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H. Pesticides detected in Skensved Å and/or Køge Å in the field 

investigation. The table includes information about the type of 

pesticide, the application period, general description of the 

chemical, use in Denmark, current EU/Danish status, 

maximum annual sales 90 

I. Environmental Quality Standards (EQS), aquatic toxicity and 

bioaccumulation of the pollutants found in Køge Å and 

Skensved Å. Aquatic toxicity and bioaccumulation were 

reported only if an EQS did not exist for the specific chemical 91 

 

 

 

 

 

 



 

 The Danish Environmental Protection Agency / Investigating stream water quality under conditions of multiple stress       5 

Executive summary 

The protection of freshwater and groundwater systems is a key element of the European Wa-

ter Framework Directive. Addressing contamination sources and preventing the deterioration 

of water quality and ecosystem health is necessary in order to meet the EU requirements 

stated therein. Contaminated sites are among one of the major environmental problems in 

Denmark, contaminating soil, groundwater and surface water bodies located nearby. Recently, 

screening tools and risk assessment methods have been developed to support the Danish 

Regions in evaluating the impact contaminated groundwater originating from these sites may 

have on Danish streams (Miljøstyrelsen, 2016a; 2014). However, investigations related to 

stream water affected by contaminated sites have to-date only covered single sources of con-

taminants. The presence of multiple sources of chemical stressors in the same watercourse 

can complicate the identification and separation of the distinct effects of individual compounds. 

This may lead to a poor understanding of the impacts on the stream system and possibly even 

to the failure of river restoration projects.  

 

Therefore, with the initial condition of the presence of a contaminated site impacting a nearby 

stream, this report aims to provide a decision support tool for assessing the importance of 

contaminated sites in relation to other potential sources impacting the streams, with the aim of 

identifying the impact drivers in a multiple stressor context. For this study, only sites contami-

nating streams impacted by chlorinated compounds were assessed, referring to the same 

administrative stretches (or vandområder) as defined in the Vandområdeplaner (2015-2021). 

Attention was given strictly to the stream water compartment, focusing on the contamination 

related to xenobiotic organic compounds (XOCs) and heavy metals.  

 

The proposed integrated decision support tool is divided into three main steps: Desktop 

Screening, Impact Assessment and Assessment Support (see detailed description of the 

method in Chapter 5). The Desktop Screening helps to obtain and collate information regard-

ing the contaminated sites and any additional sources potentially impacting a nearby stream 

section. The information has been collected from a variety of sources including national data-

bases providing environmental data (e.g. MiljøGIS and MiljøPortalen), from existing site-

specific past investigations or by directly acquiring new data through field measurements.  

 

The Impact Assessment refines the desktop screening through a three-step assessment ap-

proach that has been applied to each chemical detected in the stream:  

1. Impact Screening (IS). Collects information regarding Environmental Quality Standards 

(EQS), ecotoxicity and bioaccumulation of the detected chemicals in freshwater systems;  

2. Impact Characterization (IC). Characterizes the impact by comparing the values of the 

chemical concentrations detected in the stream and the respective EQS values. In cases 

where EQS values are not defined, the chemical is assessed via the ecotoxicity and bio-

accumulation data. The IC divides the chemicals into four classes: Impact to the water-

course even with high dilution, impact to the watercourse during low flow conditions, po-

tential impact to the watercourse, and no expected impact. 

3. Spatial (S) and Temporal (T) distribution. The occurrence of the chemicals is addressed 

both spatially and temporally. The S distribution is evaluated and sorted into three groups: 

widespread contamination, semi-widespread contamination and limited contamination. 

The T distribution characterizes the temporal variation of the pollutants through three clas-

ses: continuous contamination, semi-continuous contamination and pulse contamination. 

In the case of a continuous contamination, the contaminant mass discharge (CMD, 

kg/year) can be calculated and classified into three magnitude categories: Mag 1 (CMD < 

1kg/year), Mag 2 (1 < CMD < 10 kg/year), Mag 3 (CMD > 10kg/year). 
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The Assessment Support helps the regulator to determine which pollutant category may be 

driving the contamination of the stream stretch of interest. The information obtained in the 

Impact Assessment is processed and the expected or known source(s) are reported. Once the 

sources driving the contamination are revealed, the information can be passed to a final deci-

sion phase encompassing the final assessment and/or plans for remediation. The final prioriti-

zation of remedial actions is outside the scope of this project, as it may depend on a number of 

external factors related to the national strategy for managing surface water contamination.  

 

After a preliminary assessment of potential contaminant sources in addition to the contaminat-

ed site(s) located in eight streams impacted by chlorinated solvents, three cases were chosen 

to serve as site-specific examples: Køge Å, Skensved Å and Kirke Å. The application of the 

approach to the three study cases is reported in Chapter 9. 

 

Køge Å 

 

Desktop Screening 

In addition to four contaminated sites, agricultural fields nearby the stream, combined sewer 

overflow (CSO) and separate stormwater system pipe outlets were identified as the additional 

potential sources of pollution. A site-specific evaluation along Køge Å revealed the presence of 

three chlorinated ethenes, including PCE and the degradation products cis-DCE and VC, five 

pesticides and metabolites (glyphosate, AMPA, desphenyl-chloridazon, MCPA, propyaza-

mide), and high concentrations of cadmium (Cd) in one sampling point (K3). 

 

Impact Assessment and Assessment Support 

The detected chlorinated compounds are known to originate from nearby contaminated sites 

located in Køge. According to the IC analysis, VC has a documented impact to the water-

course during low flow conditions, while PCE and cis-DCE have no expected impact to the 

watercourse. The S analysis revealed that all detected chlorinated ethenes could be catego-

rized as limited contamination, as they were detected in less than 10% of the vandområde of 

interest. Regarding the T distribution, chlorinated ethenes discharge without interruption into 

the watercourse, producing a continuous contamination. CMD estimates for PCE, cis-DCE and 

VC all fell into the Mag 2 category, as the calculated CMDs were between 1 and 10 kg/year. 

 

The expected sources for the pesticides detected in Køge Å are the agricultural fields located 

close to the stream. Results of the IC analysis for glyphosate, desphenyl-chloridazon, MCPA 

and propyazamide indicated a potential impact to the watercourse, while AMPA had no ex-

pected impact. The S analysis revealed that glyphosate, AMPA and propyzamide result in 

widespread contamination (present in more than 50% of the stretch of interest), while 

desphenyl-chloridazon and MCPA produced a semi-widespread contamination (present in a 

portion between 10 and 50% of the stream stretch of interest). The pesticides found in the 

stream were classified as semi-continuous contaminants according to their T distribution, due 

to their release during and/or after the spraying season (further investigations are needed to 

confirm this hypothesis). 

 

Among the investigated heavy metals, Cd was classified as having an impact to the water-

course during low flow conditions. The S analysis defined the distribution of Cd as semi-

widespread. The T distribution resulted in a double classification for Cd as both a pulse and a 

continuous contamination, as its presence could be related to both types of stormwater sys-

tems (CSOs/separate rainwater) linked to urban and traffic systems, or to agricultural fields 

fertilized with manure containing heavy metals – both of which could result in a pulse contami-

nation scenario – but at the same time, it could be originating from geogenic sources thus 

resulting in a continuous contamination. 
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Skensved Å 

 

Desktop Screening 

In addition to one contaminated site, agricultural fields nearby the stream, as well as pipe 

outlets associated with CSOs, separate stormwater, private wastewater and one industrial 

discharge location were identified as the additional potential sources of pollution. Previous 

investigations and the field campaign performed after the desktop study revealed the presence 

of numerous categories of pollutants along Skensved Å: three chlorinated ethenes and degra-

dation products (TCE, 1,1-DCE and cis-DCE), four pesticides and metabolites (glyphosate, 

AMPA, bentazone and desphenyl-chloridazon), fifteen PAHs (naphthalene, acenaphthene, 

fluorine, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, 

benzo(b+j+k)fluoranthene, benz(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene, 

benzo(ghi)perylene, benzo(e)pyrene) and three heavy metals (copper (Cu), zinc (Zn) and lead 

(Pb)). 

 

Impact Assessment and Assessment Support 

Chlorinated compounds are known to be related to the contaminated site located in Lille 

Skensved. However, the presence of 1,1-DCE in the stream is unusual because: 1) it was 

found far from the expected and well-investigated discharge location of the contaminated 

groundwater, and 2) it is the least prevalent metabolite in the reductive dechlorination of 

PCE/TCE. This analysis suggests the existence of another source located downstream from 

the known contaminated site located directly within the town of Lille Skensved. The IC analysis 

indicated that all detected compounds fell into the no expected impact category. According to 

the S analysis, the presence of the chlorinated compounds creates a semi-widespread con-

tamination; regarding the T distribution, the CMD was calculated for the chlorinated solvents, 

due to their continuous contamination. CMD for TCE can be classified as Mag1-Mag2, while 

both 1,1-DCE and cis-DCE fell into the Mag 1 class.   

 

The expected sources related to pesticide contamination of Skensved Å are the agricultural 

fields close to the stream, identified as diffuse sources of pollution. Glyphosate and desphenyl-

chloridazon result in potential impact to the watercourse, while bentazone and AMPA have no 

expected impact. However, the S distribution analysis revealed that glyphosate, AMPA and 

despenyl-chloridazon are present in more than 50% of the vandmråde of interest (widespread 

contamination) while bentazone produces a limited contamination. Former investigations in 

Skensved Å related to pesticides documented the potential for seasonal variations in concen-

trations entering the stream (Mcknight et al., 2012); therefore the contamination has been 

classified as semi-continuous. 

 

PAHs are directly linked to point source discharges such as stormwater separate system and 

CSO outlets. According to the IC classification, seven PAHs (fluoranthene, pyrene, ben-

zo(a)anthracene, chrysene, benzo(b+j+k)fluoranthene, dibenzo(a,h)anthracene and ben-

zo(ghi)perylene) were classified as having impact to the watercourse even with high dilution, 

two cause impact to the watercourse during low flow conditions and one (benzo(e)pyrene) was 

classified as potential impact to the watercourse. The S analysis showed that five PAHs (phe-

nanthrene, fluoranthene, pyrene, benzo(ghi)perylene and benzo(e)pyrene) result in wide-

spread contamination, while all the other detected PAHs revealed a semi-widespread contam-

ination. The T analysis for all detected PAHs resulted in the classification of pulse contamina-

tion, most likely entering the stream intermittently through stormwater and CSO discharges 

after rain events. 

 

The heavy metals could be related to geogenic, diffuse (agricultural fields) and point (storm-

water and CSO outlets) sources. The IC analysis indicated that Zn causes impact to the wa-

tercourse even with high dilution while Pb results in impact to the watercourse during low flow 

conditions. Cu had no expected impact to the watercourse. According to the S analysis, Zn is 
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classified as widespread contamination, while Pb and Cu as limited contamination. Regarding 

the T classification, Cu, Zn and Pb all fell into the category of continuous and/or pulse contam-

ination, for the same reasons discussed for the previous site. 

 

Kirke Å 

 

Desktop Screening 

In addition to one contaminated site, agricultural fields nearby the stream, as well as pipe 

outlets associated with CSO and separate stormwater systems were identified as additional 

potential sources of pollution within the vandområde of interest. Due to budget and time con-

straints, site-specific field investigations of the additional sources could not be conducted. 

 

Impact Assessment and Assessment Support 

Due to the absence of input data regarding the additional potential sources of contamination, 

the Impact Assessment and Assessment Support could not be performed on this study case. It 

was determined that further site-specific measurements would be required to support any 

evaluation of the potential contribution of additional pollutants to the stream. 

 

Conclusions   

 This project confirmed the relevance of studying the anthropogenic impact to surface waters 

through an integrated and comprehensive approach. 

 The method was able to support the assessment of water quality and facilitate the link be-

tween sources and receptors: the sources initially screened in the Desktop Screening could 

in most cases be linked to the pollutants found in the stream during the site-specific field in-

vestigations. 

 Including the environmental fate and toxicity of chemicals not regulated by EQS enables a 

more comprehensive assessment of the potential risk for non-regulated (e.g. emerging) pol-

lutants for which monitoring data in the aquatic environment are still needed. 

 Spatial and temporal occurrence of chemicals entering streams are useful parameters that 

could be of further assistance in the planning and optimization of future water quality moni-

toring campaigns, including evaluating the placement of existing (macro-, micro- and repre-

sentative) monitoring locations with the aim of delineating “worst-case” scenario conditions. 

 The method provides decision support to the regulator regarding which category of pollutant 

(and source) may be driving stream’s contamination, as well as serves as a gap analysis, to 

guide future data acquisition campaigns where linkages could not be made. 

 

Future perspectives 

 With such a variety of potential sources and chemicals, and the necessity of looking at a 

larger scale (compared to the impact from a single contaminated site impacting surface wa-

ter), it is difficult to predict and evaluate the major pollutant drivers from a single investiga-

tion. The resulting “snapshot” of the status of the receiving water body may in reality not be 

enough to uniquely identify the real pollution drivers, or may miss that these drivers can shift 

according to e.g. season. Spatial and temporal variations in pollutant loads and dilution con-

ditions therefore need to be more accurately assessed through site-specific representative 

data collection and modelling.  

 Furthermore, investigations encompassing only the stream water compartment were not 

conclusive enough to definitively pinpoint pollution drivers, complicating efforts to link 

sources and contaminants in streams. Moreover, this study neglected potential cumulative 

effects (joint toxicity) of chemicals, which could also be a limiting factor. 

 It is therefore recommended to: 1) test this approach on other streams potentially impacted 

by contaminated sites polluting the receiving water bodies with chemicals other than chlorin-

ated compounds; 2) determine the timing, monitoring locations and sampling methods ap-

plied in the field investigations depending on the characteristics of the investigated sources; 

3) integrate the approach proposed by Vezzaro et al. (2017) into the current method to bet-
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ter address the negative impacts coming from stormwater (CSOs/separate rainwater sys-

tems); 4) perform a multiple-compartment assessment for Køge Å, Skensved Å and Kirke Å 

to compare with current results and demonstrate the potential for enabling a better source-

pathway-receptor linkage which may lead to more cost-effective solutions for some source 

types. 

 

 



 

 10   The Danish Environmental Protection Agency / Investigating stream water quality under conditions of multiple stress 

1. Introduction 

1.1 Motivation of the study 
Land use changes and economic growth largely contribute to the deterioration of stream water 

and groundwater resources, including habitat degradation, hydrological alterations, water 

pollution and biological invasions (McKnight et al., 2015, 2010; Rasmussen et al., 2013; 

Schinegger et al., 2012; Schäfer et al., 2016; Sonne et al., 2017; Yu et al., 2014). More atten-

tion in the last years has been given to the characterization of anthropogenic contamination 

potentially impacting freshwater ecosystems, as the European Water Framework Directive 

(WFD) requires all Member States to ensure good ecological and chemical status of their 

surface waters. 

 

Contaminated sites are posing a major problem in Denmark. In total, more than 35,000 sites 

are contaminating or potentially contaminating  soil and groundwater (Miljøstyrelsen, 2016b) 

whereby some contaminated sites, particularly those located close to a stream, may addition-

ally threaten the state of the natural ecosystem and the chemical quality of the water 

(Miljøstyrelsen, 2016a, 2014; Sonne et al., 2017). When the Danish Soil Act was adapted to 

include contaminated sites as a source of pollutants impacting stream systems (BEK nr. 1552 

of 17/12/2013), the regions began mapping contaminated sites that could threaten nearby 

watercourses through groundwater contamination. To date, studies have started using a 

screening tool which could assist to select the contaminated sites posing a risk to streams 

(Miljøstyrelsen, 2016a, 2014). As initial step, this tool estimates the concentrations in the 

stream during low flow conditions based on the median minimum water flow. 

 

Attention has been given especially to chlorinated aliphatic hydrocarbons (CAHs) due to their 

widespread use in industrial processes and their chemical properties. In case of leakage, 

CAHs such as perchlorethylene (PCE) and trichloroethylene (TCE) can dissolve easily below 

the groundwater table forming troublesome contaminated plumes that last decades (Ellis and 

Rivett, 2007; Matteucci et al., 2015). Anaerobic conditions in the aquifer often result in the 

formation of vinyl chloride (VC), a highly mobile and carcinogenic degradation product (Smits 

et al., 2011). Moreover, chlorinated solvents and degradation products have a large potential 

to discharge in surface waters due to their high mobility and persistence (Ellis and Rivett, 

2007). However, other contaminated sites such as dry cleaners, former gasoline stations or 

old landfills may also pose a risk to surface water (Miljøstyrelsen, 2016a, 2014). 

 

To date, investigations related to stream water affected by contaminated sites have only con-

sidered single sources of contaminants, disregarding other potential sources close to the site. 

However, streams can be impacted by other contaminant sources than contaminated sites, 

especially in peri-urban (mixed land-use) stream corridors as illustrated in Figure 1. This in-

cludes discharge to streams of fertilizers and pesticides applied on agricultural fields,  

wastewater discharges containing nutrients and xenobiotic organic compounds (XOCs) and 

stormwater discharges with heavy metals and polyaromatic hydrocarbons (Bollmann et al., 

2014; Eriksson et al., 2007; Matthaei et al., 2010; Sonne et al., 2017).  
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FIGURE 1. Conceptual sketch of the multiple sources affecting stream water chemical 

and ecological status (Sonne et al., 2017). The pathways of the sources to the receiving 

water body are shown with the arrows (underground and surface pathways represented 

with red and orange arrows, respectively). 

 

The contaminant sources are typically divided into point and diffuse sources as illustrated in 

Figure 2. The pollutants can enter streams through different pathways such as groundwater 

discharge, surface runoff or simply direct discharge (e.g. sewage effluent and drainage sys-

tems). This depends mostly on the land use and the type of source, as well as its proximity to 

the stream. 
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FIGURE 2. Potential sources causing stream water pollution and their division into 

point and diffuse sources. For each category, examples for some of the sources are 

given. The figure is developed based on the literature survey in this report. Further 

details and more concrete examples of contaminant sources are reported in Chapters 2 

and 4. 

 

The resulting contaminations can spread continuously, acting as constant sources of pollution, 

or be characterized by periodic peaks depending on the season and/or on rainfall intensities. 

These combined chemical stressors, acting in the same area, could mask or contribute to the 

impairing effects, making the identification of sources and pathways harder. This could lead to 

uncertainties and poor understanding of the main impacts on the stream system, as a holistic 

understanding of the entire system is lacking especially in mixed land-use stream corridors. 

 

Consequently, mitigation measures focusing on individual contaminated sites may not neces-

sarily be able to ensure good ecological and chemical status in the stream, as the impairment 

could be driven by more than one source of contamination. This is supported by a number of 

studies confirming this supposition. For example, Schäfer et al. (2016) and Schinegger et al. 

(2012) reported that the majority of streams and rivers in Europe are affected by at least two 

different stressors, implicating that to improve ecological conditions it is important to adopt a 

multiple stressor context that could avoid the failure of river restoration projects or remedial 

actions. Therefore, multiple source assessments are also becoming more common, with re-

cent studies typically reporting more than one stressor and/or pathway affecting stream water 

quality (Barber et al., 2006; Bigi, 2017; Kuzmanović et al., 2016; McKnight et al., 2012; Sonne 

et al., 2017).  

 

Thus, management of contaminated sites requires a methodology for assessing whether the 

identified sites affecting stream water quality are the only source impairing the stream, and 

otherwise provide an approach for classifying the sources and related impacts of pollution in 
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order to facilitate decisions of further actions.  To do this, a more holistic source-pathway-

receptor methodological approach to water management is needed, linking the sources to the 

pathways and finally the affected surface waters. This concept is also one of the key principles 

set by the WFD, requiring that the stressors and their sources are studied together, improving 

the understanding of the governing processes, the source composition and origin (EA, 2005). 

 

1.2 Aim of the project 
The purpose of this project is to develop a methodology for assessing the importance of indi-

vidual contaminated sites in relation to other potential sources of chemical stressors impacting 

streams, enabling pollution driver identification (comparing source importance) in order to 

support the prioritization of remediation strategies for only those sources truly driving impact in 

stream systems. This project will improve the overall understanding of the major sources im-

pacting surface water, expanding the screening process to more compounds and potentially a 

larger scale thereby providing a more comprehensive approach to surface water pollution.  

 

The methodological approach will help to: 

 

  Screen potential sources of multiple stressors; 

  Support the assessment of water quality and thus chemical status; 

  Help identifying the dominant sources driving the pollution of the stream; 

  Link specific contaminants to their respective sources. 

 

1.3 Project content 
The project consists of 5 main activities: 

 

1. Review and description of both sources and pollutants of concern typically found in mixed 

land use stream systems/corridors. This also includes a brief description of Danish 

streams, and water quality and assessment methods specific for Denmark. 

 

2. Description and concretization of the proposed methodological approach. 

 

3. Review of a subset of identified contaminated sites in Denmark found to pose a risk to 

nearby streams, where sites were chosen such that stream corridors representing differ-

ent types of land use and hence chemical stressor sources are covered. After an initial 

general screening, three specific streams are described in more detail and assessed as 

study cases: Køge Å, Skensved Å and Kirke Å.  

 

4. Additional field investigations conducted to supplement existing data and/or fill data gaps 

to permit a first quantification of the contribution of each source. Only Køge Å and 

Skensved Å have been investigated due to budget and time constraints. 

 

5. Application of the developed approach for the three study cases, and a final discussion of 

limitations and further perspectives.  

 

1.4 Focus and boundaries of the study 
For this study, only sites contaminating streams impacted by chlorinated compounds will be 

assessed. Landfills, pesticide point sources or other types of contaminated sites were not 

considered in order to delineate the study boundaries and spend more resources on one type 

of contaminated site. In addition to this: 

 

 Contamination by chlorinated compounds remains one of the main focal points for the Dan-

ish Environmental Protection Agency (EPA) and Danish Regions; 
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 Contamination related to chlorinated compounds is specifically related to well-known com-

pounds (chlorinated solvents and degradation products); 

 This study can build on existing field studies, i.e. the Danish EPA in collaboration with Dan-

ish Regions have already identified a number of contaminated sites posing a risk to nearby 

streams due to contamination by chlorinated solvents (Miljøstyrelsen, 2016a). 

 

This study will assess the streams following the Vandområdeplaner (2015-2021), which specif-

ically defines which stream sections (according to typology and hydromorphology) have to be 

monitored and remediated to improve the Danish aquatic environment. The current investiga-

tion will thus assess multiple sources referring to the same administrative stream stretches (or 

vandområder) as defined by the Ministry of Environment and Food. 

 

Attention will be given strictly to the stream water compartment. Therefore, the current project 

will not cover contamination of the immediate groundwater, sediment and hyporheic zone 

compartments, thereby excluding the screening of sediment-bound or groundwater contami-

nants not present in stream water. 

 

Regarding the other sources that will be described in this study, a general overview of the 

contaminants related to each type of source will be given. However, the focus of this project 

will be on XOCs and heavy metals.  
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2. Examples of contaminated 
sites in a multiple stressor 
context 

2.1 Identification and characteristics of existing contaminated 
sites 

The starting point for this analysis is the presence of a contaminated site impacting a nearby 

watercourse. Therefore, the first phase consisted of clarifying whether the contaminated site is 

relevant or not in a multiple stressor context. To this end, a review of concrete examples of 

sites contaminating stream water with chlorinated solvents was performed. Available infor-

mation from previous screenings of contaminated sites was used to select potential study 

cases where, besides the contaminated site, other sources may adversely affect the chemical 

water status. In addition to reviewing Miljøprojekt nr.1846 (Miljøstyrelsen, 2016a), other known 

investigations related to sites contaminated with chlorinated compounds have been assessed. 

 

Overall, eight contaminated sites distributed around Denmark have been taken as examples of 

cases causing stream impairment. All the selected cases are characterized by chlorinated 

solvent contamination; however, they differ in land use characteristics and geographical loca-

tion. Figure 3 shows the location of the sites. 

 

  

 

 

 

FIGURE 3. Location of the selected contaminated sites impacting nearby streams. The-

se contaminated sites were selected for a more refined study. 

 

Table 1 presents the selected contaminated sites and related watercourses known to be im-

pacted by chlorinated compounds, together with the length of the stream water section that will 

need to be investigated, the current ecological status and ecological objective reported in the 
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Vandområdeplaner 2015-2021. The stream typology and hydromorphological characteristics 

are included in Table 1, as the typology affects which biological elements are used in deter-

mining ecological status in Denmark. It is well-known that poor hydromorphological conditions 

can mask other stressor effects in a stream, making it hard to distinguish whether the modifi-

cation of ecological communities is driven by source pollution or hydromorphological altera-

tions of the river (Buffagni et al., 2016; Rasmussen et al., 2011). The sites were furthermore 

divided based on the surrounding land use characteristics, as the types of contaminants and 

sources present will be closely related to the land use practices. The criteria for how the typol-

ogy, ecological status and ecological objective of a stream are further described in Chapter 3.  

 

None of the selected stream stretches except for Kobberbæk are characterized by good eco-

logical status. The longest stream stretch considered is for Skensved Å, encomassing 9.3 km; 

the shortest is 1.5 km (Grindsted Å). Regarding the hydromorphological conditions of the 

stream stretches of interest, two are classified as highly modified, while the others are charac-

terized by a natural profile and therefore did not undergo processes of channelization or high 

modification during the past decades. 

 

TABLE 1. Selected stream stretches contaminated by chlorinated compounds, their 

relative stream typology, hydromorphological characteristics, current ecological status 

(according to the WFD 5 water quality class system), and ecological objectives. 

 Stream Region Contaminat-

ed site loca-

tion 

Stream 

stretch 

length (km) 

Stream 

typology 

Hydromorpho-

logical charac-

teristics 

Current eco-

logical sta-

tus 

Ecological 

objectives 

Urban areas 

1  
Arresø Kanal 

 

Region 

Hovedstad

en 

Frederis-

kværk 

 

2,3 2 Highly modified Moderate 

ecological 

potential 

Good eco-

logical po-

tential 

2 Kobberbæk Region 

Syddan-

mark 

Svendborg, 

Kobber-

bæksvej 75 

5,5 1 Not highly modi-

fied 

Good ecolog-

ical status 

Good eco-

logical sta-

tus 

Mixed land use 

3 Køge Å Region 

Sjælland 

Køge, Torvet 

20 

7,6  

 

2 Not highly modi-

fied 

Poor ecologi-

cal status 

Good eco-

logical sta-

tus 

4 Kirke Å Region 

Midtjylland 

Bredgade 1-

9, Skjern 

8,5 2 Not highly modi-

fied 

Bad ecologi-

cal status 

Good eco-

logical sta-

tus 

5 Mølleåen Region 

Hovedstad

en 

Raadvad 

Knivfabrik 

1,7 3 Highly modified Moderate 

ecological 

potential 

Good eco-

logical po-

tential 

6 Grindsted Å 

 

Region 

Syddan-

mark 

Grindsted 1,5 2 Not highly modi-

fied 

Moderate to 

good ecolog-

ical status 

Good eco-

logical sta-

tus 

Rural areas 

7 Skensved Å Region 

Sjælland 

Lille 

Skensved 

9,3 2 Not highly modi-

fied 

Poor ecologi-

cal status 

Good eco-

logical sta-

tus 
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8 Hundelev Å Region 

Nordjylland 

Løkkensvej 

690, Hun-

delev 

3,0 1 Not highly modi-

fied 

Poor ecologi-

cal status 

Good eco-

logical sta-

tus 

 

2.2 Initial screening for additional contaminant sources 
A possible list of additional contaminant sources were identified in a literature review about the 

common sources threatening streams in mixed land use catchments (Figure 2). A more de-

tailed description of the single sources and their respective pollutants can be found in Chapter 

4.The two online databases MiljøGIS and MiljøPortalen were used to collect information on 

these sources and existing environmental data regarding the streams in the water courses of 

interest (Table 1).   

 

Table 2 shows that all the streams are characterized by at least one (or more) contaminated 

sites threatening or potentially threatening the water quality. Besides the contaminated sites, 

all sites include multiple other sources of different natures. Combined sewer overflows (CSOs) 

and urban stormwater discharges are the most frequently observed point sources. CSOs and 

stormwater drains could potentially pollute the stream with wastewater or urban water in every 

stream listed in Table 2 except for Hundelev Å. Pesticides could impact Køge Å, Grindsted Å, 

Skensved Å and Hundelev Å due to the presence of nearby agricultural fields.  

 

Thus, this initial screening highlights the need for a holistic approach, where not only contami-

nated sites are assessed, but also other relevant contaminant sources along the watercourse. 

 

TABLE 2. List of potential sources within the stream section of interest and located 

within close proximity to the contaminated site. 

  Contaminated 

site 

Wastewater 

discharges 

Industrial 

discharges 

Fish 

farms 

Close 

Agricultural 

fields 

CSO 

drains 

Urban 

Stormwater 

drains 

Urban areas 

1 Arresø Kanal  X     X X 

2 Kobberbaek X     X X 

Mixed Land Use 

3 Køge Å X  

 

   X X X 

4 Kirke Å X (X) down-

stream from 

the section of 

interest 

(X) down-

stream from 

the section of 

interest 

  X X 

5 Mølleåen X (X) upstream 

of the section 

of interest 

   X X 

6 Grindsted Å 

 

X X X X X X X 

Rural Areas 

7 Skensved Å X X X  X X X 

8 Hundelev Å X    X   
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3. Chemical and ecological 
stream water quality 

3.1 Stream classification 
The Danish National Water Plans for 2015-2021 characterize the streams physically according 

to typologies. This helps to determine stream type-specific conditions and enable comparisons 

to other water bodies of the same type.  Three different typologies are used to characterize the 

stream according to the width of the watercourse, the extent of the river basin and the distance 

from the stream origin. Table 3 presents an overview of the characteristics for each typology. 

A watercourse will be classified according to the type in which most properties fall 

(Vandområdeplaner, 2014). 

 

TABLE 3. Characteristics of the different stream types as defined in the Water Plans 

2015-2021. 

Type 1 2 3 

Width of the 

watercourse  (m) 

<2 2-10 >10 

Scale of 

the basin (km
2
) 

<10 10-100 >100 

Distance from the 

stream origin (km) 

<2 2 - 40 >40 

 

According to the classification described in Table 3, the majority of Danish streams is classi-

fied as type 1. Figure 4 shows the Danish streams classified with different colors according to 

the stream typology (1, 2 or 3). The presence of larger streams is more common in Regions 

Midtjylland and Syddanmark, while Regions Sjælland, Hovedstaden and Nordjylland are pre-

dominantly characterized by streams within typology 1 and 2. 
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FIGURE 4. Map showing the Danish streams divided according to typology (source: 

MiljøGIS 2018). 

 

Watercourses are also classified depending on the hydromorphology. The division is between 

natural watercourses (or not highly modified) and highly modified or artificial watercourses. 

The latter case designates streams that have been created by human activities (e.g. channels) 

or heavily modified for human purposes (e.g. drainage, irrigation, water navigation) thus heavi-

ly adapting the physical morphology of the course and the banks (e.g. channel straightening, 

dredging). For these kinds of artificial streams, it is sufficient to reach good chemical status 

and good ecological potential under the WFD, as the remediation actions needed to reach 

good ecological status would have a negative effect on human activities (such as recreational 

water activities) and high costs of restoration for the municipality (Vandområdeplaner, 2014). 

Denmark has ca. 60,000 km of watercourses with around two thirds defined as artificial or 

highly modified (Vezzaro et al., 2017).  

 

3.2 Chemical status in streams 
The WFD requires that good chemical status is reached in all running waters.  The chemical 

status is determined by comparing the concentrations of a range of priority pollutants with their 

respective Environmental Quality Standards (EQS). Good chemical status is reached if all 

detected chemicals comply with their EQS values. The watercourse will not meet the target if 

only one of the measured hazardous pollutants exceeds its related water quality criterion 

(Vandområdeplaner, 2014). The list of substances that pose a risk to the aquatic environment 

were selected by the European Commission (Priority Pollutants EU Directive 2000/60/EC, 

2008/105/EC, 2013/39/EU) and then extended by the Danish Ministry of Environment and 

Food (BEK 439 19/05/2016). The European commission selected 45 priority pollutants and 

defined specific EQS to evaluate the chemical status of the streams. The Danish authorities 

monitor an additional 134 compounds with supplementary national quality standards. 
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The existing EU regulation sets two guidelines: the Annual Average (AA) and the Maximum 

Allowable Concentration (MAC), which are translated as Generelt kvalitetskrav and Maksi-

mumkoncentration, respectively, for the Danish National regulation. For simplicity, the acro-

nyms AA and MAC will be used in this report to refer both to the National and EU guidelines. 

The purpose of the AA guideline of a substance is to ensure protection against long-term ex-

posure; therefore, it has to be compared to the average concentration measured over a one-

year period. The purpose of the MAC guideline is to ensure protection against short-term pol-

lution peaks where it has to be compared with the maximum concentration detected. The 

complete list of compounds regulated by the EU and/or the Danish EPA together with their 

respective AA and MAC EQS values can be found in the directive BEK 1625 19/12/2017. 

 

In Denmark, only a small fraction of the streams have been monitored to address the chemical 

status.  Counting the ca. 20,000 km of natural streams present, 205 km have been investigat-

ed with respect to hazardous water pollutants (Vandområdeplaner, 2014), resulting in that only 

1% can be fully assessed. The limited number of available data is represented in Figure 5, 

showing the streams where data regarding the chemical status are available. The map in-

cludes the highly modified streams. It should be noted that some information and data from 

recent investigations e.g. conducted by universities or private companies may not be included 

in the map. Collecting environmental data from different sources is essential to obtain a relia-

ble and consistent database that is more representative of the current monitoring extent.   

 

  

 

 

 

FIGURE 5. Map showing the chemical status of Danish streams (source: MiljøGIS 2018). 

 

3.3 Ecological indicators of streams and rivers 
According to the WFD and the Danish Water Plans for 2015-2021, the ecological status of 

streams should be defined by four biological indicators: benthic macroinvertebrates, freshwa-
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ter plants (macrophytes), fish and benthic algae. Each indicator has six classes indicating their 

status: Excellent, Good, Moderate, Poor, Bad or unknown. In Denmark, only fish, benthic ma-

croinvertebrates and freshwater plants have been used for assessing the ecological status so 

far, as the benthic algae index has not yet been completed. However, the aim is to finalize it 

for inclusion in the biological assessment scheme by 2021 (Vezzaro et al., 2017). 

 

The macroinvertebrate community is classified according to the Danish Stream Fauna Index 

(DSFI), a method used to quantify the status of oxygen sensitive species in streams. Since 

oxygen levels are affected by a number of contaminants, e.g. increased 5-day biological oxy-

gen demand (BOD5) or high nutrient levels, the index can also provide some indication of the 

chemical status of a stream  (McKnight et al., 2012; Vezzaro et al., 2017). The DSFI is com-

prised of seven values that represent a specific class from the WFD (Table 4), and has been 

intercalibrated with European standards (Vezzaro et al., 2017). 

 

TABLE 4. DSFI classes representing the status of the benthic macroinvertebrate com-

munity in conjunction with the WFD classification system. 

WFD Status DK DSFI 

Excellent 7 

Good 5-6 

Moderate 4 

Poor 3 

Bad 1-2 

Unknown 0 

 

The plant status is based on the Danish Stream Plant Index (DSPI). This type of index aims to 

provide information regarding the nutrient levels and the hydromorphological changes of the 

stream related to human activities (e.g. dredging). However, the DSPI is applied only for larger 

streams falling into the typology categories 2 or 3 (Vandområdeplaner, 2014) which somewhat 

restricts its use in Denmark as the majority of streams are characterized by typology class 1. 

Regarding the fish bioindicator, the Danish Fish Index for Streams (DFIS) is used to assess 

the species richness and diversity. This index can also be used for larger streams (types 2 and 

3) where it is more common to detect three or more species of fish. However, streams charac-

terized by typology class 1 are expected to be poor in their number of representative fish spe-

cies. For this reason, the DFIS was split into two new national indices, which still need to be 

intercalibrated at the EU level (Vezzaro et al., 2017): the DFISa and the DFISø, where a 

stands for art (referring to taxonomic composition, and used in larger streams) and ø stands 

for ørred (referring to e.g. trout species found in the smaller type 1 streams) (Kristensen et al., 

2014). To sum up, streams within typology 2 and 3 are evaluated through a combination of 

DSFI, DFIS and DSPI. For smaller streams (typology 1), the biological status is only based on 

the DSFI and the DFISø. The overall surface water status is then determined by the lowest 

ecological status between the different indices used in the evaluation; i.e. with a “one out, all 

out” standpoint. 

 

Notably, many more investigations of the ecological status of Danish streams have been car-

ried out in recent years compared to the investigations of chemical status, as shown in Figure 

6. In case of highly modified streams, the ecological status is reported as “potential”, as the 

goal of good ecological status doesn´t has to be reached due to the modified hydromorpholog-

ical conditions of these streams.  It can be seen that only part of the streams are characterized 

by excellent/good ecological status/potential (indicated in light blue/green, respectively), while 

most of them are in moderate/poor/bad condition (yellow, orange, red, respectively), especially 

in Region Nordjylland and Region Sjælland. This could be attributed in part to the fact that 
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chemical stressors have only relatively recently been recognized as a stressor of major con-

cern (in addition to e.g. habitat alteration; invasive species) (e.g. Malaj et al., 2014; Schäfer et 

al., 2016; Sonne et al., 2017), whereby the study of multiple stressor systems is still somewhat 

in its infancy due in part to issues complicating experimental conditions for studies with greater 

than two-stressor interactions (Schäfer and Piggott, 2018). 

 

  

 

 

 

FIGURE 6. Map showing the overall ecological status/potential of Danish watercourses 

(source: MiljøGIS 2018). 
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4. Identification and 
description of sources and 
pollutants 

The quality of numerous streams frequently does not meet the ecological standards and most 

of the Danish streams lack data regarding the presence of environmental hazardous pollu-

tants. Stream water contaminants include a wide range of organic and inorganic chemicals, 

pathogens and nutrients which alter the water chemical properties besides affecting the natu-

ral biological communities.  

 

This chapter will focus on describing the main stream water pollution source categories, in 

addition to characterizing the pollutants that could be present and simultaneously cause water 

impairment and degradation.  

 

4.1 Water pollution source categories and pathways 
As previously outlined in Chapters 1 and 2 (Figures 1 and 2), there are many sources poten-

tially affecting water quality. Table 5 presents the two general source categories (point and 

diffuse) together with their key characteristics. 

 

TABLE 5. List of the main water pollution sources together with their primary attributes. 

Point sources Characteristics 

C
o
n
ta

m
in

a
te

d
 

s
it
e
s
 

- Gas stations 

- Landfills 

- Auto repair shops  

- Dry cleaners 

- Machine pools 

- Continuous sources of pollution 

- Contamination mainly introduced in the stream due to groundwater discharge  

- Discharge location typically identifiable despite spatial and temporal variations 

- Impact from these sources increases during low flow conditions 

 

D
ir
e
c
t 

d
is

c
h
a
rg

e
s
 

- Household wastewater dis-

charges 

- Industrial discharges 

- Aquaculture discharges 

 

- Single identifiable source that can be distinguished from other pollution sources 

- Contaminants introduced directly into the aquatic environment at a single location: 

emission limit values can be set to regulate pollution loads 

- Impact from these sources increases during low flow conditions 

 

- Combined sewer overflows 

(CSOs) 

- Separate stormwater dis-

charges 

 

- Single identifiable source that can be distinguished from other pollution sources 

- Contaminants introduced directly into the aquatic environment at a single location: 

emission limit values can be set to regulate pollution loads 

- Impact of these sources most often increases as discharged flow increases during rain 

events 

Diffuse sources  

 - Agricultural fields* 

- Abandoned mine drainage 

- Soil erosion 

- Livestock farms 

- Difficult to identify the discharge location due to spatial and temporal variations  

- Impact of these sources increases as flow increases during rain events 

* Runoff and discharge to streams from agricultural fields can be conveyed either as direct surface runoff, 
or enter via tile drains or groundwater. Tile drains could be viewed as a direct point discharge, but the 
purpose of tile drains is to drain the agricultural fields, and often there are more than one along a stretch of 
interest. Thus, the water in the drains represents the water leaching out of the field, and is thus considered 
a diffuse source in this report. 
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Contaminated sites, household wastewater, industrial and fish farm discharges are all catego-

rized as point sources of pollution, releasing chemicals from discrete stationary conveyances; 

however, they are of a very different nature. Contaminant plumes from contaminated sites 

usually discharge into streams via groundwater in areas with presence of groundwater-stream 

water contact zones. The plumes can vary in width from a few meters up to wide plumes from 

landfills or even large plumes, especially from former industrial facilities. Sewage treatment 

plants and fish farms typically have discharging pipes or ditches connecting the source to the 

stream and limits are often set to regulate the pollution load flowing into the running waters. 

Point sources are usually more relevant in terms of concentration during low streamflow condi-

tions, as the dilution factor is lower compared to the winter season, increasing the pollutants’ 

concentrations in the river (Eriksson et al., 2007; Rasmussen et al., 2013). 

 

On the other hand, there are point sources of pollution typical for urban areas, such as CSOs 

and separate stormwater discharges (Eriksson et al., 2006; Vezzaro et al., 2017; Wicke et al., 

2014). The combined sewers collect the water from waste- and stormwater before conveying 

everything to the wastewater treatment plant. CSOs may discharge into surface waters when 

the capacity of the drainage network is exceeded. The separate stormwater systems are sepa-

rate drainage systems built to collect water from roofs, streets and highways, with the intention 

of discharging it into a stream after some retention (smoothing of the peak flows) and perhaps 

pollutant removal, depending on the regulations given by the municipality. This helps to reduce 

the amount of water going to the treatment plant during wet weather periods as well as reduce 

the volumes discharged via CSOs. Sometimes retention basins are also built to reduce the 

CSO volumes. They store the mixture of sewage and stormwater before sending it to a 

wastewater treatment plant. 

 

Nonpoint (diffuse) sources generally refer to pollutants coming from a variety of activities and 

not a unique and identifiable pipe (as with wastewater discharges, CSOs or stormwater out-

flows) or hotspot (contaminated sites). Agricultural lands, livestock farms, soil erosion and 

mine drainages are typically placed in this category. Diffuse sources release contaminants 

with high spatial and temporal variations, depending for example on the pesticides spraying 

season or heavy rainfall periods. Typical pathways connecting diffuse sources to streams are 

groundwater-surface water contact zones, surface runoff and superficial or underground drains 

collecting the water and discharging it to the stream. 

 

These different types of sources can interact together, making it difficult to distinguish the 

sources of contaminants detected in streams and thus to predict the effects of multiple stress-

or contamination (Matthaei et al., 2010; Rasmussen et al., 2013). For this reason, implement-

ing the right remediation strategy to reduce or eliminate the contamination may be difficult.  

 

4.2 Contaminants 
Depending on the type of source, different contaminants could impact the receiving water 

body. Based on available information regarding pollutants found in past investigations and a 

literature review, it was possible to divide the categories of expected contaminants relative to 

each type of source. The pollutants could be subdivided into general pollutants, XOCs and 

emerging pollutants.  

 

General pollutants include traditional chemical parameters typically analyzed to give an over-

view of the general chemical status of a river such as organic matter, nutrients and inorganic 

macro-ions, but also pathogens, heavy metals and suspended solids (SS). XOCs represent 

the list of toxic chemical pollutants not naturally found in the environment and commonly pre-

sent in low concentration ranges (μg/l or below). The XOCs include for example dioxins, poly-

chlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and pesticides.  

Emerging pollutants are described as contaminants not commonly monitored which have the 

potential to enter the environment and harm ecological and human health. The overall 
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knowledge of this category of pollutants is relatively sparse, meaning that maximum allowed 

concentrations in the environment are not regulated or sampling methods are not yet harmo-

nized. For this reason, the EU created through the directive 2013/39/EU a Watch List, includ-

ing a number of emerging pollutants for which monitoring data in the aquatic environment are 

needed to provide information regarding concentrations of new pollutants potentially posing a 

risk to the environment and human health (Carvalho et al., 2015). The emerging pollutants 

include pharmaceuticals, personal care products, artificial sweeteners and endocrine disrup-

tors (Fairbairn et al., 2015; Vezzaro et al., 2017). Figure 7 gives an overview of the types of 

pollutants potentially coming from a specific source. The main pathways of pollutants from the 

source to the receiving water body are also included. 

 

 

FIGURE 7. Schematic representation of sources, pathways and related pollutants con-

taminating the water courses in Denmark. Abbreviations: BOD5= 5-day biological oxy-

gen demand, COD=chemical oxygen demand, GW=groundwater, XOCs=xenobiotic or-

ganic compounds, PAHs=polycyclic aromatic hydrocarbons, PCBs=polychlorinated 

biphenyls. 
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4.2.1 Contaminated sites 

There are many pollutants related to contaminated sites: in Denmark there are more than 

35,000 documented contaminated sites, which taken together comprise a very large number of 

different chemical compounds and their metabolites. The contaminants found at the sites will 

of course depend on the specific contaminated site. 

 

Landfills for example, have a very heterogeneous contamination, from general pollutants such 

as inorganic ions, non-volatile organic carbon (NVOC) and ammonium (NH4+) to xenobiotic 

organic compounds and emerging pollutants such as pesticides, dioxins and pharmaceuticals 

(Miljøstyrelsen, 2014; Milosevic et al., 2012; Sonne et al., 2017; Thomsen et al., 2012). Land-

fills are the second major cause of soil and groundwater pollution in Denmark, accounting for 

approximately 2150 sites where the guideline value for at least one compound has been ex-

ceeded and therefore the site was listed at knowledge level 2 (established contamination) 

(Miljøstyrelsen, 2014). 

 

On the other hand, contaminated sites such as gasoline stations or dry cleaner facilities com-

prise another major category of specific pollutants, respectively BTEXs and chlorinated sol-

vents. Overall, there are 2491 documented gasoline stations and 917 dry cleaning facilities 

causing soil and groundwater contamination in Denmark (DKJORD, 2012). 

 

Pesticide point sources are also receiving more attention in recent years. Herbicides such as 

phenoxy acids, chloridazon and their degradation products were found contaminating soil and 

groundwater due to the presence of leaching machine pools, market gardens or tanks contain-

ing elevated concentrations of pesticides (Miljøstyrelsen, 2013; Reitzel et al., 2004). In Syd-

danmark, machine pools were among various point sources suggested as the most pro-

nounced point source for chloridazon and its degradation products (Miljø og Ressourcer, 

2016). 

 

In this project, only sites contaminated by chlorinated compounds have been investigated, 

recognizing that this is just a small part of the great number of sites potentially able to contam-

inate nearby streams through groundwater discharge.  

 

4.2.2 Combined sewer overflows, separate stormwater systems and 

wastewater effluents 

Combined sewer overflows are discharging a mixture of wastewater and stormwater to the 

streams. In CSOs, pollutants can be found in the dissolved phase, such as ammonium, or 

bound to particulates (colloids; sediment), typical for pollutants with a high tendency to sorb 

(PAHs, heavy metals). In the combined systems, the stormwater acts as a dilutor, decreasing 

the concentrations of most of the pollutants (except for some heavy metals and PAHs). As the 

CSOs are produced by the overflows of combined systems, the chemical composition and 

pollutants present are a combination of urban wastewater and stormwater, and can therefore 

include ammonium, phosphorus, organic matter and/or heavy metals. Among the XOCs, the 

same pollutants found in separate stormwater systems (described below) are expected, to-

gether with emerging pollutants such as personal care products, antibiotics and pharmaceuti-

cals (such as ibuprofen). 

 

Separate stormwater systems can decrease the volume going through wastewater treatment 

plants, thereby reducing the possibility for (combined) sewer overflows. However, only part of 

it is treated before entering the streams. Separate partly treated or untreated stormwater com-

ing from roofs, highways, roads and gardens can also be collected and discharged directly into 

the streams, potentially posing a higher risk compared to actual wastewater discharges 

(Eriksson et al., 2006; Wicke et al., 2014). Moreover, the disconnection of stormwater runoff 

from combined urban drainage systems results in greater volumes of untreated water dis-

charging to the streams (Vezzaro et al., 2017). A study conducted in the city of Berlin conclud-
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ed that the larger fraction of priority pollutants discharging into surface water bodies comes 

from the stormwater systems rather than the treated wastewater discharges (Wicke et al., 

2014). The pollution loads in the separate systems are highly variable, as they depend on 

which type of water is being collected (lower pollution areas such as parks and roofs, or higher 

pollution areas such as highways or roads). XOCs such as PAHs, pesticides, plasticizers and 

biocides (used in wood protection products and paints) are also frequently found in stormwater 

systems. PCBs are also within the wide range of different substances that can be found in 

stormwater discharges (Bollmann et al., 2014; Eriksson et al., 2006; Vezzaro et al., 2017). 

Among the general pollutants, heavy metals such as Cd, Cr, Cu, Pb and Zn are frequently 

found in stormwater. 

  

The chemical composition and pollutant load found in wastewater discharges also depends on 

different aspects: first of all, the types of industrial discharges connected to the wastewater 

treatment plant. Secondly, wastewater characteristics such as the system capacity and the 

different treatment steps available could lead to a highly variable composition of the water 

discharged. In general, when medium to heavy rains occur and the overall system is com-

bined, the high hydraulic load would decrease the removal performance of the plant, increas-

ing the number of pollutants discharged to the stream (Vezzaro et al., 2017). 

 

4.2.3 Agriculture activities and aquaculture 

Agricultural areas are another well-known source of contamination for freshwater ecosystems. 

Pesticides are a major stressor related to this type of land use due to their negative effects on 

macroinvertebrates and therefore on the overall ecosystem biodiversity (Bunzel et al., 2014; 

Liess and Von Der Ohe, 2005; Schäfer et al., 2016). Pesticides include herbicides, fungicides, 

insecticides and plant growth regulators. Another major type of pollution coming from agricul-

tural fields includes macro- and micro-nutrients derived from fertilizers (Hansen et al., 2011). 

Both pesticides and fertilizers can be transported into the watercourse via atmospheric 

transport and deposition, surface runoff, drains or groundwater. Multiple pathways lead to 

difficulties in deciding the points where monitoring and subsequently remediation should be 

performed, in addition to difficulties in understanding the mass flow from a specific agricultural 

field.  

 

The presence of aquaculture discharges could also potentially impact stream water quality and 

lead to adverse effects on ecosystems. Two main categories of pollutants have an important 

role with respect to aquaculture: nutrients and pharmaceuticals. Aquacultural production could 

increase the concentrations of macro-nutrients (such as nitrogen and phosphorus) that can 

lead to the eutrophication of water bodies (Zhang et al., 2015). Pharmaceuticals are also used 

in fishery production as antibacterial agents to avoid the spreading of infections and increase 

stocking densities. Antibiotics could  migrate in different environmental matrices close to the 

aquaculture systems, affecting the aquatic environment  (Zheng et al., 2012). The most com-

monly used antibiotics are sulfadiazine, oxolinic acid, oxytetracycline, amoxicillin and 

florfenicol (Pedersen et al., 2004). In a more recent study, Sonne et al. (2017) found sulfame-

thiazole, sulfathiazole and sulfadiazine downstream from two fish farms in Grindsted Å.  
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5. Development of a decision 
support tool 

The current chapter describes the methodological approach built for the purpose of dealing 

with contaminated sites impacting stream water quality under conditions of multiple stressors. 

The integrative approach was designed to help the Danish authorities and the Regions in 

identifying the real stream contamination drivers in a multiple stressor context. This new deci-

sion support tool was then applied to the three study cases that will be described in Chapter 6.  

 

5.1 Description of the methodology 
The overall integrated assessment methodology is shown in Figure 8. The approach is divided 

into three sections: Desktop Screening, Impact Assessment and Assessment Support. The 

methodology deals only with steps described inside the black, dashed line. The management 

of contaminated sites posing a risk towards surface water is still under consideration as part of 

the implementation of the EU Water Framework Directive. Thus, any final decisions and fur-

ther handling (investigation and remediation) of the sites will not be discussed in this report, 

which may depend on additional factors not directly related to the chemical stressors investi-

gated here. 

 
5.1.1 Desktop Screening 

The purpose of the Desktop Screening is to obtain information regarding potential pollution 

sources along the stream section of interest. As already pointed out in Chapter 1, the initial 

condition to start this investigation is the presence of a site contaminated by chlorinated eth-

enes impacting or potentially impacting a nearby watercourse. Therefore, this is the first infor-

mation to acquire in the proposed integrated approach. This is currently done by the Danish 

Regions by use of a screening tool and is expected to be followed by additional investigations, 

which is outside the scope of this report.   

 

In the case that a contaminated site is polluting a nearby stream, the presence of potential 

additional sources needs to be investigated. This is accomplished by using databases such as 

MiljøGIS, MiljøPortalen and the Jupiter database maintained by the Geological Survey of 

Greenland and Denmark (GEUS). In this manner, information about discharge point locations, 

land use patterns, contaminated groundwater and potential additional useful information re-

garding the stream of interest (hydromorphology, stream type, ecological conditions, etc.) can 

be collected.  

 

If no other sources of contamination are found, the contaminated site has to be assessed 

individually (see dashed blue line in Fig. 8). If additional sources are present or could potential-

ly be present, data regarding contaminant mass discharges or chemical concentrations found 

in the stream should be acquired through a literature review (i.e. by looking for example to site-

specific past investigations), via the previously mentioned databases (collecting useful infor-

mation) or directly acquiring new data through field measurements. 

 

5.1.2 Impact Assessment 

The Impact Assessment is based on the desktop screening. This is divided into three different 

steps: Impact Screening (IS), Impact Characterization (IC) and finally Spatial (S) and Temporal 

(T) distribution. Figure 9 presents the flow diagram focused only on this part of the methodo-

logical approach. This three-step assessment is applied to each single chemical detected in 

the stream. 
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FIGURE 8. Schematic representation of the methodological approach proposed to eval-

uate the impact of contaminated sites to stream water quality under the condition of 

multiple stressors. Everything outside the black dashed line is not covered in the cur-

rent report. 
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FIGURE 9. Flow diagram for identifying the Impact Assessment of single compounds. 

The flow diagram has to be read from left to right. 

 

Impact Screening (IS) 

The IS step collects information regarding fate and effects of chemicals in freshwater systems. 

First, National or EU EQS values for the chemicals of interest are collected. Then, in order to 

additionally take into account the ecological effects of chemicals not regulated by Environmen-

tal Quality Standards, ecotoxicity and bioaccumulation data has to be collected. Ecotoxicity is 

represented by the lethal dose (mortality) killing 50% of the organisms, LC50, or median effec-

tive concentration of 50% growth inhibition, EC50, of four aquatic bioindicator categories: fish, 

crustaceans, algae and plants. The potential for bioaccumulation was estimated from two 

different indices reported in the literature: the octanol-water partition coefficient (Kow) and the 

bioconcentration factor (BCF). 

 

If insufficient data are available, the Impact Characterization (IC) is not possible (purple box in 

Figure 9) and the assessment moves directly to the third step, evaluating only the spatial and 

temporal distribution of the chemical in the stream. 

 

Impact Characterization (IC) 

Focusing now on the Impact Characterization, Table 6 shows the different groups in which the 

chemicals of interest can fall. Each group is defined in bold and identified by a color. Table 6 

also shows the cut-off values assigned to each group.  
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TABLE 6. Impact Characterization (IC) groups and cut-off values used. 

 

 

The IC divides the chemicals into four groups: 

 

1. Impact to the watercourse even with high dilution (red compound): the concentration of the 

chemical exceeds the MAC EQS in at least one investigated point of the stream stretch of 

interest. In this case concentrations are so high that they are expected to impact the wa-

tercourse in the majority of the cases, even during high flow conditions. 

 

2. Impact to the watercourse during low flow conditions (orange compound): the concentra-

tion of the chemical exceeds the AA EQS in at least one investigated point of the stream 

stretch of interest. This condition is less alarming than the previous case. 

 

3. Potential impact to the watercourse (yellow compound): if EQS values are not defined, the 

chemical is potentially impacting the stream stretch of interest if the short-term toxicity as-

sessed from results of standardized tests of at least one of the four aquatic indicator spe-

cies is above the benchmark value of 10 mg/l. A chemical is considered also potentially 

impacting the watercourse if they are characterized by medium to high potential for bioac-

cumulation (log Kow≥3 or BCF≥100). 

 

4. No expected impact (green compound): if the chemical is below the EQS values or below 

cut-off values of aquatic toxicity and bioaccumulation as described in point 3. 

 

Spatial (S) and Temporal (T) distribution 

The Spatial (S) and Temporal (T) distribution in turn divide the chemicals into three groups 

each.  

 

The S distribution is evaluated through the groups shown in Table 7: 

 

1. Widespread contamination (dark grey): if the chemical is found in more than 50% of the 

stream stretch of interest. This condition is true if the majority of the investigated points 

were contaminated by the chemical of interest. 

 

2. Semi-widespread contamination (grey): If the pollutant is found in a portion between 10% 

and 50% of the stream stretch of interest. 
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3. Limited contamination (light grey): if the pollutant is found in less than 10% of the stream 

stretch of interest. This condition is true only if among the investigated points only few 

were contaminated by the chemical of interest. 

 

A practical example of how the percentage of the chemical’s spatial distribution is determined 

is described below and shown in Box 1: 

 Calculate the distances between the sampling points. 

 If a pollutant is found in hypothetical point 1, the stretch of the vandområde influenced by 

that contaminant is half of the stretch between point 1 and the next sampling location, point 

2. If the pollutant is also found in point 2, the stretch influenced by the pollutant in point 2 is 

calculated as the remaining part between point 1 and 2 plus half of the stretch between point 

2 and the next sampling location, point 3. 

 Finally, if the pollutant is found only in point 1 and 2, the percentage of vandområde influ-

enced by the chemical of interest is calculated as the ratio between the sum of the two 

stretches and the total length of the vandområde of interest. 

 

Box 1

 

 

The proposed method is dependent on the number of samples taken along the stream stretch 

of interest. More sampling points will lead to a better evaluation of the spatial distribution, as 

the distances between the sampling points will be shorter and the calculation of the percent-

age will be less approximate. 

 

The spatial distribution as it was described above is adequate for xenobiotic organic com-

pounds, i.e. chemical substances not naturally produced or expected to be present in the envi-

ronment. In order to potentially consider also inorganic pollutants (such as heavy metals), the 

concentrations of inorganic compounds found in the sampling points are used in the calcula-

tion described above only if the measured concentration is above the 90% quantile found in 

Danish streams, as discussed in Sonne et al. (2017). The 90% quantile is a useful cut-off point 

that can be applied to see if the concentration found in one point falls within the range of val-

ues usually found in Danish streams (and if so, then it doesn´t need to be considered in the 

spatial distribution calculation).  
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TABLE 7. Spatial (S) distribution groups and cut-off values used. 

 

 

The last parameter used for the evaluation of the impact of multiple stressors in streams is the 

Temporal (T) distribution. This parameter characterizes the temporal variation of the chemicals 

of interest in the water body. Moreover, addressing the occurrence of the chemicals is a key 

factor useful in forecasting the moment of the year with the highest and lowest concentrations. 

This could be beneficial for deciding when to acquire additional data through field investiga-

tions or deciding the timing for remedial efforts. 

 

Similar to the S distribution, the Temporal (T) distribution is evaluated through the groups 

shown in Table 8, which are then described in more detail below. 

TABLE 8. Temporal (T) distribution groups. 

 

 

1. Continuous contamination: if the pollutant is released in the watercourse with no interrup-

tions. This is the typical case of chemicals coming from contaminated sites, which are 

continuously discharged into nearby streams due to the presence of groundwater-surface 

water contact zones. If the contamination is continuous, the contaminant mass approach 

can be applied to calculate the total groundwater contaminant mass per unit of time dis-

charging into the stream (CMD) (Milosevic et al., 2012; Rønde et al., 2017). In this case, a 

simple mass balance and plug flow is used to estimate the CMD: 

 

𝐶𝑀𝐷 (
𝑘𝑔

𝑦𝑒𝑎𝑟
) = 𝐶𝑚𝑖𝑥  ∙ 𝑄𝑚𝑖𝑥  

 

Where 𝐶𝑚𝑖𝑥 and 𝑄𝑚𝑖𝑥 are respectively the stream water concentration and flow at the 

point of fully mixed conditions (Aisopou et al., 2015; Sonne et al., 2017). For this project, 

three classes were used to classify the magnitude of the pollution load discharging into 

the stream (Table 9). This approach is similar to the concepts reported in Newell et al. 

(2011). The magnitude of  Mag1-Mag3 categories is representative for known CMD’s from 
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contaminated sites in Denmark (e.g. Miljøstyrelsen, 2016a; Rønde et al., 2017; Troldborg 

et al., 2012). 

 

TABLE 9. Contaminant mass discharge (CMD) magnitude classification applied in 

the current project. 

Magnitude Category CMD (kg/year) 

Mag 1 < 1  

Mag 2 1 to 10 

Mag 3 > 10 

 

2. Semi-continuous contamination: if the pollutant is released depending on the season. 

Contaminants discharging into the stream could be higher in a specific part of the year, 

while being almost irrelevant at other times of the year (independently from the stream 

water discharge). This case can be associated with pesticides coming from agricultural 

lands, for example, as the highest concentrations are usually detected after rain events 

during the spraying seasons (Rasmussen et al., 2013). This can be identified by using 

event–triggered sampling campaigns as described by McKnight et al. (2012). 

 

3. Pulse contamination: if the pollutant is released depending on the rain event. Chemicals 

associated with urban settlements, such as PAHs, emerging pollutants or biocides, could 

fall into this category as they can be discharged into the stream through separate storm 

water systems or CSOs after rain events. Detecting these compounds requires high in-

tensity sampling schemes or flow proportional sampling schemes, as described by 

Vezzaro et al. (2017). 

 

The three categories briefly described above have the same color as it is not possible to clas-

sify which of the mentioned temporal distributions reflects the worst condition for the stream. 

Continuous contaminations are expected to cause a chronic impact to the stream, as they 

impact the receiving water body over a long time period (months or years). However, concen-

trations can be low. On the other hand, intermittent pulses of contamination are recognized to 

be impacting in the short term period, due to the magnitude of stormwater pollutant loads 

(Gasperi et al., 2012). 

 

5.1.3 Assessment Support 

The Assessment Support helps the regulator to make a decision on which category of pollu-

tant (and source) may be driving the stream’s contamination in conditions of multiple stressors. 

Thus, in this final step, the information gained in the Impact Assessment is presented and the 

expected or known source(s) is reported.  

 

Table 10 shows an example of how the Assessment Support could be visualized, considering 

that each study case will be different in terms of category of pollutants, compounds and ex-

pected or known sources. The column “Expected or known sources” is based on the potential 

sources of stream water contamination shown in Figure 2, Chapter 1. 
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TABLE 10. Example of how the Assessment Support can be visualized. 

 

Compounds 
Expected or 

known sources 
IC S T 

C
a

te
g

o
ry

 o
f 

p
o

ll
u

ta
n

t 
1
 Compound 1 

Source 1 
Description 

  
Continuous 
(CMD calcula-
tion) 

Compound 2   
Continuous 
(CMD calcula-
tion) 

Compound 3   
Continuous 
(CMD calcula-
tion) 

C
a

te
g

o
ry

 o
f 

p
o

ll
u

ta
n

t 
2
 Compound 4 

Source 2 
Description 

  
Semi-
continuous/ 
Pulse 

Compound 5   Pulse 

Compound 6   Pulse 

 

The assessment is aimed at end-users at the regulatory level. However, once the sources 

driving the contamination of the stream are defined, the prioritization of remedial actions will 

depend on the national strategy to manage surface water contamination. 
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6. Refined screening of 
existing contaminated sites 

The streams initially described in Chapter 2 need to be investigated in more detail to under-

stand if, besides a contaminated site, other pollution sources are potentially causing water 

impairment. The current chapter describes the refined screening performed for three of the 

eight cases, specifically: Køge Å, Skensved Å and Kirke Å. 

 

The choice between the eight cases was based on different factors. First, all three chosen 

“vandområder” have a poor-to-bad ecological status, indicating already a degraded biological 

condition of the streams. The remaining streams initially taken into account have at least a 

moderate ecological status. Moreover, the stream stretches of Køge Å and Skensved Å are 

very close to each other, although representing different land uses conditions: Køge Å passes 

through the urban area of Køge, which indicates the potential presence of urban pollution 

sources. Skensved Å, on the other hand, is surrounded by agricultural fields. Kirke Å was 

chosen as it is located in the western part of Denmark (Region Midtjylland) where multiple 

sources could act together. The ecological status of the stream is also the worst among the 

eight cases initially selected. Finally, these three cases were chosen in order to consider dif-

ferent geological settings. The geology of the southwest part of Denmark is dominated by 

coarse-grained glacial outwash deposits from the large glaciation of Denmark. On the other 

hand, the region of Sjælland is dominated by low permeability soils of clayey tills formed due 

to glacial deposits often containing fractures and sand lenses (Kessler et al., 2012; Pedersen 

et al., 2011). 

 

6.1 Køge Å 
Køge Å is a stream classified as type 2 located in the Region of Sjaelland, having a length of 

20,6 km and an average width of 10 m. The catchment area of Køge Å is 181,68 km
2 

and all 

the collected water of the basin drains into the Bay of Køge, located 40 km south of Copenha-

gen, before flowing into the Baltic Sea. Since Køge Å flows directly into the sea, it is affected 

by the tides, which contribute to the rise and fall of the stream flow depending on the time of 

the day. Figure 10 shows Køge Å stream, including the focus area (red line), and the catch-

ment boundary.  

 

Previous investigations will be described first, before giving an overview on the potential point 

and diffuse sources of pollution for Køge Å that could aggravate the chemical and ecological 

conditions of the stream 
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FIGURE 10. Overview of Køge Å, including tributaries (blue line), and the focus area 

defined in the map as Vandområde Køge Å o8371_i (red line). The area inside the yellow 

line represents the catchment for Køge Å. 

 

6.1.1 Results from previous studies in Køge Å 

The assessment covers only the stream stretch of interest (red line in Fig. 10), where in previ-

ous investigations chlorinated compounds were found exceeding the AA EQS.  

 

The overall ecological status of this water area is defined as poor, indicating already a stream 

impacted by anthropogenic activities (Table 11) and far from the objective of obtaining a good 

ecological status. The DSFI and DFISa reveal a moderate status of the macroinvertebrate and 

fish community in the stream, but the plant status was reported as poor. No information re-

garding the benthic algae has been obtained yet.  

 

TABLE 11. The four ecological indices for Køge Å section o8371_i which together form 

the overall ecological status. 

 Benthic  

invertebrates 

Fish Plants Benthic  

algae 

Overall 

Køge Å o8371_i Moderate Moderate Poor Not Known Poor 

 

The general chemical conditions in the stream have not been assessed in the past; therefore, 

no information regarding ammonium, nutrients, dissolved oxygen, as well as BOD5 is availa-

ble. 

 

Regarding the XOCs, different investigations have been made previously within the city of 

Køge due to the presence of four contaminated sites close to the harbor polluting the soil and 

the upper groundwater aquifer. The locations of the contaminated sites are shown in Figure 

11. The screening tool used by the EPA characterized these sites as potentially causing 

stream water contamination due to the close proximity between the contaminated site and the 

stream. Therefore, groundwater and stream water samples have been collected in recent 
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years to detect possible interactions between stream water and groundwater. A field campaign 

in 2004 showed concentrations up to 8800 μg/l and 60 μg/l for PCE and VC, respectively, in 

the groundwater beneath hotspot 4, while in the latest campaign of 2015, a PCE concentration 

of 19,000 μg/l was measured beneath hotspot 3. It was not possible to define the exact 

groundwater flow direction of the upper contaminated aquifer based on available data.  

 

 

  

 

 

 

FIGURE 11. Locations of the four identified contaminated sites polluting Køge Å and the 

concentrations (μg/l) of vinyl chloride (VC) found in the stream during high tide and low 

tide for the different transects (T1-T4) (results taken from Miljøstyrelsen, 2016a). <d.l. 

means below detection limit, which is 0,020 μg/l for VC. The red numbers indicate the 

points where concentrations were detected higher than the AA EQS of 0,05 μg/l. 

 

Stream water samples were also collected from Køge Å to investigate if concentrations were 

above the EQS. The samples were taken both in low tide and high tide conditions, and the 

results can be seen in Figure 11 for VC. Each box represents the concentrations found in the 

stream during low tide (first column) and high tide (second column). Each row represents the 

concentrations found in the investigated points of the transect, from the left bank (first row) to 

the right bank (last row) in accordance with the flow direction. Overall, concentrations of VC 

were exceeding the AA EQS during both low tide and high tide in more than one sampling 

point. Concentrations of TCE, PCE and cis-DCE were also found exceeding their respective 

freshwater AA EQS (complete results shown in Appendix A). During low tide, the highest con-

centration of VC was detected in transect T3 close to the left bank. During high tide, the con-

tamination is pushed further upstream: VC in transect T1 (sampled in the middle of the stream) 

was found exceeding the stream water quality criteria by a factor of 17,8.  

 

Due to the tides, the accessibility conditions and the water depth it was not possible to place 

piezometers and define the locations of the contact zones. However, the concentrations in the 

stream are assumed nevertheless to be caused by polluted groundwater partly discharging in 

the river through contact zones not clearly defined. Moreover, it was not possible to under-

stand which sites contributed the most to the contamination of Køge Å, as it is likely that the 

Flow direction 
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pollution plumes overlap. However, the site-specific investigation revealed that the contribution 

of site 1 shown in Figure 11 was negligible, as the concentrations close to the right bank in 

transect T2 were found below detection limit. 

 

6.1.2 Screening of other possible sources 

This section characterizes and investigates potential pollution sources within the “vandom-

råde” of interest. This screening approach helps to 1) locate and classify the different sources 

and 2) select among these the stressors that may have the largest impact on the nearby 

stream. 

 

An overview of the land use in the area, shown in Fig. 12 gives a first insight of the potential 

sources present close to the stream section of interest. Upstream of the urban area containing 

the contaminated sites, the land is covered with agricultural fields, represented as yellow in the 

map below. Agriculture affects water quality mainly due to release of pesticides and nutrients. 

This diffuse source of contamination could enter the stream through numerous pathways, 

including the separate stormwater discharge points along the stream (purple circles in Figure 

12) or via direct surface runoff or tile drain systems, as the agricultural fields were found to be 

located within just a few meters of the stream. The green area located north of Køge Å could 

act as a buffer zone reducing the run off and/or extent of spray drift of agricultural chemicals 

coming from the crops located to the north. Due to the specific periods of pesticide application, 

seasonal variations need to be taken into account when pollution loads are investigated. 

 

 

  

 

 

 

FIGURE 12. Identification of potential point and diffuse sources of pollution together 

with the land use pattern close to the stream stretch of interest. 

 

Close to the contaminated site, the urban pattern prevails. During wet weather, stormwater 

runoff discharges directly into the stream or into the harbor through underground or superficial 

drains. Moreover, during medium and large storms, sewer systems could overload and usually 

emergency outlets are built to prevent flooding in the city. After a first screening investigation 

using MiljøPortalen and MiljøGIS, it was possible to map the stormwater and CSO discharges 

Flow direction 
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(yellow circles) along the stream stretch (Figure 12). The complete list of sources identified as 

relevant for this area of interest are given in Table 12. 

 

No previous investigations on XOCs have been made in Køge Å, except for the chlorinated 

compounds and their degradation products related to the contaminated sites in Køge. After 

this initial screening, the next step is to define which categories of pollutants are the most 

important to investigate, in addition to characterizing and comparing sources acting differently 

in time and space. 

 

TABLE 12. List of sources, pathways and discharge points along Køge Å. 

Source Pathway Discharge points 

Point sources 

Contaminated sites Groundwater - (*) 

Urban stormwater  Pipe outlets, direct discharge 24 

CSOs Pipe outlets, direct discharge 3 

Diffuse sources 

Agricultural fields Groundwater, surface run-off, 

drain systems 

- (*) 

(*): Exact discharge location not identifiable. 

6.2 Skensved Å 
The second case selected is Skensved Å, also located in the Region of Sjælland (Figure 13). 

Skensved Å is only 6 km north of Køge Å. This gives the possibility to compare the land use 

pattern, distribution of sources and status within the same geographical region. The catchment 

area of Skensved Å is much smaller compared to Køge Å. It collects the water from ca. 38,5 

km
2
 of land and the boundary is shown in yellow in Figure 13. This stream flows past the town 

of Lille Skensved and also drains into the Bay of Køge. The mean water flow in Skensved Å 

was found to be 156 l/s, with large seasonal variations reported in the past investigations. In 

2004, for example, the stream flow dropped from 1744 l/s in early February to 3,8 l/s in June 

(Christensen and Raun, 2005).The vandområde of interest is defined with the ID number 

o8387 and shown in red in Figure 13. The length of the stretch was reported to be 9,3 km, 

classified as Type 2 and not highly modified. Therefore, good ecological and chemical status is 

the objective to reach in order to follow the national environmental requirements. 
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FIGURE 13. Overview of Skensved Å (thick blue line), its catchment boundary (yellow 

line) and the stream stretch of interest (red line) defined as vandområde o8387. 

 

6.2.1 Results from previous studies in Skensved Å 

Skensved Å has been evaluated for the concentrations of general water quality parameters 

such as inorganic ions and nutrients, but also for XOCs, in particular chlorinated solvents and 

pesticides.  

 

With respect to streams classified as Type 2, the overall ecological status is determined using 

the biological indices described in Chapter 3. According to the DSFI and DFSIa, the benthic 

macroinvertebrate and fish community were found to have a good and poor status respective-

ly, while no information regarding plants and benthic algae has been obtained yet. Therefore, 

the overall ecological status is indicated as poor. Table 13 shows the indices defining the eco-

logical conditions in Skensved Å. 

 

TABLE 13. The four ecological indices for Skensved Å section o8387 which together 

form the overall ecological status. 

 Benthic  

invertebrates 

Fish Plants Benthic  

Algae 

Overall 

Skensved Å o8387 Good Poor Not Known Not Known Poor 

 

The stream has been investigated over the past 20 years due to the presence of a chlorinated 

solvents plume generated from a leaking tank located at a former auto lacquer shop, which 

had used these products to degrease metal components between 1974-1993 (Christensen 

and Raun, 2005). The plume extends up to 1000 m downstream (Figure 14), spreading in the 

upper aquifer before entering Skensved stream through different contact points in the 

streambed. Since the site is located in an area with protected drinking water interests, a reme-

diation strategy of pump-and-treat has been implemented from 1999 to 2009. The hydraulic 

control of the plume reduced the amount of chlorinated solvents discharging in the stream. 

However, the containment action finished ca. 9 years ago, therefore the plume could potential-
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ly begin spreading again raising the concentrations of chlorinated solvents in the stream. This 

effect has been investigated over the last few years in part through a monitoring campaign 

conducted by DTU Environment that showed an increase in TCE in the stream water. Figure 

15 shows the concentrations from 2005 to 2014 (distance 0 refers to the point P0 shown in 

Figure 14). Concentrations decreased drastically from 2005 to 2010, but then the concentra-

tions of TCE were elevated again in 2014, with concentrations up to ca. 7 µg/l found close in 

P8. Moreover, during the campaign of 2014, VC has been reported in P6 and P8 at concentra-

tions of 0,041 and 0,048 μg/l, respectively (the complete results of the 2014 campaign can be 

found in Appendix B).  

 

 

  

 

 

 

FIGURE 14. Representation of the contaminated site location and plume, together with 

the sampling points of the stream water campaign in 2014 and the hyporheic zone area 

investigated by DTU Environment from 2012 to 2017. 

Flow direction 
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FIGURE 15. Skensved stream water TCE concentrations for campaigns conducted in 

2005 (dark blue line), 2010 (red line), 2012 (purple line) and 2014 (orange line); un-

published data curtesy of DTU Environment. 

 

Measurements of concentrations in the hyporheic zone can provide information about the 

discharge of pollutants into the stream, as the hyporheic zone is the interface between 

groundwater and stream water and these three compartments are well connected when con-

tact zones are present. The hyporheic zone at this site was first investigated by Christensen 

and Raun (2005), and additional measurements have been done from 2012 by DTU Environ-

ment students. The latest results from 2017 show high concentrations of TCE detected in the 

piezometers with a depth between 20 and 40 cm. The sampling points located inside the dark 

grey rectangle in Figure 14 showed concentrations up to 42,4 μg/l. If the hyporheic zone con-

centrations are compared with the TCE EQS for surface water and groundwater, the detected 

concentrations were more than 4 and 40 times above the guideline value, respectively. The 

complete results of the hyporheic zone campaign in 2017, together with the sampling loca-

tions, are reported in Appendix C. 

 

6.2.2 Screening of other possible sources 

Other potential sources discharging in the stream stretch of interest can be initially investigat-

ed by looking at the land use pattern of the area. Figure 16 shows the land pattern characteris-

tics for the area of interest. As it can be seen from the map and already reported by McKnight 

et al. (2012), agricultural fields prevail among the other land uses, accounting for more than 

90% of the total catchment. This shows the possibility of having agricultural pesticides and 

nutrients as major potential pollutants for the stream water ecosystem along the entire stretch. 

 

The GEUS Jupiter database provides a geographical information system with borehole infor-

mation and groundwater monitoring analyses. In the area close to Skensved Å, groundwater is 

used for drinking water purposes and the analysis of the raw water from the groundwater 

treatment plants CP Kelco and Lille Skensved Vandværk (exact location in Figure 16) revealed 

the presence of pesticides in the aquifer. Table 14 lists the detected pesticides in the aquifer 

close to Skensved Å. 
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FIGURE 16. Representation of the land use pattern surrounding the stretch of interest at 

Skensved Å. Potential point sources of pollution and location of the water treatment 

plants where the presence of pesticides in the aquifer was revealed can also be seen. 

 

TABLE 14. List of detected pesticides in the aquifer close to Skensved Å (μg/l). Results 

were taken from the water analysis of the boreholes supplying the water treatment 

plants (location shown in Figure 16) close to the area of interest. 

 2-4 dichlorphenol Bentazone Mechlorprop BAM 

Skensved 

vandværk  

Plant DGU nr. 

104.598 

- 0,08 (2017) - 0,012 (2017) 

- 0,011 (2009) 

- 0,011 (2009) - 0,013 (1998) 

 

CP Kelco   

Plant DGU 

nr.104.542 

- 0,014 (2007) 

- 0,017 (2002) 

- 0,012 (2017) 

- 0,037 (2010) 

- 0,02 (2007) 

- 0,045 (2002) 

 

 - 0,056 (2016) 

- 0,022 (2013) 

- 0,071 (2010) 

- 0,089 (2007) 

- 0,074 (2003) 

 

McKnight et al. (2012) reported findings of pesticides in the stream water and applied the 

SPEcies At Risk (SPEAR) index for evaluating ecological status (Liess and Von Der Ohe, 

2005). This index (SPEARpesticides) indicated that Skensved stream is “far from obtaining good 

ecological status” as the scores showed a poor and a poor-to-bad ecological status before and 

after the spraying season (comparing March and August samples, respectively). By using the 

screening tool Toxic Units (TU), the results showed that the suspended sediments were con-

taminated by pesticides and the TU values obtained, ranging from -0,14 and -0,92, were far 

above the threshold of -3 (McKnight et al., 2012). Above this threshold, shifts in community 

composition of the benthic macroinvertebrates begin to occur (Liess et al., 2008).  

 

 

Flow direction 
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Another source potentially impacting the water quality of Skensved Å is the presence of urban 

settlements and infrastructures in the surroundings. A town such as Lille Skensved and the 

highway E47 crossing the stream could release urban pollutants to Skensved Å, increasing the 

anthropogenic pressure on the stream. 

 

Figure 16 shows the point source locations discharging in Skensved Å. Besides the contami-

nated site already described, CSOs (orange circles) and separate stormwater (purple circles) 

discharges are found along the entire stretch. No clear information regarding these point 

sources was available. Private discharges (green circles) are also present along Skensved Å. 

These pipes/open drains are not connected to the drainage system of the municipality and are 

typically coming from farms or isolated houses. Moreover, on the north side of the stream 

close to the contaminated site there is an industry, Pro-Glue A/S (light green square), provid-

ing adhesives for hygiene, food, brewing and pharmaceutical industries. The wastewater is 

discharged after treatment into Skensved Å, potentially increasing the pollutant loads. 

 

Overall, the sources identified in the area of interest are listed in Table 15. 

 

TABLE 15. List of sources, pathways and number of discharge points at Skensved Å. 

Source Pathway Discharge points 

Point sources 

Contaminated sites Groundwater - (*)  

Urban stormwater Pipe outlets, direct discharge 17 

CSOs Pipe outlets, direct discharge 3 

Private discharges Ditches/drains 5 

Industrial discharges Pipe outlets 1 

Diffuse sources 

Agricultural fields Groundwater, surface run-off, 

agricultural drains 

- (**)  

(*): Discharge location between P4 and P10 in Figure 14. 

(**): Exact discharge location not identifiable. 

6.3 Kirke Å 
Kirke Å is located in the Region of Midtjylland and passes through the town of Skjern. The 

drainage basin of Kirke Å covers an area of approximately 43,15 km
2
, and connects to the 

larger basin of Ganer Å before flowing into Hestholm Sø. 

 

The investigation of potential point and diffuse sources was again made only for the area of 

interest, shown in Figure 17, which contains the contaminated site described in Chapter 6.3.1.  

The extension of the considered vandområde is 8,5 km, represented by the red line in Figure 

17. This part of Kirke Å is classified as type 2 with a width and depth of respectively 4 and 1 m 

(Lemaire, 2016). In October 2015, the average flow was reported as 370 l/s  (Miljøstyrelsen, 

2016a). Since Kirke Å is not classified as highly modified, it is required to achieve good eco-

logical and chemical status in the stream. 
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FIGURE 17. Overview of Kirke Å, its catchment area and the stream stretch of interest, 

defined as Vandområde o8622a. 

 

6.3.1 Results from previous studies in Kirke Å 

Different investigations have been performed in Kirke Å over the past years, with the aim of 

investigating the biological and chemical condition of the stream. 

 

The ecological status of this water area is defined as bad. This result was reached as the 

Danish Fish Index for Streams (DFIS) indicated a bad status. The DSFI is classified as mod-

erate, indicating an ecological impact on the macroinvertebrate community. No information 

regarding the benthic algae and plant indexes have been recorded. Table 16 shows the infor-

mation collected regarding the ecological status of Kirke Å. 

 

TABLE 16. The four ecological indices for Kirke Å which together form the overall eco-

logical status. 

 Benthic  

invertebrates 

Fish Plants Benthic  

algae 

Overall 

Kirke Å o8622a Moderate Bad Unknown Unknown Bad 

 

The general chemical condition of the stream has not previously been assessed; therefore, no 

information regarding ammonium, nutrients, dissolved oxygen or BOD5 is available. 

 

The previous investigations in Skjern have focused on the contaminated sites located north of 

the stream, shown in Figure 18. The sites include a former dry cleaning facility and a disposal 

site operating from 1939 to 1970 (Lemaire, 2016).  The soil and the upper aquifer have been 

contaminated by chlorinated solvents, forming a plume discharging into Kirke Å. This was 

confirmed through a Distributed Temperature Sensing (DTS) analysis, a multi-point thermo-

couple-probe, in conjunction with the sampling of groundwater, stream water and hyporheic 

zone water. Figure 18 shows the concentrations (μg/l) of vinyl chloride found in the stream 

water in October 2015 (Miljøstyrelsen, 2016a). Concentrations were found above the limit of 
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0,05 μg/l also outside the mixing zone (10 * width of the stream= 30-50 m). Some points close 

to the contaminated sites were found unpolluted (e.g. VP3 in Figure 18), while others much 

further downstream were found with concentrations of VC (transect T2 for example) above AA 

EQS. This is indicative for the high spatial variation common for the groundwater contaminated 

with CAHs entering surface water. PCE, TCE and DCE have also been analyzed in the stream 

water, however, concentrations were found below the detection limit of 0,020 μg/l in almost 

every investigated point.  

 

  

 

 

 

FIGURE 18. Representation of the contaminated sites and the plume polluting Kirke Å, 

together with the stream water concentrations for vinyl chloride (μg/l) detected during 

the Orbicon campaign in October 2015 (Miljøstyrelsen, 2016a). Abbreviations: 

VP=sampling point, T=transect. 

 

6.3.2 Screening of other possible sources 

As already done for Køge Å and Skensved Å, the first step of the screening is to study the land 

use pattern in the area where Kirke Å flows. Since the project refers to the vandområder de-

fined by the Ministry of Environment and Food, the analysis will focus on the stretch repre-

sented in Figure 17 in red. However, as Kirke Å is a sub-catchment within the larger catchment 

of Ganer Å, to identify the upstream and downstream boundary conditions, the potential 

sources before and after the vandområde of interest will also be shown. 

 

Figure 19 shows the land use cover close to Kirke Å. The contaminated site is located in the 

town of Skjern, represented as grey in the map. However, similar to Køge´s pattern, in the 

upper part of the vandområde the land is primarily used for agricultural activities (yellow pat-

tern in the map). Pesticides and nutrients could discharge into the stream due to direct surface 

runoff, through tile drains and/or separate stormwater discharges and via the groundwater-

surface water interface. On the contrary, the downgradient section of the vandområde is domi-

nated by streets and buildings that could potentially pollute the stream with urban contami-

nants such as biocides, PAHs or heavy metals. 

 

Flow direction 
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Figure 19 shows also the potential point sources affecting the stream together with the con-

taminated site described in chapter 6.3.1. 

 

  

 

 

 

FIGURE 19. Land use pattern close to Kirke Å and potential point sources of contamina-

tion discharging into Kirke Å, including the contaminated sites, CSOs, stormwater, 

industrial and former wastewater discharges. 

 

No investigations on XOCs have been made in Kirke Å, besides the chlorinated compounds 

and their degradation products related to the contaminated sites in Skjern.  

 

Inside the vandområde, there are 32 separate stormwater drains discharging in the stream. 

Almost all the drains are collecting the water from streets. Moreover, a CSO discharge is also 

present upstream of the contaminated sites. No information regarding the overflow frequency 

or the chemical status of this outlet could be found. 

 

After the confluence with Ganer Å, that runs from north to south, the wastewater discharge 

point coming from Skjern PapirFabrik A/S (green square in Figure 19) flows into the stream. 

This factory produces different kinds of paper products (coreboard, greyliner, sheets, grey-

board) from recycled wastepaper. However, it seems that the wastewater coming from this 

industry is connected to the public wastewater treatment plant of Tarm, without discharging 

directly into Kirke Å stream (information about discharge couldn’t be found on Miljøportalen). 

Furthermore, downstream from the vandområde there is also a drain that was discharging the 

wastewater from a no longer active treatment plant (red triangle in Figure 19). 

 

Overall, the sources identified in the area of interest are listed in Table 17.  

 

 

 

Flow direction 

Ganer Å 



 

 The Danish Environmental Protection Agency / Investigating stream water quality under conditions of multiple stress       49 

TABLE 17. List of sources, pathways and number of discharge points at Kirke Å. 

Source Pathway Discharge points 

Point sources 

Contaminated sites Groundwater - (*) 

Urban Stormwater  Pipe outlets, direct discharge 32 

CSOs Pipe outlets, direct discharge 1 

Diffuse sources 

Agricultural fields Groundwater, surface run-off, 

agricultural drains 

- (**) 

(*): Discharge location between VP9 and T1 in Figure 18. 

(**): Exact discharge location not identifiable. 
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7. Investigation approach and 
methods 

In this section, the field plan and methods will be described in detail as they have been applied 

to two of the three case study sites (results presented in Chapter 8). The information collected 

from previous investigations and through the initial screening of the sites of interest helped in 

the planning of the field activities. Only two of the three streams (Køge Å and Skensved Å) 

were selected for further investigation through a field campaign, a decision reached for a num-

ber of reasons. Firstly, Køge Å and Skensved Å are in the same general geographic region 

and therefore close to each other. This helped in carrying out the field investigation, reducing 

the costs incurred due to e.g. transportation. More importantly, these two streams represent 

different land-use scenarios, as Skensved’s landscape is characterized predominantly by 

agricultural activities while Køge Å is located in a mixed land use pattern, with the stream first 

flowing through agricultural fields and then the city of Køge. Kirke Å was not further investigat-

ed due to limitations associated with the duration and budget of the project. Instead, Kirke Å, 

together with Køge Å and Skjern Å, was chosen to function as an example for a final testing of 

the methodological approach, described in Chapter 5. 

 

The field campaign conducted at Køge Å and Skensved Å focused on 5 main classes of pollu-

tants: 

 General water quality parameters 

 Heavy metals 

 Chlorinated solvents and degradation products 

 Pesticides and degradation products 

 PAHs 

 

These categories have been chosen based on the potential pollution sources identified in 

Chapter 6. Table 18 lists the motivation behind the selection of each pollutant’s category, while 

Appendix D presents the complete list of chemicals analyzed. 

 

TABLE 18. Categories of pollutants investigated during the field campaign at Skensved 

Å and Køge Å. 

Category Chemical analysis Filtration Motivation 

General pollutants    

General water quality parame-

ters 

- Nutrients 

- Macro-ions 

- Suspended solids (SS) 

- NVOC 

- BOD5/COD  

 

Not filtered - General knowledge about water sta-

tus 

- Provides information about   parame-

ters that could indicate wastewater 

contribution 

 

Heavy metals – dissolved con-

centrations 

- As        - Pb 

- Cd        - Ni 

- Cr         - Zn       

- Cu 

Filtered  

-  0,45 μm 

- Provides information regarding natu-

ral heavy metal concentrations and                  

anthropogenic contributions 

 

XOCs    

Chlorinated solvents and degra-

dation products –  dissolved 

- Perchloroethene (PCE) Filtered  

- 0,45 μm 

- Update data regarding  contaminated 

sites’ contribution to stream impair-
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concentrations - Trichloroethene (TCE) 

- Degradation products 

ment 

 

Pesticides and degradation 

products – total concentrations 

- Insecticides 

- Fungicides 

- Herbicides 

- Biocides 

Not filtered  - Provides information regarding agri-

cultural contribution to stream pollu-

tion 

- Provides information regarding pesti-

cides related to urban applications 

 

PAHs – total concentrations - PAHs identified as priority hazardous 

substances by the WFD 

- PAHs listed in the Danish legislation 

for freshwater quality (BEK 439 

19/05/2016) 

 

Not filtered - Provides information regarding urban 

and traffic source contribution (e.g. 

road dust, vehicle emissions, indus-

trial processes, coking plants) to 

stream pollution 

 

The field investigations at Køge Å and Skensved Å were conducted during weeks 48 and 49 

(2017). Figures 20 and 21 illustrate the locations of the sampling points; locations are denoted 

K1-K10 and S1-S11 for Køge Å and Skensved Å, respectively. Coordinates can be found in 

Appendix E. The sampling locations were also chosen with the goal of covering the entire 

stretch of interest described in Chapter 6, providing “upstream” (potential) background concen-

trations and allowing the linkage of pollutants to sources. Sampling points denoted with the 

number 1 represent the most upstream point investigated, which corresponds to the beginning 

of the “water corridor” of interest. 

 

  

 

 

 

FIGURE 20. Map showing the potential affected stream stretches to different pollution 

sources (colored dashed lines) and the location of the sampling points K1-K10 along 

Køge Å. Stream flow direction is from left to right. 

 

 

Flow direction 
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FIGURE 21. Map showing the potential affected stream stretches to different pollution 

sources (colored dashed lines) and the location of the sampling points S1-S11 along 

Skensved Å. Stream flow direction is from left to right. 

 

The screening focused on the collection of water samples and field measurements of oxygen, 

pH, electrical conductivity (EC) and temperature. Moreover, the stream water flow was evalu-

ated for some of the investigated points using an “OTT MF pro” portable velocity sensor 

(Hydromet, 2015). The flow of Køge Å was measured in K1, while for Skensved Å it was inves-

tigated in 3 points: S2, S4 and S9. 

 

Figure 22 shows the daily rainfall data before and during the field campaigns, provided by rain 

gauges that are part of the Danish SVK network and collected since 1979 by the Danish Me-

teorological Institute (DMI) and the Water Pollution Committee (Spildevandskomiteen, SVK). 

Køge Å was investigated during the first two days of week 48 (28
th

 and 29
th

 of November) and 

characterized by wet weather conditions, since a rain gauge station close to the area of inter-

est indicated 13,8 mm of rain in the days before the field investigation. The Skensved Å sam-

pling campaign was performed in week 49, in almost dry weather conditions. 

 

Flow direction 
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FIGURE 22. Overview of the rain events before and during the field investigations per-

formed in Køge Å and Skensved Å. 

 

Considering the potential and known pollution sources in Køge Å and Skensved Å, it was 

possible to visually illustrate the potential spatial impact of a determined source on a specific 

part of the water area of interest. This is shown in Figures 20 and 21 by the colored dashed 

lines: the stream reach within the green dashed line is thought to be primarily affected by agri-

cultural activities, while the reach within the grey and red dashed lines by urban pollution and 

contaminated sites, respectively. The Laboratory ALS Denmark A/S analyzed the water sam-

ples for the general water chemistry, chlorinated compounds, pesticides and PAHs, while the 

heavy metals have been analyzed in the DTU Environment laboratory. 

 

The collection of the samples was done using dedicated flasks provided by the environmental 

laboratories. Flasks were slowly filled without turbulence using a sampling tube put at the 

bottom of the flask, in order to avoid air in the bottle. Images of the stream water sampling at 

station K3 and K5 (Figure 23) and S2 and S5 (Figure 24) are shown below. 

 

 

  

  

   

 

FIGURE 23. Photos from the field work investigation at Køge Å. Left: stream close to 

sampling point K3. Right: sampling point K5. 
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FIGURE 24. Photos from the field work investigation at Skensved Å. Left: sampling 

point S2. Right: sampling point S5. 
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8. Results and discussion 
regarding the field 
investigation 

This Chapter presents the results related to the investigations carried out in Køge Å and 

Skensved Å. Supplementary data can be found in Appendices F and G, respectively.   

 

8.1 Køge Å 
Figure 25 presents an overview for the stream corridor of interest together with the potential 

point sources of pollution and the gauging station. 

 

  

 

 

 

FIGURE 25. Map showing the location of the sampling points, point sources of contam-

ination and the stream flow gauging station. 

 

8.1.1 Stream flow, general water quality and nutrients 

The stream flow was monitored only at station K1, as this was the only point where it was 

possible to enter the stream to measure the stream profile and velocity. When moving further 

downstream, Køge Å increases in both the width and depth making it difficult to measure the 

stream profile using the portable velocity system. In K1, the stream flow was found equal to 

1,285 m
3
/s. Compared to the historical data recorded by a gauging station 200 m upstream of 

K1 (shown in Figure 26), the result recorded in this study was found to fall above the average 

flow of 0,84 m
3
/s. The measured discharge is also above 78% of the daily flow records, indica-

tive for a not-extreme wet weather discharge. This matches that in the days leading up to the 

sampling campaign, a total rainfall of 13,8 mm had been reported by rain gauging stations in 

the area close to Køge Å. Specifically, 3.2, 8,8 and 1,8 mm of rain were registered by DMI 

gauging stations the 26
th
, 27

th
 and 28

th
 of November, respectively (Figure 22 in Chapter 7). 

Flow direction 
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The flow measured in K1 during the field campaign is slightly higher than the typical dry 

weather baseline discharge of November, indicating a slight rainfall influence. 

 

  

 

 

 

FIGURE 26. Historical flow registered from 2007 to 2015 (blue line) and flow registered 

in K1 during the field campaign (red line). 

 

Table 19 shows the ranges of results for the water quality parameters and the nutrients meas-

ured along the entire investigated stretch. The levels of nutrients found in the stream are in line 

with the typical concentrations found in Denmark. Ammonium in K2 was found to be particular-

ly high (3,9 mg/l) compared to the average concentrations found elsewhere in the stream, 

possibly indicating an agricultural source of contamination due to the absence of other anthro-

pogenic sources such as wastewater discharges or landfills in the area. 

 

TABLE 19. Water quality parameters measured in November 2017. Complete results can 

be found in Appendix F. 

 

Macro-ions (mg/l) 

Ca
2+ 

97-100  

Mg
2+ 

5,2-5,8  

K
+ 

2,6-2,8  

Na
+ 

15-20 

F
- 

0,22-0,23  

SO4
2- 

28-30 

Cl
-
 30-36  

Real time measurements 

pH (-) 7,89-7,96 

Ec (μS/cm) 583-633 

Oxygen (mg/l) 9,8-11,32 

Temperature (°C) 5,2-5,8 

Nutrients and Organic Matter (mg/l) 

NVOC 8,9-12  

BOD5 <1  

COD 19-26  

SS 410-450  

Total-P 0,098-0,21  

NO3- 21-28 

NH4+ 0,015 - 3,9 

Metals (mg/l) 

Fe 0,24-1,1 

Mn 0,08-0,062 
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8.1.2 Chlorinated compounds and degradation products 

Chlorinated solvents and degradation products have also been investigated along the vand-

område of interest. The results are shown in Figure 27. The stream was found contaminated 

by tetrachlorethylen (PCE), cis-1,2-dichlorethene (cis-DCE) and vinyl chloride (VC). As ex-

pected, chlorinated solvents and degradation products were detected downstream, close to 

the contaminated sites highlighted in red in Figure 27. K8 was the most contaminated point 

(VC: 0,066 µg/L), with concentrations of VC slightly exceeding the national AA EQS of 0,05 

μg/l. cis-DCE and VC were also found respectively in K9 and K10, with concentrations of 

0,031 and 0,025 μg/l. 

 

Results are in agreement with the previous investigations of chlorinated solvents and degrada-

tion products carried out in Køge Å in 2015 and described in Chapter 6.1.1 

 

 

  

 

 

 

FIGURE 27. Concentrations of chlorinated compounds and degradation products found 

in Køge Å close to the contaminated sites. Detection limit (d.l.) is 0,020 μg/l. Results are 

expressed in μg/l. 

 

8.1.3 Pesticides 

Among the long list of pesticides and degradation products investigated in this study (reported 

in Appendix D), the following were detected in Køge Å: glyphosate, AMPA, desphenyl-

chloridazon, MCPA and propyzamide. Figure 28 shows the concentrations found in the differ-

ent sampling points. The detection limit for all the investigated pesticides is 0,010 μg/l. 

 

 

Flow direction 
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FIGURE 28. Overview for the pesticide concentrations, including metabolites, detected 

in Køge Å at the sampling stations K1-K10. 

 

In Appendix H, the description of the pesticides detected in Køge Å can be reviewed. The 

table presented in Appendix H includes information about the type of pesticide (herbicide, 

fungicide, insecticide, metabolite…etc.), application period, general description of the chemi-

cal, usage in Denmark, current EU/Danish permissions and maximum annual sales registered 

in Denmark. 

 

Glyphosate was detected in all the investigated points of Køge Å. The highest concentrations 

of this herbicide were detected in K3 (0,51μg/l), K4 and K5 (both 0,52 μg/l). The lowest con-

centration (0,29 μg/l) was detected in K10, the most downstream investigated point of the 

stretch and therefore far from the agricultural fields located further upstream.  

 

The concentrations of AMPA, the primary transformation product of glyphosate, were lower 

compared to the parent compound. The maximum and minimum concentrations were detected 

in K1 and K10, respectively, with values of 0,17 and 0,12 μg/l. Along the stretch the concentra-

tions were found more constant compared to glyphosate, even if the lowest concentration was 

always found in the most downstream point of the stretch (K10). 

 

Desphenyl-chloridazon, the primary metabolite of the banned herbicide chloridazon, was also 

detected. NIRAS investigated the presence of desphenyl-chloridazon in August 2017, estimat-

ing at least 60 waterworks with concentrations of this degradation product above the limit val-

ue of 0,1 μg/l (information obtained from the website of NIRAS in 2017). Although the concen-

trations are one order of magnitude lower than the concentrations of glyphosate and AMPA, in 

K3, K4, K6 and K7, the concentrations were found above the detection limit. The highest con-

centration was found in K6 (0,019 μg/l), while the lowest in K3 (0,011μg/l).  

 

The herbicide MCPA was found in K1, K2, K3 with concentrations slightly above the detection 

limit (from 0,010 to 0,012 μg/l). The highest concentration was found in K1. This part of the 

stretch is surrounded by agricultural fields and farms, possibly explaining why the highest 

concentration was found there.  

 

Propyzamide was also detected in the surface water at every investigated point of Køge Å. 

Concentrations vary between 0,18 and 0,44 μg/l, with the maximum concentrations detected in 

the upstream part of the vandområde. K1 and K2 had the highest concentrations of this herbi-

cide, respectively 0,44 and 0,40 μg/l. After K2 the concentrations seem to decrease, and the 

lowest concentration was found in K6 (0,18 μg/l).  
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8.1.4 PAHs and heavy metals 

PAHs and heavy metals have also been investigated in K1-K10. The complete results can be 

seen in Appendix F. 

 

Sixteen PAHs have been analyzed to detect the contribution of the urban source to the stream 

pollution. All the investigated compounds were below the detection limit of 0,010 μg/l. 

 

Lastly, concentrations of heavy metals (Table 20) were found rather constant along the entire 

investigated vandområde. Low concentrations of dissolved As, Ni, Zn and Cu were detected, 

in every point below the AA EQS and in line with the median concentrations detected in Dan-

ish streams (Table 20). Dissolved Cr and Pb were below the detection limit of 0,10 μg/l in 

every investigated point. Cd was also found below the detection limit in almost every point 

except K3, where 0,21 μg/l was detected in the stream. Cd in K3 is therefore exceeding the AA 

EQS.  

TABLE 20. Range (minimum and maximum) of measured dissolved heavy metals along 

Køge Å together with the Annual Average (AA) and Maximum Allowable Concentration 

(MAC) EQS. Detection limit (d.l.) is 0,10 μg/l. Results are expressed in μg/l. 

 Concentrations in 
Køge Å  

Median concentrations in 
Danish streams (*)  

EQS: 

AA - MAC 

Cr < d.l. 0,165 3,4 - 17 

Ni 1,14 - 1,49 1 4 - 34 

Cu 1,63 - 2,48 1,05 4,9 - 4,9 

Zn  3,61 - 7,25 7,75 7,8 - 8,4 

As  0,65 - 0,72 1,1 4,3 - 43 

Cd  < d.l. - 0,21 0,005 0,08 - 0,45 

Pb  < d.l. 0,029 1,2 - 14 

(*): DCE (2016). 

8.2 Skensved Å 
Figure 29 illustrates the overall studied stretch of Skensved Å, together with the sampling 

locations, the stream gauge and the potential point sources of contamination. 
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FIGURE 29. Map showing the overall studied stretch of Skensved Å, the sampling loca-

tions, the potential point sources of pollution and the gauging station that collected 

stream flow data from 1984 to 2004. Stream flow direction is from left to right. 

 

8.2.1 Stream flow, general water quality and nutrients 

The stream discharge was measured in three points, S2, S4 and S9 in the field campaign. The 

flow passing through these sections was found to be 284, 284 and 301 l/s respectively. Figure 

30 shows the historical flow data taken from a gauging station upstream the stretch of interest 

and the flow measured in S9. 

 

  

 

 

 

FIGURE 30. Skensved Å historical flow data registered from 1995 to 2004 by the gaug-

ing station shown in Figure 29 (blue line) and the flow measured during the field cam-

paign in point S9 (red line). 

 

The flow is low compared to the peaks registered in the past years. The maximum discharge 

ever recorded was 2857 l/s, far above the measured flow. The campaign was conducted dur-

ing an almost dry weather period, as in the days before the sampling campaign only one light 

Flow direction 
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rain event (shown in Figure 22, Chapter 7) was registered the 3
rd

 of December by a nearby 

rain gauging station. However, the measured flow is above the average (156,9 l/s) and above 

87% of the historical recorded flows. To sum up, the flow is still in line with the typical autumn 

conditions registered in the past years. 

The general water quality and nutrients levels are shown in Table 21. Analyses of macro-ions, 

nutrients, organic matter and metals were performed for S2, S4 and S9. 

 

TABLE 21. Skensved Å water quality parameters measured in December 2017. Com-

plete results can be found in Appendix G. 

 

Macro-ions (mg/l) 

Ca
2+ 

120-130  

Mg
2+ 

8,1-8,8  

K
+ 

2,7-2,8  

Na
+ 

15-17 

F
- 

0,27-0,28  

SO4
2- 

36-40 

Cl
-
 29-34  

Real time Measurements 

pH (-) 7,61-7,97 

Ec (μS/cm) 747-835 

Oxygen (mg/l) 10,95-12,24 

Temperature (°C) 4,3-7,4 

Nutrients and Organic Matter (mg/l) 

NVOC 6,1-6,5  

BOD <1  

COD 13-16 

SS 490-510  

Total-P 0,081-0,096  

NO3- 30-31 

NH4+ 0,075-0,099 

Metals (mg/l) 

Fe 0,21-0,23 

Mn 0,037-0,050 
 

 

8.2.2 Chlorinated compounds and degradation products 

 

Skensved Å was found contaminated by chlorinated solvents and degradation products in the 

middle of the stretch of interest, where the plume in the upper aquifer coming from the contam-

inated site in Lille Skensved is known to discharge into the stream. Figure 31 illustrates the 

concentrations of chlorinated compounds and degradation products along Skensved Å. Only 

the sampling points S5-S11 are shown, as from the past investigations it is known that the 

groundwater contaminated plume discharges approximately after point S5. 

 

TCE was found in stations S7, S8, S9, S10, S11. The highest and lowest concentration of TCE 

were found in S9 and S7, respectively 0,13 and 0,042 μg/l. The highest discharge from the 

contaminated groundwater seems to be between S8 and S10 since in S9, TCE increases one 

order of magnitude before decreasing gradually further downstream (compare value at S11). 

 

Two potential degradation products of TCE were also found contaminating Skensved Å. Con-

centrations of cis-DCE were found above the detection limit of 0,020 μg/l in S9, S10 and S11, 

and are most likely associated with the contaminant plume. Of note, 0,026 ug/l of 1,1- DCE 

was detected in S11. This could suggest that the plume’s contamination spreads in the stream 

water all the way up to this location (above the detection limit), but since this degradation 

pathway is unusual (Chambon et al., 2013), it could also signal the presence of another source 

located closer to this sampling point.  
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FIGURE 31. Concentrations of chlorinated compounds and degradation products found 

in Skensved Å downstream from the contaminated site. Detection limit (d.l.) is 0,020 

μg/l. Results are expressed in μg/l. 

 

Most of the chlorinated compounds and degradation products are regulated through the Euro-

pean or National EQS. In this case, none of the investigated compounds exceeded the AA 

EQS, as shown in Table 22. 

 

TABLE 22. Range of concentrations of chlorinated compounds and degradation prod-

ucts found in Skensved Å together with the Annual Average (AA) and Maximum Allowa-

ble Concentration (MAC) EQS. 

 Min – Max concentrations (µg/l) EQS: 

AA - MAC 

Trichlorethylene 

(TCE) 

0,042 - 0,13  10 -  /(*) 

1,1-Dichlorethylene 

(1-1 DCE) 

0,026  6,8 – 68 

 

cis-1,2-dichlorethylene  

(cis-DCE) 

0,021-0,045  6,8 – 68 

(*): EQS not defined. 

8.2.3 Pesticides 

Pesticides were investigated along the entire stretch at the sampling points S1-S11. Two herb-

icides and two degradation products were detected: glyphosate, AMPA, bentazone and 

desphenyl-chloridazon. In Appendix H the description of the pesticides detected in Skensved 

Å can be seen, together with some more information regarding the application period, the type 

of pesticide, the usage and sales in Denmark. 

 

Flow direction 
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Similarities with the compounds found in Køge Å can be seen, as glyphosate, AMPA and 

desphenyl-chloridazon were detected also in Køge Å. Figure 32 shows the concentrations 

found in each investigated point. 

 

 

  

 

 

 

FIGURE 32. Overview for the pesticide concentrations, including metabolites, detected 

in Skensved Å at the sampling stations S1-S11. 

 

Glyphosate was found contaminating  the entire stretch of interest. The highest and the lowest 

concentrations were found in S11 and S7, respectively 0,038 and 0,027 μg/l. The concentra-

tions were in general almost constant along the stretch. 

 

AMPA, the degradation product of glyphosate, had the highest concentrations along the 

stretch of interest, even above the parent product. As with glyphosate, AMPA was found in 

every investigated point. The highest concentration detected was 0,051 μg/l, found in two 

different sampling points: S8 and S10; the lowest concentration was found in S9 (0,039 μg/l). 

 

Desphenyl-chloridazon was found in every investigated point except S11, where the concen-

tration detected was below the detection limit of 0,010 μg/l. The highest concentrations were 

found upstream, in S1 and S2 (0,020 μg/l) while the lowest concentration was detected in S4. 

 

Bentazone was the only herbicide found in Skensved Å that had not been detected in Køge Å. 

Compared to the other pesticides found and described above, bentazone has a national EQS 

that needs to be respected. S11 was found contaminated with 0,033 μg/l of bentazone, which 

however did not exceed the AA EQS of 45 μg/l. 

 

8.2.4 PAHs and heavy metals 

Skensved Å was found contaminated by PAHs in more than one sampling point. Table 23 

reports the total concentrations of PAHs found in the stream, together with the AA and MAC 

EQS associated. Orange and red cells indicate the concentrations exceeding the AA and MAC 

guideline EQS, respectively. 
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TABLE 23. Results of PAHs concentrations detected in Skensved Å together with the 

Annual Average (AA) and Maximum Allowable Concentration (MAC) guideline values.  

< d.l. means below detection limit, that is 0,010 μg/l. The orange and red values are the 

concentrations exceeding the AA and MAC EQS, respectively. 

 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

EQS: 

AA - MAC 

Naphthalene 0,11 <d.l. <d.l. 0,011 0,013 0,014 0,021 0,013 <d.l. <d.l. <d.l. 2 - 130 

Acenaphthylene <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 1,3 - 3,6 

Acenaphthene 0,018 <d.l. <d.l. <d.l. <d.l. <d.l. 0,014 0,015 <d.l. <d.l. <d.l. 3,8 - 3,8 

Fluorene 0,020 <d.l. <d.l. <d.l. <d.l. <d.l. 0,019 <d.l. <d.l. <d.l. <d.l. 2,3 - 21,2 

Phenanthrene 0,094 <d.l. 0,066 <d.l. 0,013 0,012 0,099 0,044 0,010 0,056 0,012 1,3 - 4,1 

Anthracene 0,046 <d.l. <d.l. 0,012 <d.l. <d.l. 0,043 0,021 <d.l. <d.l. <d.l. 0,1 - 0,1 

Fluoranthene 0,082 <d.l. 0,16 0,024 0,011 0,011 0,14 0,056 0,017 0,13 0,017 0,0063 - 0,12 

Pyrene 0,11 <d.l. 0,10 0,017 <d.l. 0,012 0,13 0,066 0,018 0,13 0,016 0,0046 - 0,023 

Benzo(a)anthracene 0,030 <d.l. 0,020 <d.l. <d.l. <d.l. 0,019 0,012 <d.l. 0,030 <d.l. 0,012 - 0,018 

Chrysene 0,043 <d.l. 0,027 <d.l. <d.l. <d.l. 0,028 0,024 <d.l. 0,059 <d.l. 0,014 - 0,014 

Benzo(b+j+k) 

fluoranthene 
0,11 <d.l. <d.l. <d.l. <d.l. <d.l. 0,060 0,055 0,015 0,11 0,019 0,00051 - 0,051 

Benz(a)pyrene 0,043 <d.l. <d.l. <d.l. <d.l. <d.l. 0,025 0,018 <d.l. 0,035 <d.l. 0,00017 - 0,27 

Indeno(1,2,3-
cd)pyrene 

0,034 <d.l. <d.l. <d.l. <d.l. <d.l. 0,014 0,016 <d.l. 0,049 <d.l. 0,00017 - /(*) 

Dibenzo- 
(a,h)anthracene 

0,034 <d.l. <d.l. <d.l. <d.l. <d.l. 0,013 0,011 <d.l. 0,030 <d.l. 0,0014 - 0,018 

Benzo(ghi)perylene 0,043 <d.l. <d.l. <d.l. <d.l. <d.l. 0,016 0,021 0,012 0,051 <d.l. 0,00017 - 0,0082 

Benz(e)pyrene 0,058 <d.l. <d.l. <d.l. <d.l. <d.l. 0,033 0,026 0,011 0,073 <d.l. /(*) - /(*) 

(*) EQS not defined. 

 

The current investigation found high total concentrations of PAHs in different sampling points. 

Fluoranthene, pyrene and benzo(b+j+k)pyrene had the highest concentrations, reaching 0,16, 

0,13 and 0,11 ug/l, respectively. S2 is the only point where all the investigated PAHs were 

found below the detection limit of 0,010 μg/l. S1, S7, S8 and S10 are the points with the high-

est number of PAHs exceeding the freshwater guideline values, and are thereby considered to 

be the most impacted points.  

 

Figure 33 shows the concentrations normalized with respect to the relative AA EQS taking into 

account the distance between the sampling points. The most impacted points are S1, S7 and 

S10, where some PAH concentrations are more than 200 times above their guideline value 

(i.e. benzo(ghi)perylene, benzo(b+k+j)fluorathene, indeno(1,2,3-cd)pyrene).  

 

The pattern of Figure 33 suggests three main sources of contamination before S1, S7 and 

S10, due to the high concentrations found. After every peak, the sampling point immediately 

after is characterized by lower concentrations, suggesting a fast sedimentation process for 

these contaminants that are predominantly bound to the solid phase. 
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FIGURE 33. PAH concentrations over distance in the stream water at Skensved. The 

concentrations are normalized with respect to the Annual Average (AA) guideline val-

ues set by the Water Framework Directive (C/CEQS on the y-axis). Note that the 0 dis-

tance location on the x-axis corresponds to sampling site S1 in Figure 29. 

 

Regarding the heavy metals, high concentrations of zinc and lead were detected along the 

stream stretch of interest. Table 24 shows the concentrations found in Skensved Å.  

 

TABLE 24. Results of the heavy metals’ concentrations (μg/l) found in Skensved Å to-

gether with the freshwater Annual Average (AA) and Maximum Allowable Concentration 

(MAC) EQS. Detection limit (d.l.) is 0,10 μg/l. The orange and red values are the concen-

trations exceeding the AA and MAC EQS respectively. 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 
EQS: 

AA - MAC 

Cr <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 3,4 - 17 

Ni 1,46 1,33 1,47 1,57 1,58 1,55 1,61 2,18 1,88 1,82 2,39 4 - 34 

Cu 1,68 1,92 1,55 1,75 1,65 1,77 1,55 3,17 2,41 1,63 1,65 4,9 - 4,9 

Zn 17,84 29,44 11,67 4,25 6,02 5,48 5,94 9,77 16,71 37,45 20,25 7,8 - 8,4 

As 0,72 0,73 0,67 0,67 0,68 0,65 0,7 0,91 0,66 0,7 0,71 4,3 - 43 

Cd <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 0,08 - 0,45 

Pb <d.l. <d.l. 2,85 <d.l. <d.l. <d.l. <d.l. 0,1 <d.l. <d.l. 0,26 1,2 - 45 

 

Zn was found exceeding the freshwater MAC EQS in 7 of the 11 sampling points. The highest 

concentration was found in S10, exceeding the guideline value by a factor of 4,5. Pb was also 

found exceeding the AA EQS in S3, as its concentration was found to be 2,85 μg/l.  

 

 



 

 66   The Danish Environmental Protection Agency / Investigating stream water quality under conditions of multiple stress 

8.3 Comparison between Køge Å and Skensved Å cases 
Based on the results related to the data acquisition presented in Chapters 8.1 and 8.2, the 

current paragraph discusses and compares the findings of contaminants in Køge Å and 

Skensved Å.  

 

Overall, Køge Å was found contaminated by chlorinated compounds, pesticides and one 

heavy metal (cadmium): 

 

 As expected, the chlorinated solvents and degradation products spread in Køge Å 

due to the discharge of contaminated groundwater into the stream. Contact zones 

have never been investigated due to the large size of the stream and the depth. The 

chlorinated solvent contamination of stream water starts downstream from the con-

taminated sites, since before K8 concentrations were below the detection limit. VC 

was the only compound exceeding the AA EQS, confirming the major role of the con-

taminated sites in the pollution of Køge Å. 

 

 Pesticides, on the other hand, were quite diffused all over the vandområde of interest. 

This suggests a diffuse source problem for the watercourse that cannot be simplified 

by looking at a small stretch, as pesticides were found from the uppermost sampling 

point down to the end of the investigated reach. Most of the pesticides are not regu-

lated by freshwater EQS and this complicates the impact assessment of the chemi-

cals. However, concentrations were found up to 0,52 ug/l, which can be considered a 

high value if the groundwater threshold of 0,1 ug/l for single pesticides is taken into 

account. If the groundwater quality standard was considered, the concentrations 

found in water would have exceeded the threshold by a factor of 5. 

 

 Overall, the flow conditions of Køge Å could be an important factor that has to be tak-

en into account during the assessment. The flow discharge during the field investiga-

tion was in line with the autumn historical conditions, representing neither an extreme 

nor a drought condition. Concentrations of pesticides and chlorinated solvents could 

be even higher in the case of low flow conditions, typically present during spring and 

autumn. 

 

On the other hand, Skensved Å was found contaminated by chlorinated solvents, pesticides, 

PAHs and heavy metals: 

 

 Chlorinated solvents were found below the freshwater EQS, but the extent of the con-

tamination spreads down to the end of Skensved Å, as TCE and two degradation 

products (1,1-DCE and cis-DCE) were detected in the most downstream sampling 

point (S11). However, the presence of 1,1-DCE in S11 raises some doubts about 

whether the concentrations found in Skensved Å are related to the same source stud-

ied in the report and shown in Figure 31. As reported by Pant and Pant (2010), cis-

DCE is the dominant metabolite formed in the reductive dechlorination of PCE and 

TCE, while 1-1 DCE is the least prevalent intermediate. Besides being a unusual 

degradation product of TCE/PCE, concentrations of 1,1-DCE were measured far from 

the expected discharge location of the contaminated groundwater plume. This analy-

sis suggests the presence of a second source downstream the contaminated site of 

Lille Skensved that has not been detected previously.  

 

 Pesticides were also detected in the stream water. Concentrations are one order of 

magnitude lower than in Køge Å, which suggests a lower impact on the stream water 

quality. Bentazone was one of the pesticides detected in Skensved Å. Past ground-

water investigations showed a contamination of bentazone in the boreholes close to 

Skensved Å (Table 14), suggesting a contamination coming from the groundwater. 
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 The sampling campaign revealed high total concentrations of PAHs, exceeding the 

AA EQS in more than one sampling point. However, the dry weather conditions be-

fore the sampling campaign (precipitation data in Figure 22) are in contrast with the 

results obtained, raising the question of which is the actual source contaminating the 

stream water. As reported in different studies such as Feng et al. (2007) and Sarria-

Villa et al. (2016), remobilization of PAHs (especially low molecular weight PAHs) 

during resuspension of contaminated sediments could be a possible explanation for 

the high concentrations detected in Skensved Å. Many processes such as an in-

crease in the turbulence or groundwater discharge from the streambed could release 

organic and inorganic contaminants. A sediment investigation could be useful to gain 

information on the relationship between the water and sediment compartments. 

 

 High concentrations of Zn and Pb were found in Skensved Å, exceeding the freshwa-

ter EQS. Elevated levels of zinc could be related to both piglet manure and urban 

sources. A recent national monitoring study in Denmark revealed that the use of zinc 

in pig production increased the soil concentrations, and this could have increased the 

leaching and runoff  of zinc from fields fertilized with pig manure to freshwater sys-

tems (Jensen et al., 2016). Finally,  both  Zn and Pb could be more related to storm-

water discharges from urbanized areas, as reported by Gasperi et al. (2012) and Li et 

al. (2009). 
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9. Application of the approach 
to the three study cases 

The methodological approach described in Chapter 5 was applied to the three study cases 

largely described and investigated in the past chapters: Køge Å, Skensved Å and Kirke Å. 

 

In order to use the simple formula presented in Chapter 5 for the calculation of CMD, fully 

mixed conditions have to be fulfilled at the sampling points. This is not known for the two loca-

tions due to limited information regarding the exact discharge locations of the contaminated 

groundwater. Instead, the CMD was calculated based on the concentrations found in each 

sampling location and the manual flow measurements calculated during the field campaign. 

This gives a range of contaminant mass discharges useful to have a general idea of the mag-

nitude of the pollution load discharging into the stream that can be classified based on the 

magnitude classification system defined in Chapter 5.  

 

9.1 Køge Å 
As previously described, before the current project, Køge Å had been investigated only to 

detect chlorinated solvents and degradation products originating from the contaminated sites 

close to the stream. Once more information regarding additional sources was acquired through 

a literature review (Chapter 6.1) and field investigations (Chapter 8.1), the Impact Assessment 

was performed. EQS and data regarding aquatic toxicity and bioaccumulation for each chemi-

cal found in the stream are reported in Appendix I (information regarding aquatic toxicity and 

bioaccumulation were added only for the cases where no EQS value existed for the specific 

chemical). 

 

Table 25 shows the Assessment Support applied to the Køge Å case study site. The stream 

was found contaminated by chlorinated solvents and degradation products, pesticides and 

degradation products and one heavy metal (cadmium). 

 

The detected chlorinated compounds (PCE, cis-DCE and VC) are known to be coming from 

the contaminated sites shown in Figure 27 due to contaminated groundwater entering the 

stream via groundwater-surface water contact zones. According to the IC analysis, VC has an 

impact to the watercourse during low flow conditions, as the concentrations are above the AA 

EQS. PCE and cis-DCE have no expected impact  to the watercourse, as the detected con-

centrations are below their respective AA EQS in every investigated point. The S analysis 

revealed that all the detected chlorinated solvents were causing a limited contamination, as 

they were detected in less than 10% of the vandområde of interest (light grey). Regarding the 

T distribution, the current investigation confirmed the results of the past years: the contaminat-

ed sites close to the streams discharge without interruption into Køge Å. Therefore, the con-

tamination is defined as continuous and it was possible to calculate the CMD, shown in Table 

25 under the column T. Using the magnitude classification presented in Table 9 in Chapter 5, 

PCE, cis-DCE and VC CMDs fall into Mag 2 category, as the calculated CMDs were between 

1 and 10 kg/year. 

 

The expected sources of pesticides polluting Køge Å are the agricultural fields close to the 

stream. Pesticides could enter the stream water compartment via surface run-off, groundwater 

discharge and remobilization of contaminated sediments. All the detected pesticides do not 

have EQS values regulating concentrations in the environment. Therefore, the impact was 

assessed through the ecotoxicity and bioaccumulation properties. Glyphosate, desphenyl-
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chloridazon, MCPA and propyzamide cause a potential impact to the water course. The results 

of standardized tests of at least one of the four aquatic indicator species were found above the 

benchmark value of 10 mg/l. According to the bioaccumulation properties, the log Kow of 

propyzamide (3,43 l/kg) was also found above the benchmark value of 3. AMPA have no ex-

pected impact on the stream water quality. The S analysis gave further information regarding 

the spatial occurrence of the chemicals. Glyphosate, AMPA and propyzamide were found in 

more than 50% of the sampling locations along the stretch of interest, showing a widespread 

contamination of these chemicals (dark grey). Desphenyl-chloridazon and MCPA were found 

in 42 % and 43% of the stream stretch, falling into the semi-widespread contamination catego-

ry (grey). According to the T classification (last column in Table 25), pesticides are classified 

as semi-continuous as it is expected that higher concentrations could be found in Køge Å 

during and/or after the spring spraying season. This  hypothesis has to be confirmed through 

further investigations. 

 

Among the analyzed heavy metals, cadmium was found to have an impact to the watercourse 

during low flow conditions, as the concentration in K3 (0,21 μg/l) exceeds the AA EQS (0,08 

μg/l). Cadmium is also contaminating a fraction between 10 and 50 % of the stream stretch of 

interest (11%), thus the contaminations is defined as semi-widespread. All the other heavy 

metals had concentrations below the 90% quantile found in Danish streams and thus the spa-

tial distribution was not calculated. Heavy metals were classified both as pulse and continuous 

pollutants, as they are expected to enter the stream intermittently through stormwater and 

CSO discharges, but especially for some of them (Zn, As, Ni, Cu), the source of contamination 

could be geogenic and therefore also discharging continuously into Køge Å through the 

groundwater. If close agricultural fields are fertilized with manure containing high concentra-

tions of Ni, Cu and Zn, the source of contamination of these heavy metals could be also dif-

fuse. 

TABLE 25. Assessment Support results as applied to the Køge Å case study site. 

 

Compounds 
Expected or 

known sources 
IC S T 

C
h

lo
ri

n
a

te
d

 

c
o

m
p

o
u

n
d

s
 Tetrachlorethylene 

(PCE) 

Point source 

Contaminated site(s) 

  
Continuous 
(CMD=1,38 
kg/y) 

Cis-1,2-dichlorethylene 

(cis-DCE) 
  

Continuous 
(CMD=1,26-
1,74 kg/y) 

Vinyl chloride  

(VC)  
  

Continuous 
(CMD=1,01-
2,67 kg/y) 

P
e

s
ti

c
id

e
s
 

Glyphosate 

Diffuse source 

Agricultural fields 

  
Semi-
continuous 

AMPA   
Semi-
continuous 

Desphenyl-chloridazon   
Semi-
continuous 

MCPA   
Semi-
continuous 

Propyzamide   
Semi-
continuous 

H
e
a

v
y

 M
e

ta
ls

 

Ni 
Point source 

direct discharges 
Stormwater separate 
systems and CSOs 

 
Geogenic source 

 
Diffuse source 

Agricultural fields 
(Ni, Cu, Zn) 

 

 
- 

Pulse/ Con-
tinuous 

Cu 
 - 

Pulse/ Con-
tinuous 

Zn 
 - 

Pulse/ Con-
tinuous 

As 
 - 

Pulse/ Con-
tinuous 
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Cd 
  

Pulse/ Con-
tinuous 

Pb 
 - 

Pulse/ Con-
tinuous 

 

9.2 Skensved Å 
The same procedure was carried out for Skensved Å study case. EQS and data regarding 

aquatic toxicity and bioaccumulation for each chemical found in Skensved Å are reported in 

Appendix I (information regarding aquatic toxicity and bioaccumulation were added only when 

EQS values did not exist for the specific chemical). 

 

After acquiring enough data and information regarding the chemical properties, the impact, as 

well as the spatial and temporal distribution of the compounds detected in Skensved Å could 

be assessed; the Assessment Support is visualized in Table 26. Differently from Køge Å case 

study, Skensved Å is impacted by more pollutant categories: chlorinated solvents and degra-

dation products, pesticides, PAHs and heavy metals.  

 

Chlorinated solvents are known to be related to the contaminated site in Lille Skensved, de-

scribed in detail in Chapter 6.2.1. However, the detection of 1,1-DCE close to the delta of 

Skensved Å and far from the discharge area of the groundwater plume suggests the presence 

of a second source downstream the contaminated site of Lille Skensved that has not been 

studied previously. The detected chlorinated solvents (TCE, 1,1-DCE and cis-DCE) were 

found in every point below the AA EQS, thus these compounds have no expected impact  to 

the watercourse. According to the S analysis, the spatial distribution of the detected chlorinat-

ed solvents reveals a semi-widespread contamination, as the fraction of stream influenced by 

TCE, 1,1-DCE and cis-DCE is 45,4%, 11% and 39 % respectively. The T distribution of the 

chlorinated solvents is shown in the last column of Table 26. The CMD was calculated for the 

chlorinated solvents, due to their continuous contamination. According to the magnitude classi-

fication system presented in Table 9 in Chapter 5, TCE CMD can be classified as Mag1-Mag2, 

while both 1,1-DCE and cis-DCE fall into the class Mag 1. 

 

Pesticides are expected to be linked to the agricultural fields close to the banks of Skensved 

Å. The main pathways of contamination are surface run-off and contaminated groundwater 

discharge. Remobilization of pesticides bound to the sediment phase could also play an im-

portant role. All the pesticides detected in Skensved Å are not regulated by EQS standards. 

According to IC analysis, glyphosate and desphenyl-chloridazon show a potential impact, as 

their aquatic toxicity values were exceeding the benchmark of 10 mg/l for crustaceans and 

algae. Bentazone and AMPA have no expected impact on the water course. According to the 

S analysis, three pesticides (glyphosate, AMPA and desphenyl-chloridazon) cause a wide-

spread contamination (dark grey), as they were detected in more than 50% of the stream 

stretch (100, 89 and 100 % respectively), while bentazone was detected in 11% of the vand-

område of interest, falling into the semi-widespread contamination category (grey). Regarding 

the T analysis, former investigations in Skensved Å related to pesticides showed seasonal 

variations in concentrations into the stream (Mcknight et al., 2012), thus the pesticides are 

classified as semi-continuous contaminants.  

 

The expected sources of PAH contamination are the CSOs and separate stormwater systems 

that discharge into the stream during wet weather conditions. Seven PAHs (fluoranthene, 

pyrene, benzo(a)anthracene, chrysene, benzo(b+j+k)fluoranthene, dibenzo(a,h)anthracene 

and benzo(ghi)perylene) are impacting the stream even during high dilution conditions, as they 

are exceeding the MAC EQS values in at least one investigated point. Benz(a)pyrene and 

indeno(1,2,3)pyrene exceed the AA EQS and thus impact Skensved Å during low flow condi-

tions. Benzo(e)pyrene is not regulated through EQS standards, but the ecotoxicity tests and 

bioaccumulation properties show a potential impact. According to the S analysis, five PAHs 
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(phenanthrene, fluoranthene, pyrene, benzo(ghi)perylene and benzo(e)pyrene) show a wide-

spread contamination, while all the other detected PAHs a semi-widespread contamination, 

highlighting that all the investigated stretch is influenced by PAHs. Since the PAHs are re-

leased depending on the rain event, the contamination is defined as pulse. 

 

Lastly, the heavy metals found in Skensved Å could be related to geogenic, diffuse (if close 

agricultural fields are fertilized with manure containing high concentrations of heavy metals 

such as Ni, Cu and Zn) and point sources (CSOs and separate stormwater pipe outlets).  Zinc 

is impacting the stream even with high dilution conditions, as it exceeds the AA EQS, while Pb 

exceeds the AA EQS in one investigated point, falling into the orange category impact to the 

watercourse during low flow conditions. According to the S analysis, Zn cause a widespread 

contamination, as it was detected in 69% of the vandområde of interest. Pb was found in a 

portion below 10% of the stream stretch of interest, falling into the limited contamination cate-

gory. Cu was also considered in the S calculation, as the concentration found in S8 (3,17 μg/l) 

was above the 90% quantile found in Danish streams (2,5 μg/l according to DCE (2015)). 

Therefore, Cu contamination is classified as limited. Regarding the T analysis, heavy metal 

concentrations could be related to both continuous and pulse contaminations. 

 

TABLE 26. Assessment Support results as applied to the Skensved Å case study site. 

 Compounds 
Expected or 

known sources 
IC S T 

C
h

lo
ri

n
a

te
d

 

c
o

m
p

o
u

n
d

s
 Trichlorethylene  

(TCE) 

Point source 
Contaminated site(s) 

  
Continuous 
(CMD= 0,4-1,2 
kg/y) 

1,1-dichlorethylene  
(1,1-DCE)   

Continuous 
(CMD= 0,2 kg/y) 

cis-1,2-dichlorethylene 
(cis-DCE)   

Continuous 

(CMD= 0,2-0,4 
kg/y) 

P
e

s
ti

c
id

e
s
 Glyphosate 

Diffuse source 
Agricultural fields 

  Semi-continuous 

AMPA   Semi-continuous 

Bentazone   Semi-continuous 

Desphenyl-chloridazon   Semi-continuous 

P
A

H
s

 

Naphtalene 

Point source  
direct discharges 

Stormwater separate 
systems and CSOs 

 

  Pulse 

Acenaphtene   Pulse 

Fluorene   Pulse 

Phenanthrene   Pulse 

Anthracene   Pulse 

Fluoranthene   Pulse 

Pyrene   Pulse 

Benzo(a)anthracene   Pulse 

Chrysene   Pulse 

Benzo(b+j+k)fluoranthene   Pulse 

Benz(a)pyrene   Pulse 

Indeno(1,2,3-cd)pyrene   Pulse 

Dibenzo(a,h)anthracene   Pulse 

Benzo(ghi)perylene   Pulse 
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Benzo(e)pyrene   Pulse 

H
e

a
v

y
 M

e
ta

ls
 

Ni Point source 
direct discharges 

Stormwater separate 
systems and CSOs 

 
Geogenic source 

 
Diffuse source 

Agricoltural fields 
(Ni, Cu, Zn) 

 

 - 
Pulse/ Continu-
ous 

Cu   
Pulse/ Continu-
ous 

Zn   
Pulse/ Continu-
ous 

As  - 
Pulse/ Continu-
ous 

Cd  - 
Pulse/ Continu-
ous 

Pb   
Pulse/ Continu-
ous 

 

9.3 Kirke Å 
Kirke Å was analyzed only through a preliminary desktop investigation, without performing an 

in-depth site inspection of the potential additional sources described in Chapter 6.3. Therefore, 

it was found that not enough information and data exist to perform the Impact Assessment, as 

past studies focused only on the contamination related to the contaminated site.  

 

Due to the lack of data regarding other potential additional sources of contamination, the an-

swer to the question:  “Source information present?” shown in the methodological approach 

visualized in Figure 8 in the section Desktop Screening was “No”. Thus, to evaluate the major 

pollution sources, further site-specific measurements are required. 
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10. Closing remarks and future 
perspectives 

10.1 Positive aspects of the proposed methodological 
approach 

 

 This project confirmed the necessity of studying the anthropogenic impact to surface waters 

through an integrated and comprehensive approach. The Køge Å and Skensved Å study 

cases both indicate the presence of multiple stressors acting differently in space and time 

and impacting or potentially impacting at different scales the water quality of the streams. 

Thus, for both Køge Å and Skensved Å (and potentially in Kirke Å) it could be shown that: 1) 

the contaminated sites investigated in the past years are not the only sources impairing the 

stream, and 2) new potential sources not considered previously were mapped and ad-

dressed. 

 

 Few published studies have approached the challenge of identifying the sources and corre-

lating the impacts of pollutants detected in surface water in a multiple stressor context (see 

e.g. Barber et al., 2006; Escher et al., 2017; Kuzmanović et al., 2016; Sonne et al., 2017), 

highlighting the inherent difficulty in ranking and differentiating the sources. The 3 phases 

approach proposed here could be considered a more holistic source-pathway-receptor 

methodology able to support the assessment of water quality and facilitate a better under-

standing of the anthropogenic contribution to stream water pollution. The sources initially 

screened in the first phase (i.e. Desktop Screening) could in most cases be linked to the pol-

lutants found in the streams during the site-specific field investigations. This principle could 

be useful in directing the prioritization of future high resolution (time/space) measurements 

and supporting future stream restoration efforts.  

 

 The pollutants found in the stream could generally be evaluated in the second phase (i.e. 

Impact Assessment), as the Impact Characterization could provide an understanding of 

which pollutants to be aware of. Including the environmental fate and toxicity of chemicals 

not regulated by EQS enables a more comprehensive assessment of the potential risk to the 

environment and human health for non-regulated (e.g. emerging) pollutants for which moni-

toring data in the aquatic environment are still needed.   

 

 In addition to characterizing the impact of a pollutant through its EQS or ecotoxici-

ty/bioaccumulation data, the second phase of the methodological approach enables an 

evaluation of the spatial and temporal occurrence of the chemicals entering the stream. This 

type of information could be of further assistance in the planning and optimization of future 

water quality monitoring campaigns, i.e. determining macro-, micro- and representative mon-

itoring locations (Khalil and Ouarda, 2009) with the aim of delineating “worst-case” scenario 

conditions.  

 

 The third phase of the proposed approach (i.e. Assessment Support) collects the results 

gained in the Impact Assessment and reports the characteristics and information of the ex-

pected or known source(s). This last phase enables both linking (where possible) the de-

tected chemicals back to their respective sources thus providing decision support to the reg-

ulator regarding which category of pollutant (and source) may be driving stream’s contami-

nation under conditions of multiple stress, but thereby also serves as a gap analysis, to 

guide future data acquisition campaigns where linkages could not be made. 
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10.2 Limitations of the proposed methodological approach 
 

 The method was tested on two case study sites by first evaluating measurements from past 

investigations (desktop study), followed by acquiring additional data through one additional 

site-specific survey. The resulting “snapshot” of the status of the receiving waterbody may in 

reality not be enough to uniquely identify the real pollution drivers, or may miss that these 

drivers can change according to e.g. season. With such a variety of potential sources and 

chemicals, and the necessity of looking at a larger scale (compared to the impact from a 

single contaminated site impacting surface water), it is difficult to predict and evaluate the 

major pollutant drivers from a single investigation. A better understanding of the spatial and 

temporal variations of pollutant loads and dilution conditions is therefore needed, which can 

be gained e.g. by conducting a series of site-specific field campaigns to enable representa-

tive data collection, as well as through modelling of the dominant processes affecting water 

quality. In particular, challenges exists regarding the collection of good quality measure-

ments for pulse and diffuse contamination due to the inherent difficulties in choosing repre-

sentative monitoring locations, the presence of multiple pathways and the limitations in mon-

itoring resources (e.g. cost burden).  

 

 It became clear through the course of this study that investigations concentrating solely on 

the stream water compartment will not be comprehensive enough to make definitive conclu-

sions linking pollutants in streams back to their respective sources. Therefore, to truly ena-

ble a more comprehensive integrated approach, the sediment compartment and hyporheic 

zone compartment should be taken into account, as discussed and tested in Sonne et al. 

(2017). 

 

 “How to deal with chemicals not investigated?” Although it can be difficult to decide which 

chemicals to monitor for, it is often not possible to conduct investigations for all chemicals 

due to technical and financial limitations, a problem faced also in this study. It is therefore 

recognized that the chance will remain that a specific chemical(s) driving impacts may simp-

ly not be assessed due to the increasing number of XOCs found in the environment, and 

considering that more than 85,000 chemicals are in production and use worldwide 

(McKnight et al., 2015). Moreover, the limited information regarding emerging pollutants and 

hazard potentials still challenges the standardization of chemical identification methods. Due 

to limitations in cost and time, expanding the list of targeted analytical methods for more in-

dividual compounds may not be the most efficient nor useful approach, as it may not be able 

to address e.g. transformation by-products (Muz et al., 2017b). Alternative approaches are 

being proposed, such as the use of non-target screening methods for the identification of 

“new” chemicals potentially driving impacts, where examples exist for anti-androgenic com-

pounds (Muschket et al., 2018) and  aromatic amines (Muz et al., 2017a). New compounds 

were identified thereby through fragmentation approaches that involved the screening of 

chemicals with specific modes of actions (Muschket et al., 2018) or common functionalities 

(Muz et al., 2017b). However, the additional costs associated with such innovative tech-

niques for determining toxic burden, where each sample is split apart into the (potentially) 

hundreds of chemical components that can then be e.g. tested in an ecotoxicology lab to de-

termine pollution drivers, may make them impossible to realize and implement in large-scale 

national water quality monitoring campaigns. 

 

 Cumulative effects of complex compound mixtures were not considered. Joint toxicity of 

mixtures might cause adverse and toxic effects even if all the individual chemicals in the 

mixture have concentrations below the No Observed Effect Concentration (NOEC) or the 

EQS (Gustavsson et al., 2017). Cumulative effects of mixtures should be considered during 

environmental risk assessments, as multiple biological studies have shown quantifiable toxic 

and unpredictable effects resulting from complex mixtures of chemicals such as pesticides, 

pharmaceuticals, heavy metals, polyaromatic hydrocarbons and plasticizers on different 
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trophic levels even when individual effects appear negligible (Carvalho et al., 2014; Fagin, 

2012). Concentration Addition (CA) models could be used to further assess the risk related 

to the combined effect of chemical mixtures, as shown in Bopp et al. (2015) and Kortenkamp 

et al. (2009). This application of this method can be considered as a conservative, first-tier 

(screening-level) evaluation, as confirmed by the reviews of Belden et al. (2007) and 

Rodney et al. (2013). 

 

10.3 Future perspectives 
 

 So far, only water bodies impacted by contaminated sites containing chlorinated compounds 

discharging to streams via groundwater were assessed. Other contaminated sites, such as 

landfills, gas stations and machine pools could be discharging pollutants to streams and 

warrant further investigation.  

 

 Yearly field investigation campaigns are not sufficient to understand the overall behavior of 

seasonal and pulse contaminations. They may additionally misrepresent the worst-case 

scenario, leading to incorrect conclusions regarding the status of a water body. Due to limi-

tations in budget and time, it was not possible to decide the timing of the sampling campaign 

depending on all the characteristics of the investigated sources. For example, if the potential 

impact from CSOs and separate stormwater outlets should be fully addressed, it is recom-

mended to plan and optimize the monitoring campaign in order to catch the contribution dur-

ing both dry and wet weather conditions. This would help in understanding the contaminant 

mass discharge related to a single stormwater/CSO outlet for a specific rain event.  

 

 Better planning and integration of methods is needed for evaluating the status of streams 

under worst-case scenarios for various sources of anthropogenic stream water pollution 

drivers and to avoid incorrect conclusions regarding stream water pollution drivers. For ex-

ample, Vezzaro et al. (2017) suggest to address and evaluate the negative effects of CSOs 

on receiving water bodies through an approach that first assesses the hydraulic parameters 

(e.g. maximum flows, volumes, frequency of overflows) and then, if CSO discharges could 

potentially affect the receiving water body, event-based and high time resolution water quali-

ty monitoring actions could be planned. For agriculturally-based inputs such as pesticides, 

numerous studies indicate that sampling campaigns should be conducted especially in April-

June (during the main pesticide application period in Denmark) in order to catch pesticides 

entering streams via tile drains and/or surface runoff through the use of event-triggered wa-

ter samplers, and in August for capturing inputs from groundwater (McKnight et al., 2012; 

Rasmussen et al., 2013).  

 

 Multiple compartment assessments are highly recommended, also for the sites investigated 

in this report, to enable a better linkage of pollutants and their respective sources and domi-

nant transport pathways. Sampling groundwater, sediment and the hyporheic  zone com-

partments would therefore increase the possibility of addressing the pathway of contamina-

tion, obtaining a more holistic picture of the chemical quality of the stream, as shown for ex-

ample in Bigi (2017), Sonne et al. (2017) and  Stutter et al. (2007). This will moreover be 

crucial in paving the way towards suggesting potential remedial actions that are capable of 

reducing and/or preventing the discharge of contamination at the sources that matter, and 

may be the most cost-effective solution for some source types. 
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Appendix 

 

A. Concentrations of chlorinated solvents and degradation products 

in Køge Å (μg/l) 

 

Transect TCE PCE VC cis-DCE 

 
High 

Tide 

Low 

Tide 
 

High 

Tide 

Low 

Tide 
 

High 

Tide 

Low 

Tide 
 

High 

Tide 

Low 

Tide 
 

T1 0,18 <d.l. 
 

0,46 0,022 
 

0,89 <d.l. 
 

0,87 <d.l. 
 

     

T2 

<d.l. <d.l. 

<d.l. <d.l. 

<d.l. <d.l. 

<d.l. <d.l. 
 

0,045 0,056 

0,027 0,051 

<d.l. <d.l. 

0,027 <d.l. 
 

0,15 0,25 

<d.l. 0,13 

<d.l. <d.l. 

<d.l. <d.l. 
 

0,10 0,12 

<d.l. 0,11 

<d.l. <d.l. 

<d.l. <d.l. 
 

     

T3 

<d.l. 0,043 

<d.l. <d.l. 

0,037 <d.l. 

<d.l. <d.l. 
 

0,052 0,078 

0,032 0,048 

0,084 0,072 

<d.l. 0,038 
 

<d.l. 0,3 

0,071 0,038 

0,12 0,1 

<d.l. <d.l. 
 

0,051 0,14 

0,063 0,062 

0,12 0,12 

<d.l. 0,033 
 

     

T4 

<d.l. <d.l. 

<d.l. 0,065 

0,035 <d.l. 

<d.l. <d.l. 
 

0,041 0,091 

0,049 0,12 

0,097 <d.l. 

<d.l. <d.l. 
 

0,059 0,22 

0,063 0,20 

0,19 <d.l. 

0,04 <d.l. 
 

0,041 0,15 

0,090 0,20 

0,19 <d.l. 

0,052 <d.l. 
 

 

B. Stream water concentrations of chlorinated solvents (μg/l) from the 2014 

campaign in Skensved Å  

 

Point Coordinates (UTM 33N) Chlorinated solvents 

 
X Y PCE TCE cis-DCE trans-DCE 1,1-DCA CA VC 1,1,1-TCA 1,1,-DCE 

P1 320018,86 6155693,05 <d.l 0,032 0,022 <d.l <d.l <d.l <d.l <d.l 0,000 

P2 320228,31 6155620,37 <d.l 0,276 0,091 <d.l <d.l <d.l <d.l <d.l <d.l 

P3 320228,04 6155615,31 <d.l 0,715 0,189 <d.l <d.l <d.l <d.l <d.l 0,019 

P4 320226,75 6155595,88 <d.l 0,867 0,200 <d.l <d.l <d.l <d.l <d.l 0,012 

P5 320248,73 6155531,17 <d.l 3,630 0,951 <d.l <d.l <d.l <d.l <d.l 0,045 

P6 320267,62 6155529,18 0,027 6,101 1,557 <d.l <d.l <d.l 0,041 <d.l 0,016 

P7 320289,55 6155540,19 <d.l <d.l <d.l <d.l <d.l <d.l <d.l <d.l <d.l 

P8 320305,50 6155540,75 0,047 6,964 1,727 <d.l <d.l <d.l 0,048 <d.l 0,073 

P9 320317,09 6155535,77 <d.l <d.l <d.l <d.l <d.l <d.l <d.l <d.l <d.l 

P10 320597,00 6155533,00 <d.l 2,841 0,786 <d.l <d.l <d.l <d.l <d.l 0,034 
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C. Hyporheic zone concentrations (μg/l) of chlorinated solvents from the 2017 

campaign in Skensved Å 

 

Piezometer Depth (cm) Coordinates (UTM 33N) Chlorinated solvents 

  
X Y PCE TCE cis-DCE trans-DCE 1,1-DCE CA VC 

piezometer 1 40 320228 6155610 0,089 18,188 2,586 <0,02 0,090 <0,02 <0,02 

piezometer 2 40 320226 6155600 0,071 12,967 1,997 <0,02 0,070 <0,02 <0,02 

piezometer 3 20 320251 6155526 0,095 42,389 5,614 <0,02 0,352 <0,02 <0,02 

piezometer 4 40 320269 6155530 0,118 38,167 5,381 <0,02 0,295 <0,02 <0,02 

piezometer 5 40 320299 6155539 <0,02 13,637 1,851 <0,02 0,062 <0,02 <0,02 

piezometer 6 40 320298 6155544 <0,02 16,484 2,134 <0,02 0,068 <0,02 <0,02 

piezometer 7 40 320299 6155542 0,038 11,670 1,608 <0,02 0,054 <0,02 <0,02 

piezometer 8 20 320309 6155540 <0,02 7,542 1,018 <0,02 0,038 <0,02 <0,02 

piezometer 9 40 320315 6155538 <0,02 7,631 1,458 <0,02 0,057 <0,02 <0,02 

 

 

 

D. Complete list of analyzed compounds 

 

Compound Detection limit Analysis method 

PAHs 

  Naphtalene 0,010 μg/l GC/MS 

Acenaphtylene 0,010 μg/l GC/MS 

Acenaphtene 0,010 μg/l GC/MS 

Fluorene 0,010 μg/l GC/MS 

Phenanthrene 0,010 μg/l GC/MS 

Anthracene 0,010 μg/l GC/MS 

Fluoranthene 0,010 μg/l GC/MS 

Pyrene 0,010 μg/l GC/MS 

Benzo(a)anthracene 0,010 μg/l GC/MS 

Chrysene 0,010 μg/l GC/MS 

Benzo(b+j+k)fluoranthene 0,010 μg/l GC/MS 

Benz(a)pyrene 0,010 μg/l GC/MS 

Indeno(1,2,3-cd)pyrene 0,010 μg/l GC/MS 

Dibenzo(a,h)anthracene 0,010 μg/l GC/MS 

Benzo(ghi)perylene 0,010 μg/l GC/MS 

Benz(e)pyrene 0,010 μg/l GC/MS 

Chlorinated solvents and degradation products 

  Tetrachlorethylene 0,020 μg/l HS GC/MS 

Trichlormethane (Chloroform) 0,020 μg/l HS GC/MS 

Tetrachlormethane 0,020 μg/l HS GC/MS 

1,1,1-trichlorethane 0,020 μg/l HS GC/MS 

Trichlorethylene 0,020 μg/l HS GC/MS 

Vinylchloride 0,020 μg/l HS GC/MS 

1,1-dichlorethylene 0,020 μg/l HS GC/MS 

trans-1,2-dichlorethylene 0,020 μg/l HS GC/MS 
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cis-1,2-dichlorethylene 0,020 μg/l HS GC/MS 

1,2-dibromethane 0,020 μg/l HS GC/MS 

1,2-dichlorethane 0,020 μg/l HS GC/MS 

1,1-dichlorethane 0,020 μg/l HS GC/MS 

Chlorethane 0,10 μg/l HS GC/MS 

Pesticides, regional package 2  

  2,4-D 0,010 μg/l LC/MS 

2,4-dichlorphenol 0,010 μg/l GC/MS 

2,6-dichlorphenol 0,010 μg/l GC/MS 

4-CPP, (4-Chlorprop) 0,010 μg/l LC/MS 

4-nitrophenol 0,010 μg/l LC/MS 

Aminomethylphosphonsyre, AMPA 0,010 μg/l LC/MS 

Atrazine 0,010 μg/l LC/MS 

2,6-Dichlorbenzamid (BAM) 0,010 μg/l LC/MS 

Bentazon 0,010 μg/l LC/MS 

Carbofuran 0,010 μg/l LC/MS 

Chloridazon 0,010 μg/l LC/MS 

Prochloraz 0,010 μg/l LC/MS 

Captan 0,010 μg/l GC/MS 

Prometryn 0,010 μg/l LC/MS 

Propachlor 0,010 μg/l LC/MS 

Azinphos-methyl 0,010 μg/l GC/MS 

Mevinphos 0,010 μg/l GC/MS 

Malathion 0,005 μg/l GC/MS 

Parathion-ethyl 0,005 μg/l GC/MS 

Chlorthiamid 0,010 μg/l LC/MS 

Desphenyl-chloridazon 0,010 μg/l LC/MS 

Desethylatrazine 0,010 μg/l LC/MS 

Desethylterbutylazine 0,010 μg/l LC/MS 

Desisopropylatrazine 0,010 μg/l LC/MS 

Dichlorprop(2,4-DP) 0,010 μg/l LC/MS 

Dimethoat 0,010 μg/l LC/MS 

Dinoseb 0,010 μg/l LC/MS 

Diuron 0,010 μg/l LC/MS 

Glyphosate 0,010 μg/l LC/MS 

Hexazinone 0,010 μg/l LC/MS 

Hydroxyatrazine 0,010 μg/l LC/MS 

Isoproturon 0,010 μg/l LC/MS 

Lenacil 0,010 μg/l LC/MS 

Linuron 0,010 μg/l LC/MS 

MCPA 0,010 μg/l LC/MS 

Mechlorprop (MCPP) 0,010 μg/l LC/MS 

Metamitron 0,010 μg/l LC/MS 

Metribuzin-desamino-deketo 0,010 μg/l LC/MS 

Metribuzin-deketo 0,010 μg/l LC/MS 

Pendimethalin 0,010 μg/l GC/MS 
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Pirimicarb 0,010 μg/l LC/MS 

Propyzamide 0,010 μg/l LC/MS 

Simazine 0,010 μg/l LC/MS 

Terbutylazine 0,010 μg/l LC/MS 

Inorganic analysis package 

  pH 0,1 pH DS/EN ISO 10523:2012 

Conductivity 1 mS/m DS/EN 27888 

Calcium, Ca2+ 0,5 mg/l ICP DS/EN ISO 11885 

Magnesium, Mg2+ 0,3 mg/l ICP DS/EN ISO 11885 

Potassium, K+ 0,05 mg/l ICP DS/EN ISO 11885 

Sodium, Na+ 0,1 mg/l ICP DS/EN ISO 11885 

Iron, Fe 0,01 mg/l ICP DS/EN ISO 11885 

Manganese, Mn 0,001 mg/l ICP DS/EN ISO 11885 

Ammonium+ammonia, NH4+ 0,004 mg/l SM 17udg. 4500-NH3 

Nitrite, NO2- 0,001 mg/l DS/EN 26777:2003 

Nitrate, NO3- 0,4 mg/l SM17udg. 4500-NO3 H 

Oxygen, dissolved, O2 0,1 mg/l DS 2205 

Total phosphorous, P 0,003 mg/l DS/EN ISO 6878:2004 del 7 

Chloride, Cl- 0,5 mg/l SM17udg. 4500-Cl -E 

Fluoride, F- 0,03 mg/l DS 218,MOD 

Sulfate, SO42- 0,5 mg/l SM17udg. 4500-SO4 

Bicarbonate, HCO3- 3 mg/l DS/EN ISO 9963-1:1996 

Aggressive carbon dioxide, CO2 2 mg/l DS 236 

Suspended solids 0,2 mg/l DS 207:1985 

NVOC 0,1 mg/l DS/EN 1484:1997 

COD 5 mg/l DS/ISO 15705:2006 

BOD5, recipient 0,4 mg/l DS/EN 1899-2 

Heavy metals 

  Arsenic 0,10 μg/l ICP-MS 

Cadmium 0,10 μg/l ICP-MS 

Copper 0,10 μg/l ICP-MS 

Chromium 0,10 μg/l ICP-MS 

Nickel 0,10 μg/l ICP-MS 

Lead 0,10 μg/l ICP-MS 

Zinc 0,10 μg/l ICP-MS 
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E. Stream water sampling locations in Køge Å and Skensved Å. Coordinates 

are in UTM 33N 

 

Sampling location X Y 

Køge Å   

K1 317379,565 6150813,923 

K2 318401,840 6150478,886 

K3 318810,860 6150106,012 

K4 319572,619 6149805,781 

K5 320666,090 6149398,344 

K6 321336,325 6149305,588 

K7 321537,665 6149135,923 

K8 321709,263 6149116,219 

K9 321773,560 6148986,810 

K10 321925,640 6148789,746 

Skensved Å   

S1 317230,781 6157236,183 

S2 318333,532 6156462,817 

S3 318964,490 6155909,205 

S4 319399,863 6155663,444 

S5 319739,567 6155643,117 

S6 320224,964 6155587,223 

S7 320253,070 6155524,414 

S8 320291,866 6155540,372 

S9 321125,432 6155427,347 

S10 321983,938 6155114,967 

S11 323433,824 6155184,712 
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F. Complete results from the field investigation performed in Køge Å 

 

 
Unit K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 

Macro-ions, nutrients and metals 

Calcium, Ca++ mg/l 98 97 100 99 100 100 100 99 99 100 

Magnesium, Mg++ mg/l 5,2 5,3 5,3 5,4 5,8 5,8 5,7 5,6 5,6 5,8 

Potassium, K+ mg/l 2,8 2,8 2,7 2,6 2,6 2,7 2,6 2,6 2,6 2,7 

Sodium, Na+ mg/l 16 16 15 15 17 18 18 18 19 20 

Iron, Fe mg/l 0,77 1,1 0,33 0,32 0,27 0,25 0,26 0,24 0,25 0,29 

Manganese, Mn mg/l 0,054 0,062 0,023 0,014 0,008 0,009 0,008 0,008 0,008 0,010 

Ammonium+ammonia,  
NH4+ 

mg/l 0,045 3,9 0,047 0,031 0,029 0,017 0,015 0,038 0,016 0,017 

Nitrite, NO2- mg/l 0,049 0,043 0,060 0,062 0,064 0,066 0,063 0,061 0,059 0,056 

Nitrate, NO3- mg/l 22 21 26 28 22 22 21 21 21 21 

BOD5 mg/l <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

Total phosphorous, P mg/l 0,20 0,21 0,13 0,12 0,10 0,098 0,10 0,11 0,11 0,12 

COD mg/l 26 26 23 22 19 20 21 20 20 21 

Chloride, Cl- mg/l 32 31 30 30 33 34 34 35 36 36 

Fluoride, F- mg/l 0,22 0,23 0,23 0,23 0,22 0,23 0,22 0,23 0,23 0,23 

Sulfate, SO4-- mg/l 28 28 29 28 30 30 30 29 29 29 

Suspended solids mg/l 450 420 420 410 430 420 420 410 410 430 

NVOC mg/l 12 12 10 9,5 8,9 9,2 8,9 9,1 9,0 9,1 

PAHs 
           

Naphthalene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Acenaphthylene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Acenaphthene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Fluorene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Phenanthrene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 0,010 <0,010 <0,010 <0,010 

Anthracene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Fluoranthene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Pyrene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Benzo(a)anthracene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Chrysene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Benzo(b+j+k)fluoranthene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Benz(a)pyrene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Indeno(1,2,3-cd)pyrene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Dibenzo(a,h)anthracene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Benzo(ghi)perylene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Benz(e)pyrene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Chlorinated compounds and degradation products 

Trichlormethane  

(Chloroform) 
µg/l <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

1,1,1-trichlorethane µg/l <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

Tetrachlormethane µg/l <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

Trichlorethylene µg/l <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

Tetrachlorethylene µg/l <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 0,034 <0,020 <0,020 

Chlorethane µg/l <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 

Vinyl chloride µg/l <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 0,066 <0,020 0,025 

1,1-dichlorethylene µg/l <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

trans-1,2-dichlorethylene µg/l <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

cis-1,2-dichlorethylene µg/l <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 0,043 0,031 <0,020 

1,2-dibromethane µg/l <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

1,2-dichlorethane µg/l <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

1,1-dichlorethane µg/l <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

4-chlor-2-methylphenol µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Pesticides 
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2,4-D µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

2,4-dichlorphenol µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

2,6-dichlorphenol µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

4-CPP, (4-Chlorprop) µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

4-nitrophenol µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Aminomethylphosphon-
syre, AMPA 

µg/l 0,17 0,16 0,15 0,14 0,16 0,15 0,15 0,16 0,13 0,12 

Atrazine µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

2,6-Dichlorbenzamid 
(BAM) 

µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Bentazone µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Carbofurane µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Chloridazon µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Prochloraz µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Captan µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Prometryn µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Propachlor µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Azinphos-methyl µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Mevinphos µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Malathion µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Parathion-ethyl µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Chlorthiamid µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Desphenyl-chloridazon µg/l <0,010 <0,010 0,011 0,016 <0,010 0,019 0,015 <0,010 <0,010 <0,010 

Desethylatrazine µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Desethylterbutylazine µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Desisopropylatrazine µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Dichlorprop(2,4-DP) µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Dimethoat µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Dinoseb µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Diuron µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Glyphosate µg/l 0,39 0,38 0,51 0,52 0,52 0,47 0,48 0,35 0,31 0,29 

Hexazinon µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Hydroxyatrazine µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Isoproturon µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Lenacil µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Linuron µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

MCPA µg/l 0,012 0,011 0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Mechlorprop (MCPP) µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Metamitron µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Metribuzin-desamino-
deketo 

µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Metribuzin-deketo µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Pendimethalin µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Pirimicarb µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Propyzamide µg/l 0,44 0,40 0,19 0,23 0,19 0,18 0,21 0,21 0,24 0,23 

Simazine µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Terbutylazine µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Heavy metals 
           

Cr µg/l <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 

NI µg/l 1,28 1,49 1,37 1,23 1,16 1,22 1,17 1,14 1,14 1,14 

Cu µg/l 2,27 1,86 2,48 2,17 1,63 1,71 1,66 2,15 1,88 1,64 

Zn  µg/l 7,2 6,94 7,25 3,8 6,8 3,61 4,22 6,44 4,55 5,53 

As  µg/l 0,73 0,72 0,72 0,72 0,65 0,66 0,68 0,69 0,68 0,69 

Cd  µg/l <0,1 <0,1 0,21 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 

Pb  µg/l <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 
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G. Complete results from the field investigation performed in Skensved Å 

 

 
Unit S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

Macro-ions, nutrients and metals 

Calcium, Ca++ mg/l - 120 - 120 - - - - 130 - - 

Magnesium, Mg++ mg/l - 8,1 - 8,4 - - - - 8,8 - - 

Potassium, K+ mg/l - 2,7 - 2,7 - - - - 2,8 - - 

Sodium, Na+ mg/l - 15 - 15 - - - - 17 - - 

Iron, Fe mg/l - 0,23 - 0,22 - - - - 0,21 - - 

Manganese, Mn mg/l - 0,050 - 0,048 - - - - 0,037 - - 
Ammonium+ammonia, 
NH4+ mg/l - 0,099 - 0,095 - - - - 0,075 - - 

Nitrite, NO2- mg/l - 0,065 - 0,067 - - - - 0,075 - - 

Nitrate, NO3- mg/l - 31 - 31 - - - - 30 - - 

BOD5, recipient mg/l - <1 - <1 - - - - <1 - - 

Total phosphorous, P mg/l - 0,096 - 0,081 - - - - 0,089 - - 

COD  mg/l - 16 - 14 - - - - 13 - - 

Chloride, Cl- mg/l - 29 - 31 - - - - 34 - - 

Fluoride, F- mg/l - 0,27 - 0,27 - - - - 0,28 - - 

Sulfate, SO4-- mg/l - 36 - 40 - - - - 40 - - 

Suspended solids (SS) mg/l - 490 - 510 - - - - 500 - - 

NVOC mg/l - 6,5 - 6,3 - - - - 6,1 - - 

PAHs 
            

Naphthalene µg/l 0,11 <0,010 <0,010 0,011 0,013 0,014 0,021 0,013 <0,010 <0,010 <0,010 

Acenaphthylene µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Acenaphthene µg/l 0,018 <0,010 <0,010 <0,010 <0,010 <0,010 0,014 0,015 <0,010 <0,010 <0,010 

Fluorene µg/l 0,020 <0,010 <0,010 <0,010 <0,010 <0,010 0,019 <0,010 <0,010 <0,010 <0,010 

Phenanthrene µg/l 0,094 <0,010 0,066 <0,010 0,013 0,012 0,099 0,044 0,010 0,056 0,012 

Anthracene µg/l 0,046 <0,010 <0,010 0,012 <0,010 <0,010 0,043 0,021 <0,010 <0,010 <0,010 

Fluoranthene µg/l 0,082 <0,010 0,16 0,024 0,011 0,011 0,14 0,056 0,017 0,13 0,017 

Pyrene µg/l 0,11 <0,010 0,10 0,017 <0,010 0,012 0,13 0,066 0,018 0,13 0,016 

Benzo(a)anthracene µg/l 0,030 <0,010 0,020 <0,010 <0,010 <0,010 0,019 0,012 <0,010 0,030 <0,010 

Chrysene µg/l 0,043 <0,010 0,027 <0,010 <0,010 <0,010 0,028 0,024 <0,010 0,059 <0,010 

Benzo(b+j+k)fluoranthene µg/l 0,11 <0,010 <0,010 <0,010 <0,010 <0,010 0,060 0,055 0,015 0,11 0,019 

Benz(a)pyrene µg/l 0,043 <0,010 <0,010 <0,010 <0,010 <0,010 0,025 0,018 <0,010 0,035 <0,010 

Indeno(1,2,3-cd)pyrene µg/l 0,034 <0,010 <0,010 <0,010 <0,010 <0,010 0,014 0,016 <0,010 0,049 <0,010 

Dibenzo(a,h)anthracene µg/l 0,034 <0,010 <0,010 <0,010 <0,010 <0,010 0,013 0,011 <0,010 0,030 <0,010 

Benzo(ghi)perylene µg/l 0,043 <0,010 <0,010 <0,010 <0,010 <0,010 0,016 0,021 0,012 0,051 <0,010 

Benz(e)pyrene µg/l 0,058 <0,010 <0,010 <0,010 <0,010 <0,010 0,033 0,026 0,011 0,073 <0,010 

Chlorinated compounds and degradation products 
    Trichlormethane  

(Chloroform) µg/l - - - - <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

1,1,1-trichlorethane µg/l - - - - <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

Tetrachlormethane µg/l - - - - <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

Trichlorethylene µg/l - - - - <0,020 <0,020 0,042 0,087 0,13 0,11 0,056 

Tetrachlorethylene µg/l - - - - <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

Chlorethane µg/l - - - - <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 

Vinyl chloride µg/l - - - - <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

1,1-dichlorethylen µg/l - - - - <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 0,026 

trans-1,2-dichlorethylen µg/l - - - - <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

cis-1,2-dichlorethylen µg/l - - - - <0,020 <0,020 <0,020 <0,020 0,045 0,032 0,021 

1,2-dibromethan µg/l - - - - <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

1,2-dichlorethan µg/l - - - - <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

1,1-dichlorethan µg/l - - - - <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 <0,020 

4-chlor-2-methylphenol µg/l - - - - <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Pesticides 
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2,4-D µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

2,4-dichlorphenol µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

2,6-dichlorphenol µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

4-CPP, (4-Chlorprop) µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

4-nitrophenol µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 
Aminomethylphosphonsyre, 
AMPA µg/l 0,050 0,047 0,045 0,043 0,050 0,046 0,044 0,051 0,039 0,051 0,043 

Atrazine µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

2,6-Dichlorbenzamid (BAM) µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Bentazone µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 0,033 

Carbofuran µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Chloridazon µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Prochloraz µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Captan µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Prometryn µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Propachlor µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Azinphos-methyl µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Mevinphos µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Malathion µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Parathion-ethyl µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Chlorthiamid µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Desphenyl-chloridazon µg/l 0,020 0,020 0,018 0,012 0,017 0,018 0,017 0,017 0,014 0,017 <0,010 

Desethylatrazine µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Desethylterbutylazine µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Desisopropylatrazine µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Dichlorprop (2,4-DP) µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Dimethoat µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Dinoseb µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Diuron µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Glyphosate µg/l 0,035 0,033 0,032 0,031 0,034 0,030 0,027 0,031 0,031 0,031 0,038 

Hexazinone µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Hydroxyatrazine µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Isoproturon µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Lenacil µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Linuron µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

MCPA µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Mechlorprop (MCPP) µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Metamitron µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 
Metribuzin-desamino-
deketo µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Metribuzin-deketo µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Pendimethalin µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Pirimicarb µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Propyzamide µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Simazine µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Terbutylazine µg/l <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 

Heavy metals 
            

Cr µg/l <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 

Ni µg/l 1,46 1,33 1,47 1,57 1,58 1,55 1,61 2,18 1,88 1,82 2,39 

Cu µg/l 1,68 1,92 1,55 1,75 1,65 1,77 1,55 3,17 2,41 1,63 1,65 

Zn µg/l 17,84 29,44 11,67 4,25 6,02 5,48 5,94 9,77 16,71 37,45 20,25 

As µg/l 0,72 0,73 0,67 0,67 0,68 0,65 0,7 0,91 0,66 0,7 0,71 

Cd µg/l <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 

Pb µg/l <0,1 <0,1 2,85 <0,1 <0,1 <0,1 <0,1 0,1 <0,1 <0,1 0,26 
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H. Pesticides detected in Skensved Å and/or Køge Å in the field investigation. The table includes information about the type of pesticide, the application 

period, general description of the chemical, use in Denmark, current EU/Danish status, maximum annual sales 

(*) Miljøstyrelsen  (2013). 

(**) Miljøstyrelsen (2017).

Compound CAS number Type Detected in Application period in 

DK 

Description Use in Denmark  Current EU  

status/DK  

(if different) 

Max. annual 

sales- tones 

Glyphosate 1071836 Herbicide Køge Å 

Skensved Å 

1975 - present  Most widely used herbi-
cide in the world and in 
Denmark 

 Pre- or post-harvest to 
control the growth of an-
nual and perennial weeds 

Cereals,  public gar-

dens, grassland,  road-

side grass 

Permitted 1638 (*) 

AMPA 1066519 Metabolite 

(glyphosate)  

Køge Å 

Skensved Å 

-  Primary transformation 
product of glyphosate 

- - - 

Desphenyl-

chloridazon 

6339191 Metabolite 

(chloridazon)  

Køge Å 

Skensved Å 

1964-1996 

(chloridazon) 

 Primary transformation 
product of the herbicide 
chloridazon 

 used for pre-plant, pre-
emergence and early post 
emergence use 

beet, beetroot , onion Permit-

ted/Banned  

(chloridazon) 

- 

MCPA 94746 Herbicide Køge Å 1956 - present  Selective and widely used 
post-emergence phenoxy 
herbicide 

 Used for the formulation 
of other compounds such 
as 2,4-D and MCPB  

Cereals, peas, grass-

land, golf courses, pub-

lic gardens, orchards 

Permitted  965 (*) 

Propyzamide 23950585 Herbicide Køge Å 1992- present  Provides effective control 
annual and perennial 
weeds 

 Acts on the roots of the 
target plant 

rape, loganberry, pear, 

plum and raspberry 

Permitted 45 (**) 

Bentazone 25057890 Herbicide Skensved Å 1974 - present  Selective herbicide 

 In the national list of water 
pollutants to be controlled 

Cereals, peas, clover, 

corn 

Permitted 93 tones(*) 
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I. Environmental Quality Standards (EQS), aquatic toxicity and bioaccumulation of the pollutants found in Køge Å and Skensved Å. Aquatic 

toxicity and bioaccumulation were reported only if an EQS did not exist for the specific chemical 

 

   EQS
(a)

 (µg/l) Lowest reported value of aquatic toxicity (mg/l) Bioaccumulation 

Compound CAS 

number 

Found in AA MAC Crustacean (D.Magna) 

(48h LC/EC50) 

Fish 

(96h LC50) 

Algae 

(72/96h EC50) 

Plant 

(72/96h EC50) 

Log Kow(l/kg) BCF 

Chlorinated solvents and degradation product         

Trichlorethylene (TCE) 79-01-6 Skensved Å 10 - - - - - - - 

Tetrachlorethylene(PCE) 127-18-4 Køge Å 10 - - - - - - - 

Vinylchloride (VC) 75-01-4 Køge Å 0,05 0,5 - - - - - - 

1,1-dichlorethylene (1,1-DCE) 75-35-4 Skensved Å 6,8 68 - - - - - - 

cis-1,2-dichlorethylene (cis-DCE) 156-59-2 Køge Å, Skensved Å - - 79 
(c) 

135 
(b)

 59,69 
(d)

 - 1,86 
(b)

 8 
(b)

 

Pesticides           

AMPA 1066-51-9 Køge Å, Skensved Å - - 690 
(e)

 520 
(e)

 90 
(e)

 - - 2,17 
(i)

 - 

Bentazone 25057-89-0 Skensved Å 45 450 - - - - - - 

Desphenyl-chloridazon 6339-19-1 Køge Å, Skensved Å - - 49 
(c)

 35 
(f)

 5,1 
(d)

 - - - 

Glyphosate 1071-83-6 Køge Å, Skensved Å - - 4,1 
(d)

 22 
(e)

 3,52 
(d)

 24 
(d)

 (168h) - 3,4 
(b)

 1,4-5,9 
(g)

 

MCPA 94-74-6 Køge Å - - 180 
(d)

 6,6 
(d)

 21,67 
(d)

 4,24 
(d)

 (168h) 2,73 
(j)

 <1 
(k)

 

Propyzamide 23950-58-5 Køge Å - - 5,6 
(d)

 10,6 
(d)

 0,287 
(d)

 0,95 
(d)

 (168h) 3,43 
(b)

 6-20 
(b)

 

PAHs           

Naphthalene 91-20-3 Skensved Å 2 130 - - - - - - 

Acenaphthylene 208-96-8 Skensved Å 1,3 3,6 - - - - - - 

Acenaphthene 83-32-9 Skensved Å 3,8 3,8 - - - - - - 

Fluorene 86-73-7 Skensved Å 2,3 21,2 - - - - - - 

Phenanthrene 85-01-8 Skensved Å 1,3 4,1 - - - - - - 

Anthracene 120-12-7 Skensved Å 0,1 0,1 - - - - - - 

Fluoranthene 206-44-0 Skensved Å 0,0063 0,12 - - - - - - 
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Pyrene 129-00-0 Skensved Å 0,0046 0,023 - - - - - - 

Benzo(a)anthracene 56-55-3 Skensved Å 0,012 0,018 - - - - - - 

Chrysene 218-01-9 Skensved Å 0,014 0,014 - - - - - - 

Benzo(b+j+k)fluoranthene 205-82-3 Skensved Å 0,00051 0,051 - - - - - - 

Benz(a)pyrene 50-32-8 Skensved Å 0,00017 0,27 - - - - - - 

Indeno(1,2,3-cd)pyrene 193-39-5 Skensved Å 0,00017 - - - - - - - 

Dibenzo(a,h)anthracene 53-70-3 Skensved Å 0,0014 0,018 - - - - - - 

Benzo(ghi)perylene 191-24-2 Skensved Å 0,00017 0,0082 - - - - - - 

Benzo(e)pyrene 192-97-2 Skensved Å - - 0,33
(d)

 - - - 6,70
(h)

 - 

Heavy Metals           

Ni 7440-02-0 Køge Å, Skensved Å 4 34 - - - - -  

Cu 7440-50-8 Køge Å, Skensved Å 4,9 4,9 - - - - -  

Zn 7440-66-6 Køge Å, Skensved Å 7,8 8,4 - - - - -  

As 7440-38-2 Køge Å, Skensved Å 4,3 43 - - - - -  

Cd 7440-43-9 Køge Å 0,08-0,25 0,45-1,5 - - - - -  

Pb 7439-92-1 Skensved Å 1,2 14 - - - - -  
(a)

: BEK nr. 439 of 19/05/2016. 
(b)

: PubChem Chemical Database. 
(c)

: Sonne et al. (2017). 
(d)

: ECOTOX Chemical Database. 
(e)

: European Glyphosate Environmental Information Source (EGEIS): Aquatic ecotoxicity of 

glyphosate and formulated products containing glyphosate. 
(f)

: PAN Pesticides Database – the value refers to the parent compound chloridazon. 
(g)

: Contardo-Jara et al. (2009). 
(h)

: GSI Chemical Database. 
(i)

: Traas and Smit (2003). 
(j)

: EPA (2004). 
(k)

: Naylor R. (1996). 
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Investigating stream water quality under conditions of multiple stress 

Contaminated sites are among one of the major environmental problems in Denmark, 

contaminating soil, groundwater and surface water bodies located nearby. Recently, 

screening tools and risk assessment methods have been developed to support the 

Danish Regions in evaluating the impact contaminated groundwater originating from 

these sites may have on Danish streams (Miljøprojekt nr. 1846, Miljøprojekt nr. 1604 

). However, investigations related to stream water affected by contaminated sites 

have to-date only covered single sources of contaminants. 

 

This report provides a decision support tool for assessing the importance of contami-

nated sites in relation to other potential sources impacting the streams, with the aim 

of identifying the impact drivers in a multiple stressor context. 


