and details of coordinate transforms see Paper 1.

2.2. Imaging in the back focal plane

In an ideal imaging system with a fully coherent beam, the

(amplitude, phase) field in the BFP is a Fourier transform of

the (amplitude, phase) field in the sample plane (Goodman,

2005). The BFP is in our case a plane perpendicular to the

optical axis and is located at a distance of one focal length

from the exit of the objective, as given by equation (1). Let

ðŷyB; ẑzBÞ span the BFP and be colinear with the axes ðŷys; ẑzsÞ in

the sample plane. Then in geometrical optics there is a one-to-

one correspondence between coordinates (yB, zB) and angles

(
ys, 
zs) with respect to the optical axis – as measured in the

sample plane. Using the RTM formalism, we have (cf. Simons

et al., 2017)

yB ¼
fN

cosðN’Þ

ys; ð4Þ

zB ¼
fN

cosðN’Þ

zs: ð5Þ

These expressions are independent of the position in the

sample space.

3. Reciprocal space mapping

In a scattering geometry where the optical axis of the objective

is aligned with the center of a Bragg diffracted beam, the

angular deviations 
ys and 
zs are related to reciprocal space.

Let ð�Qrock0=jQ0j;�Qroll=jQ0j;�Q2�=jQ0jÞ be the deviation

from the nominal Bragg lattice point, Q0. Then, following

equations (52) and (71) in Paper 1, we have

yB ¼
2 sinð�Þ fN

cosðN’Þ

�Qroll

jQ0j
; ð6Þ

zB ¼
2 sinð�Þ fN

cosðN’Þ

�Q2�

jQ0j
: ð7Þ

The third direction in reciprocal space – when described by

the imaging system coordinates – is q̂qrock0. However, the

parameter that can easily be varied experimentally is q̂qrock, as

this is defined by the ‘rocking angle’, the position of either �
or � (cf. Fig. 1). Hence, the experimental data, as defined by

detector coordinates and rocking angle, are not in an ortho-

gonal system.

To generate data in an orthogonal system one therefore

needs to interpolate. In the imaging coordinate system this

implies the following relationship:

�Qrock0

jQ0j
¼ ð�� �0Þ cosð�Þ; ð8Þ

�Qroll

jQ0j
¼

cosðN’Þ

2 sinð�Þ fN

yB; ð9Þ

�Q2�

jQ0j
¼

cosðN’Þ

2 sinð�Þ fN

zB � ð�� �0Þ sinð�Þ: ð10Þ

Here �0 corresponds to the maximum of the rocking curve,

and to � being equal to the nominal Bragg angle.

3.1. The effect of attenuation

It is relevant to determine the range of the reciprocal space

map and to know which area in the sample plane the reci-

procal space map refers to. Both properties are defined by the

attenuation of the CRL. Analytical expressions for the

imaging plane are provided in Paper 1, which with simple

modifications can be adapted to the BFP geometry.

For the point in the sample plane that is on the optical axis,

the attenuation gives rise to an angular acceptance which is

a Gaussian distribution defined by the numerical aperture.

The r.m.s. width of the range in normalized reciprocal space

q = Q/|Q0| becomes

	q ¼
	a

2 sinð�Þ
: ð11Þ

For the point in reciprocal space which corresponds to the

center of the region mapped, the intensity contributions from

points in the sample plane are weighted with a Gaussian

attenuation function, the vignetting. The width of this defines

the field of view: the r.m.s. value is 	v, as expressed by equa-

tion (3).

The attenuation for the general off-axis case is given by

equation (24) of Simons et al. (2017). Consider a ray emerging

from a point in the sample plane with position rs and at a

distance qr to the nominal center in the (normalized)

(qroll, q2�) plane. The attenuation then becomes a product of

three terms:

Attðrs; 
sÞ ¼ expð��NTwÞ�ðrs; qrÞVignðrsÞ; ð12Þ

¼ expð��NTwÞ exp
�fqr þ ½�=2 sinð�Þ�rsg

2

2	2
q

� �

� exp �
r2

s

2	2
v

� �
: ð13Þ

The first term reflects the attenuation caused by the web

distances, Tw, between neighboring apices in the CRL. The

second describes the angular acceptance, while the third is the

vignetting term.

It appears that the vignetting in the sample plane remains

the same as in the on-axis case. The middle term indicates that

the range in reciprocal space is also unaltered, but the center

position in reciprocal space shifts with varying rs by

�rs=2 sinð�Þ. Expressions for � are provided in the supple-

mentary materials of Simons et al. (2017). For long to medium

focal distances we have to a good approximation

1=� ¼ d2
1 þ f 2’2

� �1=2
: ð14Þ

Typical numerical values for 1/� are 10–30 cm.
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3.2. Reciprocal space resolution

Initially we will be concerned with the widths – in three

orthogonal directions – of the reciprocal space resolution

function and shall neglect low-intensity tails. We anticipate

that these widths are governed by the divergence and the

energy bandwidth of the incoming beam. Furthermore we

shall assume the incoming beam to be Gaussian. Such a model

was derived for the reciprocal space resolution function in the

image plane in x4.1 of Paper 1. Applying a similar approach

here for the BFP, we treat the divergence as small perturba-

tions (�h,v) to the horizontal and vertical components of the

incident beam vector, kin, and the energy bandwidth in the

form of a longitudinal perturbation, " = �E/E = �k/k, to both

incident and diffracted beam vectors. In the imaging coordi-

nate system the deviations from the nominal incident and

diffracted wavevectors are thus

�kin ¼ k

cosð2�Þ 0 sinð2�Þ
0 1 0

� sinð2�Þ 0 cosð2�Þ

2
4

3
5 "

�h

�v

0
@

1
A

Lab

; ð15Þ

�kout ¼ k

"
0

0

0
@

1
A

Imaging

: ð16Þ

The deviation from the nominal scattering vector becomes

�Q

jQ0j
¼

�kout ��kin

2k sinð�Þ
ð17Þ

¼
1

2 sinð�Þ

½1� cosð2�Þ�"� sinð2�Þ �v

��h

sinð2�Þ"� cosð2�Þ�v

8<
:

9=
;

Imaging

: ð18Þ

If we assume �h, �v and " to be independent variables, and each

to occur randomly with a Gaussian distribution centered

about zero, then the corresponding terms should be added in

quadrature to estimate the r.m.s. widths in reciprocal space.

Let ��v, ��h and 	" be the r.m.s. widths of the corresponding

distributions. Then the resulting r.m.s. widths are

�Qrock0

jQ0j
¼ sin2

ð�Þ	2
" þ cos2

ð�Þ��2
v

� �1=2
; ð19Þ

�Qroll

jQ0j
¼

��h

2 sinð�Þ
; ð20Þ

�Q2�

jQ0j
¼ cos2

ð�Þ	2
" þ

cosð2�Þ

2 sinð�Þ

� 	2

��2
v

( )1=2

: ð21Þ

Notably these equations are valid for all points in the sample

plane, on-axis as well as off-axis.

In reality the resolution function is far from Gaussian.

Similar to a classical triple-axis setup with a monochromator

and an analyzer crystal (Rütt et al., 1995), it is characterized by

long tails caused by the surface truncation rods – in our case

from the two crystals in the monochromator and the sample

itself.

3.3. Reciprocal space mapping described as a convolution

Having introduced the various terms, we can now give a

comprehensive description of the imaging properties of the

BFP. We operate in the four-dimensional space spanned by

position in sample plane rs and reciprocal space coordinates

q = (qroll, q2�). The geometrical optics formulation above

provides a relation between the measured intensity distribu-

tion in the BFP, I(q), the vignetting function in the sample

plane, VignðrsÞ, the angular attenuation, �(rs, q), the reci-

procal space resolution function, Res(q), and the field in the

sample plane expressed as a distribution function, R(rs, q). We

have

IðqÞ /
R1
�1

VignðrsÞ

�
R1
�1

Rðrs; q0Þ�ðrs; q0ÞResðq� q0Þ dq0 drs: ð22Þ

For a suitable small and well centered object, we have

Vign = 1 and � = �(q0). For some studies the reciprocal

resolution function can be considered a delta function. Then

equation (22) reduces to

IðqÞ /

Z1
�1

Rðrs; qÞ exp �
q2

2	2
q

� �
drs: ð23Þ

In that case, one image in the BFP simply represents one slice

in the reciprocal space map of the entire grain, normalized by

expð�q2=2	2
qÞ. This slice is tilted by � with respect to G. Other

slices can be added by ‘rocking’ the sample [cf. equations (8)–

(10)]. Experimentally, the ‘thickness’ of such a slice can be

increased by integrating the signal over �, e.g. by a continuous

rocking scan.

The range of the reciprocal space map can be enlarged by

translating the objective. (A simultaneous translation of the

detector in the BFP may be required by the field of view of the

detector itself.) It is favorable at the same time to tilt the

objective such that the optical axis always points to the same

point in the sample plane. For changes of a few degrees in 2�
or � the relevant optical parameters are to a good approx-

imation constant.

3.4. The effect of coherence

In order to study the effect of coherence we turn to a

Fourier optics description. We shall approximate the incoming

beam as a plane wave. The simulations will be based on the use

of fractional Fourier transforms, FrFTs (Ozaktas &

Mendlovic, 1995; Le Bolloch et al., 2012). As presented by

Pedersen et al. (2018), FrFT calculations can be orders of

magnitude faster than traditional Fresnel propagation

programs, in particular in connection with the use of a cascade

of lenses (a CRL).

Shown in Fig. 2 are the results of an FrFT simulation of a

17 keV study of the pattern in the BFP from an 8 � 8 mm

square pinhole placed on the optical axis in the sample plane.

The incoming beam is assumed to be parallel with a Gaussian

energy spread with 	e = 10�4, while the geometry of the Be
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CRL objective is defined by N = 70, R =

50 mm, T = 1.6 mm, d1 = 297 mm and M =

10. Coherence was introduced

according to Voelz (2011).

Comparing a fully coherent beam and

a beam with a small coherence length

(corresponding to placing a 1 � 1 mm

slit 18 m upstream from the sample)

there is no difference in the image

plane, but in the back focal plane a

fringe pattern is observed for the

coherent case. For partial coherence the

fringes disappear and the pattern

becomes the envelope of the fully

coherent case. Similar to the case for

bright-field microscopy (Lyubomirskiy

et al., 2016), it appears that one may use

back focal plane images for character-

izing the degree of vertical and hori-

zontal coherence.

4. Strain mapping by means of
scanning an aperture in the back
focal plane

In this section we shall consider the

combination of an aperture in the BFP

and imaging with a two-dimensional

detector in the image plane. Similarly to

operations with transmission electron

microscopes, the major advantage of

introducing an aperture is that it selects

a small region in reciprocal space and

that the maps acquired will represent

the parts of real space that diffract into

this region – without the aperture the

region is fixed and given by the numer-

ical aperture (NA) of the objective.

One challenge is that the diffraction limit of the spatial

resolution in the imaging plane will deteriorate with

decreasing size of the aperture, D. Fig. 3 shows results for

17 keV with a parallel incoming beam and with an objective

having a focal length fN = 27 cm and a magnification of 10. The

diffraction limit calculated from geometrical optics is shown

for the CRL and the aperture in the BFP independently. The

combined effect is not readily determined using geometrical

optics, but as a heuristic, the combined effect is modeled as

	tot = (	2
CRL + 	2

slit)
1/2 (yellow curve). Also shown as a purple

curve is the result of a corresponding wavefield simulation. In

practice, imperfection in lens manufacture currently limits the

resolution to around 100 nm. Hence, it appears from Fig. 3

that apertures larger than 80 mm will not deteriorate the real

space resolution.

We therefore propose to perform strain mapping in the

sample plane by scanning a large aperture in the BFP. By a

suitable sampling for each voxel in the sample one can derive

a reciprocal space map with a strain resolution given by
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Figure 3
Spatial resolution of an imaging system with a CRL objective and a
square aperture placed on the optical axis in the BFP. The figure shows
the r.m.s. width in the image plane as a function of the aperture size. The
blue, yellow and red lines represent geometrical optics calculations for
the CRL alone, for the slit alone and for the combination (see text).
Shown in purple is the corresponding wavefield simulation for the entire
system based on the use of fractional Fourier transforms.

Figure 2
Above: simulated signal in the back focal plane from an 8 � 8 mm square pinhole in the sample
plane for a fully coherent and a partially coherent case. Below: a projection onto the horizontal
direction for a clearer view of the fringe pattern.



equations (19)–(21). Moreover, it is possible to fit the position

of a peak to a fraction of the width. As an example, in neutron

strain scanning this ratio can be as high as 1:100. Hence a

sensitivity to strain variations of 10�5 or below is clearly within

reach.

5. Experimental demonstration

The experiments took place at the dedicated dark-field

microscopy instrument at ID06, with the goniometer placed

56.66 m from the source. An Si(111) Bragg–Bragg mono-

chromator defined a 15.6 keV X-ray beam with an r.m.s.

bandwidth of 	e = 6 � 10�5. The divergence of the incoming

beam was defined by two slits, positioned at distances of 27.8

and 53.9 m from the source, respectively. The openings of the

two slits were both 0.5 � 0.5 mm, implying divergences

(FWHM) of ��v = ��h = 0.027 mrad.

The experiment was performed in a vertical scattering

geometry with ! = � = 0 (cf. Fig. 1). The objective comprised

N = 45 two-dimensional Be lenslets, each with a nominal

radius of curvature of R = 50 mm and thickness of T = 1.6 mm.

Hence, the focal length was fN = 0.406 m. The magnification

was determined to beMCRL = 12.32, from which follows 	a =

0.24 mrad. The two-dimensional detector placed in the BFP

comprised a scintillator coupled by microscope optics to a

pco2000 2k� 2k CCD with a physical pixel size of 7.4 mm. The

objective and eyepiece in the camera gave an inherent

magnification by 10.

For this setup, 1 pixel (0.74 mm) in the back focal plane

corresponds to a �Q/Q of 4.0 � 10�6. The range in reciprocal

space (FWHM) is in the same units 2.35	q = 1.35 � 10�3. The

FWHM of the vignetting function is 2.35	v = 5.1 mm.

To test the model for the resolution function of the BFP, an

Si wafer was studied in transmission, with diffraction from a

220 reflection at 2� = 23.98�. Scans were made of the ‘rocking

angle’ � within a range of �0.015� and with 150 equidistant

steps. The monochromator was detuned to avoid saturation of

the detector.

Three orthogonal projections of the resulting reciprocal

space map are shown in Figs. 4, 5 and 6. In the ðq̂qrock0 ; q̂q2�Þ

plane there are five streaks, of which two in the up/down

direction of the figure are overlapping to some extent. We

adopt a similar approach to that used with classical triple-axis

diffractometers in a dispersive setup. We can associate one of

these streaks – the one along q̂qk – with the ‘lambda streak’ and

three of the others with surface streaks from the three Si single

crystals in the beam. The one along q̂qrock is from the Si test

sample, while the two placed symmetrically around q̂qk are

assigned to the two monochromator crystals. The strongest

streak, however, is along the q̂q2� axis. Figs. 5 and 6 reveal that

the dominant contribution is an approximately circular disc in

the ðq̂q2�; q̂qrollÞ plane in reciprocal space. This is exactly the

signature expected of any contribution from the objective.

Hence, we attribute this to ‘diffuse scattering’ from the CRL

caused by aberration. Fig. 6 also exhibits additional low-

intensity features, in particular in the lower left corner. We

tentatively associate these with lens imperfections. Further-

more, we speculate that the lack of inversion symmetry in

Fig. 4 is due to the detuning of the monochromator.

Considering only the central part of the resolution function,

the experimental values for the FWHM are ð�Qrock0=jQ0j,

�Qroll=jQ0j, �Q2�=jQ0jÞ = ð13; 40; 40Þ10�6. The simple Gaus-

sian model provided by equations (19), (20) and 21 gives the

corresponding values (34, 44, 143)10�6. If as a test we insert

	e = 1 � 10�5 instead the results are (18, 44, 46)10�6, which

within experimental error is consistent with the experimental

data. This finding as well as inspection of Fig. 4 points to a
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Figure 4
Experimental reciprocal space resolution function. Projected intensity on
the scattering plane. For ease of visualization the axes have different
ranges. The ðqrock0 ; q2�Þ coordinate system is marked by black arrows and
the (qrock, qjj) coordinate system in red. The contour lines represent a
log10 scale as marked by the colorbar to the right.

Figure 5
Experimental reciprocal space resolution function. Projected intensity on
the ðqrock0 ; qrollÞ plane. For ease of visualization the axes have different
ranges. The contour lines represent a log10 scale as marked by the
colorbar to the right.



much reduced ‘lambda streak’ in comparison to the simple

Gaussian model.

The result is that the FWHM of the reciprocal space reso-

lution function in all directions is small: 40 � 10�6 or below.

6. Discussion

6.1. Reciprocal space mapping

The classical approach to reciprocal space mapping is the

use of a triple-axis diffractometer with identical mono-

chromator and analyzer crystals (Pietsch et al., 2004). For a

nondispersive setup, where the d spacings of all crystals are

nearly the same, the resolution function is as described, for

example, by Neumann et al. (1994) and Liss et al. (1998). It is

characterized by the presence of three streaks in the scattering

plane: a ‘sample streak’ aligned with q̂qrock, a ‘monochromator

streak’ tilted by � with respect to q̂qk and an ‘analyzer streak’

tilted by �� with respect to q̂qk. The dispersive setup is

described, for example, by Rütt et al. (1995). Here it is shown

that the resolution function tends to be dominated by a streak

in the longitudinal direction, the ‘lambda streak’, but also that

all streaks are suppressed.

These features are manifest also in the BFP setting. In

particular the ‘lambda streak’ is suppressed. Further work is

required to establish a model that can predict the resolution

function in detail. For now we propose to measure it in the

manner adopted in this paper, using a semiconductor wafer as

a reference sample with a reflection that has a scattering angle

close to the one of interest for a given sample.

For reasons of sampling it may be of interest to have a

resolution function with identical FWHM along the three

principal axes. This can be enabled by varying the incoming

divergences and matching the step size in the continuous scan

of the rocking angle.

In comparison to the triple-axis configuration the BFP

approach has a number of advantages and disadvantages

(1) Three-dimensional mapping. The triple-axis setup is

confined to the scattering plane. As such it involves an inte-

gration over reciprocal space in the rolling direction. In

contrast the resolution function in dark-field microscopy is

three dimensional in nature, and may even be designed to be

symmetric.

(2) Local information. Dark-field microscopy is favorable

for combining reciprocal space mapping with direct space

information.

(3) Range. A triple-axis setup can provide a map over a

large fraction of reciprocal space. In contrast this is only

possible in dark-field microscopy by a complicated combined

movement involving both the objective and the BFP detector.

Furthermore, owing to the Gaussian-type vignetting term in

direct space, it is non-trivial to create a larger reciprocal space

map by stitching together smaller parts (unless the sample is

an ideal single crystal as is the case for an Si wafer). A similar

challenge relates to mapping in the image plane, as discussed

in Paper 1.

An alternative approach to reciprocal space mapping is to

avoid using an analyzer and to place the detector in the true

far-field (Fraunhofer) regime. This is central to Bragg coherent

diffraction imaging type work, but is also used for incoherent

beams (see e.g. Jakobsen et al., 2006). The reciprocal space

resolution for this case is identical to the BFP case – with the

exception of spurious effects by the objective. One subtle

difference though is the shift by � in which plane is viewed in

reciprocal space.

6.2. Strain scanning

In Paper 1 it is described that ‘mosaicity maps’ visualizing

the tilt of the diffraction vector (local pole figures) can be

generated in two ways: first, by scanning the sample through

(�, �) or linear combinations of these angles, and second, by

scanning a combination of the base tilt � and a linear

combination of (�, �) that is perpendicular to the beam for all

values of !. With misorientations between neighboring grains

or domains typically much larger than the numerical aperture

of the objective, this procedure is well adapted to the task.

In Paper 1, a scanning procedure is also introduced for

determining the axial strain. This involves scanning the 2�
arm, that is a combined translation and rotation of the

objective and the detector. In this case the 2� resolution – as

defined by 	a – is of the same order as the strain variation.

Hence, one cannot derive a strain distribution for each point

in the sample, but only the average strain as determined by the

center-of-mass (CMS) of the strain scan.

Operating in the BFP is complementary to this approach as

the intrinsic resolution in our case is 5 � 10�5. Hence, for

many specimens one may determine the entire strain distri-

bution in each voxel. Furthermore, the CMS value of the

distribution will be determined with a much higher precision.

Also it is easier to ensure a mechanically stable operation by

translating an aperture in the BFP than by a combined
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Figure 6
Experimental reciprocal space resolution function. Projected intensity on
the (q2�, qroll) plane. The axes have identical ranges. The contour lines
represent a log10 scale as marked by the colorbar to the right.



translation of objective and detector. As already mentioned, a

disadvantage of the BFP approach is the limitation in strain

range. This can to a minor degree be helped by increasing the

number of lenslets in the CRL [cf. equation (2)].

6.3. Limitations and outlook

It should be emphasized that the approach outlined above

only probes reciprocal space in the vicinity of one diffraction

vector. Hence, the full orientation of the domains is not

determined, and only three out of the nine components of the

displacement gradient tensor are monitored (Hofmann et al.,

2017). To provide a full description, the mapping has to be

repeated for at least two other non-collinear reflections

associated with the same domain. This is currently not possible

without re-mounting the sample.

Dark-field X-ray microscopy is motivated by the need to

generate three-dimensional volumetric data. There are two

alternative strategies for obtaining three-dimensional maps.

The first is using a one-dimensionally focusing condenser to

illuminate a slice of the material, which is then imaged at the

oblique angle of 2�, i.e. a magnified version of classical section

topography (Medrano et al., 1997; Ohler et al., 2000). In this

case, a three-dimensional volume is obtained in a layer-wise

manner by translating the sample through the planar beam in

small increments. A second, faster but more involved method

involves illuminating the entire grain and taking projections

from different viewing angles while rotating the sample about

Q (i.e. rotation in !) in the topo-tomography approach

(Ludwig et al., 2001). The three-dimensional maps are then

reconstructed using adapted tomographic algorithms. The

three-dimensional reconstruction algorithm itself, however, is

outside the scope of this paper.

In outlook, recently mutilayer Laue lenses (MLLs) have

been manufactured with excellent optical performance

(Morgan et al., 2015). At ID06 we have successfully tested

such devices as objectives for use in dark-field microscopy (to

be reported elsewhere). In comparison to CRLs the MLLs

have several advantages for operation in the BFP:

(1) Larger numerical aperture. The range in reciprocal

space 	q increases linearly with 	a.

(2) Square aperture. The MLL is optically a thin lens

characterized by a square aperture. This implies that for a

small sample the detector image is directly proportional to the

density in a square in ðq̂qroll; q̂q2�Þ space. This eases interpreta-

tion and stitching of partial maps.

(3) Reduced aberration. The dominant diffuse intensity in

the (q2�, qroll) plane, as shown by Fig. 6, can be avoided.

The main disadvantage is that two lenses with different

focal lengths are needed: one horizontally and one vertically.

Hence, their BFPs are not placed at at the same distance.

Moreover, the physical aperture of the MLLs manufactured is

currently limited to 100 mm. This implies that the MLL needs

to be placed within a few centimetres of the sample to fully

exploit the larger NA. This implies a loss in resolution.

We also remark that the concept of a dark-field neutron

microscope and its implementation in a time-of-flight opera-

tion was proposed by Poulsen et al. (2014). Similar to the X-ray

case, dark-field neutron microscopy may be seen as part of a

multi-scale approach complementary to neutron absorption

tomography and neutron diffraction tomography of grains

(Peetermans et al., 2014; Cereser et al., 2017).

7. Conclusion

We have derived the relation between reciprocal space and the

back focal plane of an X-ray dark-field microscope. Our

results enable swapping between mapping in direct space and

reciprocal space, which is a key part of many materials studies

with transmission electron microscopes. In conjunction with

Paper 1, the current article has presented optical tools that

enable the transfer of this dual approach to the three-

dimensional characterization of thick specimens. With analy-

tical expressions for the main optical parameters we hope to

ease alignment and to promote dark-field X-ray microscopy as

a quantitative tool for materials science.
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