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SIMULATION OF SKILL ACQUISITION IN SEQUENTIAL LEARNING OF A
COMPUTER GAME1

John Paulin Hansen,  Finn R. Nielsen & Jens Rasmussen,
Risø National Laboratory; Roskilde, Denmark

Abstract. This paper presents some theoretical assumptions about the cognitive control
mechanisms of subjects learning to play a computer game. A simulation model has been
developed to investigate these assumptions. The model is a automaton, reacting to instruc-
tion-like cue-action rules. The prototypical performance of 23 experimental subjects at suc-
ceeding levels of training are compared to the performance of the model. The findings are
interpreted in terms of a general taxonomy for cognitive task analysis .

INTRODUCTION

Deciding how to do something and then implementing the decision in syn-
chronized series of timed limb movements is an important ingredient of the
work carried out by many kinds of professionals, from dressmakers to pilots.
It was the aim of the study reported in this paper to get hints and derive hy-
potheses for generating an adaptive cognitive model of this kind of tasks.
Thus, the model should be able to benefit from instructions and to improve
during exercises. During the first cognitive phase of skill acquisition,  in-
structions may either be externally communicated as declarative knowledge
from manuals or learned from an instructor, or they may be generated by
the subjects themselves by reasoning and analogies to well known task
conditions (Rasmussen, 1986). Instructions form a set of rules for particular
actions to be executed at certain conditions. In cognitive control of dynamic,
real-time tasks, like driving a car or playing a computer game, a particular
condition will often be characterized by some immediately perceivable cues,
explicated as a part of the instruction. Hereby, a complex sequence of ac-
tions can be structured as sequential sub-tasks, each related to perceptually
specified time-space ranges of the overall task.

Consequently, a model of rule governed task optimization should be able
to explore the environmental constraints of the individual sub tasks, while
the rule structure keeps the overall task composition synchronized with the
changing time-spaces.

                                      
1Journ. of Intelligent Systems, Vol.5, Nos. 2-4, 1995; pp. 351-370.
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REPRESENTATION OF THE TASK ENVIRONMENT

The task.
We used a commercial  Commodore computer game, modified to run on a
DOS-PC, and integrated it with a cognitive model module written in C. The
game presents the player with the task of getting a gymnast to make a
graceful vault over a horse (see Figure 1). A successful triple somersault
gives the maximum score of ten points . The game offers a good and instant
visual feedback and the screenplay looks like most people have seen it in
TV-transmissions of gymnastics. The player is, therefore, immediately
attuned to the challenges of the situation.

The timing skills needed in order to master the game reasonably well is
quite extensive. First of all the player must learn to let the gymnast perform
a good offset from the floor by pressing the joystick button approximately
400 ms after it was initially released. If the button is pressed too late (after
500 ms) or too early (before 200 ms), the gymnast will miss the springboard
and come to a halt. The next thing to be learned is to straighten up the
gymnast and land her on her feet by pulling the joystick back. This action,
required after roughly 4000 ms, is timed by carefully watching the gymnast's
terminal orbit and angle. The somersault maneuver presupposes that the
player pushes the joystick forward before the gymnast has left the horse be-
hind her. As long as the joystick is pushed forward, she remains in the full-
tuck position required for fast rotation. However, her rotational speed will
not be fast enough unless the player has made a preceding, precisely timed
button press to push her off from the horse in the right moment. This mo-
ment occurs when the gymnast is in a nearly vertical position over the
horse, approximately 1700 ms into the game, and it has a duration of about
100 ms only. Ability to comply with this timing demand is a prerequisite for
becoming a performer of somersaults.

Initial cue-identification
A detailed analysis of the visual scenes of the game specifies the possible
cues releasing stereotypical actions, focusing on the objects of the scene
which directly shows what the game “affords”
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(Gibson,1979
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Warren, in
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press)   in terms of appropriate actions.
It is assumed, that human subjects will generate some initial rules regarding
the approximate synchronization of actions from analog reasoning. In the
present task - to perform gymnastics horse jumps -  this process involves
knowledge of basic body-dynamics,  gymnastics horse jump competitions
and computer games in general. But it is not within the scope of this paper
to discuss the origin of this vast amount of tacit knowledge used in human
analogical reasoning. Applying Gibson’s (1979) concept of directly perceivable
affordances  we simply set, that certain action possibilities are revealed by
the very presence of particular objects.  Gibson (1979) uses the concepts of
affordances only with respect to direct perception of the natural
environment. Direct perception of an artifact’s affordancies have been
discussed in detail by Norman, 1988, among others. It is generally
emphasized that an artifact, through the appropriate use of constraints, can
make it obvious what it is for and how it should be used. This is a virtue of
all good design, applied on physical tools  (Alexander, 1964, Papernek 1985)
and on interface design (Gavern, 1981; Hansen, 1992, Rasmussen, Pejtersen
& Goodstein, 1994 ).

In this way, the cognitive process behind the scene recognition and fea-
ture formation are excluded from our model. Recently, similar approaches to
cognitive modeling of computer game skills have been taken by
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Chapman

(1991) , Kirlik, Miller, & Jagacinski,

(1993a)  and
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Kirlik, Miller, & Jagacinski

(1993b ).

1 2 3
4 5

 - 6 -   

Figure 1. The objects of the visual scene which immediately afford actions.

Figure 1 shows six easily recognizable objects which the player will see on
the screen at the start of a game. Object 1, the gymnastics girl, affords hu-
man-like actions. Object 2, the running track, affords running and jump-off.
Object 3, the springboard, affords amplification of the spring power. Object
4, the horse, affords push-off. Object 5, the landing floor, affords landings.
Object 6, the score display, affords performance feedback.
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Initial action-identification:
The correct types of actions in terms of button push and joystick movements
(-in 8 directions) are more subtle than the cues given by the stable objects of
the scene. Most of the actions are in consonance with basic body dynamics,
as the correct direction impulse given to the joystick resembles the ones
needed for actual gymnastics maneuvers, mainly centered at the movements
of the chest. For instance, the joystick has to be moved opposite to the
falling direction in order to correct an unstable landing. Jumps from the
floor and push-offs from the horse are executed by pushing the joystick but-
ton.  Regardless of the intuitive analogy applied for joystick actions, pilot
experiments showed that un-aided subjects had big difficulties learning the
correct type of actions (Hansen, Løvborg & Rasmussen, 1990). This indicates
that the mapping from body dynamics of the gymnastics girl to joystick
movements by no means are as straightforward as it could have been ex-
pected. As a consequence, a group experiment with 23 subjects used for the
validation of the model performance was carried out with precise instruc-
tions about the type of movements to be learned in each new session.

1 2

4 5

3 6

Figure 2. The crucial points of actions.

Figure 2 shows the location of the various actions the 23 subjects were in-
structed about. During the first one hour learning session, they were told to
press the joystick button starting the run at 1), to push the button again at
2) for a jump unto the springboard, to pull the joystick downwards to make
the gymnast stretch out for a landing at 5), and to correct unstable landings
by a joystick movement opposite a step at 6). In learning session two, the
subject were instructed to try out a twist maneuver by moving the joystick
sideways in the area indicated by 3). In learning session three they were told
about the possibility of pushing the girl off the horse at 4) to get her high up
in the air. Session four introduced the maneuvers necessary for carrying out
somersaults at position 5). There were no additional instructions for the fifth
and final session which was a free play session, where the subjects could
demonstrate their skills (Hansen, Løvborg and Rasmussen, 1990).
The next section will describe how the cues identified were represented in
the model and how the associated actions were instilled in it.
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MODEL IMPLEMENTATIONS OF CUE-ACTION RULES

Without information on the approximate synchronization time-spaces given
by the visual objects, the model would be functionally “blind”.

The information interface between the model and the game is the sprite
numbers that governs the visible update of the girls position and maneuvers
on the static background. So, running on the track, for example, may be
uniquely characterized by a string of numbers (i.e. from 3 to 13), and no pat-
tern recognition of the visual scene is needed. The model executes an action
by exporting a specific joystick number to the main game module, which
specifies e.g. a movement to the left side or a button push.  Thus, the simple
form of a cue-action rule is:

IF 3 < sprite_number < 13
THEN joystick = jump.

To activate this rule means to execute a button push which will make the
girl jump unto the springboard while she is running. Notice that the string of
sprite numbers is a broad indication of the time-space range, while the
individual action is precisely defined. In order to allow for optimization
mechanisms to work, the "broadness" of the cueing interval was represented
in a more complex way in the actual implementation, as will be described in
the next section .

A complete trial can be executed by five cue-action rules of this principal
form, which initiate a take-off action, a twist action, a push-off action, a ro-
tate action and a landing action. However, corrections of unstable landings
as a result of slightly imprecise executions of the landing action require a six
rule, which where implemented once for all learning sessions. The releasing
cue of this rule was one of the two sprite numbers being applied when the
unbalanced girl takes a step forwards or backwards.

OPTIMIZATION OF PERFORMANCE

Once the initial instruction had generated a basic synchronization scheme
in terms of  the approximate timing and types of actions, the model would
optimize  movements conducted through the following trials, fitting its "mo-
tor program" to the narrow time constrains of the game. This approach is in
accordance with the generally accepted conception that skill-demanding acts
are pre-selected subroutines that run off automatically, and that feedback
from the environment while a skill is performed mostly serves synchroniza-
tion and coordination purposes (Robb, 1972, Rasmussen, 1986, Colley &
Beech, 1989).

Within any single training session the model selected among a restricted
cue range the most efficient point for the release of a fixed action. Between
the sessions, the action repertoire of model was improved by adding new re-
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sponse potentials to its set of cue-action rules. However, it did not by itself
discover new types of actions,  it only optimized on a fixed set (see below).

In order to select efficient response times and reject inefficient ones the
model needs feedback, and to increase the probability of correct responses
with practice a decreased stochastic variation on its performance will be
needed. The next sections describes how these two functions were imple-
mented.

Model implementation of optimization functions
Feedback. The scoring achieved for each trial was the feedback on basis of
which a hill climbing algorithm optimized the model’s performance in a 5-
dimensional state space  The function play (v) plays a full play and returns
the score (0.0 - 10.0), where v is a "sprite number" state vector of the form:
v = (v  , v  , v  , v  , v  )

1 2 3 4      5i (1)
If g is the "current sprite number", the interpretation of v follows from:
g = v   =>    joystick = jump
g = v   =>    joystick = twist
g = v   =>    joystick = push off
g = v   =>    joystick = rotate
g = v   =>    joystick = landing

1
2
3
4
5

 (2)
The interpretation of v shown in (2) is the total cue-action rule set used for
all of the training sessions. However, it was only in the last two sessions
(session  4 and 5), that all of the v's had a  sprite number identified. In this
simple way, the same 5-vector could be used throughout the simulations,
gradually increasing the models functionality as it was given new “visual”
cues to act on.
The 23 subjects in the original training experiment (see Hansen et al., 1990)
had 64 trials within each session, and therefore the following hill climbing
algorithm was also executed 64 times per session for all 5 states vi = v1, v2,
v3, v4, v5 in sequence:
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v   = v   + �i i i

s = play (v) � score
no yes

v   = v   - �

�   = - �

i i i

ii

score = s

     (3)

The incremental vector ∂ = (∂0,∂1,∂2,∂3,∂4) was initiated to (1,1,1,1,1) and v
to a configuration of 5 sprite numbers, approximately locating those sta-
tionary objects which afforded a specific type of action. The initial configu-
rations of v were slightly different in four of the individual runs of the model,
simulating 4 individual players. Surprisingly, this small difference had a
significant effect on the learning trajectories of the simulated players, which
will be discussed in the next section.

The scoring rules of the game allow for some variation in the timing of
actions. Even though the timing constraints can be as narrow as 150 mil-
liseconds, this covers a wide range of sprites. Furthermore, we did not know
the precise sprites shown for a given action interval. Therefore the cue-ac-
tion rules of the model were designed to fire if the particular sprite number
of the v vector fell within an approximate interval, defined individually for
each of the five different actions. In general terms, the intervals resemble the
loci of synchronization while the changes of the specific v values within the
intervals - governed by the hill climbing algorithm - resemble the optimiza-
tion process.

Decreased stochastic variation.
A stochastic variation of the time precision by which a planned action could
be executed was decreased as a function of practice in each learning
session. By the end of the 64 trials in a session, this stochastic variation
would be at a minimum for the newly learned action type, modeling the
residual noise from the tremors in body parts and a minimum reaction time.
In the following sessions, previously learned actions were then carried out
with this minimum variation. The variation function worked on the g
integers of formula (2).
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Model performance - Session 2,   4 Simulations          
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Figure 3. The learning effect in session two (64 trials) for four simulated players. Fat bars
indicates more than one count.

RESULTS

Figure 3 shows the learning effect of the hill climbing algorithm and the de-
creased stochastic variation on the score development for 4 simulated play-
ers in session two, consisting of 64 trials. The improvements are clearly vis-
ible. Zero-scores are reduced to a minimum after approximately 10 trials,
and improvements are found throughout the learning session, ending with a
majority of scores at 4.5 and above. The overall score increases within this
session due to the optimization’s of the twist timing, comparable with the
type of optimization’s we found in the validation experiment .
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Model Performance,  4 Simulations     
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Figure 4. The learning trajectory of four simulated players. See text for explanations to the
figure.

Figure 4 shows the major result of our simulation experiment. Each
learning session, specified on the x-axis, consisted of four blocks of 16 trials.
The mean values of a block are indicated by a bar. The lines between the
bars from one session to the next session indicates the changes from the
last block in the previous session to the first block of the next session. When
this line is upward, the performance has improved immediately by the
introduction of a new action rule, and where the line is downward, the
performance has decreased.

The learning pattern in figure 4 is characterized by a general improvement
from session 1 to 3. Then the performance tends to stabilize at scores ap-
proximately between 3 and 6.5 in the last two sessions. The introduction of
new action rules caused an immediate improvement for three players from
session 1 to  2 and for two players from session 2 to 3. In session 4, the im-
mediate effect of a new action rule were negative, and it typically took one
block (16 trials) to retrieve the performance level of the last block in the
previous session.

Figure 5 shows the learning pattern of the 23 experimental subjects, rep-
resented in the same format as Figure 5. The overall learning curve exhibit a
trend similar to the one found for the 4 simulated players, namely an in-
crease in performance from session 1 to 3 and then a stable plateau at
scores between 3 and 6.5 for the last sessions. The introduction of the new
action possibility of making somersaults in session 4 immediately caused a
decrease in performance for 19 of the 23 subjects. At the introduction of a
new rule in session 3 only 8 subjects exhibited a similar decreasing trend.
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Experimental Results,   23 subjects   

Learning Session   

M
e
a
n
 
S
c
o
r
e
 
p
e
r
 
1
6
 
T
r
a
i
l
s
 
 
 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

6

6,5

7

7,5

8

8,5

0 1 2 3 4 5

Figure 5: The learning trajectory of 23 subjects. See text for explanations to the figure.

The most significant difference between the experimental performance of our
human subjects and the performance of the model is the dramatic decrease
in score of one of the simulated players at the transition from the last block
of session 3 to the first block of session 4 and the two similar decreases from
block 4 to 5. No such behavior was found in the original experiment, and a
re-analysis of the data  has been conducted in order to trace the root of this
decrease. Figure 6 reveals that two of the simulated players were re-
sponsible, namely player 1 and 2.

The decreases in performance in the transitions of player 1 and 2 turned
out to be caused by the initial settings of V1 in their V vector, controlling the
release of the jump off action. This setting was so far away from the real goal
configuration that the hill climbing towards the range in which the girl
would hit the springboard took almost 16 trials - and when she misses, the
score is zero. The reason why the effect of this imprecise setting increased
during the simulation was the decreasing variation in timing: in the earlier
session the variations had partly neutralized the effect of the false percep-
tion, stochastically causing hits within the range that increased performance
and guided the hill climbing upwards. The decreases are an artifact created
by the particular setting of the synchronization range for V1, and this was
not compensated for by the model, as it lacks the ability to modify its
perception of the scenario structure. Real subjects at this level of expertise
would certainly remember the poor outcome of previous trials and react
promptly by forming a self-correcting rule on basis of their experience.

The fact that the two “realistic” simulated players also exhibited a de-
crease in performance from session 3 to 4, similar to the decrease found for
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the majority of real subjects, reflects the objective constraints of the task.
The decrease in performance is due to an increase in crash landings, drasti-
cally reducing the score by 3 points, when the execution of somersaults in-
terferes with the timing of the landings.

Learning Pattern of 4 Simulated Players   
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Figure 6. The learning pattern of four simulated players; mean scores in blocks of 16 trials.
Block 1, 5, 9, 13 and 17 were the first one in a new learning session.

GENERAL DISCUSSION

Within a general taxonomy for cognitive work analysis (Rasmussen, 1986)
Table 1 describes the means-ends relations of the present computer game as
a work domain. At the present stage of our project, the model simulates the
empirical findings highlighted in italics (Hansen, et al.,

1990) .
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On the top level, the importance of a specific action goal was revealed ex-
perimentally by shifting from a learning situation to a competitive situation
between session 4 and 5. This was found to have a major impact on the 23
subjects’ choice of action strategies, as witnessed by the fact that eight of
the subjects tried out a more difficult strategy than the one they had mas-
tered during the learning phase, while four subjects resorted to a more triv-
ial performance (Hansen, et al., 1990). The possible shift of goals and
strategies can not be modeled at the present stage of development of our
simulator, because it involves dynamic modifications among priorities, an
this in turn require a high level rule base administrator not yet imple-
mented.

At the level of abstract functions and priority measures, the model
demonstrates psychologically plausible reactions to instructions, similar to
those given during the original learning experiment, cf. the previous sections
of this paper.

Means-ends rela-
tions

The gymnastics game Simulation results

Value systems and
structures

Learn
Have fun
Score points
Compete
Graceful task mastery

The choice of a specific
goal has an overall impact
on decisions and
performance

Abstract functions,
priority measures.

Performance measures,
e.i. score: score of indi-
vidual trail, mean and
max. score

Instructions provides set of
intended functions, i.e. the
synchronization  scheme
for action  sequences

General functions Play the game in terms
of jump, rotate, land,
etc.

Cue-action strategies are
generated during practice.

Physical and physio-
logical processes

Joystick movements in
terms of left forward,
button press, etc.

Movements are optimized
through  error-feedback
and by the reduction of
timing variations.

Physical configura-
tion

Configuration of gym-
nast and gymnastics
equipment.

Not relevant (hardware
and interfaces)
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Table 1. The means-ends relations of the gymnastics game and empirical findings from

Hansen, et al.,

(1990)  related to the individual levels of a
means - end abstraction hierarchy. The text in italics indicates the results that have been
modeled.

Modeling the choice of cue-action strategies at the level of general functions
calls for a profound knowledge of the rules actually applied during the
experiments. A lot of these rules will be of a idiosyncratic, ad hoc nature and
may not even be verbalized by the subjects (see e.g.
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Sudnow,

1983 , or

Chapman,
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1991 , for introspective descriptions of
cue-action rule formations during computer game learning). After each of the
trial-blocks in the original experiment a few of the rules generated in an ad
hoc fashion by the 23 subjects were elicited by a post-session questionnaire.
The rules regarded the optimal timing of certain actions in terms of cues
releasing them. It was found that most of the 23 subjects formed correct
rules  i.e. in accordance with the objective time constraints of the game. But
a few subjects stated slightly inefficient rules, e.g. about the optimal point to
hit the springboard. However, the performances of the latter was not
significantly inferior as compared with that of the others. This fact led us to
speculate, whether the inefficient rules were post hoc rationalizations or
whether they had actually been guiding the performance, but neutralized by
noise at a low psycho-physiological level (Hansen, et al., 1990). The model
artifact described above indicates that false perceptions can actually be
neutralized by the large stochastic variation in timing found among
beginners. But prolonged practice reduces variations and makes the false
perceptions increasingly fatal. So eventually self-corrections are needed in
order to ensure a further increase of performance. If this does not happen,
the model will not exhibit prototypical learning patterns, cf. the performance
of model 1 and 2.

The physiological processes, i.e. joystick-movements, are optimized within
the time-space constraints as an effect of practice, - the power law of prac-
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tice, (Newell & Rosenbloom, 1981) -

  progressively reducing the variations
in timing. The analysis of the experimental data from the 23 subjects
provided examples of immediate reactions to error signals as a basic motor
learning principle (Hansen, et al., 1990). We believe that people actively
seeks feedback on their performance in terms of scores obtained. But in
addition to the "trial-and-regret-function " of our hill-climbing algorithm
(some) human subjects may also use a "positive self-reinforcement" on
efficient behavior to stabilize the movement patterns that turned out to be
particular successful.  After the last session of the group experiment, where
subjects had to compete for the highest average score, we asked them to
estimate what average score they had obtained. 9 of the 23 subjects made a
considerable overestimation while the rest came quite close to their actual
score. This gives a total average estimation at 5.94 while the actually  total
average score was 5.22.

Instead of rejecting this result as an example of subjects being ostenta-
tious, we analyzed the eye movement patterns of a subject playing 240
games to find further indications of a success bias. He turned out to be very
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restricted in his attention to the  score obtained after each jump. The aver-
age of the scores he looked at were 5.11 while the average of all 240 jumps
was 4.00. This selective attention may reflect the positive self-reinforcement.

In general, the approach suggested in this paper raises the question of
what the proper object of this type of cognitive modeling is:  the constraints
of the work domain being explored by  search and optimization mechanisms
within a hierarchy of goal levels or complex psychological phenomena inter-
acting in idiosyncratic fashions. The frame of this discussion was set by

Simon,

(1969)  in his famous statement about
the apparent complexity in the trajectory of an ant walking on a pile of sand:

An ant, viewed as a behaving system, is quite simple. The apparent
complexity of his behavior over time is largely a reflection of the complexity of
the environment in which it finds itself (1969, p.65)

Simon argued, that the same statement holds true for humans as behaving
systems. In the present simulation experiment, the learning pattern in figure
4 and 5 is an example of a behavior trajectory. The decrease in performance
from session 3 to 4 was due to an increase in the rule complexity of the work
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domain, which was not yet met with the required timing of skills. The fact
that humans and the non-conscious automaton react to this increase of
complexity in similar ways illustrates how changes in the functional envi-
ronment influences resource-limited behavior, no matter how the subjects
might have interpreted the task. Thus, modeling cognitive control in do-
mains with consistent constraints like the gymnastics game first and fore-
most calls for a profound representation of the task. If not, behavior patterns
reflecting the environmental structure may easily be mistaken as evidence of
some (new) psychological phenomena (see also Kirlik, Miller, & Jagacinski,

1993a) .

SUMMARY AND PERSPECTIVE

To develop cognitive models of performance in actual work context to a state
of perfection which permits computational verification is a very ambitious
and at present an unrealistic aim. Our goal in this paper has been to sketch
an evolutionary approach to development of such a model, based on simpli-
fications with respect to the initial 'work domain,' - a computer game - and
with respect to the modes of cognitive control included in the first experi-
ments presented above.

At the present state of our project, the model is a learning automaton,
capable of responding to instruction-like input information. It explores the
constraints of the work domain by searching within some pre-defined syn-
chronization areas for the optimal point of action on the basis of the feed-
back provided from previous trials. Hereby, the model produces learning tra-
jectories which, on a gross level, are comparable with those of real subjects
under identical task conditions.

As such, the present model can serve as a foundation of new improve-
ments. The experiment reported here demonstrates that the automaton is
able to synchronize to an explicitly given rule-set for a simple jump and to
optimize the timing by a trial-and-error- hill climbing strategy.
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Analysis of limits and error properties of a cognitive model like the one
presented can be a useful tool for testing the effects of instructions given
during a training program and for examining whether the rules that can be
derived from the directly perceivable affordances of the task scenario will be
sufficient information for learning to cope successfully with a new task. As
an example, we will use parts of the basic cognitive architecture and adap-
tation mechanisms described  in this article to perform man-in-the-loop
simulations within the maritime domain. The cognitive model is to control a
ship simulator during a sequence of complex maneuverings passing a large
bridge. The purpose is to make risk sensitivity analyses with regard to differ-
ent environmental conditions at increasing levels of difficulties caused by
wind and current changes. By precise descriptions of the navigation proce-
dures involved in terms of timing constraints and synchronization it is our
intention to analyze the effects of various task distributions related to the
bridge manning and the effects of different configurations of navigational
aids.
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