
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 20, 2024

Analyzing Product and Individual Differences in Sensory Discrimination Testing by
Thurstonian and Statistical models

Linander, Christine Borgen

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Linander, C. B. (2018). Analyzing Product and Individual Differences in Sensory Discrimination Testing by
Thurstonian and Statistical models. DTU Compute. DTU Compute PHD-2018 Vol. 480

https://orbit.dtu.dk/en/publications/fd96e34c-e776-4784-af87-2a21c16ee733


Analyzing Product and Individual
Differences in Sensory

Discrimination Testing by
Thurstonian and Statistical

models

Christine Borgen Linander

Kongens Lyngby 2018
PhD-2018-480



Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk PhD-2018-480



Summary

Sensory discrimination tests are used to gain information about products by
using the human senses to evaluate the samples. More specifically, a sensory
discrimination study is conducted when the the aim is to investigate whether
products are perceptibly different. Such studies are often considered for food,
beverages as well as personal care products. An example is when a company
gets a new supplier of an ingredient in one of their products. It is of high impor-
tance to investigate how this change of the ingredient affects the product. Even
though the chemical composition of the product changes, it does not necessarily
mean that people can detect the difference. These days, people become more
and more interested in how to improve their health. This is also reflected in
the companies’ desire to make their products healthier without changing how
the product is perceived by their customers. Therefore, it is important to con-
duct sensory discrimination tests when ingredients are changed. This thesis is
concerned with the analysis of product and individual differences in sensory dis-
crimination testing.

Sensory discrimination tests become more and more advanced raising a need for
new types of analysis of sensory discrimination data. This thesis contributes
with the development of Thurstonian models and how these can be aligned
with well-known statistical models. Generalized linear mixed models are used
in many applications. However, it is not common to consider such compli-
cated models when considering sensory discrimination tests. Actually, sensory
discrimination tests are often analyzed by too simplistic methods, ignoring im-
portant variables, such as individuals, that affect the results of the analysis.
One focus of this project is to propose a way to incorporate such effects in the
models when analyzing data from sensory discrimination studies. These mod-
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els, including random effects, are called Thurstonian mixed models. Considering
generalized linear mixed models for sensory discrimination studies opens up for
many possibilities. It becomes possible to gain information about the individu-
als, the so-called assessors, as well as making more proper conclusions regarding
the products. Moreover, the estimates of product and individual differences are
obtained on the d-prime scale.

Often multiple sensory attributes are considered in a discrimination study. These
can be analyzed individually by the Thurstonian mixed models we are introduc-
ing. This thesis is presenting a multivariate analysis to gain knowledge about
the product and individual differences across the sensory attributes. This is
achieved by analyzing the product and individual differences, on the d-prime
scale, by principal component analysis.

Sensory discrimination tests are sometimes conducted to investigate the perfor-
mance of sensory panels or to compare different laboratories. In such tests, mul-
tiple d-prime values can be obtained. For sensory discrimination tests, which
lead to binomially distributed responses, we propose a new test statistic for
the comparison of multiple d-prime values. The test statistic we suggest is
an improved way of analyzing multiple d-prime values compared to a previous
suggested test statistic.



Resumé

Sensoriske diskriminationstest bliver brugt til at opnå information om produkter
ved at bruge de menneskelige sanser til at evaluere prøverne. Mere specifikt bliver
et sensorisk diskriminationstest brugt når det ønskes at undersøge om produkter
er mærkbart forskellige. Sådanne studier bliver ofte brugt til fødevarer, drikke-
varer og produkter til personlig pleje. Et eksempel er når en virksomhed får ny
leverandør af en ingrediens i et af ders produkter. Det er vigtigt at undersøge
hvordan denne ingrediensudskiftning påvirker produktet. Selvom den kemiske
sammensætning af produktet ændres betyder det ikke nødvendigvis at menne-
sker kan opdage forskellen. For tiden bliver folk mere og mere interesserede i
hvordan de kan forbedre deres helbred. Dette afspejles også i virksomhedernes
ønske om at gøre deres produkter sundere uden at ændre hvordan produkterne
opfattes af deres forbrugere. Det er derfor vigtigt at lave sensoriske diskrimi-
nationstest når ingredienser udskiftes. Denne afhandling beskæftiger sig med
analysen af produkt og individ forskelle i sensoriske diskriminationstests.

Sensoriske diskriminationstests bliver mere og mere avancerede hvilket øger be-
hovet for nye typer af analyser af data fra sensoriske diskriminationstests. Denne
afhandling bidrager med udviklingen af Thurstonske modeller og hvordan disse
kan kombineres med velkendte statistiske modeller. Generaliserede lineære mixe-
de modeller bliver brugt i mange anvendelser. Imidlertid er det ikke almindeligt
at betragte sådanne komplicerede modeller når data fra sensoriske diskrimina-
tionstests betragtes. Faktisk bliver data fra sensoriske diskriminationstests ofte
analyseret med for simple modeller som ignorerer vigtige variable, som indivi-
der, hvilket påvirker resultaterne af analysen. Et fokus for dette projekt er at
foreslå en måde at indkorporere sådanne effekter i modellen når data fra sen-
soriske diskriminationsstudier bliver analyseret. Disse modeller, som medtager
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tilfældige effekter, kaldes Thurstonske mixede modeller. At betragte generali-
serede lineære mixede modeller for sensoriske diskriminationsstudier åbner op
for mange muligheder. Det bliver muligt at få information om individerne, de
såkaldte ’assessors’, såvel som at drage mere passende konklusioner omkring
produkterne. Derudover er estimaterne af produktforskelle og individforskelle
på ’d-prime’ skalaen.

Ofte bliver mange sensoriske egenskaber betragtet i et diskriminationsstudie.
Disse kan analyseres enkeltvis ved brug af de Thurstonske mixede modeller vi in-
troducerer. Denne afhandling præsenterer en multivariat analyse for at få viden
om produktforskelle samt individforskelle på tværs af de sensoriske egenskaber.
Dette opnås ved at analysere produktforskelle og individforskelle, på ’d-prime’
skalaen, ved ’principal component analysis’.

Sensoriske diskriminationstests bliver indimellem udført for at undersøge præ-
stationen af sensoriske paneler eller for at sammenligne forskellige laboratorier.
I sådanne tests er det muligt at få mange ’d-prime’ værdier. For sensoriske
diskriminationstests, som giver binomialfordelte responsvariable, foreslår vi en
ny teststørrelse til at sammenligne adskillelige ’d-prime’ værdier. Teststørrel-
sen vi foreslår er en forbedret måde at analysere mange ’d-prime’ værdier på
sammenlignet med en tidligere foreslået teststørrelse.



Preface

This thesis was prepared at Technical University of Denmark, Department of
Applied Mathematics and Computer Science, Statistics and Data Analysis sec-
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Denmark and Unilever U.K. Central Resources Limited. The project was su-
pervised by Professor Per Bruun Brockhoff. Occasionally, Rune Haubo Bojesen
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The thesis deals with the analysis of product and individual differences in sen-
sory discrimination testing. Sensory discrimination testing is a type of testing
used in sensory science, where people are used as the measurement instruments.
The main focus is developing methods aligning Thurstonian methods with sta-
tistical models.

The thesis consists of three research papers and a book chapter. An introductory
part gives an overview of the thesis. Background and aspects that were not
considered in the papers are considered in the thesis.

Lyngby, 01-July-2018
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Chapter 1

Introduction

This thesis deals with Thurstonian and statistical models of data obtained from
sensory discrimination studies. Such studies are used to gain knowledge about
products by using the human senses to evaluate the samples. More specifically,
a sensory discrimination study is conducted when the the aim is to investigate
whether products are perceptibly different. Thus, sensory discrimination tests
are conducted for products that are very similar with only subtle differences.
Such studies are often considered for food, beverages as well as personal care
products. Examples of the use of sensory discrimination tests are when a com-
pany gets a new supplier of an ingredient used in one of their products or if
an ingredient is changed due to new health initiatives in a company. It is of
high importance to investigate how this change of ingredient(s) affects the prod-
uct. Even though the chemical composition of the product changes, it does not
necessarily mean that people can detect the difference. However, it would be
catastrophic for a company if a new product was put in the market replacing
an old product in the believe that these two products are perceived to be iden-
tical when in fact they are not. Therefore, it is important to conduct sensory
discrimination tests when ingredients are changed.

Sensory discrimination tests become more and more advanced, raising a need for
new types of analysis of sensory discrimination data. One aim of the project is to
align Thurstonian modelling with modern statistical models by considering how
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the individuals can be accounted for. For normally distributed data, individuals
are typically accounted for by including them as a random effect in the so-called
linear mixed models. However, when considering sensory discrimination tests,
the data are not normally distributed. For a group of sensory discrimination
tests, the so-called simple-binomial tests, data are binomially distributed. For
non-normal data the equivalence of the linear mixed models are the generalized
linear mixed models. These are used in many applications. However, it is not
common to consider such complicated models when considering sensory discrim-
ination tests. Actually, sensory discrimination tests are often analyzed by too
simplistic methods, ignoring important variables, such as individuals, that affect
the results of the analysis, potentially leading to improper conclusions regarding
the products. In this thesis, generalized linear mixed models are considered for
the binary paired comparison where potential individual differences are mod-
elled. These models, including random effects, are called Thurstonian mixed
models. Considering generalized linear mixed models for sensory discrimination
studies opens up for many possibilities. It becomes possible to gain information
about the individuals, the so-called assessors, as well as making more proper
conclusions regarding the products. Moreover, the estimates of product and
individual differences are obtained on the d-prime scale.

A d-prime value is the estimate of an underlying sensory difference between
two products. This is dating back to Thurstone (1927). It is ongoing work
to align Thurstonian models with modern statistical models. It is an area of
research that has been considered in many years and for several different sce-
narios. Considering the analysis of sensory data as generalized linear models
has been looked into in several settings. It is an area of research dating back
to at least 1989 with the paper by Randall (1989). In Critchlow and Fligner
(1991) it is considered how a paired comparison can be seen as a generalized
linear model. Recent advances has been considered in Brockhoff and Chris-
tensen (2010) where discrimination tests are recognized as generalized linear
models. Other contributions, not necessarily for discrimination testing, in the
work of aligning Thurstonian models with well-known statistical models are
Christensen and Brockhoff (2009); Christensen et al. (2011); Christensen and
Brockhoff (2013); Christensen et al. (2012).

Often multiple sensory attributes are considered in a discrimination study. These
can be analyzed individually by the Thurstonian mixed models we are introduc-
ing. This thesis is presenting a multivariate analysis to gain knowledge about
the product and individual differences across the sensory attributes. This is
achieved by analyzing the product and individual differences, on the d-prime
scale, by principal component analysis.
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Sensory discrimination tests are sometimes conducted to investigate the perfor-
mance of sensory panels or to compare different laboratories. Generally, sen-
sory discrimination tests become more and more advanced. Examples of such
sensory discrimination studies are; a study comparing different tests (Dessirier
and O’Mahony (1999)); and comparing the same test in different locations
(Sauvageot et al. (2012)); and comparison of different versions of the same test
(Lee and Kim (2008)). In such tests, multiple d-prime values can be obtained.
For sensory discrimination tests, which lead to binomially distributed responses,
we propose a new test statistic for the comparison of multiple d-prime values.
The test statistic we suggest is an improved way of analyzing multiple d-prime
values compared to a previous suggested test statistic.

1.1 Overview of the Thesis

This thesis consists of seven chapters followed by three research papers as well
as one book chapter included in the appendices.
Throughout the thesis, as well as in the papers in Appendix A and B, an ex-
isting discrimination study is used as an example. This discrimination study is
explained in Linander et al. (2018a) (Appendix A).

1.1.1 Main Chapters

This thesis consists of seven chapters, each introducing or addressing relevant
topics for the papers and the book chapter presented in the appendices in the
thesis.

Chapter 2 gives an introduction to sensory discrimination testing. The pri-
mary focus is to provide the reader unfamiliar with sensory discrimination tests
knowledge about aspects of sensory discrimination testing that are used in the
thesis.

In Chapter 3 an introduction to the relevant aspects of generalized linear models
as well as generalized linear mixed model is provided. The aim of this chapter
is to get the non-statistical reader more familiar with relevant aspects to better
understand the contents of Linander et al. (2018a). Furthermore, aspects of a
Thurstonian mixed model is considered in more details than the scope of Linan-
der et al. (2018a).
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Chapter 4 investigates how trustworthy the Thurstonian mixed models intro-
duced in Chapter 3 and Linander et al. (2018a) are.

In Chapter 5 different aspects of principal component analysis using d-prime
values are investigated, which are only briefly investigated in Linander et al.
(2018b).

Chapter 6 is analyzing data which are obtained as an additional question in the
binary paired comparison.

Chapter 7 is introducing and investigating aspects of comparison of multiple
d-prime values which are considered in Linander et al. (2018).

1.1.2 Journal Papers

Three journal papers are included in the appendices. Furthermore, a book chap-
ter is also included in the appendices.

The first paper included in Appendix A is written for Food, Quality and Pref-
erence. The paper is regarding the analysis of data obtained from a sensory
discrimination study using the binary paired comparison protocol.

The paper included in Appendix B is written for Food, Quality and Preference.
The paper is considering Principal Component Analysis of d-prime values.

The paper included in Appendix C is written for Journal of Sensory Studies.
The paper is considering a way to compare and analyze multiple d-prime values
obtained from potential different sensory discrimination test protocols.

The book chapter in Appendix D is a part of the book Rogers (2017). The book
chapter is giving a thorough introduction to how sensR can be used to analyze
data from sensory discrimination tests.



Chapter 2

Sensory Discrimination
Testing

Sensory discrimination testing is a type of test used in sensory science. It is
used when the aim is to investigate whether products are perceptibly different
(Lawless and Heymann, 2010). An example of such a situation is if a company
gets a new supplier of an ingredient and it is desired to investigate if this affects
how the product is perceived. Another example is when a company makes a
change of an ingredient due to e.g health initiatives and would like information
about the influence this change has for the product.

Sensory discrimination testing is a topic of ongoing research and many papers
and books exist introducing this topic (Rogers, 2017; Bi, 2006; Lawless and
Heymann, 2010; Ennis et al., 2014)

2.1 Sensory discrimination tests

Sensory discrimination tests are different in many ways. One difference is re-
garding the cognitive task associated with the test. Overall, two strategies
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associated with the tests are considered: the skimming strategy and the com-
parison of difference. Put differently, two different types of discrimination tests
exist: with or without a nature of the difference between the samples. Tests
with a nature of the difference are e.g. n-AFC methods where the question is of
the type "Which sample is the most bitter?", and the A-not A method where
the question is "Is the sample A or not-A?". This type of test is using the skim-
ming strategy. Tests without a nature of the difference are methods comparing
the distance of differences e.g. the Duo-trio method where the question asked
is "Which sample is the same as the control sample?" and the Same-Diff with
"Are the samples the same or different?" see e.g. Bi (2006) and O’Mahony et al.
(1994).

Another difference is whether the test has response bias or not. For tests with a
response bias psychological factors will influence each assessor’s understanding
of the choices e.g. whether two samples are "same" or "different" in a same-diff
test. For tests with response bias it is inappropriate with a guessing probability
(see e.g. Rogers (2017)). For tests without response bias the guessing probabil-
ity, denoted by pg, is the probability of choosing the correct sample by chance.
This depends on the number of possible answers in the test and is given as:

pg =
# correct combinations

# combinations
(2.1)

2.2 simple-binomial test protocols

In this thesis the focus is on the so-called simple-binomial tests, which as the
name implies lead to binary data. These consist of the 2-Alternative Forced
Choice (AFC) method, the 3-AFC, triangle, duo-trio and tetrad. The latter has
become very popular in recent advances (Ennis, 2012; Rogers, 2017).

In the 2-AFC test an assessor is comparing two samples, one of each product,
and is asked to choose the sample with the strongest (or weakest) sensory inten-
sity of the sensory attribute in question e.g. sweetness or saltiness. The 3-AFC
test is equivalent to the 2-AFC test except for the number of samples being
compared. In the 3-AFC an assessor is comparing three samples where two are
from one product and the third is from another. The 2-AFC and the 3-AFC
tests are specified tests since the difference is known.

The triangle test involves three samples, two from one product and one from
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another product, for which an assessor is asked to identify the odd sample. The
triangle test is an unspecified test since the difference between the products is
unknown.

For the duo-trio test an assessor is receiving three samples where one is marked
as the reference. Of the two remaining samples one is from the same prod-
uct as the reference product and one is from another product. The assessor
must choose the sample, of the remaining two samples, that is the same as the
reference sample. As for the triangle test, the difference in a duo-trio test is
unspecified.

The tetrad method is using four samples, where two samples are from one prod-
uct and two are from another product. The assessor’s task is to group the
samples such that the two samples from the same product are grouped as one
group. The tetrad test is also an unspecified test since no information about
the differences of the products is given.

2.3 Analyzing sensory discrimination studies with
simple-binomial tests

Let X1, . . . , Xn be observations from n independent simple-binomial tests.
Then the total number of correct answers is binomially distributed:

X =

n∑

i=1

Xi ∼ Binomial(pc, n) (2.2)

since Xi ∼ Binomial(pc, 1) for all i. Furthermore, pc = P (Xi = 1) is the proba-
bility of a correct answer.

When analyzing such data, three different levels of analysis exist (Næs et al.,
2010). The three levels are using the proportion of correct answers, the propor-
tion of discriminators or the underlying sensory difference δ. The proportion of
correct answers is the proportion of times the correct sample was chosen. The
proportion of discriminators is the proportion of individuals that would detect
the product difference. The underlying sensory difference is explained in Section
2.4.
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There exist a unique relation between the proportion of correct answers and the
proportion of discriminators given by:

pc = pg + pd(1− pg)

where pd is the proportion of discriminators (Næs et al., 2010). Furthermore,
there exist a function relating the proportion of correct answers with the un-
derlying sensory difference, the so-called psychometric function. Thus, it is
possible to transform between the three levels of analysis.

The expected proportion of correct answers and discriminators depend on the
test used (Næs et al., 2010; Rogers, 2017). Thus, it is not possible to com-
pare the proportion of correct answers or the discriminators for different tests.
For the same sensory difference between products, it is expected that different
tests lead to different proportions of correct answers and therefore also different
proportion of discriminators. The reason for the discrepancy between the pro-
portions is due to the fact that the cognitive task of some tests is more difficult
than for other tests.

Gridgeman’s paradox was introduced in Gridgeman (1970). It is known for
showing that the triangle test and the 2-AFC test of the same stimulus lead to
assessors that answered wrongly in the triangle test but correctly in the 2-AFC
test (Frijters, 1979). Thus, it appeared that nondiscriminators were able to
discriminate. It was shown in Frijters (1979) that this discrepancy was caused
by the use of the proportion of discriminators as the measure for the difference
between the products. Using δ as the measure of the sensory difference between
the products, the triangle and the 2-AFC lead to the same estimate of δ and
the Gridgeman’s paradox was resolved. Several authors have pointed out that
the proportion of discriminators is a bad measure of product differences and δ is
to be preferred (Frijters, 1979; Ennis, 1993; Ennis and Jesionka, 2011; Jesionka
et al., 2014).

2.4 Thurstonian modelling

Thurstonian modelling is used as a way to quantify the sensory differences be-
tween products. It is based on that diffences between samples of a product can
occur as well as differences in how the samples are perceived by the human exist.
Thus, Thurstonian modelling is based on the fact that the sensory intensity of
a product not will be constant but will vary. It is assumed that such sensory
intensities are normally distributed with equal variances (see e.g O’Mahony and
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Rousseau (2002)). The Thurstonian measure of underlying sensory differences
is denoted by δ and it is defined as the difference between the means divided by
the standard deviation. The bigger δ is the more distinguishable the products
are.

2.4.1 Psychometric functions

The psychometric function is the function relating the proportion of correct an-
swers to δ. In this section the psychometric functions for the simple-binomial
tests are given.

The psychometric functions for the 2-AFC, 3-AFC, triangle and duo-trio have
been written and defined many times in the literature; see Brockhoff and Chris-
tensen (2010) and Ennis (1993) as well as references therein. The psychometric
function for the unspecified tetrad has also been introduced in the literature;
Ennis et al. (1998).

The psychometric function for the 2-AFC reads:

f2AFC(δ) = Φ

(
δ√
2

)
= pc (2.3)

The psychometric function for the 3-AFC reads:

f3AFC(δ) =

∫ ∞

−∞
ϕ(z − δ)Φ2(z)dz = pc (2.4)

The psychometric function for the duo-trio reads:

fd-t(δ) = −Φ

(
δ√
2

)
− Φ

(
δ√
6

)
+ 2Φ

(
δ√
2

)
Φ

(
δ√
6

)
= pc (2.5)

The psychometric function for the triangle reads:

ftri(δ) = 2

∫ ∞

0

(
Φ
(
−z
√

3 + δ
√

2/3
)

+ Φ
(
−z
√

3− δ
√

2/3
))

ϕ(z)dz = pc

(2.6)

The psychometric function for the unspecified tetrad reads:

ftetrad(δ) = 1− 2

∫ ∞

−∞
ϕ(x)

(
2Φ(x)Φ(x− δ)− (Φ(x− δ))2

)
dx = pc (2.7)
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2.4.2 Estimation

The maximum likelihood estimate of the probability of a correct answer reads:

p̂c =

{
x/n if x/n ≥ pg
pg if x/n < pg

. (2.8)

where p̂c cannot be lower than the guessing probability.
Due to the invariance property of the maximum likelihood estimate (Pawitan,
2001) the maximum likelihood estimate of δ is given by:

d′ = fpsy(p̂c) (2.9)

When the products are not different p̂c = pg and d′ = fpsy(pg) = 0. Therefore,
the valid values for the parameters are:

pc ∈ [pg, 1] and δ ∈ [0,∞) (2.10)

2.5 Analyzing sensory discrimination studies us-
ing sensR

In this section, a brief introduction to analyzing data from sensory discrimina-
tion studies in sensR is given. For a more detailed description of the analysis
using sensR see Brockhoff and Linander (2017).
Besides the so-called basic simple-binomial test protocols, many other test
protocols exist. The sensR package provides a way to analyze data from many
of these. Furthermore, the package ordinal enables analysis of test protocols
that are analyzed by the so-called cumulative link models (Christensen, 2018).

An overview of the functionality in the sensR package is given in Table 2.1
(which is the same as Table 15.1 in Brockhoff and Linander (2017) with minor
changes).

The sensR package is making many analyses and transformations available in
R for sensory discrimination tests. It is possible to do difference testing as well
as similarity testing. Furthermore, it is possible to estimate the three different
parameters pc, pd and δ. Power and sample size calculations are also possible.
Moreover, it is possible to do the replicated analysis based on the beta-binomial
model as well as the corrected beta-binomial model. Additionally, it is possi-
ble to simulate replicated sensory protocol data. Furthermore, it is possible to
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transform values of one of the three parameters pc, pd and δ to any of the other.
In addition, it is possible to plot Thurstonian distributions.

Difference and similarity testing is carried out by the discrim function:

discrim(correct, total, d.prime0, pd0, conf.level = 0.95,
method = c("duotrio", "tetrad", "threeAFC", "twoAFC",

"triangle", "hexad", "twofive", "twofiveF"),
double = FALSE,
statistic = c("exact", "likelihood", "score", "Wald"),
test = c("difference", "similarity"), ...)

Transformation of pc, pd and δ to one of the other is possible by using the
rescale function:

rescale(pc, pd, d.prime, std.err,
method = c("duotrio", "tetrad", "threeAFC", "twoAFC",
"triangle", "hexad", "twofive", "twofiveF"),
double = FALSE)

The analysis of replicated data is carried out by the betabin function:

betabin(data, start = c(.5,.5),
method = c("duotrio", "tetrad", "threeAFC", "twoAFC",

"triangle", "hexad", "twofive", "twofiveF"),
vcov = TRUE, corrected = TRUE, gradTol = 1e-4, ...)



Chapter 3

Thurstonian Mixed Models

When data follow a normal distribution, linear models provide a broad range
of analyses of these data. However, when data do not follow a normal distri-
bution an alternative class of models, the so-called Generalized Linear Models
(GLMs) and Generalized Linear Mixed Models (GLMMs), is used (McCullagh
and Nelder, 1989; Agresti, 2013; McCulloch et al., 2008; Agresti, 2015).

In this chapter these models are embedded into a Thurstonian framework, lead-
ing to the possibility to obtain the estimates of the effects on the d-prime scale.
In Brockhoff and Christensen (2010) it was established that a sensory discrim-
ination test can be considered as a generalized linear model. In this chapter,
as well as in Linander et al. (2018a), the models introduced in Brockhoff and
Christensen (2010) are extended such that random effects are included as the
explanatory variables that are explaining the response variable.

3.1 Generalized Linear Mixed Models

Generalized linear (mixed) models are the equivalence of linear (mixed) models,
in situations where data do not follow a normal distribution. The aim is to gain
knowledge about which, if any, explanatory variables that are important for the
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response variable. The Generalized Linear Model as well as the Generalized
Linear Mixed Model are described in this section. The general way a GLM or
a GLMM is written is by:

g() = η (3.1)

g is the so-called link function, and η is the so-called linear predictor.
The linear predictor is expressing which explanatory variables that are affecting
the mean value of the response variable. When only fixed effects are included
in η the model is a generalized linear model. When at least one random effect
is included in η the model is a generalized linear mixed model. The exact way
the model in (3.1) is defined depends on whether random effects are included
or not. When no random effects are included the model is a generalized linear
model in which the link function g is linking how the mean value of the response
variable is related to the explanatory variables. Hence the name, link function.

Let Y = (Y1, . . . , YI)T be the response variable. A generalized linear model is
of the form:

g(E(Y )) = Xβ (3.2)

where X is the I by J design-matrix containing the J explanatory variables for
the I observations. X can include main effects as well as interactions that are
of interest. Furthermore, β = (β1. . . . , βJ)T is the vector of the parameters.
When random effects are included, the specification of model (3.1) gets more
complicated than in (3.2). When random effects are included the link function g
is linking the conditional mean of the response variable given the random effects
to the explanatory variables:

g(E(Y |u)) = Xβ + Zu (3.3)

where u ∼ N(0,Σ) and Z is the design matrix for the random effects.
Throughout this thesis, the distribution for the response variable is the binary
distribution. Thus, the models considered in this chapter will be for a binary
response.

3.2 The binomial distribution

The binomial distribution is used in a wide range of applications. Sensory
discrimination testing is one area where the binomial distribution plays an im-
portant role.
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Let Y1, . . . , Yn be independent binomially distributed random variables with
probability parameter p = P (Yi = 1) for i = 1, . . . , n and count parameter 1.
Now:

Y =

n∑

i=1

Yi (3.4)

is binomially distributed with parameters n and p:

Y ∼ binomial(p, n) (3.5)

The probability mass function for the binomial distribution reads:

p(y) =

(
n

y

)
py(1− p)n−y (3.6)

A requirement for generalized linear models is that the distribution must be a
member of the natural exponential family. It can be realized that the binomial
distribution is in fact a member of the natural exponential family by:

p(y) =

(
n

y

)
py(1− p)n−y

=

(
n

y

)
elog(p

y(1−p)n−y)

=

(
n

y

)
ey log p+(n−y) log(1−p)

=

(
n

y

)
ey log p

1−p+n log(1−p)

see e.g. Jørgensen (1997) for further details.

3.3 Thurstonian framework

The Thurstonian way of modelling, which was introduced in Section 2.4, is a
way to quantify sensory differences. The sensory difference, δ, is defined as the
difference in means, relatively to the standard deviation, for the normal distri-
butions explaining the sensory intensity. There is a unique relation between δ
and the probability of a product being chosen. This relation is the so-called
psychometric function.
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This type of model will be considering data obtained from binary paired com-
parisons, which can be considered as unbounded 2-AFC tests. Unbounded in
the sense that no correct answer exists and therefore the probability of getting
a correct answer is considered as the probability of choosing one product. In
this thesis, as well as the papers in the appendices, we refer to the products as
a control product and a test product. Thus, the probability of choosing the test
product does not have the restriction introduced in Section 2.4.2.

When developing the Thurstonian framework, assumptions are made regarding
the sensory intensities of the test products as well as the control product. As in
Linander et al. (2018a) let

C ∼ N(µc, σ
2) and T ∼ N(µt, σ

2) (3.7)

be the sensory intensities for the control and a test product respectively. More-
over, the Thurstonian underlying relative difference is defined as

δ =
µt − µc

σ
(3.8)

The psychometric function, denoted by fpair, can for this setting be defined as
the probability that the test product is chosen. This is the probability that the
test product have a larger sensory intensity than the control:

fpair(δ) = P (T > C) = Φ

(
δ√
2

)
= p (3.9)

where Φ is the cumulative distribution function for the standard normal distri-
bution and p is the probability that the test product is chosen over the control
product. The derivation of (3.9) is shown in Linander et al. (2018a).
The Thurstonian framework is defined for one test product at a time. Thus, I
underlying sensory differences are considered; δ1, . . . , δI , where I is the number
of test products considered.

When allowing for differences for the assessors the assumptions regarding the
sensory intensities are that each assessor has its own sets. More specifically, let

Cj ∼ N(µcj , σ
2) and Tj ∼ N(µtj , σ

2) (3.10)

be the sensory intensities for the control and a test product respectively for the
jth assessor, where j = 1, . . . , J . This can be interpreted in one of two ways
regarding the distribution for the sensory intensity of the control. The assessors
have the same distribution for the control, meaning that Cj ∼ N(µc, σ

2) for all j,
or that the distribution of the sensory intensity of the control product is different
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for the different assessors. In both situations, the sensory intensity for the test
product is different for the assessors. The Thurstonian framework is defined
for one test product at a time for each assessor. Thus, IJ underlying sensory
differences are considered; δ11, . . . , δ1J , δ21, . . . , δIJ , where I is the number of
test products considered and J is the number of assessors. Furthermore, δij is
the sensory difference between the ith test product and the control for the jth
assessor.

3.4 Thurstonian Models

The expected value of a binomially distributed variable equals the probability
times the count parameter. Thus, for Y ∼ binomial(p, n) the expected value
reads:

E[Y ] = np (3.11)

with the special case of a Bernoulli distributed variable with n = 1:

E[Y ] = p (3.12)

Thus, when considering the generalized linear models for the binomially dis-
tributed data, the probabilities will be used in the model.

When considering the probability in the binary distribution it is possible to im-
pose a linear structure on it by modelling it in a generalized linear model. This
is what is considered in Brockhoff and Christensen (2010).

When the probability of choosing a test product is modelled such that it is
affected by test products, the model reads:

g(pi) = µ+ αi = ηi (3.13)

where i = 1, . . . , I represents test products, µ is the overall average difference
between test products and the control and αi is the difference for the ith test
product to the average product-difference µ. pi = P (Yijk = 1) is the probabil-
ity that the ith test product is chosen for the jth assessor in the kth session.
Furthermore,

Yijk ∼ Binomial(pij , 1) (3.14)
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Thus, the probability mass function for Yijk is given by:

p(yijk) =

(
1

yijk

)
pyijk(1− p)1−yijk

= pyijk(1− p)1−yijk

It is possible to add random effects to the linear predictor in the right-hand side
of equation (3.13). When the probability of choosing a test product is modelled
such that it is affected by the main effects of assessors as well as test products,
the model reads:

g(pij) = µ+ αi + bj = ηij (3.15)

where j = 1, . . . , J represents the assessors and bj is the random effect of the
jth assessor. The random effects are assumed to be independent and identically
distributed:

Bj ∼ N(0, σ2
b ) (3.16)

where bj is a realization of the random variable Bj . Furthermore, the remaining
parameters are given as for (3.13). When a random effect is added to the linear
predictor the probability is no longer the unconditional probability. Therefore,
the probability in (3.15) is the conditional probability given the random effects:

pij = P (Yijk = 1|Bj = bj)

Furthermore, the binary data are binomially distributed conditional on the re-
alized values of the random variable Bj = bj :

Yijk|Bj = bj ∼ Binomial(pij , 1) (3.17)

where

pij = fpair(µ+ αi + bj)

The probability mass function for the conditional distribution given in (3.17)
reads:

p(yijk|bj) =

(
1

yijk

)
p
yijk

ij (1− pij)1−yijk

= p
yijk

ij (1− pij)1−yijk

= fpair(µ+ αi + bj)
yijk(1− fpair(µ+ αi + bj))

1−yijk

The density for the random effects is given by:

p(bj) =
1√

2πσ2
b

exp

{
− 1

2σ2
b

b2j

}
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The simultaneous distribution of Yijk and Bj is given by the probability mass
function:

p(yijk, bj) = p(bj)p(yijk|bj) (3.18)

and the marginal distribution of Yijk is given by the probability mass function:

p(yijk) =

∫ ∞

−∞
p(yijk, bj)dbj

=

∫ ∞

−∞
p(bj)p(yijk|bj)dbj

=

∫ ∞

−∞

1√
2πσ2

b

exp

{
− 1

2σ2
b

b2j

}
·

fpair(µ+ αi + bj)
1−yijk(1− fpair(µ+ αi + bj))

yijkdbj

It is possible to extend the model in (3.15) by adding the assessor-by-product
interaction:

g(pij) = µ+ αi + bj + dij (3.19)

where dij is the random effect of the interaction for the jth assessor and ith test
product. The random effects are assumed to be independent and identically
distributed:

Dij ∼ N(0, σ2
d) (3.20)

where dij is a realization of the random variable Dij . It is assumed that Dij

is independent of Bj . Furthermore, the probability in (3.19) is the conditional
probability given the random effects:

pij = P (Yijk = 1|Bj = bj , Dij = dij)

In addition, the binary data are binomially distributed conditional on the real-
ized values of the random variables Bj = bj and Dij = dij :

Yijk|Bj = bj , Dij = dij ∼ Binomial(pij , 1) (3.21)

where

pij = fpair(µ+ αi + bj + dij)

In the remaining parts of the thesis, including the papers in the appendices, bj
and dij are used as the realizations as well as referring to the random variables
Bj and Dij . It will be clear from the context whether they refer to a realization
or the random variable.
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3.5 Simplification of Thurstonian models

An important aspect to consider is whether it is possible to simplify the model.
The possible simplification will be investigated by likelihood ratio testing.

3.5.1 Likelihood function

For simplicity the likelihood function is written for model (3.15). The likelihood
function of the marginal distribution of Yijk is given as:

L(β, bj ;Y ) =

J∏

j=1

∫ ∞

−∞

I∏

i=1

K∏

k=1

p(yijk|bj)p(bj)dbj

where β = (µ, α1, . . . , αI)T is the vector of the parameters for the fixed effects
and Y = (Y111, . . . , YIJK) is the vector of the observations.
The log-likelihood function becomes:

`(β, bj ;Y ) = logL(β, bj ;Y )

=

J∑

j=1

log

(∫ ∞

−∞

I∑

i=1

K∑

k=1

p(yijk|bj)p(bj)dbj
)

3.5.2 Hypothesis testing

As for linear mixed models, the approach when trying to simplify a model is by
considering the hypothesis test for the interactions. The first effect to consider is
the highest-order interaction, which for model (3.19) is the two-way interaction
between assessors and products. The hypothesis test for the assessor-by-product
interaction reads:

H0 : σ2
d = 0 versus H1 : σ2

d > 0 (3.22)

The alternative hypothesis is one-sided due to the variance being non-negative.
Therefore the model under the null hypothesis reads:

g(pij) = µ+ αi + bj

The test that is considered is the likelihood ratio test, which is given by minus
twice the log-likelihood function under the alternative hypothesis minus the
log-likelihood function under the null hypothesis:

XLRT = −2 logQ = −2(`0 − `1) = 2(`1 − `0)
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where `0 and `1 are the log-likelihood functions under the null and alternative
hypothesis respectively.
The distribution of XLRT can be considered in two ways. Either by the usual
asymptotic theory for which XLRT ∼ χ2

1 or by taking into account that the
situation under the null hypothesis is on the boundary of the parameter space
leading to XLRT following a mixture of the two χ2 distributions with 0 degrees
of freedom and 1 degree of freedom respectively.
When the hypothesis test for the assessor-by-product interaction results in a
non-significant interaction, the hypothesis tests for the main effects of assessor
and product are well-defined and interpretable and defined as in Linander et al.
(2018a). However, in the situation where the assessor-by-product interaction is
significant the hypothesis test for the main effects become more complicated.

When considering the hypothesis tests for the main effects, in the situation of
a non-significant assessor-by-product interaction, the hypotheses read:

H0 : σ2
b = 0 versus H1 : σ2

b > 0 (3.23)

and

H0 : αi = 0 for all i versus H1 : αi 6= 0 for at least one i (3.24)

In the situation of a significant assessor-by-product interaction one must con-
sider how to interpret the hypotheses in (3.23) and (3.24). What would it mean
say if σ2

b = 0 when σ2
d > 0? Would there be a meaningful way to interpret that

the "main" effect of assessor is non-significant whereas the assessor-by-product
interaction is significant? What would the assessor-by-product interaction re-
ally express? One interpretation is that the assessor-by-product interaction is
expressing that there are assessor dependent differences between the products.
When considering the test of product, when the assessor-by-product interaction
is significant, could mean that the differences between the products depend on
the assessors, that no differences purely between the products exist.

3.6 Estimation of parameters

This section covers how estimation using the GLM and the GLMM is done. Two
different approaches are used depending of the definition of the variable; one for
fixed effects and another for random effects.
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3.6.1 Estimation of fixed effects

This section describes how fixed effects are estimated using GLMs and GLMMs.
The fixed effects are estimated by maximum likelihood estimation. For gener-
alized linear models as well as generalized linear mixed models, the maximum
likelihood estimates are found as solutions to the score equations. The score
equations are given as

∂

∂β
logL(β, bj ;Y ) =

∂

∂β
`(β, bj ;Y ) = 0 (3.25)

The maximum likelihood estimate β̂ is the solution to (3.25).

3.6.2 Prediction of random effects

Random effects are realizations of unknown random variables. It can be of high
importance to get information about the value of their realizations. This sec-
tion explains how the predictions of the random components from a GLMM are
defined.

The prediction of a random effect in a generalized linear mixed model is given as
the mode in the conditional distribution of the random effect given data (Jiang
et al., 2001; Christensen and Brockhoff, 2012; Bates et al., 2015). The mode of
a conditional distribution is the value that maximizes the conditional density.
Therefore, b̂j ; the prediction for the jth assessor is maximizing p(bj |yj) where
yj is the vector of observations for the jth assessor.

3.7 Estimation of d-prime values

Due to the definition of the psychometric function for the binary paired com-
parison, given in (3.9), the parameters in the linear predictor ηij in (3.15), is on
the d-prime scale. Thus, δij ; the sensory difference between the ith test product
and the control for the jth assessor, is given as:

δij = µ+ αi + bj (3.26)

It is possible to obtain product, as well as assessor specific sensory differences
from (3.26).
The product specific sensory differences are the differences between the products
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and the control for an average assessor. Since bj ∼ N(0, σ2
b ) an average assessor

corresponds to E[bj ] = 0. Therefore, an average assessor is when bj = 0 and the
product specific d-prime values are given as:

δi = µ+ αi

There are two different assessor specific sensory differences. The first type is bj
which is the difference, on the d-prime scale, from the average product-difference
µ for the jth assessor. The second type is the difference between an average test
product and the control for the jth assessor. This is for an average test product
corresponding to αi = 0. Thus,

δj = µ+ bj

3.8 Fitting the models using R

It is possible to fit Thurstonian models as well as Thurstonian mixed models
in R. When having random effects in the model, giving a Thurstonian mixed
model, such models can be considered in R by using the lme4 package (Bates
et al. (2015)).
Let dat be a data frame with a row for each observation Yijk. Moreover, let the
columns of dat be the response variable as well as explanatory variables. More
specifically, let Attribute be the response variable and let Assessor, Product
and Session be the explanatory variables. Session is not used in the model
since we are considering models with effects of assessors and products. The
model in (3.15) is fitted by:

fm <-
glmer(Attribute ~ Product + (1|Assessor) + (1|Assessor:Product),

data = dat,
family = binomial(probit),
contrasts = list("Product"=contr.sum),
control=glmerControl(optimizer="bobyqa"))

Here, the family option is set to be binomial(probit) which means that the
inbuilt link function probit is used for binomially distributed data. The psy-
chometric function defined in (3.9) reads:

pij = fpair(δij)

= Φ

(
δij√

2

)
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Now, the link function becomes

δij = f−1pair(pij)

= Φ−1(pij)
√

2

which is the probit link multiplied by the square-root of 2.
The parameters in the linear predictor ηij in (3.15) are on the d-prime scale.
To get the parameters from the fitted model on the d-prime scale the estimates
from fm must be multiplied by

√
2. Thus, the product specific d-prime values

are obtained by:

alphas <- fixef(fm)[-1]*sqrt(2)
alphas <- c(alphas, 0-sum(alphas))

where the last value of αi is found using the restriction that the parameters
must sum to zero.
The assessor specific d-prime values, b̂j , are obtained by:

ranef(fm)$"Assessor"*sqrt(2)

To be able to do the hypothesis test of a significant assessor-by-product inter-
action, the model without the assessor-by-product interaction must be fitted:

fm2 <-
glmer(Attribute ~ Product + (1|Assessor),

data = dat,
family = binomial(probit),
contrasts = list("Product"=contr.sum),
control=glmerControl(optimizer="bobyqa"))

The likelihood ratio test for the assessor-by-product interaction is obtained by:

(LRT <- 2*(logLik(fm2) - logLik(fm)))

and the p-value is obtained by:

(pVal <- 1 - pchisq(LRT, df = 1))
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3.9 Concluding remarks

It is possible to choose other expressions for ηij in (3.19). One possibility is to
include session as an explanatory variable. Allowing the probability of a test
product being chosen to possibly depend on the session means that a model
with only main effects reads:

g(pijk) = µ+ αi + τk + bj

where pijk = P (Yijk = 1).

Another explanatory variable that could be interesting to consider is time. It
could be of interest to investigate if there is an effect of time in situations where
the testing is spread out using more than one day. This way of modelling opens
up for many possibilities for investigating which variables that possibly affect
the probability of choosing a specific product.
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Chapter 4

Can a Thurstonian mixed
model be trusted?

In Linander et al. (2018a) and in Chapter 3 Thurstonian models for the bi-
nary paired comparison are considered. In Linander et al. (2018a) it is briefly
considered how the hypothesis test of the product effect is affected by ignoring
replications from the assessors or including them. In this chapter, the impor-
tance of handling the replications correctly will be investigated. This will be
considered by investigating the test for products.

Another interesting, as well as important, matter to investigate, is how good
a Thurstonian mixed model is at detecting a true assessor-by-product interac-
tion. In Linander et al. (2018a) the hypothesis test for the assessor-by-product
interaction results in non-significant interactions for all the sensory attributes.
Thus, it is relevant to investigate whether the model will be able to detect true
assessor-by-product interactions.

Generally, it is important that a sensory discrimination study has high power
such that the results can be trusted (Ennis, 1993; Bi and Ennis, 1999).
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4.1 Handling replications

Replications often occur in sensory discrimination testing. It is important to
handle the replications carefully to be able to obtain proper results regarding
the products.

When considering studies with one product, many suggestions exist of how to
handle the replications. Two methods that are widely used are the so-called
beta-binomial and corrected beta-binomial models (Næs et al., 2010; Brockhoff,
2003; Ennis and Bi, 1998).

4.1.1 The hypothesis test for products - an example

A comparison of the values of the likelihood ratio test statistics, for the discrim-
ination study introduced in Linander et al. (2018a), for the models with and
without assessor is shown in Figure 4.1 (which is the same figure as in Linander
et al. (2018a)).

For the majority of the attributes the likelihood ratio test statistics are extremely
large, thus it has no practical impact which of the two models are considered.
However, the values for the test using the model including assessors are larger
than when ignoring the replications. This is important for Greasy evaluated
initially after application. Using a significance level of 0.01, the conclusion
regarding a product effect depends on which model is used. Furthermore, the
difference between the likelihood ratio statistic and the critical value, using the
0.05, level is small.

4.1.2 The test of product main effect - a simulation study

In this section it will be investigated how the test of the main effect of products
is affected by the choice of model in the case of a true assessor main effect.

This simulation study is investigating the importance of modelling the assessors
when data consist of replications for the assessors.
The model that is considered is the model with the main effects of products and
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assessors:

g(pij) = α̃i + bj ⇔
pij = f−1paired(α̃i + bj) (4.1)

= P (Yijk = 1)

where α̃i = µ+ αi and bj ∼ N(0, σ2
b ) being independent for all j. The model in

(4.1) is used as the so-called simulating model.
The simulation of data consists of two steps:

Step 1: Simulating the probabilities pijs from a set of parameter values using
model (4.1)

Step 2: Simulating the binomially distributed data Yijk:

Yijk ∼ Binomial(pij , 1) (4.2)

using the simulated probabilities pijs from Step 1, where observations are
independent over k. Meaning that P (Yij1 = 1) = P (Yij2 = 1) = pij .

Two estimating models will be used to model the simulated data. One ignoring
the replications for the assessors:

g(pij) = α̃i (4.3)

and the model given by (4.1) where the replications are modelled by including
assessor in the model.
The hypothesis test of interest is the hypothesis test for product. Thus the
hypotheses are given as:

H0 : α̃1 = α̃2 = · · · = α̃I H1 : α̃i 6= α̃i′ for some i 6= i′ (4.4)

One aim of this simulation study is to compare the size of the likelihood ratio
test statistics using the two different estimating models. This will illustrate
the differences between the test statistics. However, this does not illustrate the
consequence of the differences between the test statistics. Thus, to investigate
how the conclusions are affected the power of detecting a product difference for
the two estimating models will be considered.
The power is the probability of rejecting the null hypothesis when the alternative
hypothesis is true:

power = P (correctly rejecting H0) = 1− β (4.5)

where β is the probability of accepting the null hypothesis when the alternative
hypothesis is true.
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Table 4.1: Parameter values of the α̃is used for the simulation study.

α̃1 α̃2 α̃3 α̃4 α̃5 α̃6 α̃7 α̃8

small −0.5 0.5 0.2 −0.5 0.1 0.2 −0.3 −0.2
medium −1.0 −0.6 0.4 −0.7 0.5 −0.3 −0.1 0.4
large −1.1 1.5 1.2 −1.5 −1.2 −0.9 −1.3 0.8

Table 4.2: Parameter values of σb used for the simulation study.

σb 0.5 1 2

The Yijks will be simulated for eight products (I = 8), 25 assessors (J = 25) and
two sessions(K = 2). Three sets of values for α̃1, . . . , α̃8 will be considered. The
three sets corresponds to different sizes of the d-prime values. The idea is that
one set is for small d-prime values, another set for medium d-prime values and
a third for large d-prime values. Looking at the values of the product specific
d-prime values for the analysis of the discrimination study, the three groups are
defined such that a difference is:

• small when αmax − αmin ≤ 1

• medium when αmax − αmin ≤ 1.5

• large when αmax − αmin ≤ 3

Three different values of the variance in the normal distribution for the assessors
are considered. The parameter values used in the simulation study are listed in
Table 4.1 and 4.2. The values for the parameters for the α̃is are on the d-prime
scale.

4.1.3 Results

The results of the simulation study are summarized in two ways; a histogram of
the differences of the likelihood ratio test statistics and the power for the two
models.
The difference of the likelihood ratio test statistics for the lth simulation reads:

DLRT = XLRT, assessor −XLRT, ignoring assessor (4.6)
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Figure 4.2: The differences of the likelihood ratio test statistics for the small
sized d-prime values.

where XLRT, assessor is the likelihood ratio test statistic obtained using model
(4.1) and XLRT, ignoring assessor is the likelihood ratio test statistic obtained using
model (4.3).

The simulated power is found as the number of times the null hypothesis is
rejected out of the total number of tests (Bi (2011)):

simulated power =
#H0 is rejected

# p-values
(4.7)

The power will be found using a level of α of 0.05.

The values of DLRT for the small sized d-prime values is shown in Figure 4.2.

I would expect that the larger the variance the bigger the differences between
the test statistics become. This tendency is seen in Figure 4.2. Furthermore, as
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Figure 4.3: The differences of the likelihood ratio test statistics for the medium
sized d-prime values.

expected the values for σb = 0.5 are smaller than for the other two values of σb,
with some very close to 0.

The values of DLRT for the medium sized d-prime values is shown in Figure 4.3.

As before, the differences increase with increasing standard deviation. Further-
more, the differences are a bit larger than in Figure 4.2.

The values of DLRT for the large sized d-prime values is shown in Figure 4.4.

As before, the differences increase with increasing standard deviation. Further-
more, the differences are larger than in Figure 4.2 and 4.3.
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Table 4.3: Estimated power for the hypothesis test for product for the 0.05
level.

Model σb = 0.5 σb = 1 σb = 2
small medium large small medium large small medium large

with 78 100 100 74 100 100 57 94 100
without 73 99 100 56 98 100 12 55 100

For all of the different d-prime values the differences between the test statistics
for the two models increase with increasing assessor variability. This is expected,
since the more the assessors vary the more improper the model ignoring the as-
sessors become. When the assessor variability is small it seems more reasonable
to ignore the assessor variability. However, it is not possible to know from the
differences whether the conclusions are affected, since this also depends on the
actual size of the test statistics and not only their difference.

The tendency that is seen in this simulation study also appears to be recog-
nizable in the analysis of the discrimination study. From Figure 4 in Linander
et al. (2018a) it is seen that Silky after five minutes is the sensory attribute
with the largest effect of the assessors. It is also the sensory attribute with
the largest difference between the test statistics in Figure 4.1. Furthermore,
the sensory attributes with non-significant assessor effects are Absorption and
Thickness which are among the attributes with the smallest differences for the
test statistics.

The estimated powers for the simulation study, using the 0.05 level, are shown
in Table 4.3.

Considering σb = 0.5 the two models perform equally well with a maximum
difference of 5. For σb = 1 the two models perform equally well for medium and
large sized d-prime values. For small sized d-prime values the two methods differ
with the model including assessor having the highest power of 74. Considering
σb = 2 the models have the same power for large sized d-prime values. However,
for small and medium sized d-prime values the model including assessor is far
superior than the model ignoring the assessors.

Generally, when assessor is included in the model the value of the likelihood
ratio test statistic becomes larger than when assessor is omitted from the model.
Larger values of the likelihood ratio test statistic means that the null hypothesis
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of no product differences will more often be rejected. Thus, the test when
assessor is included is more sensitive than when assessor is omitted.

4.2 Will the model detect significant assessor-by-
product interactions - an investigation

In Linander et al. (2018a) the test for the assessor-by-product interaction re-
sulted in non-significant interactions for all the attributes. A natural question
that arises is whether the model will be able to detect a significant assessor-by-
product interaction when it exists. It is important that the model will be able to
do this, since the interpretations in Linander et al. (2018a) are based on the fact
that the assessor-by-product interaction is non-significant. Thus, it is of high
importance to be able to trust that the model without the assessor-by-product
interaction is a model that describes the data well.
In this section an investigation is made considering a small simulation study to
investigate the model’s ability to detect true assessor-by-product interactions.

4.2.1 The investigation

The model that is considered in the simulation study reads:

g(pij) = α̃i + bj + dij ⇔
pij = f−1pair(α̃i + bj + dij) (4.8)

where

Yijk ∼ Binomial(pij , 1), pij = P (Yijk = 1)

with bj ∼ N(0, σ2
b ) and dij ∼ N(0, σ2

d) being independent for all i and j.

As in Section 4.1.1 the simulation of data consists of two steps:

Step 1: Simulating the probabilities pijs from a set of parameter values using
model (4.8)

Step 2: Simulating the binomially distributed data Yijk:

Yijk ∼ Binomial(pij , 1) (4.9)
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Table 4.4: Parameter values of the α̃is used for the simulation study.

α̃1 α̃2 α̃3 α̃4 α̃5 α̃6 α̃7 α̃8

−1.57 −2.39 −0.89 0.83 −1.47 −0.37 −1.77 −3.03

Table 4.5: Parameter values of σb and σd used for the simulation study.

Situation 1 Situation 2
σ2
b 1.61 1.61
σ2
d 1.61 3.22

using the simulated probabilities pijs from Step 1, where observations are
independent over k. Meaning that P (Yij1 = 1) = P (Yij2 = 1) = pij .

The aim of the simulation study is to investigate how well the model will de-
tect true assessor-by-product effects of various size. This will be investigated by
considering the power of the model for two different scenarios.

For the parameters to be realistic, the values for the parameters, except for
σd, for the simulation study are the estimates obtained from the analysis with
the largest assessor differences. From Section 4.1.3 Silky after five minutes is
known as the sensory attribute with the largest effect of the assessors. The
d-prime values of the test products are obtained from Linander et al. (2018b)
and are listed in Table 4.4.

The variance parameters are chosen such that σb equals the estimate from the
analysis of Silky after five minutes. Furthermore, σ2

d is considered for two
scenarios:

σ2
d = σ2

b and σ2
d = 2σ2

b (4.10)

The values of the variances are listed in Table 4.5.

The simulation study is conducted for two replications for 25 assessors and 8
products doing 1000 simulations. The power for the two situations are 0.42 for
situation 1 and 0.94 for situation 2. These preliminary findings indicate that
the model would be able to detect a true assessor-by-product difference under
certain circumstances. Further, investigations are needed to gain knowledge
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about the stability of the model with respect to detecting true assessor-by-
product interactions. For the situation where the variances for the main effect
of assessors and assessor-by-product interaction are equal the power was low.
However, when the variance of the assessor-by-product is twice the variance of
the assessors the power was very high.

4.3 Concluding remarks

The simulation studies considered in this chapter are merely considering two
aspects with respect to Thurstonian mixed models. It would also be interesting
to consider a simulation study to investigate the power of detecting assessor
differences. Furthermore, other values of the parameters could be interesting to
consider.
More work needs to be done to investigate how the models are performing when
unbalanced data are considered.



Chapter 5

Principal Component
Analysis of d-prime values

This chapter is concerned with aspects of principal component analysis (PCA),
which are only briefly considered in Linander et al. (2018b).

5.1 Choice of assessor specific d-prime values

When considering Thurstonian mixed models, as in Linander et al. (2018a), two
different assessor specific d-prime values are considered; the b̃js and the bjs.
In Linander et al. (2018b) the PCA using the bj values is considered. In this
section it is investigated what information is gained by considering both types
of assessor specific d-prime values.

5.1.1 Centering

When considering the assessor specific d-prime values, it is possible to do several
versions of a PCA. In this section the influence of centering will be investigated.
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Let b1j , . . . , bMj be the predictions for the M assessors for the jth attribute,
where bmj is the prediction for the mth assessor for the jth attribute.

Due to the assumption of the normal distribution the bmjs are predicted such
that E(bmj) ≈ 0. Therefore, the assessor specific d-prime values bmjs are almost
centered Thus, when using the bmj values, the centered and non-centered PCA
will give similar results.

Let b̃mj = µj+bmj be the estimated difference between products and the control
for the mth assessor for the jth attribute.
Now:

E(b̃mj) = E(µj + bmj) (5.1)
= µj + E(bmj) (5.2)
≈ µj (5.3)

Therefore:

b̃mj − E(b̃mj) ≈ µj + bmj − µj = bmj (5.4)

Thus, when centering the b̃mj values the result is similar to the results when
considering the bmj values.
The centered versions of both bmj and b̃mj lead to similar results as considering
the non-centered PCA of bmj . Therefore, two different versions of PCA will be
considered in the next sections. These will be the non-centered PCA of the b̃mj

values as well as the centered PCA of the bmj values.

5.1.2 PCA using assessor specific d-prime values

In this section the assessor specific d-prime values are obtained by modelling
data from an existing discrimination study provided by Unilever. This study is
the same as described and analyzed in Linander et al. (2018a).

The biplot using the bmj values is shown in Figure 5.1 (which is the same as
Figure 4 in Linander et al. (2018a)).

The assessors 8 and 7 are the furthest away from 0 in the same direction as
the arrow with respect to Silky after five minutes. Whereas the assessors 1,
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Figure 5.1: The biplot for the centered assessor specific d-prime values bj .
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Figure 5.2: The biplot for the non-centered assessor specific d-prime values b̃j .

6, 9 and 19 are the furthest in the opposite direction with respect to Silky
after five minutes. Regarding Greasy (initially as well as after five minutes) the
assessors 4, 19, 23 and 24 are the furthest away from 0 in the same direction
as the arrow. Whereas, the assessors 2, 5, 9, 14 and 26 are the furthest in the
opposite direction with respect to Greasy.

The biplot using the b̃mj values is shown in Figure 5.2.

Overall the same grouping of assessors is evident from Figure 5.2 as for 5.1. To
mention some of the groups; the assessors 7 and 8 are close together, assessors
12 and 15 are close. Moreover, assessors 11, 18 and 22 are close together.
Furthermore positions with respect to the attributes are also the same in the
two figures. Thus, both the bmj values as well as the b̃mj values can be used to
investigate which assessors are scoring similarly across attributes.
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5.2 Significant versus non-significant effects - is
scaling needed?

When considering multiple attributes, a situation that can occur is that some
attributes have significant effects, whereas other attributes have non-significant
effects. The argument in Linander et al. (2018a) for not scaling the d-prime
values before doing the PCA is that d-prime values are measured using the
same scale. However, when an attribute has a non-significant effect the d-prime
values for that attribute will be close to 0. In this section, it is investigated how
the principal component analysis is affected by including attributes with non-
significant effects. More specifically, the assessor specific d-prime values from
the discrimination study used as an example in Linander et al. (2018a) will be
considered.

In this section, it will be the b̃mj values that are considered, since the arrows in
Figure 5.1 are much shorter than the arrows in Figure 5.2.

Two approaches will be considered. One approach is omitting the attributes
with non-significant assessor effects. The other approach is to scale the d-prime
values.

5.2.1 Omitting non-significant effects

In the discrimination study two attributes, Absorption and Thickness, have
non-significant assessor effects. The biplot for the PCA using the b̃mj values,
where Absorption and Thickness have been omitted, is shown in Figure 5.3.
The positions of the arrows as well as the assessors do not change when omitting
Thickness and Absorption. Thus, the interpretations stay the same. Thus, it
appears that the attributes with significant assessor main effects have the most
impact in the PCA.

5.2.2 Scaling

The biplot for the PCA using the scaled b̃mj values is shown in Figure 5.4.

When scaling the assessor specific d-prime values b̃j the attributes Absorption
and Thickness become visible in the biplot. As expected, the length of the
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Figure 5.3: The biplot for the non-centered assessor specific d-prime values b̃j
with Absorption and Thickness omitted.
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arrows are more or less the same. The plot in Figure 5.3 is flipped over the y-axis,
compared to Figure 5.2. Moreover, the area in which the assessors are placed
is shrunken when scaling. An assessor worth mentioning is assessor 7. Without
scaling assessor 7 and 8 are similar. However, when scaling assessor 7 no longer is
near assessor 8. Considering all of the assessors positions with respect to Sticky
(initially and after five minutes), Thickness and Greasy (initially and after five
minutes) the results are similar. It appears that Absorption is explaining some
of the second principal component, that were explained previously by Silky
after five minutes. Thus, it appears that the shift of placement for assessor 7
is primarily due to a high proportion of times test products were chosen for
Absorption (see Table 5.1).
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5.2.3 Comparing scaling with omitting

All in all, when attributes are non-significant, it does not seem to matter whether
these are included or omitted in the PCA. However, it appears to matter whether
the d-prime values are scaled or not. Since a non-significant effect implies that
there are no differences among the assessors, it is most likely the most interesting
to consider the non-scaled d-prime values. However, specific knowledge about
the non-significant attributes might make it interesting to also consider the
scaled d-prime values.

5.3 Outliers and their influence

This section investigates the importance of a replacement value for an outlier in
the setting of analyzing d-prime values.

For the discrimination study, used as an example, test product H has a d-prime
value of minus infinity. It is investigated how the PCA is affected by different
imputed values used instead of minus infinity as well as other ways of handling
the extreme value.

5.3.1 Based on the raw proportions

In this section, it is investigated how the PCA is affected by different imputed
values for an outlier using the d-prime values found by transforming the pro-
portions by the inverse of the psychometric function.

A d-prime value of −∞ only occurs when the test products were chosen zero
times. A way to select the value to replace −∞ is by letting the test products
being chosen once. Using the proportion of 1/n instead of 0/n, is conceptually
the same, since it has no practical implication whether the test products were
chosen zero times or one time. From both situations it is clear that the control
is perceived to have the strongest sensory intensity. The advantage of using 1/n
rather than 0/n is it ensures that a finite d-prime value is obtained. Using this
approach a d-prime value of −2.83 is replacing −∞. The result of using this
approach is seen in Figure 5.5 (this is the same as Figure 1 in Linander et al.
(2018b)).
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Figure 5.5: The biplot for the raw d-prime values using the imputed value
where the proportion used is 1/n rather than 0/n.
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Figure 5.6: The biplot for the raw d-prime values using an imputed value of
−10.

Another approach is to choose a completely arbitrary value, in the sense that no
conceptual similarity exists between −∞ and the chosen value. It is investigated
how the value of an arbitrary d-prime value affects the PCA. The biplot obtained
using a d-prime value of −10 is shown in Figure 5.6. Compared to Figure 5.5
the biplot in Figure 5.6 is tilted towards the right affecting the values for the
second principal component for all the test products. The values for the first
principal component are more or less the same, except for test product H which
has a value close to −10, the imputed value for Silky for test product H.

Thus, the conclusions are the same regardless which value is used to replace
−∞. The value for test product H changes with regards to Silky, but the
conclusion is the same; that test product H is very different from the rest of the
test products. The relations between the other test products are not affected by
which value is used. Thus, it appears that the PCA, in this case, is not affected
by the choice of the imputed value.
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5.3.2 Based on the d-prime values obtained from a Thursto-
nian Mixed Model

It is investigated how the principal component analysis is affected when consid-
ering d-prime values that are obtained from a Thurstonian mixed model. When
considering the product specific d-prime values the centered, as well as the non-
centered PCA are considered. Thus, it will be investigated how the principal
component analysis is affected in both situations.

5.3.2.1 Centering the d-prime values

Different values will be used to replace −∞ to investigate the impact the chosen
value has. Following the reasoning in Linander et al. (2018b) when considering
the d-prime values obtained from the Thurstonian mixed model a value of −3.47
will be used as an imputed value. Furthermore, as in Section 5.3.1 a value of
−10 will be considered. The biplot obtained from the PCA with −3.47 is shown
in Figure 5.7 (this is the same as Figure 2 in Linander et al. (2018b)).

The biplot from doing the PCA with −10 is seen in Figure 5.8. Compared to
Figure 5.7 the biplot is flipped over the y-axis but the conclusions remain the
same. Test product H is further away from 0 with respect to the first princi-
pal component. However, this is expected since the first principal component
primarily is explained by Silky.

Thus, for the centered product specific d-prime values, it appears as if the PCA
is only affected in an expected way when imputing a value for test product H
for Silky.
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Figure 5.7: The biplot for the centered d-prime values using an imputed value
of −3.47.
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Figure 5.8: The biplot for the centered d-prime values using an imputed value
of −10.



54 Principal Component Analysis of d-prime values

5.3.2.2 Non-centered d-prime values

As in Section 5.3.2.1 the values −3.47 and −10 will be considered. The biplot
obtained from the PCA with −3.47 is shown in Figure 5.9 (this is the same as
Figure 3 in Linander et al. (2018b)).

The biplot obtained from the PCA using −10 is seen in Figure 5.10. At first
sight, it might look as if the conclusions change. However, the biplot in Figure
5.10 is merely tilted towards the right compared to Figure 5.9. Thus, the test
products have the same relative positions with respect to the arrows. Therefore,
the conclusions remain the same.

Thus, for the non-centered product specific d-prime values, it appears as if the
PCA is only affected in an expected way when imputing a value for test product
H for Silky.
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Figure 5.9: The biplot for the non-centered d-prime values using an imputed
value of −3.47.
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Figure 5.10: The biplot for the non-centered d-prime values using an imputed
value of −10.
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5.3.2.3 Excluding test product H

A different approach than imputing a value, is to exclude test product H from
the analysis. The biplot from doing the PCA using the non-centered d-prime
values without test product H is seen in Figure 5.11. The biplot in Figure 5.11
is tilted a bit towards the right compared to the biplot in Figure 5.9. However,
the conclusions remain the same.

The biplot from doing the PCA using the centered d-prime values without test
product H is seen in Figure 5.12. The biplot in Figure 5.12 is different than
the biplot in Figure 5.7. The arrows are spread out in all directions as well as
the relative positions of the test products change. Thus, the conclusions from
the biplot in Figure 5.12 are somewhat different than the conclusions from the
biplot in Figure 5.7.

Thus, it appear that the results for the centered product specific d-prime values
are affected by the exclusion of test product H.
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Figure 5.11: The biplot for the non-centered d-prime values where test prod-
uct H has been omitted.



5.3 Outliers and their influence 59

A

B

C

D

E

F

G

Thicker

A
bsorb

Stickier

G
re

as
ie

r

Silkier

Stickier.5min

Greasier.5m
in

Silkier.5min

−2

−1

0

1

2

−2 0 2 4

PC1 (65.9% explained var.)

P
C

2 
(2

0.
2%

 e
xp

la
in

ed
 v

ar
.)

Figure 5.12: The biplot for the centered d-prime values where test product H
has been omitted.
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5.3.2.4 Excluding the attribute Silky

A different approach than imputing a value or omitting test product H, is to
exclude Silky from the analysis. The biplot from doing the PCA using the
non-centered d-prime values without Silky is seen in Figure 5.13. The biplot
in Figure 5.13 is tilted a bit towards the right compared to the biplot in Figure
5.9. Obviously, Silky is not in the biplot, and the arrows for the remaining
attributes are a bit further apart. However, the conclusions remain the same.

The biplot from doing the PCA using the centered d-prime values without Silky
is seen in Figure 5.14. The biplot in Figure 5.14 is flipped over the x-axis
compared to the biplot in Figure 5.7. Obviously, Silky is not in the biplot. For
the remaining attributes the positioning of the arrows is the same. Furthermore,
the positions of the test products are the same, thus the conclusions remain the
same.
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Figure 5.13: The biplot for the non-centered d-prime values where the at-
tribute Silky has been omitted.
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Figure 5.14: The biplot for the centered d-prime values where the attribute
Silky has been omitted.
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5.3.3 Summary of the findings

All in all, the different approaches lead to similar results, except for the exclusion
of test product H for the centered d-prime values obtained from the Thurstonian
mixed model.

5.4 Interpretation of the assessor specific d-prime
values

The origin, in Figure 5.1, can be thought of as the consensus (µ̂j for all j),
corresponding to the bmj values being equal to 0 for all j. Thus, assessors close
to 0 are answering as the consensus. Hence, it appears that the assessors 12,
15 and 20 with respect to Greasy (initially and after five minutes) as well as
Sticky (five minutes) are answering as the consensus. With respect to Silky
after five minutes, it appears that the assessors 7 and 8 are having the largest
proportions of times test products were chosen. This is in fact in alignment
with the data listed in Table 5.1. However, the assessors furthest to the right
in Figure 5.1 are not the assessors with the lowest proportions. Assessors 4, 6,
9 and 19 have proportions of 0, whereas 1 has a proportion of 6%. But assessor
1 is further to the right than assessor 4. Thus, more work is needed to better
understand how to interpret the assessor specific d-prime values in Figure 5.1.

Regarding Figure Figure 5.2 it is difficult how to interpret the values. Consid-
ering the total proportions for the assessors, it is seen that the assessors with
the highest proportions are placed towards the right. Furthermore, the asses-
sors with the smallest proportions are placed towards the left. The order is not
completely strict, but there seems to be a pattern. A reason for this discrepancy
might be related to the design of the data; not all assessors evaluated all of the
test products. Further research is needed to get a better understanding of the
interpretation of the assessor specific d-prime values in Figure 5.2.

5.5 Concluding remarks

Some remarks are in order regarding Figures 3 and 4 in Linander et al. (2018b).
Our conclusions in Linander et al. (2018b) are based on our understanding from
the preliminary investigation illustrated in Linander et al. (2018b). In this sec-
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tion I will address some aspects that are not yet fully investigated and in need
of more research.

Figure 3 is a biplot of a PCA where the values not are centered, and there is
a need for more investigations to fully understand the possible interpretations
from such figures. It appears that PC1 is capturing that Greasy evaluated after
zero and five minutes are the only attributes with all negative d-prime values.
This information can also be obtained by looking at the d-prime values in Ta-
ble 2 in Linander et al. (2018b). Thus, biplots of other principal components
might give important and informative information that cannot be detected in
the figure considering principal components 1 and 2.

Figure 4 is a biplot of the assessor specific d-prime values. If the data had been
balanced, such that all assessors evaluate all of the test products it probably
would be possible to interpret the biplot with respect to the proportions of the
test products. However, all assessors did not evaluate all products. Thus, it
might be reflected in Figure 4 that some assessors have evaluated products that
are silkier than other products and thereby more prone to have high values with
respect to silkiness. For such data where the assessors did not evaluate all of
the test products it could be investigated whether it would be possible to find
patterns in the biplot regarding the assessor specific d-prime values where the
information about products have been removed.



Chapter 6

Asking an additional
question in the binary

paired comparison

The test protocol considered previously in this thesis is the binary paired com-
parison. In this chapter the binary paired comparison with an additional ques-
tion is considered. It is of interest to investigate if more information is obtained
asking the assessors an additional question. Compared to the information that
is obtained from the binary paired comparison. The data used in this chapter
is from an existing discrimination study, provided by Unilever.

6.1 Data structure

In the binary paired comparison, an assessor is choosing the sample with the
strongest intensity of the attribute in question. In this chapter, an extension of
the binary paired comparison is considered. Each assessor is getting a two-step
task. First an assessor is asked to choose the sample, of the two samples, with
the strongest intensity of the attribute in question. Subsequently, an assessor
has to quantify the difference between the two samples. An assessor is to rate
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the magnitude of the difference between the two samples using a 5-point scale.
The categories range from ’not different’ to ’extremely different’. A response
is recorded as 0 when the chosen category is ’not different’. For the remaining
four categories the response is recorded as a positive value, when an assessor is
choosing a test product and as a negative value when an assessor is choosing
the control. An overview of the data values is seen in Table 6.1.

Table 6.1: An overview of how the response is defined.

Data value Chosen Product Chosen category
-4 Control Extremely different
-3 Control Very different
-2 Control Moderately different
-1 Control Slightly different
0 Control/test product Not different
1 Test product Slightly different
2 Test product Moderately different
3 Test product Very different
4 Test product Extremely different

These data will be analyzed by two approaches. One is to consider the values
as quantitative and the other is to consider the values as ordered values.

6.2 Considering data as ordered values

When considering the data as ordered values, the models that are used to model
such data are known as the cumulative linear models (CLMs) and cumulative
linear mixed models (CLMMs) (see e.g. Agresti (2013) and Agresti (2015)).
CLMs and CLMMs are used widely in many applications, including sensory
science, Christensen et al. (2012) and Christensen and Brockhoff (2013). The
difference between a CLM and a CLMM is whether random effects are included
in the model or not. When random effects are included the model is a mixed
model and thus a CLMM. The model that will be considered in this chapter is
a CLMM, since as for the analysis of the binary paired comparison assessors are
included as a random effect.

Let Yijk be the response variable that can fall in the nine categories−4,−3, . . . , 3, 4
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and let

πhij = P (Yijk = h), h = −4,−3, . . . , 3, 4 (6.1)

be the probability that the ijkth observation falls in the hth category, which is
independent of sessions.
The CLMM with a fixed effect of test products and random effects of assessor
as well as the assessor-by-product interaction, reads:

g(P (Yijk ≤ h)) = θh − αi − bj − dij (6.2)

where i = 1, . . . , 8 represents test products, j = 1, . . . , ni represents the as-
sessors that evaluated the ith test product, k = 1, 2 represents sessions and
h = −4,−3, . . . , 3, 4 represents the categories. Furthermore, bj ∼ N(0, σ2

b ) are
the random effect of assessor being independent for all j, and dij ∼ N(0, σ2

d) are
the random assessor-by-product interaction being independent for all i and j.

It is of interest to investigate whether the model can be simplified or not. Firstly,
the hypothesis test of a significant assessor-by-product interaction is considered.
The main effects of test products and assessors are nested within the assessor-
by-product interaction and the hypothesis test of these depend on whether the
assessor-by-product interaction is significant or not. The hypothesis test of
a random effect is regarding the variance parameter. More specifically, the
hypothesis test is considering whether the variance parameter equals zero or is
greater than zero:

H0 : σ2
d = 0 H1 : σ2

d > 0 (6.3)

where the alternative hypothesis is one-sided, since a variance is non-negative.
The likelihood ratio test statistic is Chi-squared distributed with 1 degree of
freedom. For further details regarding this test see Christensen and Brockhoff
(2013).

The test of the likelihood ratio test for the assessor-by-product interaction is
seen in Figure 6.1.

The attributes Thickness and Greasy (initially and after five minutes) have
significant assessor-by-product interactions. Thus, the differences between the
assessors depend on the test products for these attributes.

When doing the test of the main effects of assessor and test products, the at-
tributes with significant assessor-by-product interactions will be omitted. The
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Figure 6.1: Likelihood Ratio Test statistics for the test of the assessor-by-
product interaction using the ordinal approach. The vertical lines
are critical values for the corresponding Chi-squared distribution;
the 0.05 critical value (full line), the 0.01 critical value (dashed
line) and the 0.001 critical value (dotted line). The symbol shows
the size of the corresponding p-value; a p-value that is less than
0.001 (square), a p-value between 0.001 and 0.01 (triangle), a p-
value between 0.01 and 0.05 (plus) or a p-value larger than 0.05
(dot).
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reasoning for doing this, is that it is not clear how a test of a main effect should
be defined when it is nested in a significant interaction.

The likelihood ratio test statistics for the assessor main effect as well as the prod-
uct main effect are, for the attributes with non-significant assessor-by-product
interactions, seen in Figure 6.2.

Absorption is the only attribute with a non-significant effect of the assessors.
The remaining attributes have significant assessor main effects as well as product
main effects.

6.3 Considering data as quantitative

The quantitative approach is considering the data without the ordering that is
used for the ordinal approach.

The model reads:

Yijk = µ+ αi + bj + dij + εijk (6.4)

where εijk is the only term that has not yet been introduced. The remaining
terms are defined as previously. εijk ∼ N(0, σ2) are the residuals which are
independent for all i, j and k.

The likelihood ratio test for the assessor-by-product interaction, using model
(6.4), is seen in Figure 6.3.

The attributes Greasy (initially and after five minutes) and Thickness have
significant assessor-by-product interactions. The remaining five attributes have
non-significant assessor-by-product interactions. This result is similar to the
result obtained considering the values as ordered values, which was shown in
Figure 6.1.

6.4 Comparison of likelihood ratio test statistics

The values of the likelihood ratio test statistics are compared for the binary
paired comparison, the ordinal approach as well as the quantitative approach.
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Figure 6.2: Likelihood Ratio Test statistics for the test of the assessor main
effect and the product main effect for the ordinal approach. The
vertical lines are critical values for the corresponding Chi-squared
distribution; the 0.05 critical value (full line), the 0.01 critical value
(dashed line) and the 0.001 critical value (dotted line). The symbol
shows the size of the corresponding p-value; a p-value that is less
than 0.001 (square), a p-value between 0.001 and 0.01 (triangle),
a p-value between 0.01 and 0.05 (plus) or a p-value larger than
0.05 (dot).
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Figure 6.4: Likelihood Ratio Test statistics for the test of the assessor-by-
product interaction as well as the main effects of assessor and
products.

The values of the likelihood ratio test statistics for the different approaches are
seen in Figure 6.4. The values for the test of the assessor-by-product interaction
do not vary much. Furthermore, all of these values are almost equal to 0. For the
test of the main effects, the values obtained using the binary paired comparison
are the smallest values. The values obtained from the ordinal and quantitative
are similar for most of the tests.

From this initial investigation, it appears that the binary paired comparison is
less sensitive than the ordinal as well as the quantitative approach. Further
research is needed to fully understand the impact of the different approaches.
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6.5 Concluding remarks

Future work is needed to get a better understanding of which model is the most
appropriate to use. Considering this additional question, in my opinion it is
not obvious whether it is more appropriate to consider the values as ordered or
not. I believe that an absolute value of four is more than that of three since this
means that the difference is bigger. However, a question that could be important
is whether it is possible to determine that a value in favor of the control is lower
than a value favoring the test product. Maybe the answer is to think carefully
about the coding of the observations.
When considering the values as ordered values an advantage is that it might
be possible to develop a Thurstonian model, similar to the model for the 2-AC
Christensen et al. (2012), providing d-prime interpretations of the estimates.
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Chapter 7

Comparison of d-prime
values

This chapter is concerned with comparing multiple d-prime values. It has previ-
ously been proposed by Bi et al. (1997) how to compare multiple d-prime values.
The approach in Bi et al. (1997) is to use a Wald-type test. A disadvantage
of this method is that when data include observations that lead to parameter
estimates on the boundary of the parameter space the test statistic is not well-
defined. In Section 7.3 it is described how these situations affect the Wald-type
test statistic.
In Linander et al. (2018) we suggest another test for the comparison of multiple
d-prime values. This test is based on likelihood theory and does not have the
deficiency of being unable to cope with parameter estimates on the boundary
of the parameter space. Furthermore, the power of the likelihood test is higher
than the power of the Wald-type test. Investigations of the power is considered
in Section 7.4.

7.1 The d-prime values

The d-prime values considered are coming from independent discrimination
studies using one of the so-called simple-binomial discrimination test pro-
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tocols; the 2-AFC, 3-AFC, duo-trio, triangle and the tetrad. By definition,
these test protocol lead to binomially distributed data. Let Xi be the number
of correct answers out of a total of Ni answers for the ith sensory discrimination
study. Now:

Xi ∼ Binomial(pi, Ni) (7.1)

where pi is the probability of a correct answer in the ith sensory discrimination
test.

7.2 Comparing multiple d-prime values

There are many situations in which it is desirable to compare multiple d-prime
values. An example is to compare the performance of sensory panels in different
laboratories (Sauvageot et al., 2012).
When comparing multiple d-prime values it is investigated if all the d-prime
values are identical. Let d′1, . . . , d′k be d-prime values obtained from k inde-
pendent simple-binomial test protocols. The hypotheses regarding the test of
multiple d-prime values being equal, which is referred to as the any-differences
hypothesis, are given as:

H0 : d′1 = d′2 = · · · = d′k
H1 : d′i 6= d′j for at least one pair (i, j) where i 6= j

7.2.1 Using a Wald-type test

Bi et al. (1997) proposed to use a Wald-type test statistic when considering the
any-diffences hypothesis. The test of comparing multiple d-prime values is given
by this Wald-like test statistic:

X2
Wald =

(d′1 − d′e)2
se(d′1)2

+
(d′2 − d′e)2
se(d′2)2

+ · · ·+ (d′k − d′e)2
se(d′k)2

=

k∑

i=1

(
d′i − d′e
se(d′i)

)2

(7.2)
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where d′e is the common d-prime value for the d-prime values under the null
hypothesis which is estimated by:

d′e =

d′1
se(d′1)

2 +
d′2

se(d′2)
2 + · · ·+ d′k

se(d′k)
2

1
se(d′1)

2 + 1
se(d′2)

2 + · · ·+ 1
se(d′k)

2

=

∑k
i=1

d′i
se(d′i)

2

∑k
i=1

1
se(d′i)

2

where se(d′i) is the standard error of the ith d-prime value.
The test statistic follows a Chi-square distribution with k−1 degrees of freedom
(Bi et al. (1997)):

X2
Wald ∼ χ2

k−1

The standard error of d′ can be found from the standard error of pc by using
that (see e.g. Pawitan (2001)):

se(g(θ̂)) = se(θ̂)
∣∣∣∣
∂g

∂θ̂

∣∣∣∣

Therefore

se(δ) = se(pc)

∣∣∣∣∣
∂f−1psy(pc)

∂pc

∣∣∣∣∣

= se(pc)
1

f ′psy(δ)

where f ′psy(δ) is the partial derivative of fpsy(δ) with respect to δ:

f ′psy(δ) =
∂fpsy(δ)

∂δ

Thus

se(d′) = se(p̂c)
1

f ′psy(d′)
(7.3)

7.2.2 Using a likelihood test

In Linander et al. (2018) we suggest a test of the any-differences hypothesis con-
structed by the use of likelihood theory. This section gives a brief description
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of the test for s more detailed definition see Linander et al. (2018).

Let d′1, . . . , d′k be d-prime values obtained from k independent simple-binomial
tests. Let x1, . . . , xk and n1, . . . , nk be the number of correct and total answers
respectively observed in the k discrimination tests. Furthermore, mi denotes the
test that the ith d-prime value is obtained from. Due to the independence of
the discrimination tests the likelihood function is the product of the individual
likelihood functions. Therefore the log-likelihood function under the alternative
hypothesis is given as the sum of the individual log-likelihood functions:

`1(d′;x, n,m) =

k∑

i=1

logL(d′i;xi, ni,mi) (7.4)

=

k∑

i=1

log

((
ni
xi

)
pxi
i (1− pi)ni−xi

)
(7.5)

where pi = fpsy(d′i).
Under the null hypothesis the log-likelihood function reads:

`0(d′;x, n,m) =

k∑

i=1

logL(d′i;xi, ni,mi) (7.6)

=

k∑

i=1

log

((
ni
xi

)
pxi
e (1− pe)ni−xi

)
(7.7)

where pe = fpsy(d′e) is the transformed probability corresponding to the common
d-prime value under the null. The common d-prime value d′e is the estimated
value which is found by maximum likelihood.
The likelihood ratio test statistic reads:

−2 logQ = 2 (`1(d′;x, n,m)− `0(d′e;x, n,m)) (7.8)

7.3 Boundary situations

The Wald-type test given by (7.2) is not well-defined in situations where data
consist of boundary situations. Boundary situations are when the parameter pc
is on the boundary of its parameter space. According to (2.8) the two boundary
situations are:

p̂c = pg ⇔ x/n < pg ⇔ x < npg (7.9)
x = n (7.10)
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The standard error of p̂c is given as:

se(p̂c) =
√
p̂c(1− p̂c)/n (7.11)

Thus for x = n the standard error of p̂c equals 0. Therefore, se(d′) equals 0 and
the test statistic is not well-defined.

When x/n < pg challenges arise for some of the test protocols. To realize
this, the partial derivatives of the psychometric functions with respect to δ are
considered. First note these two relations regarding the density and distribution
functions for the standard normal distribution:

∂ϕ(θ)

∂θ
= −θϕ(θ) (7.12)

and

∂Φ(θ)

∂θ
= ϕ(θ) (7.13)

Furthermore, the Leibniz rule can be applied:

∂

∂x

∫ b

a

f(x, t)dt =

∫ b

a

∂

∂x
f(x, t)dt (7.14)

when f(x, t) and the partial derivative of f(x, t) with respect to x are continu-
ous. Considering the psychometric functions defined in Section 2.2 f(x, t) will
correspond to products of ϕ(x) and Φ(x) which are continuous functions and
thus f and its derivative are continuous.
The parameter space for δ is given as non-negative values. Thus, the partial
derivatives are defined for δ ≥ 0.
For the 2-AFC test protocol the derivative becomes:

f ′2AFC(δ) = ϕ

(
δ√
2

)
1√
2

(7.15)

where for δ = 0:

f ′2AFC(0) = ϕ(0)
1√
2
> 0 (7.16)

For the 3-AFC test protocol the derivative becomes:

f ′3AFC(δ) =

∫ ∞

−∞
(z − δ)ϕ(z − δ)Φ2(z)dz (7.17)
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where for δ = 0:

f ′3AFC(0) =

∫ ∞

−∞
zϕ(z)Φ2(z)dz > 0 (7.18)

For the duo-trio test protocol the derivative becomes:

f ′d-t(δ) = −ϕ
(
δ√
2

)
1√
2
− ϕ

(
δ√
6

)
1√
6

(7.19)

+ 2

(
ϕ

(
δ√
2

)
1√
2

Φ

(
δ√
6

)
+ ϕ

(
δ√
6

)
1√
6

Φ

(
δ√
2

))
(7.20)

where for δ = 0:

f ′d-t(0) = −ϕ(0)
1√
2
− ϕ(0)

1√
6

+ 2

(
ϕ(0)

1√
2

Φ(0) + ϕ(0)
1√
6

Φ(0)

)
= 0 (7.21)

For the triangle test protocol the derivative becomes:

f ′tri(δ) = 2
√

2/3

∫ ∞

0

(
ϕ
(
−z
√

3 + δ
√

2/3
)
− ϕ

(
−z
√

3− δ
√

2/3
))

ϕ(z)dz

(7.22)

where for δ = 0:

f ′tri(0) = 2
√

2/3

∫ ∞

0

(
ϕ
(
−z
√

3
)
− ϕ

(
−z
√

3
))

ϕ(z)dz = 0 (7.23)

For the tetrad test protocol the derivative becomes:

f ′tetrad(δ) = −2

∫ ∞

−∞
ϕ(z) (2Φ(z)(z − δ)ϕ(z − δ)(−1)− 2Φ(z − δ)(z − δ)ϕ(z − δ)(−1)) dz

(7.24)

= −4

∫ ∞

−∞
(z − δ)ϕ(z)ϕ(z − δ) (Φ(z − δ)− Φ(z)) dz (7.25)

where for δ = 0:

f ′tetrad(0) = −4

∫ ∞

−∞
zϕ(z)ϕ(z) (Φ(z)− Φ(z)) dz = 0 (7.26)

For three of the discrimination test protocols the derivative evaluated in zero
equals 0 and for these test protocols the standard error of δ is not defined. Thus,
when x/n ≤ pg the Wald-type test statistic is undefined.

Boundary situations occur rather often, why this is a non-negligible deficiency
of the method proposed by Bi et al. (1997).

The likelihood test is well-defined even when data consist of boundary situations.
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Table 7.1: Different setup used in the simulation study.

d-prime values
triangle duo-trio 2-AFC 3-AFC

Setup 1 1.0 1.0 1.0 1.0
Setup 2 2.0 2.0 2.0 2.0
Setup 3 3.0 3.0 3.0 3.0
Setup 4 1.1 1.7 2.3 2.9
Setup 5 1.1 1.8 2.5 3.2
Setup 6 1.1 1.9 2.7 3.5
Setup 7 1.4 2.0 2.6 3.2
Setup 8 1.3 2.0 2.7 3.4
Setup 9 1.2 2.0 2.8 3.6
Setup 10 1.8 2.4 3.0 3.6
Setup 11 1.6 2.3 3.0 3.7
Setup 12 1.4 2.2 3.0 3.8

7.4 Power

This section investigates the power of the likelihood test suggested in Linan-
der et al. (2018). Furthermore, the power is compared to the Wald-type test
suggested by Bi et al. (1997).

7.4.1 A simulation study

In this section a simulation study, investigating the power, is carried out. In
the simulation study four different simple-binomial tests are considered; tri-
angle, duo-trio, 2-AFC and 3-AFC. Data are simulated for N = 10, N = 30 and
N = 60 for 12 different combinations of d-prime values. These combinations are
listed in Table 7.1.

The power of the Wald-type test as well the power of the likelihood test are
calculated based on 10.000 simulations and listed in Table 7.2. Generally, the
power of the likelihood test is much better than the power for the Wald-type
test.
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Table 7.2: Estimated power for the any-differences hypothesis test.

N = 10 N = 30 N = 60
likelihood wald likelihood wald likelihood wald

Setup 1 5 1 4 3 4 3
Setup 2 6 0 6 7 6 15
Setup 3 3 0 4 1 6 7
Setup 4 23 0 70 24 94 77
Setup 5 26 0 80 18 98 61
Setup 6 30 0 87 10 99 40
Setup 7 18 0 67 14 92 61
Setup 8 22 0 79 11 97 47
Setup 9 27 0 86 8 99 34
Setup 10 10 0 51 3 86 27
Setup 11 15 0 67 3 95 25
Setup 12 21 0 80 4 98 21

7.5 Comparison of multiple d-prime values using
sensR

In this section, it is illustrated how tests of the any-differences hypothesis is
conducted using the sensR package.
The test of the any-differences is done by using the dprime_compare function
where the option statistic defines whether the likelihood test or the Wald-
type test is conducted. With the estim option it is selcted whether to estimate
the common d-prime under the null hypothesis by a weighted average or the
maximum likelihood. Thus, a test of the any-differences hypothesis for the
likelihood test using the maximum likelihood estimator can be made by:

dprime_compare(correct,
total,
protocol,
statistic = "likelihood",
estim = "ML")
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Abstract

Often sensory discrimination tests are performed with replications for the assessors. In this paper, we suggest a new
way of analyzing data from a discrimination study. The model suggested in this paper is a Thurstonian mixed model,
in which the variation from the assessors is modelled as a random effect in a generalized linear mixed model. The
setting is a multi-product discrimination study with a binary paired comparison. This model makes it possible to
embed the analyses of products into one analysis rather than having to do an analysis for each product separately.
In addition, it is possible to embed the model into the Thurstonian framework obtaining d-prime interpretations of
the estimates. Furthermore, it is possible to extract information about the assessors, even across the products. More
specifically, assessor specific d-prime estimates are obtained providing a way to monitor the panel. These estimates
are interesting because they make it possible to investigate if some assessors are assessing differently.

Keywords: Thurstonian modelling, binary paired comparison, assessor information, multi-product setting,
Generalized Linear Mixed Model

1. Introduction1

It is a recurrent scenario that discrimination tests are2

conducted with replications for the assessors (Ennis3

(2012)). Thus, it is important to handle the possible dif-4

ferences between the assessors correctly. Suggestions in5

the literature are e.g. the so-called beta-binomial mod-6

els as well as corrected beta-binomial models. In this7

paper, we suggest a new way of modelling the potential8

assessor differences.9

It has been described in the literature how Thurstonian10

modelling is the preferred approach to quantify the dif-11

ference between products (e.g. Ennis (1993), Ennis &12

Jesionka (2011), Næs et al. (2010)). In this paper, we13

follow this recommendation, thus we will consider the14

analyses on the d-prime scale. Hence, we will be con-15

sidering Thurstonian models.16

This work is part of an overall objective of aligning17

Thurstonian d’ analysis with the modern world of statis-18

tical modelling. Brockhoff & Christensen (2010) show19

∗Corresponding author. E-mail address: perbb@dtu.dk (P. B.
Brockhoff).

how a Thurstonian model for sensory discrimination20

tests can be seen as a Generalized Linear Model (GLM).21

The way we suggest to handle the possible assessor dif-22

ferences is by adding assessor as a random effect to23

a GLM. This results in a Generalized Linear Mixed24

Model (GLMM), which is a way to analyze categori-25

cal data like binomial data. Categorical data analysis26

is a common well-known framework, which is used in27

many applications. The book by Agresti (2013) gives a28

thorough description of categorical data analysis.29

The setting that is considered is a multi-product set-30

ting giving the possibility to investigate for possible31

assessor-by-product interactions. In discrimination test-32

ing test protocols exist where there is no correct answer.33

The test protocol that is considered in this paper is the34

binary paired comparison. This allows for the d-prime35

values to be positive as well as negative. In Section 2.236

we will go into details about the Thurstonian model for37

this setup.38

We believe that adding this level of details to the mod-39

els give us valuable insights about data that would have40

been undetected otherwise. Not only do we get the d-41

prime interpretation of our parameters, in addition, we42
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gain information about the assessors. Moreover, it is43

possible to embed the analysis of the products into one44

analysis instead of having to do an analysis for each45

product separately. Furthermore, the replications of the46

assessors are handled correctly when testing for a sig-47

nificant effect of products.48

We consider figures of the assessor specific d-prime val-49

ues, giving an opportunity to get insights about the as-50

sessors, which is only possible due to the level of de-51

tails in the model. From these figures, it will be pos-52

sible to gain knowledge about how the panel performs.53

Additionally, these figures make it possible to realize54

whether some assessors are assessing differently than55

the rest of the panel. Furthermore, since no correct an-56

swer exists it will be possible to detect if the panel is in57

agreement about which sample had the strongest inten-58

sity.59

In the remainder of this section a discrimination study60

is described. In Section 2 we define the methodology61

we suggest. We will throughout Section 2 illustrate the62

methodology by using the study described in section63

1.1. At the end of this paper we have a discussion in64

Section 3.65

1.1. The discrimination study66

In this section an existing discrimination study is ex-67

plained. We use this as an ongoing example throughout68

this paper to illustrate the methodology we introduce in69

Section 2.70

The overall aim of this study was to find a new product71

that has some of the same characteristics as an existing72

product.73

In this study, the assessors were comparing different test74

products to a control product. A sample of a test product75

as well as a sample of the control product were applied76

to an assessor’s own skin. The assessor had to choose77

the sample with the strongest intensity of the attribute in78

question.79

The organization of evaluations of the test products is80

illustrated in Figure 1. In one day, assessors evaluated81

two test products, where each assessor evaluated each82

test product twice in two different sessions.83

In total eight test products (denoted by A, B, C, D, E, F, G84

and H) were compared to the control product.85

The assessors that participated in the assessments of the86

test products were the same from day to day. Some as-87

sessors were not able to participate in the assessments88

for some days. If an assessor assessed the test products89

within a day, the assessor participated in both sessions90

carried out that day. For an assessor to be included in the91

analysis, the assessor had to participate in at least 50%92

of the assessments. 25 assessors (denoted by 1, . . . , 25)93

Table 1: Overview of the attributes.

Attribute Evaluated after
0 min 5 min Tactile Visual

Thickness X X
Absorption X X X

Greasy X X X X
Sticky X X X
Silky X X X

made enough assessments to be included in the analysis94

(two assessors did not make enough assessments).95

The assessors assessed multiple attributes and their

Day 1

23 Assessors

Session 1
Products 1 & 2

Session 2
Products 1 & 2

Day 2

20 Assessors

Session 1
Products 3 & 4

Session 2
Products 3 & 4

Day 3

22 Assessors

Session 1
Products 5 & 6

Session 2
Products 5 & 6

Day 4

20 Assessors

Session 1
Products 7 & 8

Session 2
Products 7 & 8

1 week

1 week

1 week

Figure 1: Organization of days, sessions, assessors as well as test
products.

96

characteristics are listed in Table 1. The assessors evalu-97

ated five different attributes all of which were evaluated98

immediately after application of the samples. In addi-99

tion, three of these attributes were re-evaluated after five100

minutes. Thus, in total eight attributes were assessed by101

the assessors.102

2. Methodology103

In this section we explain the methodology as well104

as applying this methodology to the data described in105

Section 1.1. When analyzing such data a model is fitted106

2



for each attribute at a time, thus results are obtained for107

each attribute separately.108

109

2.1. Explorative investigation of data110

A way to gain information about the data obtained111

from a sensory discrimination study, is to examine pro-112

portions. In this section an explorative investigation of113

the data from Section 1.1 is given.114

One aim of analyzing the data is to gain knowledge115

about which (if any) of the test products that have the116

characteristics that are desired for this type of product.117

To gain information about which test product that has118

the most interesting sensory characteristics we can look119

at proportions. The proportions, the number of times the120

test product was chosen, are aggregated over assessors121

as well as sessions. These proportions (in percentages)122

are given in Table 2.123

An important sensory characteristic is that the test124

product should be at least as silky as the control product.125

The most silky test product is having the highest value126

of the proportions. Therefore, test product D is the most127

promising test product with respect to silkiness, initially128

and after five minutes. When a test product was chosen129

more often than the control, the proportion is larger than130

50%. Thus, for a test product to be silkier than the con-131

trol the proportion must exceed 50%. The percentages132

for D exceed 50%, thus test product D is silkier than the133

control.134

2.2. d-prime values for test products135

When considering the proportions from the previous136

section an overview of data is given. However, it can be137

rather difficult to comprehend how similar (or different)138

the products are. Thus, the proportions are transformed139

into d-prime values for a better comparison of the prod-140

ucts. We will in this section find the d-prime values141

for the test products to express the sensory difference142

between the test products and the control for the eight143

attributes.144

These d-prime values are found by transforming the145

proportion of times the test product was chosen for each146

attribute via the inverse of the so-called psychometric147

function.148

To develop the Thurstonian model for our setting let C149

and T denote the distribution of the sensory intensity for150

the control product and a test product respectively. We151

assume that C and T are independent and that:152

C ∼ N(µc, σ
2) and T ∼ N(µt, σ

2).

The underlying Thurstonian relative sensory difference153

δ is the difference in means scaled by the common stan-154

dard deviation:155

δ =
µt − µc

σ
.

An advantage of using δ; the measure for sensory dif-156

ferences is that δ does not depend on the discrimination157

test protocol, see e.g. Ennis (1993)158

The psychometric function fpsy can for this setting be159

defined as the probability that the test product is cho-160

sen which is the probability of the test product having a161

larger sensory intensity than the control:162

fpsy(δ) = P(T > C) = Φ

(
δ√
2

)
= p (1)

where Φ is the cumulative distribution function for the163

standard normal distribution and p is the probability that164

the test product is chosen over the control product. The165

reader is referred to Appendix A for the details of the166

derivation of the psychometric function in (1).167

d′, the estimate of δ, is the estimated sensory difference168

between the test product and the control product. d-169

prime values can be computed using the inverse of the170

psychometric function:171

f −1
psy(p) = Φ−1(p)

√
2 = d′ (2)

A d-prime value for each comparison of a test product172

to the control is obtained.173

The psychometric function given in (1) is illustrated in174

Figure 2. When p = 0.5, corresponding to a d-prime175

value of 0, the assessors chose the test product half the176

time. Thus, there is no perceivable difference between177

the test product and the control product. When p > 0.5178

the d-prime value is positive and the psychometric func-179

tion is the same as for the 2-AFC protocol. Addition-180

ally, for all d-prime values the setting corresponds to the181

paired comparison protocol, which in some situations182

also is the paired preference (Christensen et al. (2012)).183

A positive or negative d-prime value corresponds to the184

test product having the strongest or weakest intensity of185

the attribute in question.186

The d-prime values for the test products, for the eight187

attributes, are shown in Table 3. As expected from the188

values of the proportions, D is the only test product with189

a positive d-prime for Silky both evaluated initially and190

after five minutes.191

2.3. Generalized Linear Models192

The d-prime values from Section 2.2 are calculated193

from the data without other assumptions than those re-194

garding the underlying distributions for the sensory in-195

tensities. Another way to gain information about the196
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Table 2: The number of times a test product was chosen for the eight attributes in percentages. The number of evaluations for the test products
range from 40 to 46.

Test Product Sticky Greasy Silky Thickness Absorption
0 min 5 min 0 min 5 min 0 min 5 min 0 min 0 min

A 65.2 19.6 26.1 13.0 23.9 21.7 97.8 17.4
B 20.0 52.5 15.0 40.0 20.0 12.5 65.0 85.0
C 5.0 10.0 17.5 25.0 50.0 35.0 47.5 62.5
D 2.3 2.3 34.1 34.1 93.2 70.5 50.0 72.7
E 12.5 10.0 7.5 15.0 27.5 25.0 50.0 70.0
F 41.3 13.0 10.9 21.7 34.8 43.5 47.8 37.0
G 67.5 50.0 17.5 25.0 12.5 20.0 95.0 75.0
H 90.9 70.5 27.3 13.6 0.0 6.8 22.7 13.6

Table 3: d-prime values found by using the psychometric function on the proportions.

Test Product Sticky Greasy Silky Thickness Absorption
0 min 5 min 0 min 5 min 0 min 5 min 0 min 0 min

A 0.55 -1.21 -0.91 -1.59 -1.00 -1.10 2.86 -1.33
B -1.19 0.09 -1.47 -0.36 -1.19 -1.63 0.54 1.47
C -2.33 -1.81 -1.32 -0.95 0.00 -0.54 -0.09 0.45
D -2.83 -2.83 -0.58 -0.58 2.11 0.76 0.00 0.86
E -1.63 -1.81 -2.04 -1.47 -0.85 -0.95 0.00 0.74
F -0.31 -1.59 -1.74 -1.10 -0.55 -0.23 -0.08 -0.47
G 0.64 0.00 -1.32 -0.95 -1.63 -1.19 2.33 0.95
H 1.89 0.76 -0.86 -1.55 -Inf -2.11 -1.06 -1.55

data is by imposing a model to the probabilities of a197

test product being chosen. The observations from the198

binary paired comparison test protocol are binomially199

distributed:200

Yi jk ∼ binomial(pi j, 1)

where i = 1, . . . , l represents the test products, j =201

1, . . . , ni represents the assessors for the ith test product202

and k = 1, . . . , r (r = 2 and l = 8 for the discrimination203

study used in this paper) represents the sessions carried204

out on the same day. In addition, we assume that pi j,205

the probability of the jth assessor choosing the ith test206

product, is independent of the sessions:207

pi j = P(Yi jk = 1)

It is possible to impose a linear structure of pi j which208

explains the variables that are affecting these probabil-209

ities. One way of defining this linear model structure210

is by letting the test products be the only variable that211

affects the probabilities:212

pi j = fpsy(µ + αi) (3)

where fpsy is the psychometric function given in (1).213

Thus, the psychometric function is describing how the214

parameters µ and αi are relating to the probability pi j.215

According to Brockhoff & Christensen (2010) this way216

of writing a Thurstonian model is a Generalized Linear217

Model and we refer the reader to Brockhoff & Chris-218

tensen (2010) for further details on this matter.219

The parameter µ is the average difference between test220

products and the control product. αi is the difference for221

the ith test product to the average product-difference µ.222

Or put differently, αi is the magnitude of how much the223

ith test product is different from the average product-224

difference. Thus, the relation between the underlying225

sensory difference δi for the ith test product to the con-226

trol product and the model parameters is:227

δi = µ + αi (4)

The d-prime value d′i , the estimate of δi given in (4),228

is the estimated sensory difference between the ith test229

product and the control product. These estimates can be230

found using standard statistical software fitting Gener-231

alized Linear Models with the probit link. The d-prime232

values obtained from using model (3) are listed in Table233
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Figure 2: The psychometric function for the study. For p > 0.5(solid)
and p < 0.5(dashed).

3. These values are also the values obtained by trans-234

forming the proportions in Section 2.2. Thus, analyz-235

ing data with a GLM gives the same d-prime values as236

transforming the proportions. An advantage of using237

the GLM approach is that the statistical software pro-238

vides additional information to the d-prime estimates239

e.g. standard errors and p-values. Furthermore, real-240

izing that a GLM is another way to write the transfor-241

mation of the proportions, makes it possible to consider242

other ways of defining the linear model structure.243

2.4. Generalized Linear Mixed Model as a Thurstonian244

Mixed Model245

It was, in the previous section, established that the246

d-prime values are obtainable using a generalized lin-247

ear model. In this section, the linear model structure248

is extended to include a random effect. For other ap-249

plications, an extension of a GLM to include a random250

effect is known as a Generalized Linear Mixed Model251

(GLMM). In this section the linear model structure is252

extended by adding the effect of the assessors as a ran-253

dom component. Thus, this section is considering a254

Thurstonian Mixed Model with a fixed effect of test255

products as well as a random effect of the assessors. The256

linear model structure for this model reads:257

pi j = fpsy(µ + αi + b j) (5)

where i, j, µ and αi are defined as described in Sec-258

tion 2.3. Furthermore, b j ∼ N(0, σ2
b) is the random ef-259

fect of the jth assessor which are independent for all260

j. b j is the difference for the jth assessor to the aver-261

age product-difference µ on the d’-scale. Thus, the sen-262

sory difference, on the d-prime scale, between the test263

products and the control product for the jth assessor is264

b̃ j = µ + b j.265

The relation between the product d-prime value δi and266

the model parameters is not affected by the random ef-267

fect of the assessors. This is because the value of δi is for268

an average assessor, thus b j equals 0, hence the relation269

is the same as in equation (4). The size of d′i , the esti-270

mate of δi, depends on how the linear model structure is271

defined. The values of d′i using the model structures de-272

fined in (3) and (5) for Silky after 5 minutes are shown273

in Figure 3.274

●

●

●

●

●

●

●

●

A

B

C

D

E

F

G

H

−3 −2 −1 0 1

d−prime value

Te
st

 p
ro

du
ct

Figure 3: The d-prime values for test products for Silky after 5 min-
utes for model (3) (circles) and model (5) (triangles).

Generally, the estimates are further away from zero275

when the effect of the assessors is taken into account.276

2.5. Extending the Thurstonian Mixed Model277

The model from Section 2.4 considers the main effect278

of products and assessors. In this section, the Thursto-279

nian Mixed Model given in (5) is extended, such that280

the interaction of the products and assessors is included281

in the linear model structure of the probabilities. The282
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assessor-by-product interaction is a random effect be-283

cause assessor is included as a random effect. Thus, this284

section is considering a Thurstonian Mixed Model with285

a fixed effect of products as well as random effects of the286

assessors and the assessor-by-product interaction. The287

linear model structure for this model reads:288

pi j = fpsy(µ + αi + b j + di j) = fpsy(ηi j) (6)

where di j ∼ N(0, σ2
d) is the random effect of the inter-289

action of the ith test product and the jth assessor, which290

are independent for all i and j. di j is the difference for291

the jth assessor for the ith test product to the average292

product-difference µ on the d-prime scale.293

The relation between the product d-prime value, δi, and294

the model parameters is not affected by the random ef-295

fect of the assessors nor the assessor-by-product inter-296

action. This is because the value of δi is for an average297

assessor, thus b j and di j are 0 and the relation remains298

that δi = µ + αi.299

The model defined by (6) relates to other well-known300

models in the sensory field. The structure of ηi j in (6)301

resembles the usual 2-way mixed structure for sensory302

profile data. The usual 2-way analysis of sensory profile303

data can be done in Panelcheck. If we were to consider304

a setting with only one test product and multiple obser-305

vations for each assessor, this corresponds to the usual306

replicated difference test, which can be modelled by e.g.307

beta-binomial models.308

2.6. Simplification of a Thurstonian Mixed Model309

It is of interest to investigate the possibility to de-310

scribe the data with a simpler model. It will become311

easier to interpret the results in situations with a simpler312

model e.g. models with a non-significant assessor-by-313

product interaction. Thus, it is important to consider314

the tests of the variables that are included in the lin-315

ear predictor. This section describes how to investigate316

whether the linear model structure in (6) can be simpli-317

fied.318

The first test that is considered is the test of the assessor-319

by-product interaction. Both assessor and product ef-320

fects are nested within the assessor-by-product interac-321

tion, thus it is important to consider the test of the inter-322

action before testing for assessor and product effects.323

The interpretation of the assessor-by-product interac-324

tion is that the differences between the assessors de-325

pend on the products. Therefore, when testing for a326

significant assessor-by-product interaction it is inves-327

tigated whether the assessor differences vary with the328

products. Since the assessor-by-product interaction is329

a random effect the hypotheses are statements about the330
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Figure 4: Likelihood Ratio Test statistics for the test of test products,
the assessor main effect as well as the assessor-by-product interaction.
The vertical lines are critical values for the corresponding Chi-squared
distribution; the 0.05 critical value (full line), the 0.01 critical value
(dashed line) and the 0.001 critical value (dotted line). The symbol
shows the size of the corresponding p-value; a p-value that is less than
0.001 (square), a p-value between 0.001 and 0.01 (triangle), a p-value
between 0.01 and 0.05 (plus) or a p-value larger than 0.05 (dot).

variance parameter. For the test of a significant assessor-331

by-product interaction, the null hypothesis is that the332

variance equals zero, while the alternative hypothesis is333

given as the variance being larger than zero:334

H0 : σ2
d = 0 H1 : σ2

d > 0 (7)

The alternative hypothesis is one-sided since the vari-335

ance is non-negative; see Christensen & Brockhoff336

(2013) for details. The distribution of the test statistic is337

the Chi-squared distribution with 1 degree of freedom.338

The likelihood ratio test statistics for the test of a signif-339

icant assessor-by-product interaction are shown in Fig-340

ure 4. The eight attributes have non-significant assessor-341

by-product interactions. Thus, there is no evidence that342

the differences between assessors depend on the test343

products.344

The model that is used for testing the main effects of345

assessors and test products is the model without the346

assessor-by-product interaction. This model is given in347

(5). When the assessor-by-product interaction is sig-348

nificant, the understanding of the model becomes more349

difficult. It is a scope of future research how to define350

6



and interpret the test of the main effects of products as351

well as assessors in the case of a significant assessor-by-352

product interaction.353

The hypothesis test of a significant effect of test prod-354

ucts investigates whether the difference between the355

control and the test products is the same for all the356

test products. The likelihood ratio test statistic becomes357

−2 log(Q) = 2`H1 − 2`H0 ∼ χ2(l − 1) (Pawitan (2001)),358

where `H0 and `H1 are the log likelihood functions un-359

der the null and alternative hypothesis respectively. Fur-360

thermore for the data used as an ongoing example in this361

paper l−1 = 7. The model under the alternative hypoth-362

esis is given by (5) allowing for the test products to have363

different sensory characteristics for that attribute. Fur-364

thermore, the model under the null hypothesis is stating365

that the test products are perceived to be similar com-366

pared to the control:367

pi j = fpsy(µ + b j)

The likelihood ratio test statistics for the test of a signif-368

icant product main effect are shown in Figure 4. For all369

attributes, the product main effect is significant, mean-370

ing that the test products are perceived differently com-371

pared to the control for all the attributes.372

Currently assessor replication is often ignored in the373

analysis of these types of studies, e.g. due to limita-374

tions of available software. In such analyses the model375

reads:376

pi j = fpsy(µ + αi) (8)

where µ and αi are defined as previously described. The377

likelihood ratio test of the product main effect is equiv-378

alent to the test for the model including assessor. Thus,379

the model under the null hypothesis reads:380

pi j = fpsy(µ)

The values of the likelihood ratio test statistic, as well381

as the values for the test with assessor included in the382

model, are shown in Figure 5. The value of the likeli-383

hood ratio test statistic is generally higher for the test384

when assessor is included in the model. For some at-385

tributes, the difference is small, whereas the difference386

for other attributes is rather large. The size of the likeli-387

hood ratio statistics is just as important as the difference388

between them, regarding the impact of which model is389

used. Silky (0 minutes) and Greasy (0 minutes) ap-390

proximately have the same size of the difference (ap-391

proximately 8 and 9 respectively). For Silky (0 min-392

utes) the difference is unimportant because both values393

are large. However, the difference for Greasy (0 min-394

utes) is important because both values are small. For395
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Figure 5: Comparing the likelihood ratio test statistics for hypothesis
test of product main effect.The horizontal lines are the critical values
for the Chi-squared distribution with 7 degrees of freedom; the 0.05
critical value (dotted line) and the 0.01 critical value (dashed line).

the 0.01 level the conclusion, for Greasy (0 minutes),396

depends on which model is used; when ignoring the as-397

sessor replicates (model (8)) the null hypothesis is not398

rejected, whereas inclusion of assessors (model (5)) re-399

sults in a rejection of the null hypothesis. It is a scope400

of future research to investigate how much the test of401

product main effect is affected by ignoring the assessor402

replicates.403

The hypothesis test of a significant assessor main ef-404

fect is considering whether the assessors perceive the405

test products differently. Thus, the null hypothesis is406

assuming that the assessors perceive the products simi-407

larly, whereas the alternative hypothesis allows for dif-408

ferences between the assessors. The hypothesis test of a409

significant assessor main effect is equivalent to the hy-410

pothesis test of a significant assessor-by-product inter-411

action, with σ2
d being replaced by σ2

b in (7). The likeli-412

hood ratio test statistics for the test of a significant as-413

sessor main effect are shown in Figure 4. The attributes414

Thickness and Absorption have non-significant as-415

sessor main effects. Hence, there is not enough evidence416

to claim a significant effect of the assessors for these two417

attributes. Thus, the assessors perceive the test prod-418

ucts similarly for Thickness and Absorption. For419

the remaining six attributes, the assessor main effect is420

7



strongly significant. Therefore, the assessors perceive421

the test products compared to the control differently for422

these attributes.423

2.7. Product specific d-prime values424

It is of interest to find the product specific d-prime425

values because this will make it possible to compare the426

sensory characteristics of the different products. The427

product specific d-primes are estimated from the model428

without the assessor-by-product interaction. Thus, the429

Thurstonian mixed model in (5) is used when finding430

the product specific d-prime values. Therefore, the esti-431

mate, on the d-prime scale, for the ith product reads:432

d′i = µ̂ + α̂i

where µ̂ and α̂i are the estimates of µ and αi. The esti-433

mates of µ and αi are obtainable from the output in the434

statistical software.435

When the assessor-by-product interaction is significant,436

the interpretation of the product specific d-prime values437

become more difficult. In the situation with a signif-438

icant assessor-by-product interaction one must be cau-439

tious when interpreting the product specific d-prime val-440

ues, because these estimates do not contain all informa-441

tion about the products. It is a scope of future research442

to investigate the interpretation of the product specific d-443

prime values when the assessor-by-product interaction444

is significant.445

Confidence intervals for the d-prime values can be446

found using the Wald-based approach. The 95% Wald-447

based confidence interval for di reads:448

d′i ± z97.5se(d′i ) (9)

where z97.5 is the 97.5% quantile for the standard normal449

distribution. Furthermore, se(di) is the standard error of450

di. The standard errors are obtained from the output in451

the statistical software used when analyzing data with a452

generalized linear mixed model.453

The product specific d-prime estimates as well as the454

95% confidence intervals for Sticky, Greasy (0 min-455

utes) and Silky (5 minutes) are shown in Figure 6. Test456

products A, G and H are more sticky than the control457

product, whereas the remaining test products are less458

sticky. The test products furthest to the left (C, D and459

E) are the most promising test products with respect to460

stickiness, since the desired characteristic is to be less461

sticky than the control. All the test products are per-462

ceived to be less greasy than the control product, since463

the d-prime values for Greasy are negative. All test464

products are good candidates with respect to greasiness,465
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Figure 6: The d-prime estimates for the test products as well as 95%
confidence intervals.

since a desired characteristic for the new product is not466

to be greasier than the control product. The only test467

product that is perceived to be more silky after 5 minutes468

than the control product, is test product D. The d-prime469

values for test products C and F are close to 0, which470

indicates that these are among the most silky test prod-471

ucts after 5 minutes. All in all when considering the472

results for the attributes Sticky, Greasy (0 minutes)473

and Silky (5 minutes) the most promising test product474

is test product D.475

2.8. Assessor specific d-prime values476

It is of interest to find the assessor specific d-prime477

values because these values enable a comparison of the478

assessors. As for the product specific d-prime values the479

interpretation of the assessor specific d-prime values is480

more difficult when the assessor-by-product interaction481

is significant. Thus, d-prime values for the assessors482

will be calculated using model (5). The average sen-483

sory difference between the test products and the control484

product for the jth assessor is on the d-prime scale:485

b̃ j = µ + b j (10)

The estimate of b̃ j in (10) is obtained from the output in486

the statistical software used when analyzing data with a487

generalized linear mixed model.488
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Figure 7: The sorted d-prime estimates of b̃ j for the Silky attribute
(0 minutes). The dotted line is the value of the consensus; the estimate
of µ.

For a balanced design the assessor with the smallest489

value has been choosing the control most often of all the490

assessors, whereas the assessor with the highest value491

has been choosing a test product most often. Asses-492

sors with a value of 0 have been choosing the control493

and a test product half of the times each. The assessors494

with larger values than the consensus (µ) have on aver-495

age chosen a test product more often than the average.496

The assessors with smaller values than the consensus497

have on average chosen the control more often than the498

average.499

The d-prime estimates for the assessors, b̃ j, is for Silky500

(0 minutes) shown in Figure 7. The assessor specific d-501

prime estimates, b̃ j, are negative for Silky evaluated af-502

ter 0 minutes. Thus, the assessors are in agreement that503

the control, on average, is silkier than the test products.504

The assessors furthest to the left, assessors 9,16 and 19,505

are assessing similarly. The d-prime values for these as-506

sessors are close to −2.5, which is rather far away from507

0. This implies that these assessors have chosen the con-508

trol much more than the test products. In addition, these509

assessors are the assessors with the smallest proportions510

of times the test products were chosen. There is a group511

of assessors, from 1 to 21 looking at the y-axis, whose512

estimates are close to −2. These assessors have larger513

proportions, of times the test products were chosen, than514
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Figure 8: The sorted d-prime estimates of b̃ j for the Sticky (0 min-
utes). The dotted line is the value of the consensus µ; the estimate of
µ.

the group furthest to the left. The assessors from these515

two groups, the assessors from 9 to 21 looking at the516

y-axis, have d-prime estimates less than the consensus,517

the estimate of µ.518

The assessors 4 and 20 are somewhat different from the519

other assessors in the sense that they do not appear to be520

in a group of assessors.521

There is a group of assessors, from 13 to 14 looking at522

the y-axis, that has d-prime values close to −1. These523

assessors have larger d-prime estimates than the consen-524

sus.525

Assessor 7 is the assessor with the d-prime value clos-526

est to 0. Thus, assessor 7 is the assessor with the largest527

proportion, of times the test products were chosen, of528

the assessors.529

The d-prime values for the assessors, b̃ j, is for Sticky530

(0 minutes) shown in Figure 8. The assessor specific531

d-prime values for Sticky (0 minutes) are negative532

as well as positive, with the majority being negative.533

Therefore, some assessors have chosen the test products534

more often than the control, however the majority of the535

assessors have chosen the control more often than the536

test products.537

Assessors 1, 6 and 9 are the assessors with the smallest538

proportion of times the test products were chosen. As-539

sessor 24 is the assessor with the largest proportion of540

9



times the test products were chosen.541

Assessor 9 is among the assessors furthest to the left542

for both attributes. This means that assessor 9 tend to543

choose the control more often than the test products.544

3. Summary and Discussion545

We have in this paper suggested a way to analyze546

data from a binary paired comparison. The analysis that547

is suggested is to handle the replications of assessors548

by including them in the model, thus obtaining a549

Thurstonian mixed model.550

When considering Thurstonian mixed models an551

important gain is that the hypothesis test of a significant552

product effect handles the replications correctly. In553

addition, d-prime values of products as well as asses-554

sors are obtained from a Thurstonian mixed model.555

The assessor specific d-prime values enable a way to556

monitor a panel.557

In the situation with a non-significant assessor-by-558

product interaction, hypothesis tests and d-prime559

values are well-defined and interpretable. When the560

assessor-by-product interaction is significant, further561

research is needed to define and interpret hypothesis562

tests as well as the d-prime values for the main effects563

of products and assessors.564

Throughout the paper, an analysis has been made for565

each attribute separately. Future work could be to566

investigate the possibility to account for correlations567

between the attributes.568

The difference data considered in this paper is from a569

binary paired comparison. An interesting continuation570

of the work presented in this paper is to consider other571

types of difference data. E.g. where products are572

compared to each other rather than a control like in573

Gabrielsen (2000) and Gabrielsen (2001).574
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√
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√
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δ√
2

)

= P
(
C − T − (µc − µt)

σ
√

2
<

δ√
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where the second equality is valid since σ
√

2 > 0. In613

addition the last equality is true since Z ∼ N(0, 1) and Φ614

is the cumulative distribution function for the standard615

normal distribution.616

617
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Abstract

When considering sensory discrimination studies, often multiple d-prime values are obtained across sensory at-
tributes. In this paper, we introduce a way to gain information about the d-prime values across sensory attributes by
analyzing these with principal component analysis. We consider d-prime values obtained solely by using the inverse
of the psychometric function for the test protocol used in the sensory discrimination study. Additionally, we consider
d-prime values obtained by analyzing data with a Thurstonian mixed model. From this analysis product specific as
well as assessor specific d-prime values are obtained. Thus, by analyzing these by principal component analysis,
information regarding products and assessors is obtained across attributes.

Keywords: d-prime values, discrimination testing, assessor information, multi-product setting, Principal Component
Analysis

1. Introduction1

In discrimination studies, several attributes can be2

considered. One approach is to do an analysis for one3

attribute at a time (e.g. Linander et al. (2018)). For4

other types of sensory data, e.g. sensory profiling data,5

many attributes can be present. Such data are often ana-6

lyzed by Principal Component Analysis (PCA) (Næs &7

Risvik (1996), Næs et al. (2010), Lawless & Heymann8

(1998)). PCA is a well-known multivariate analysis that9

is used in many applications e.g. in Chemometrics (Var-10

muza & Filzmoser (2009)).11

When considering discrimination studies, an advantage12

of using δ; the measure for sensory differences, is that13

δ does not depend on the discrimination test protocol,14

see e.g. Ennis (1993). Thus, it is common to obtain15

d-prime values, the estimates of δ, when analyzing dis-16

crimination studies. In this paper, we will be consider-17

ing principal component analysis of d-prime values ob-18

tained from sensory discrimination tests. We will con-19

sider two approaches; one analyzing the raw d-prime20

values, transforming data by the inverse of the psycho-21

metric function, and one where the d-prime values are22

obtained from analyzing data by a model. The d-prime23

∗Corresponding author. E-mail address: perbb@dtu.dk (P. B.
Brockhoff).

values will be for different individuals (e.g. products24

or assessors) for different variables (typically sensory25

attributes). In the analysis of sensory data Luciano &26

Næs (2009) considered PCA using the estimates ob-27

tained from a regular two-way ANOVA.28

Linander et al. (2018) analyzed data from a discrimi-29

nation study of binary paired comparison data, by us-30

ing a Generalized Linear Mixed Model embedded into31

a Thurstonian framework. This model can be used to32

analyze multiple sensory attributes one at a time. From33

each analysis, assessor specific as well as product spe-34

cific d-prime values are obtained. These d-prime values35

will be used in a principal component analysis. Thus,36

information about products as well as assessors are ob-37

tained across attributes.38

In the remainder of this section a discrimination study39

is described. This is used, as an ongoing example,40

throughout the paper to illustrate the methods we ex-41

plain in Section 3 and Section 4. We conclude the paper42

with a discussion in Section 5.43

1.1. Discrimination study44

The discrimination study that is used as an ongoing45

example throughout this paper, is the same discrimi-46

nation study that is used in Linander et al. (2018). In47

this section, we briefly explain the structure of the dis-48

crimination study and refer the reader to Linander et al.49

Preprint submitted to Elsevier September 21, 2018



(2018) for further details.50

The study includes eight test products, each compared51

to the same control product, for up to 25 assessors. Not52

all assessors evaluated all the test products. The test53

products are products which are applied to the skin. The54

assessors evaluated eight attributes, five of these were55

evaluated immediately after application to the skin. In56

addition, three of these attributes were re-evaluated 557

minutes after application. An assessor had to choose58

the sample with the strongest intensity of the attribute59

in question. Each assessor evaluated each test prod-60

uct twice by making one comparison in two consecutive61

sessions.62

2. Principal Component Analysis63

In this section, we give an introduction to principal64

component analysis. For a more detailed description65

of PCA, many books and papers exist; e.g. Næs et al.66

(2010), Varmuza & Filzmoser (2009), Bro & Smilde67

(2014).68

The data used in PCA are collected in a data matrix.69

Typically the objects are in the rows and the variables in70

the columns. Let yi j be the observation for the ith object71

on the jth variable. Then the data matrix Y is given as:72

Y =



y11 . . . y1J

y21 . . . y2J
...

...
yI1 . . . yIJ


(1)

where i = 1, . . . , I is the number of objects, and j =73

1, . . . , J is the number of variables.74

The overall purpose of a PCA is to explain the structure75

in the data by fewer dimensions than in the original data.76

The new dimensions are the so-called Principal Com-77

ponents (PC). The first principal component is defined78

such that it is explaining most of the variation. The sec-79

ond principal component is explaining the second most80

of the variation under the restriction that it is orthogonal81

to the first principal component and so forth. For each82

principal component a set of scores (for the objects) and83

a set of loadings (for the variables) are obtained.84

In many applications, data are centered as well as scaled85

before doing the PCA. The scaling is typically impor-86

tant since variables can be measured using different87

scales. However, when considering variables within88

sensory panel studies, such differences in scales rarely89

occur. Thus, it is often the case, that PCA is ap-90

plied without scaling the variables when considering ex-91

periments in sensory panel studies (Borgognone et al.,92

2001; Næs et al., 2010; Lawless & Heymann, 1998).93

In most applications, including sensory science, cen-94

tering is most often done. However, important infor-95

mation could be ignored, when d-prime values are cen-96

tered. Thus, there exist situations where using the non-97

centered d-prime values is informative.98

3. PCA using d-prime values99

In this section, principal component analysis is con-100

sidered using d-prime values obtained from a sensory101

discrimination study. Basically, any set of d-prime val-102

ues can be used; from discrimination studies with a cor-103

rect answer as well as studies using paired comparisons.104

Here binary paired comparisons are thought of as un-105

bounded 2-AFC tests where no correct answer exists.106

The implication of no correct answer is that the d-prime107

values can be negative.108

Let xi j be the number of correct answers, out of a to-109

tal of ni j answers, for the ith object (e.g. product) and110

the jth variable (e.g sensory attribute). Let fpsy be the111

psychometric function for the test protocol used in the112

discrimination study. Data are transformed into d-prime113

values using the inverse of the psychometric function:114

f −1
psy(pi j) = d′i j (2)

where115

pi j = xi j/ni j (3)

for the binary paired comparison. For discrimination116

studies with a correct answer a slight modification of (3)117

is needed. Therefore, for studies with a correct answer:118

pi j =

{
xi j/ni j if xi j/ni j ≥ pg

pg if xi j/ni j < pg
. (4)

where pg is the guessing probability for that study.119

The data-matrix, with the d-prime values as the entries,120

is organized such that the individuals are in the rows and121

the variables are in the columns:122

Y =



d′11 . . . d′1J
d′21 . . . d′2J
...

...
d′I1 . . . d′IJ


(5)

When doing the principal component analysis using Y123

in (5) scores as well as loadings are obtained such that124

(Næs et al., 2010):125

Y = T PT (6)
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where P is the matrix with the loadings and T is the ma-126

trix with the scores.127

For the d-prime values, no scaling is used since all of128

the values are on the same scale, namely the d-prime129

scale. An absolute d-prime value of 3 is large. Thus,130

d-prime values will mostly lie in the interval from −3131

to 3 when allowing for negative d-prime values as in the132

binary paired comparison. For studies with a correct an-133

swer the interval containing most of the d-prime values134

is from 0 to 3. Therefore, with the same reasoning as135

in sensory science in general, no scaling is done using136

d-prime values in a principal component analysis.137

3.1. Example138

In this section, the data from the discrimination study139

explained in Section 1.1 are used. The data are the num-140

ber of times test products were chosen. The proportions141

of times the test products were chosen, are transformed142

into d-prime values using the inverse of the psychomet-143

ric function:144

f −1
paired(p) = Φ−1(p)

√
2 = d′ (7)

We refer the reader to Linander et al. (2018) for details145

of the derivation of (7). There are no restrictions re-146

garding the d-prime values. Positive as well as negative147

d-prime values can occur, since the test protocol is the148

binary paired comparison. A negative d-prime value in-149

dicates that the control product has the strongest inten-150

sity of the attribute in question.151

The d-prime values, transformed by (7), are shown in152

Table 1. It is worth mentioning, that test product H for153

Silky has a d-prime value of −∞. It is not possible to154

do a PCA with a value of −∞. Therefore, it must be155

decided how to handle the infinite value for test product156

H for Silky.157

A d-prime value of −∞ only occurs when the test prod-158

ucts were chosen zero times. A way to select the value159

to replace −∞, is by letting the test products being cho-160

sen once. Using the proportion of 1/n instead of 0/n, is161

conceptually the same, since it has no practical implica-162

tion whether the test products were chosen zero times or163

one time. From both situations it is clear that the con-164

trol is perceived to have the strongest sensory intensity.165

The advantage of using 1/n rather than 0/n is it ensures166

that a finite d-prime value is obtained. d′H,silky; the new167

d-prime value for test product H for Silky, is given as:168

d′H,silky = f −1
paired(1/nH,silky) = −2.83 (8)

where nH,silky is the number of evaluations for test prod-169

uct H for Silky. It is a scope of future research to in-170

vestigate how different approaches to handle a value of171
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Figure 1: The biplot for the PCA using the centered d-prime values
(transformed by the psychometric function).

minus infinity, affect the PCA.172

It can be difficult to realize if any of the test products173

have the same sensory characteristics by looking at Ta-174

ble 1. The aim of the PCA is to be able to identify the175

test products, if any, that have the same sensory charac-176

teristics.177

Using the d-prime values from Table 1, with −∞ re-178

placed by the d-prime value in (8), the biplot shown in179

Figure 1 is obtained doing a PCA using the centered180

values.181

The first principal component, PC1, is explained by182

Sticky (initially and after five minutes) as well as183

Silky (initially and after five minutes). The test prod-184

ucts H and D are placed in opposite directions with re-185

spect to PC1; H is stickier and less silky than D. Test186

products A and G are very similar with respect to PC1.187

Thus, A and G have similar sensory properties regarding188

stickiness and silkiness. The second principal compo-189

nent, PC2, is primarily explained by Thickness. The190

test products A and G are the thickest products. H is the191

least thick product. The test products B, F, E, C and D are192

similar with respect to Thickness. In conclusion, test193

products A and G are similar with respect to the sensory194

attributes Thickness, Silky (initially and after 5 min-195

utes) and Sticky (initially and after 5 minutes). Test196

product H is very different from all of the other test prod-197

ucts. Test product D is by far the most silky test product.198
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Table 1: d-prime values found by using the psychometric function on the proportions.

Test Product Sticky Greasy Silky Thickness Absorption
0 min 5 min 0 min 5 min 0 min 5 min 0 min 0 min

A 0.55 -1.21 -0.91 -1.59 -1.00 -1.10 2.86 -1.33
B -1.19 0.09 -1.47 -0.36 -1.19 -1.63 0.54 1.47
C -2.33 -1.81 -1.32 -0.95 0.00 -0.54 -0.09 0.45
D -2.83 -2.83 -0.58 -0.58 2.11 0.76 0.00 0.86
E -1.63 -1.81 -2.04 -1.47 -0.85 -0.95 0.00 0.74
F -0.31 -1.59 -1.74 -1.10 -0.55 -0.23 -0.08 -0.47
G 0.64 0.00 -1.32 -0.95 -1.63 -1.19 2.33 0.95
H 1.89 0.76 -0.86 -1.55 -Inf -2.11 -1.06 -1.55

4. PCA using d-prime values obtained from a199

Thurstonian Mixed Model200

In Section 3, the PCA was applied using a set of201

d-prime values found by using the inverse of the psy-202

chometric function for that discrimination test proto-203

col. In this section, we will model the probabilities of a204

test product being chosen when considering the binary205

paired comparison test protocol. The d-prime values ob-206

tained from such a model are then analyzed by PCA. It207

is not necessary to fully understand the model to be able208

to comprehend the results of the PCA of the d-prime209

values. Thus, for readers without interest in how the210

model is defined, Section 4.1 can be omitted.211

4.1. Thurstonian Mixed Model212

This section defines the model that is used to find the213

d-prime values. The model was suggested in Linander214

et al. (2018). In this section, we will include the infor-215

mation necessary to understand the model.216

The model described in this section is modelling the217

data for one sensory attribute at a time. Thus, to get218

the results for all the sensory attributes from the sensory219

discrimination study, the analysis is repeated for each220

attribute.221

The data are obtained from a discrimination study using222

the binary paired comparison test protocol. Each obser-223

vation is binomially distributed:224

Ylmk ∼ binomial(plm, 1)

where l = 1, . . . , L represents the test products, m =225

1, . . . , nl represents the assessors for the lth test product226

and k = 1, . . . ,K represents the sessions carried out on227

the same day (K = 2 and L = 8 for the discrimination228

study used as an example in this paper). We assume that229

plm, the probability of the mth assessor choosing the lth230

test product, is independent of the sessions:231

plm = P(Ylmk = 1)

It is possible to impose a linear structure of plm which232

explains the variables that are affecting these probabil-233

ities. We consider a model where the probabilities are234

explained by products as well as assessors:235

plm = fpaired(µ + αl + bm) (9)

where fpaired is the psychometric function with the in-236

verse given in (7). Additionally, µ is the overall aver-237

age difference between the test products and the control238

product and αl is the difference for the lth test product239

to the average product-difference µ. Thus, the sensory240

difference for the lth test product to the control product241

is242

δl = µ + αl (10)

Furthermore, bm is the random effect of the mth assessor243

where bm ∼ N(0, σ2
m) which are independent for all244

m. bm is the difference for the mth assessor to the245

average product-difference µ on the d’-scale. Thus,246

the sensory difference, on the d-prime scale, between247

the test products and the control product for the mth248

assessor is b̃m = µ + bm.249

For this setup, the interest lies in what information it is250

possible to extract regarding product specific as well as251

assessor specific d-prime values across the attributes.252

Thus, the attributes will be considered as the variables253

(columns in (5)) and the test products as well as the254

assessors will be considered as the observations (rows255

in (5)).256

257
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4.2. PCA using product specific d-prime values258

The product specific d-prime values; the estimates of259

δl, are for a specific sensory attribute given as260

d′l = µ̂ + α̂l (11)

where µ̂ and α̂l are the estimates of µ and αl respectively.261

To be able to distinguish the estimates obtained for the262

different attributes, an additional sub-script will be used:263

d′l j = µ̂ j + α̂l j (12)

where j = 1, . . . , J represents the sensory attribute and264

µ̂ j and α̂l j are the estimates obtained from the analysis265

of the jth attribute. Thus, d′l j is the sensory difference266

for the lth test product to the control product for the jth267

attribute.268

An important aspect of PCA is whether to center the269

data before doing PCA or not. For the product specific270

d-prime values both situations will be considered, since271

each of these contributes with valuable information re-272

garding the test products. As we will show in Section273

4.2.1, when centering the product specific d-prime val-274

ues, the information regarding the control product is re-275

moved. However, when the d-prime values are used,276

without centering, the information about the control277

product is maintained in the PCA.278

4.2.1. Centering279

The model in (9) is over-parameterized, thus it is as-280

sumed that for each j:281

L∑

l=1

α̂l j = 0 (13)

When centering the product specific d-prime values, the282

mean value of the d′i js for each j is subtracted. d̄′. j; the283

mean value over i, for a given j, reads:284

d̄′. j =
1
L

L∑

l=1

d′l j

=
1
L

L∑

l=1

(µ̂ j + α̂l j)

=
1
L

Lµ̂ j +
1
L

L∑

l=1

α̂l j

= µ̂ j

where the last equality follows from (13). Therefore,285

the centered d-prime values are given as:286

d′i j − d̄′. j = d′i j − µ̂ j

= (µ̂ j + α̂l j) − µ̂ j = α̂l j

Thus, when doing the PCA using the centered d-prime287

values, it is the α̂l js that are used. Hence, when inter-288

preting the results of the PCA, the information regard-289

ing the control product has been removed. Recall that290

αl j is merely expressing the difference from the lth test291

product to the average product-difference µ j for the jth292

attribute. Thus, when considering the PCA on the cen-293

tered d-prime values it is possible to compare the prod-294

ucts to each other but not to the control.295

4.2.2. Example296

The product specific d-prime values, obtained from297

model (9), are listed in Table 2. The values in Table298

2 are further away from zero than the values in Table299

1. As in Section 3.1 the d-prime value for test product300

H for Silky equals −∞. This value was in Section 3.1301

replaced by −2.83 corresponding to test product H being302

chosen once. In Table 1 it is seen that test product D for303

Sticky (evaluated initially and after 5 minutes) has the304

same value as the imputed value. With the reasoning305

that the estimated value for test product H for Silky (0306

minutes) would have been similar to that of test product307

D for Sticky, we use the value (of these two) furthest308

away from 0 given in Table 2 by −3.47. The analysis of309

the d-prime values from the discrimination study with310

the centered PCA results in the biplot shown in Figure 2.311

The absolute values are a bit larger in Figure 2 compared312

to the values in Figure 1. However, the conclusions are313

the same as those for Figure 1.314

4.2.3. Non-centered315

When the d-prime values are not centered, the infor-316

mation about the control is maintained. The d-prime317

values that are used are the µ̂ j + α̂l js. The difference318

µ̂ j + α̂l j is the estimated sensory difference between319

the lth test product and the control for the jth attribute.320

Therefore, all the d-prime values used for the PCA are321

differences between the test products and the control.322

Thus, the origin in the biplot corresponds to the control323

product.324

4.2.4. Example325

The biplot for the PCA using the non-centered prod-326

uct specific d-prime values is shown in Figure 3.327

The arrows for Thickness and Absorption are328

short. That, in combination with many small d-prime329

values, makes it extremely difficult to conclude anything330

regarding Thickness and Absorption from Figure 3331

(the sign of the values will easily change, since other at-332

tributes will affect the values of the scores more heavily)333

. Considering Greasy (initially and after 5 minutes),334

all of the test products are less greasy than the control,335
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Table 2: Product specific d-prime values found by using the model given in (9).

Test Product Sticky Greasy Silky Thickness Absorption
0 min 5 min 0 min 5 min 0 min 5 min 0 min 0 min

A 0.64 -1.36 -1.19 -1.76 -1.15 -1.57 2.94 -1.35
B -1.44 0.08 -1.98 -0.51 -1.47 -2.39 0.58 1.50
C -2.60 -2.15 -1.79 -1.22 -0.03 -0.89 -0.13 0.46
D -3.42 -3.47 -0.67 -0.65 2.28 0.83 -0.01 0.88
E -1.93 -2.22 -2.74 -1.80 -1.02 -1.47 -0.04 0.76
F -0.40 -1.88 -2.21 -1.19 -0.64 -0.37 -0.09 -0.47
G 0.70 -0.01 -1.81 -1.21 -1.89 -1.77 2.43 0.99
H 2.06 0.88 -1.04 -1.82 -Inf -3.03 -1.09 -1.58
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Figure 2: The biplot for the centered product specific d-prime values.
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Figure 3: The biplot for the non-centered product specific d-prime
values.

6



since they are placed opposite of the direction of the ar-336

rows for Greasy. With respect to silkiness, the majority337

of the test products are less silky than the control. With338

our current understanding of the interpretation of Figure339

3 it appears that test product C is just about as silky as340

the control (it is on the same "level" as the origin with341

respect to the arrow for Silky 0 minutes) and test prod-342

uct D is the only test product, which is silkier than the343

control (it is above the "level" for the origin with respect344

to the arrow for Silky 0 minutes). Furthermore, with345

respect to stickiness (initially), our current understand-346

ing is that the test products G and H are stickier than the347

control (they are above the "level" for the origin with re-348

spect to the arrow for Sticky 0 minutes), A is more or349

less as sticky as the control (it is on the same "level" as350

the origin with respect to the arrow for Sticky 0 min-351

utes). It appears that the remaining test products are less352

sticky than the control (they are below the "level" for the353

origin with respect to the arrow for Sticky 0 minutes).354

It appears that after five minutes, the only test product355

that is stickier than the control is test product H (it is356

above the "level" for the origin with respect to the arrow357

for Sticky 5 minutes).358

From Figure 3 we believe it is possible to identify the359

test products that are the most interesting test products,360

based on the sensory properties that are the most impor-361

tant ones. For a test product to be interesting it must be362

as silky as the control as well as being less greasy and363

sticky. Thus, with our current understanding, the most364

interesting test products are C and D, with D being the365

more promising of the two, since it is silkier than C.366

4.3. PCA using assessor specific d-prime values367

To gain knowledge about which assessors are scor-368

ing the test products similarly, the bms are considered369

for each attribute. To be able to distinguish the esti-370

mates obtained for the different attributes, an additional371

sub-script will be used. Thus, bm j is the difference for372

the mth assessor to the average product-difference µ j, on373

the d’-scale, for the jth attribute. The centered and non-374

centered PCA will give similar results since E(bm j) ≈ 0,375

thus the assessor specific d-prime values bm js are almost376

centered. Considering the bm js it is possible to investi-377

gate how the assessors are performing compared to the378

average.379

4.3.1. Example380

The biplot for the assessor specific d-prime values is381

shown in Figure 4. The first principal component is ex-382

plained by Silky, mostly evaluated after five minutes,383

but also initially. The assessors 7 and 8 are scoring high384
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Figure 4: The biplot for the centered assessor specific d-prime values
b j.

with respect to silkiness. Assessor 19 is the assessor385

scoring the lowest regarding Silky. The second princi-386

pal component is mostly explained by Greasy (initially387

and after five minutes). Assessor 23 is the assessor scor-388

ing highest with respect to Greasy. There are assessors389

who are performing similarly. The assessors 12 and 15390

are close in the biplot. Assessors 22, 18 and 11 are391

also close together. Furthermore, with our current un-392

derstanding it appears that the assessors in the lower left393

quadrant have a tendency to score higher than the aver-394

age assessor across the attributes since all of the arrows395

points toward left and/or down.396

In our opinion Figure 4 can be used to look for scoring397

patterns which might be missed otherwise. However,398

this is not the same as being able to interpret the quality399

of an assessor. We believe that to be able to interpret400

the quality of the assessors prior knowledge about the401

’correct’ product differences must be available.402

5. Summary and Discussion403

We have in this paper been considering principal404

component analysis using d-prime values. We have405

been considering two types of d-prime values. More406

specifically, we have been considering d-prime values407

that are obtained from transforming a proportion of408

times a product was chosen as well as d-prime values409

7



obtained from a Thurstonian mixed model. When em-410

bedding the analysis into a Thurstonian mixed model, it411

is possible to get information about the products as well412

as the assessors, on the d-prime scale. These d-prime413

values can then be used for the PCA to gain knowledge414

about the products or assessors across the attributes.415

One d-prime value that was used in the PCA was not416

finite, and therefore an imputed value was used instead417

of −∞. This was handled by using the proportion of 1/n418

rather than 0/n since these proportions conceptually are419

identical. It is a scope of future research to investigate420

how different approaches of imputing a value for an out-421

lier affect the results of the PCA using d-prime values.422
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Abstract10

Sensory discrimination tests can be conducted to investigate the per-11

formance of sensory panels or to compare different laboratories. In such12

situations multiple d-prime values can be obtained. In this paper we pro-13

pose a new test statistic for the comparison of multiple d-prime values.14

The test statistic is for independent sensory discrimination tests, which15

lead to binomially distributed responses. The test statistic we suggest16

is an improved way of analyzing multiple d-prime values compared to a17

previous suggested test statistic.18

1 Introduction19

It has become more and more common to do experiments with many discrim-20

ination test protocols. Usually the protocols used are identical, but situations21

with several different discrimination protocols occur as well.22

In this paper we introduce a new way of comparing and analyzing multiple23

d-primes from various discrimination test protocols. A method for doing this24

analysis has previously been suggested by Bi et al. (1997). The method we pro-25

pose is based on likelihood theory and it will be denoted the likelihood method.26

There is a need for this analysis since the likelihood method has advantages com-27

pared to the method put forward by Bi et al. (1997). The likelihood method28

can handle boundary situations more specifically situations where the number29

∗corresponding author, email: chjo@dtu.dk
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of correct answers equals the total number of answers or when the proportion of30

correct answers is at or below the guessing probability. In addition the likelihood31

method has higher power.32

We are considering the situation with several experiments obtained from various33

discrimination test protocols. More specifically we consider the discrimination34

protocols that lead to simple-binomial data. The simple-binomial protocols in-35

clude the Duo-Trio, Triangle, Tetrad, 2-AFC and 3-AFC protocols. We call36

these protocols simple-binomial since the number of correct answers from ex-37

periments involving these protocols follow a simple binomial distribution. This38

is in contrast to protocols such as A-not A and same-different for which the un-39

derlying statistical model is also binomial, but product-binomial or compound-40

binomial rather than simple-binomial.41

In discrimination experiments involving one of the simple binomial protocols,42

the number of correct answers, X follows a binomial distribution:43

X ∼ binom(pc, n) , (1)

where pc is the probability of a correct answer and n is the sample size in the44

experiment.45

In section 2.1 we cover the boundary situations and in section ?? we consider46

the power.47

2 Test of any differences among the d-prime val-48

ues49

We are considering d′1, . . . , d
′
k which are obtained from k simple binomial proto-50

cols. xi and ni being respectively the number of correct answers and the total51

number of answers from the i′th protocol, i = 1, . . . , k. The k discrimination52

tests are assumed to be independent.53

We want to test the hypothesis that all d′s are equal versus the alternative that54

at least two are different:55

H0 : d′1 = d′2 = . . . = d′k versus HA : d′i 6= d′i′ (2)

for at least one pair of (i, i′), i 6= i′. We denote the hypothesis in (2) by the56

any-differences hypothesis.57

We suggest to use the likelihood ratio statistic for the test of the any-differences58

hypothesis given in (2). Some likelihood theory will be included in this paper,59

but for a more thorough introduction the reader is referred to e.g. Pawitan60

(2001).61

Since the separate discrimination tests are assumed to be independent, the joint62
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likelihood function is the product of the individual likelihood functions:63

LA(d′;x,n,m) =
k∏

i=1

LAi(d
′
i;xi, ni,mi), (3)

where d′ = (d′1, . . . , d
′
k)T , x = (x1, . . . , xk)T , n = (n1, . . . , nk)T and m =64

(m1, . . . ,mk)T . mi is the test protocol used for the i’th test. We use the65

subscript A because (3) is the likelihood function under the alternative hypoth-66

esis/model where not all d′ values are equal.67

Since we are considering the simple binomial protocols, the individual likelihood68

function is the binomial density:69

LAi(d
′
i;xi, ni,mi) =

(
ni
xi

)
pxi
i (1− pi)ni−xi , (4)

where pi = fpsy(d′i) and fpsy is the psychometric function corresponding to the70

mi’th protocol. Expressions of fpsy for Duo-Trio, Triangle, 2-AFC and 3-AFC71

are given in (Ennis, 1993; Brockhoff and Christensen, 2010), while fTetrad is72

given in (Ennis et al., 1998).73

The joint log-likelihood function is the sum of the individual log-likelihood func-74

tions:75

`A(d′;x,n,m) =
k∑

i=1

logLAi(d
′
i;xi, ni,mi) (5)

=
k∑

i=1

log

((
ni
xi

)
pxi
i (1− pi)ni−xi

)
.

Under the null hypothesis all d′ values are equal and the likelihood function is76

defined as in (3) but with the slight change that pi is replaced by pe:77

L0(d′e;x,n,m) =
k∏

i=1

L0i(d
′
e;xi, ni,mi), (6)

where pe = fpsy(d′e) with d′e being the expected value of the common d-prime78

obtained from the discrimination tests.79

Similarly the log-likelihood function under H0 reads:80

`0(d′e;x,n,m) =
k∑

i=1

logL0i(d
′
e;xi, ni,mi) (7)

=
k∑

i=1

log

((
ni
xi

)
pxi
e (1− pe)ni−xi

)
.
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The likelihood ratio test statistic reads:81

−2 logQ = −2 log

(
L0(d′e;x,n,m)

LA(d′;x,n,m)

)

= −2 (logL0(d′e;x,n,m)− logLA(d′;x,n,m))

= 2 (logLA(d′;x,n,m)− logL0(d′e;x,n,m))

= 2 `A(d′;x,n,m)− 2 `0(d′e;x,n,m) . (8)

Under the null hypothesis that all d′i are equal, the expected value d′e can be82

found in different ways. Bi et al. (1997) proposed a weighted average in which83

the d′ estimates are weighted by their uncertainty (squared standard error). We84

suggest using the maximum likelihood (ML) estimate of the common d′ under85

the null hypothesis.86

The ML estimate of d′e is given by the maximum of the joint (log) likelihood87

function under the null hypothesis. Since the separate discrimination tests are88

assumed to be independent, the joint log-likelihood function is the sum of the89

individual log-likelihood functions:90

`0(d′e;x,n,m) =

k∑

i=1

`0i(d
′
e;xi, ni,mi) , (9)

where mi indicates the method or protocol in the ith discrimination test. If mi91

is one of the protocols for which Xi follows a binomial distribution, then the ith92

log-likelihood function is given by:93

`0(d′e;xi, ni,mi) = xi log(pi) + (ni − xi) log(1− pi) + log

(
n

x

)
, (10)

where pi = fpsy(i)(d
′
e).94

The ML estimator of d′e then reads:95

d̂′e = arg max
d′e

`0(d′e;x,n,m) . (11)

2.1 Boundary situations96

When data consists of the so-called boundary situations the method suggested97

by Bi et al. (1997) is not well-defined. Since such situations occur rather fre-98

quently this is a non-negligible deficiency of the Wald-type test. The likelihood99

test we suggest in this paper is well-defined in the boundary situations.100

3 Post hoc analyses101

In post hoc analyses we make inference for functions of the parameters such as102

all paired differences among the d′ estimates. The complete procedure involves103
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several steps including; producing estimates of the parameter functions of in-104

terest; computing the variance-covariance matrix of these parameter functions,105

computing p-values possibly adjusting for multiple testing, and summarizing106

differences among pairs in a compact letter display.107

3.1 Difference from specified value108

If we want to test that all d′ values are different from a specified value, d′0, the109

null and alternative hypotheses have the form:110

H0 : d′i = d′0 versus HA : d′i 6= d′0 (12)

such that we are testing n hypotheses, d′0 is the value of d′ under the null hypoth-111

esis and the hypotheses may be directional instead of two-sided as illustrated112

here.113

A Wald test statistic reads ti(d
′
0) = (d′i − d′0)/se(d′i)114

The likelihood root statistic for this situation is115

ri(d
′
0) = sign(d′i − d′0)

√
2{`A(d′i)− `0(d′0)} (13)

where d′i is the value of d′ under the alternative hypothesis, `A(d′i) is the log-116

likelihood under the alternative and `0(d′0) is the log-likelihood under the null.117

Score and ’exact’ tests are also possible for these hypotheses, but not considered118

further.119

3.2 Difference from common d′120

If we want to test for each d′i whether it can be considered different from the com-121

mon d-prime, d′e, we could frame the hypotheses as in (12). This would consider122

d′e a fixed number, while in fact it depends on the data. Taking this dependency123

into account we consider the following hypotheses for (i, i′) ∈ 1, . . . , n:124

H0 : d′i = d′e for all i versus HA : d′i = d′e(i′), for all i except i′ (14)

such that the null model is parameterized by d′e while the alternative model is125

parameterized by (d′e(i′), d
′
i′) for the i′’th test. Here, d′e(i′) is the common d′126

considering all i except i′.127

The likelihood root statistic now has the form128

ri = sign(d′i − d′e)
√

2{`A(d′e(i′), d
′
i′)− `0(d′e)} (15)

where129

`A(d′e(i′), d
′
i′) = `(d′i′ ;xi′ , ni′) +

∑

i|i 6=i′
`(d′e(i′), xi, ni) (16)
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Note that d′e(i′) has to be estimated n times — one time for each i′ ∈ 1, . . . , n.130

Observe that both null and alternative models involve optimization to estimate131

d′e and d′e(i′) for i′ = 1, . . . , n. This means that Wald and Score tests, which132

usually have the advantage of being computationally simpler than likelihood133

ratio tests, are in this case computationally more complicated. ’Exact’ tests are134

not directly available here.135

3.3 Pairwise differences136

Tests of pairwise differences occur in two natural settings: 1) If we want to137

compare d′ in one group with d′ in all the others one at a time, and 2) if we138

want to look at all pairwise differences. In the first setting we are considering one139

group a standard or baseline and the structure is known as Dunnett’s contrasts.140

The second setting is known as Tukey’s contrasts for all pairwise differences.141

Let a d′i,i′ = d′i − d′i′ for i, i′,= 1, . . . , n, then the general hypothesis for the test142

of a pairwise difference reads:143

H0 : d′i,i′ = 0 (17)

HA : d′i,i′ 6= 0

for some pair (i, i′). Here d′i,i′ is called a parameter function since it is a function144

of the original (d′) parameters.145

Let θ̂ be a vector of d′ estimates and ϑ̂ = Kθ̂ be the parameter functions of146

interest, where K is a constant matrix of suitable dimensions. When ϑ are147

Tukey’s all-pairwise differences, K has the following structure:148

library(multcomp)149

named.vec <- setNames(rep(1, 4), paste("group", 1:4, sep=""))150

(K <- contrMat(named.vec, type="Tukey"))151

Multiple Comparisons of Means: Tukey Contrasts152

153

group1 group2 group3 group4154

group2 - group1 -1 1 0 0155

group3 - group1 -1 0 1 0156

group4 - group1 -1 0 0 1157

group3 - group2 0 -1 1 0158

group4 - group2 0 -1 0 1159

group4 - group3 0 0 -1 1160

where we made use of the multcomp R package (?). Other parameter functions161

of interest could be Dunnett’s many-to-one comparisons which requires another162

structure in K.163

Assuming approximate or asymptotic normality of θ̂ means that ϑ̂ is also asymp-164

totically normally distributed. Let the variance-covariance matrix of θ̂ be Σθ,165
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then166

θ̂ ∼ N(θ,Σθ) (18)

The variance-covariance matrix of ϑ̂ is then167

Σϑ = KΣθK
T (19)

and it follows that168

ϑ̂ ∼ N(ϑ,Σϑ) (20)

We can use the Wald test to compute p-values for these parameter functions169

individually since under the null hypothesis:170

Z = (ϑ̂i − ϑ0)/se(ϑ̂i) ∼ N(0, 1) (21)

where the standard errors are given by the square root of the diagonal elements171

of Σϑ.172

A test of the pair hypothesis in equation (17) can be performed as a Wald173

test with test statistic ti = d′i,i′/se(d′i,i′), which asymptotically under the null174

hypothesis follows a standard normal distribution.175

The equivalent likelihood root statistic reads176

ri(d
′
i, d
′
i′) = sign(d′i − d′i′)

√
2{`A(d′i, d

′
i′)− `0(d′i,i′)} (22)

where `0(d′i,i′) is the log-likelihood under the null hypothesis.177

3.4 Letter display of groups based on pairwise differences178

A convenient way of summarizing the results of a doing all pairwise comparisons179

is the so-called compact letter display. Here a letter is assigned to each of the180

groups based on all pairwise comparisons of the groups in such a way that181

1. Two groups sharing a letter are not significantly different.182

2. Two groups not sharing a letter are significantly different.183

A particular letter assignment depends on the α-level chosen for the letter dis-184

play and on possible multiplicity adjustments of the p-values. An example of a185

letter display is given in section ??.186

In this implementation we use the non-exported function insert_absorb from187

the multcomp package (?) implementing the insert-absorb algorithm of ?.188
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4 Conclusion189
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Appendix D

Analysis of the Data Using
the R package sensR

P. B. Brockhoff and Linander, C. B. (2017) Analysis of the Data Using the R
package sensR. Discrimination Testing in Sensory Science - A Practical Hand-
book, Elsevier.
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Introduction 
This chapter will cover in more detail how to actually analyze sensory discrimination data. This 
will include both hypothesis testing by p-value computation as by the use of critical values as 
confidence intervals. And this will include as well discrimination as similarity focused analyses. It 
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will also include d-prime calculations in several settings together with replicated data analysis by 
(corrected) beta-binomial models. It will also include a number of perspectivising tutorials. 

The open source software R will be used throughout, where the R-package sensR will play a major 
role, but other packages, e.g. the ordinal package, may also be used. The general form will be 
tutorial like with specific examples taken from the main protocol chapters of the book. And it will 
be shown how R and the package can be used instead of statistical tables often otherwise 
reproduced in textbooks. 

Introduction to and overview of the sensR package 
The sensR package is an R package for the analysis of data from sensory discrimination testing 
developed by Christensen and Brockhoff (2015). The package facilitates, among other things: 

1. Statistical analysis of a broad range of sensory discrimation data 
2. Power and sample size computations 
3. Thurstonian analyses via d-prime estimation 
4. Facilitating a link to generic statistical modelling 

a. Improved confidence intervals via profile likelihood methods. 
b. Allowing for ANOVA and regression modelling in a Thurstonian framework 

Table 1 (below) describes which sensory discrimination methods in writing are supported by the 
sensR package and which features the sensR package provides for these discrimination methods. 
Absent check marks indicate that the feature is not implemented. 

  
d-
prime Diff Simil Power SampSize Simul LikelCI Reps glm dcompare 

Duo-trio, 
triangle, 
tetrad 

X X X X X X X X X X 

2-AFC, 3-
AFC 

X X X X X X X X X X 

Double 
triangle, 
duo-trio 

X X X X X X X X X  

Double 2-
AFC, 3-AFC 

X X X X X X X X X  

Unspecified 
2-out-of-5 

X X X X X X X X X  

Unsp. 2-
out-of-5 
with 
forgiveness 

X X X X X X X X X  
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Unspecified 
Hexad test 

X X X X X X X X X  

A-not A X X X    X X X  
Same-
Different 

X X (X) X  X X    

2-AC X X X X   X X X  
Degree of 
Difference 
(DOD) 

X X (X) X  X X    

A-not A 
with 
sureness 

X X (X)    X X X  

          

Table 1: These different protocols and analyses are currently explicitly supported in the sensR 
package (together with the ordinal package) 

The R environment for statistical computations is developing constantly, and the sensR-package 
will also constantly extend its applicability and scope. The chapter represents the scope at time of 
writing and there could very well be new opportunities already implemented when you read this. 
One generic point is that some simple R-scripts will be shared with you in the chapter showing 
how to perform (some of) the analyses in a script-based way of running R. These scripts will run 
directly in your R Console, if copied directly. These scripts are also shared as supplementary 
material at the book website. 

Basic single proportion of correct data 
In the first part of this chapter the protocols providing a single proportion of correct answers are 
treated. Within the book this would include the duo-trio, 2-AFC, 3-AFC, triangle, tetrad, 2-out-of-5 
and dual standard protocols. Some of such protocols are "fully supported" by sensR, others are 
not, see Table 1 above. As the package develops over time the collection of protocols fully 
supported will increase, In the package, also the so-called "double versions" of the triangle, duo-
trio, 2-AFC and 3-AFC are also fully supported. Examples of analysing data from fully supported 
protocols as non-supported protocols will be given. In the latter case, other R-features together 
with the sensR package options can still offer nice analysis of the data. 

For all the protocols that are "fully supported" by sensR the following things can be easily done 
and found, and in exactly the same way for each protocol by just choosing the proper method 
option in the R-functions: 

1) Difference test (exact, likelihood or normal approximation based) 
2) Similarity test (exact, likelihood or normal approximation based) 
3) Estimation and Confidence intervals (exact, likelihood or normal approximation based) for 
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a) The proportion of correct 𝑝𝑝𝑐𝑐 
b) The proportion of momentary discriminators 𝑝𝑝𝑑𝑑 
c) The d-prime 

4) Power calculations for as well difference as similarity tests: 
a) Based on 𝑝𝑝𝑑𝑑-alternatives 
b) Based on dprime-alternatives 

5) Sample size calculations for as well difference as similarity tests: 
a) Based on 𝑝𝑝𝑑𝑑-alternatives 
b) Based on dprime-alternatives 

6) Replicated data analysis based on the corrected (and standard) beta-binomial model 
7) Simulation of replicated sensory protocol data 
8) Offering the psychometric link functions to perform "Thurstonian 

regression/anova/ancova" analysis in cases with more challenging design structures using 
the generic generalized linear model features of R, e.g. the glm-function, cf. Brockhoff and 
Christensen (2010) 

9) Easy transformations between the three "levels of interpretation": dprime, 𝑝𝑝𝑐𝑐 and 𝑝𝑝𝑑𝑑 by 
various transformation functions. 

10) Plotting of the Thurstonian distributions 

The plan is to exemplify most of these possibilities first. Then the second part of the chapter will 
cover other protocols, such as A-not A, same-different, with/without sureness scales, degree-of-
difference, ABX, ranking data, R-index computation etc. 

The analysis of the basic discrimination test data - difference and similarity 

Assume that we had 𝑥𝑥 = 15 correct out of 𝑛𝑛 = 20 tetrad tests. Before using the sensR for the first 
time it must be installed from the internet (R CRAN) on your local computer. And obviously you 
would need to first install the R software itself, and it is strongly recommended to also install 
Rstudio (https://www.rstudio.com/), as a really nice way to run the R programme. When the 
package has been installed, in Rstudio: simply click Packages and Ìnstall and write sensR, you 
must load the package whenever initiating an R session, where it is to be used. This and the basic 
analysis of the tetrad case data is carried out as: 

library(sensR) 
discrim(15, 20, method = "tetrad", conf.level = 0.90) 

##  
## Estimates for the tetrad discrimination protocol with 15 correct 
## answers in 20 trials. One-sided p-value and 90 % two-sided confidence 
## intervals are based on the 'exact' binomial test.  
##  
##         Estimate Std. Error  Lower  Upper 
## pc         0.750    0.09682 0.5444 0.8959 
## pd         0.625    0.14524 0.3166 0.8439 
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## d-prime    1.890    0.37446 1.1760 2.6045 
##  
## Result of difference test: 
## 'exact' binomial test:  p-value = 0.0001674  
## Alternative hypothesis: d-prime is greater than 0 

This is the basic analysis carried out by the discrimination test function discrim of the sensR 
package and having read the relevant parts earlier in this book (chapter 2 and chapter 9) the 
output is almost self explanatory. And at this point a remark to the reader with no prior 
experience with R and a certain skepticism towards using script based statistical software like 
this: To produce this result, you simply have to copy-and-paste a single script line into the R 
console. And if you use Rstudio, you can have the scripts in a separate subwindow, and you can 
download the script file with everything from this chapter to get started, and submit either single 
or several script lines easily with the inbuilt run drop down menu or short cut keys of Rstudio, or 
just basic cut-and-paste. This is the way to use R: Google and find-and-copy what other people 
did, or use the inbuilt R help-functionality, e.g. as: 

?discrim 

At the bottom of the help pages of all functions in R, there will be example code that can be 
copied, used and adapted easily. 

The basic idea of the discrimination data analysis in sensR is that all three ways of interpreting 
the results: 𝑝𝑝𝑐𝑐, 𝑝𝑝𝑑𝑑 and dprime are given in parallel. One may say that there is really only one 
statistical analysis (hypothesis test and confidence interval) but the results can be interpreted at 
the three different "levels", see also Næs et al (2010), Chapter 7. As an illustration of this, one 
may find the exact binomial 90% confidence interval for the proportion of correct 𝑝𝑝𝑐𝑐 based on 
generic binomial statistical methods, using the binom package, Dorai-Raj (2014), which then has 
to be installed first as described above. 

library(binom) 
binom.confint(15, n = 20, conf.level = 0.90, methods = "exact") 

##   method  x  n mean     lower     upper 
## 1  exact 15 20 0.75 0.5444176 0.8959192 

And then we can transform the estimate and the lower and upper confidence limits using one of 
the in sensR inbuilt transformation utility functions: (again, the name of the function is self 
explanatory - a pd2pc function also exist) 

pc2pd(c(0.75, 0.5444176, 0.8959192), Pguess = 1/3) 

## [1] 0.6250000 0.3166264 0.8438788 

Note how this is exacly the results provided for 𝑝𝑝𝑑𝑑 in the discrim function output above. And 
note that the c stands for "concatenate" and is the way to define basic lists of numbers, vectors, in 
R. And applying a function to a list of numbers makes R apply the function to each element of the 
vector and create a similar vector of results. And finally, the results (the 𝑝𝑝𝑐𝑐-values and the two CI-
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values) can also be directly transformed to the underlying sensory scale by the inbuilt inverse 
psychometric function: (the actual psychometric function is also available) 

psyinv(c(0.75, 0.5444176, 0.8959192), method = "tetrad") 

## [1] 1.889770 1.176030 2.604497 

And we have reproduced the results on the underlying sensory scale from the discrim function 
output above. There is in addition the nice function rescale, that automatically, transforms to all 
three scales. The following three calls would all produce the same results as already seen: 

rescale(pc = c(0.75, 0.5444176, 0.8959192), method = "tetrad") 
rescale(d.prime =  c(1.889770, 1.176030, 2.604497), method = "tetrad") 
rescale(pd = c(0.6250000, 0.3166264, 0.8438788), method = "tetrad") 

All these transformation utility functions automatically handles the cut-off at the guessing 
probability in the proper way. Also by using either the default statistic = exact option or the 
optional statistic = likelihood option to get likelihood based confidence intervals instead, 
the function can and will find the proper confidence intervals also in extreme cases of observed 
𝑝𝑝𝑐𝑐 = 1 or at or below the guessing level. This is something which the classic procedures for using 
the variance of dprime to achieve a dprime ±1.96𝑆𝑆𝑆𝑆 95% confidence interval for the dprime 
cannot do. In such cases the SE is simply not computable. Also, generally this so-called Wald-
based principle of finding a confidence interval in this classical way will give different results 
depending on which scale that you decide to use: 𝑝𝑝𝑐𝑐, 𝑝𝑝𝑑𝑑, dprime, or any nonlinear function of 
these. They cannot all be correct, and it is generally impossible to know which of all these 
performs the best, that is, has the most correct coverage probability. But actually, it is well known 
that the likelihood based confidence intervals is the optimal choice in this case. And the 
likelihood interval is so-called invariant to monotone transformations, or differently put: The 
likelihood and basic probability theory supports the simple transformations of the interval 
between any of the three (or yet other) scales of interpretation. The choice between the "exact" 
and "likelihood" options is a subtlety, which for most practical applications will not be important. 
Some actually argue, to many people surprisingly,that the likelihood based intervals are superior 
to the exact ones. But both will generally be fine and both are superior to the wald based 
intervals that are only valid for subsequently large sample sizes, whereas the other two works 
fine also for small samples, and as mentioned also handles extreme observations properly. 

One can also easily identify the critical value of the difference test by the little findcr function: 

findcr(20, alpha = 0.05, p0 = 1/3) 

## [1] 11 

So with 11 or more correct answers the decision would be that the products are different. Or, to 
turn towards similarity testing, the same function is also prepared to find the critical value for a 
𝛼𝛼 = 0.05 similarity test defined in terms of the 𝑝𝑝𝑑𝑑-value. E.g. if similarity is specified at 𝑝𝑝𝑑𝑑 ≤ 0.50, 
it can be used as: 

findcr(20, alpha = 0.05, p0 = 1/3, pd0 = 0.50, test = "similarity") 
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## [1] 9 

And we see that with 𝑛𝑛 = 20, we would decide in favor of 𝑝𝑝𝑑𝑑 ≤ 0.5-similarity with 9 or less 
correct answers in the tetrad. Or for that sake also using the triangle or the 3-AFC, as they have 
the same guessing probability 1/3. Critical values for similarity tests based on a dprime-
specification of similarity, e.g. dprime= 1.5, could then be found by combining the transformation 
functions and the 𝑝𝑝𝑑𝑑-based findcr function: 

findcr(20, alpha = 0.05, p0 = 1/3, pd0 = pc2pd(psyfun(1.5, "tetrad"), Pguess=1/3),  
       test = "similarity") 

## [1] 8 

showing that one needs to have 8 or less correct answers to have shown dprime≤ 1.5 similarity. 
The stronger requirement comes from the fact that the 𝑝𝑝𝑑𝑑-value corresponding to a dprime of 1.5 
in a tetrad test is smaller than 0.50: 

pc2pd(psyfun(1, "tetrad"), Pguess=1/3) 

## [1] 0.2407126 

and hence it becomes more difficult to show similarity. The reason for choosing the 
"conf.level=0.90" rather than the default of 95% in the initial call to the discrim function above is 
in fact that with this choice one may with the same call and result output already also carry out 
the yes/no/critical value-version of any 𝛼𝛼 = 0.05 one-tailed similarity tests defined on any of the 
three scales! This is so because the upper limit of the confidence interval can then be used for 
this: Any similarity definition can directly be compared with this limit. E.g. the results above 
would tell us that we have shown a 𝑝𝑝𝑑𝑑 ≤ 0.9 similarity, or a dprime≤ 2.7 similarity but any 
stricter than such rather silly liberal definitions of similarity would not be shown with 15 correct 
out of 20 in a tetrad test. 

The p-value from the similarity test is not seen from the results above, but could be obtained 
using the same function with a different option, e.g. if we have specified the similarity definition 
at dprime≤ 1.3 and we observed 28 out of 60 correct in a tetrad test: 

discrim(28, 60, d.prime0 = 1.3, method = "tetrad", conf.level = 0.90,  
        test = "similarity") 

##  
## Estimates for the tetrad discrimination protocol with 28 correct 
## answers in 60 trials. One-sided p-value and 90 % two-sided confidence 
## intervals are based on the 'exact' binomial test.  
##  
##         Estimate Std. Error   Lower  Upper 
## pc        0.4667    0.06441 0.35558 0.5803 
## pd        0.2000    0.09661 0.03338 0.3705 
## d-prime   0.9001    0.24377 0.35091 1.2968 
##  
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## Result of similarity test: 
## 'exact' binomial test:  p-value = 0.04845  
## Alternative hypothesis: d-prime is less than 1.3 

So we just barely have shown dprime= 1.3-similarity, as the p-value is smaller than 0.05 in line 
with the upper limit of the 90% confidence-interval being just below 1.3. Also note that with 28 
correct one would also find a significance in the 𝛼𝛼 = 0.05 difference test, as the lower limit(s) of 
the 90% confidence intervals are above the guessing level. This is in no contradiction with the 
similarity conjecture, but illustrates one of the basic problems of showing similarity by non-
significance of a difference test. And note that the 2-tailed 90% confidence intervals are what 
they are, and are not affected by the choice of which hypothesis test p-value to provide. See also 
the subsection on the two different approaches to similarity testing in the next section. 

The perceptual Thurstonian distributions can be easily plotted as follows: 

plot(discrim(15, 20, method = "tetrad"), cex.main=0.8) 

 

Case study on 2-out-of-5 

Even though this protocol was recently added as a fully supported protocol, let us illustrate how 
one could use the sensR package for the analysis of data from a protocol which is not fully 
supported in sensR. The data from Chapter 9 is analyzed here. Data from any basic test protocol 
could still be analysed on the proportions scale 𝑝𝑝𝑐𝑐 and 𝑝𝑝𝑑𝑑 even without an implementation of the 
psychometric function. If the guessing probability matches one of protocols already supported by 
the discrim function (1/2, 2/5, 1/3, 1/4, 1/9 or 1/10), one could still run all the functions using a 
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version with the right guessing probability and interpret all output that has nothing to do with d-
prime values, as only the dprime-computation would be off the point 

As above, the exact 90%-confidence limits for each of the four data examples can be found by a 
generic function as: 

CIres <- binom.confint(c(3, 7, 4, 6), 20, conf.level = 0.90, methods = "exact") 

And then transformed to 𝑝𝑝𝑑𝑑-scale using a sensR utility function: 

pc2pd(as.matrix(CIres[,4:6]), Pguess = 1/10) 

##         mean      lower     upper 
## 1 0.05555556 0.00000000 0.2707376 
## 2 0.27777778 0.08590102 0.5089272 
## 3 0.11111111 0.00000000 0.3344757 
## 4 0.22222222 0.04394861 0.4531316 

Here it can be seen what level of 𝑝𝑝𝑑𝑑-similarity can be proven and also which differences were 
shown. The exact p-values for either a similarity test or the difference test could also easily be 
found by the base binom.test function, e.g.: 

binom.test(3, 20, p=1/10, alternative = "greater") 

##  
##  Exact binomial test 
##  
## data:  3 and 20 
## number of successes = 3, number of trials = 20, p-value = 0.3231 
## alternative hypothesis: true probability of success is greater than 0.1 
## 95 percent confidence interval: 
##  0.04216941 1.00000000 
## sample estimates: 
## probability of success  
##                   0.15 

The procedure provides the so-called one-tailed confidence interval, which generally we do not 
use here. It would not require much, if you know the mathematical expression for a psychometric 
function to implement that yourself, and then use this together with all the features of sensR via 
the utility transformation functions, and hence you could in addition to the basic analysis above 
get to have a fully supported protocol. In the section on analysing data from ABX discrimination 
tasks, an example of how this could be done is given. 

The planning of the basic discrimination test data - difference and similarity 

The power of the 𝑛𝑛 = 20 tetrad 𝛼𝛼 = 0.05 difference test with an alternative 𝑝𝑝𝑑𝑑-value if 0.5 can be 
found as: 

discrimPwr(pdA = 0.5, sample.size = 20, alpha = 0.05, pGuess = 1/3) 
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## [1] 0.9081042 

Note how this can provide the power for any basic protocol as long as you just know the guessing 
probability. As for findcr above one could then also find power based on alternatives expressed 
on the dprime scale using the transformation utitility functions. However, this was already 
implemented into a similar power function, so the probability of detecting a dprime of 1.5 could 
be found directly as: 

d.primePwr(d.primeA = 1.5, sample.size = 20, alpha = 0.05, method = "tetrad") 

## [1] 0.8596183 

And to illustrate the general options and show the classical results of the power ranking of the 
basic protocols, in the following the similar power for the five basic protocols are found in a little 
loop: (PBB: we might extend the list with the protocols we manage to implement before the 
chapter goes in print) 

d.primePwr(d.primeA = 1.5, sample.size = 20, alpha = 0.05, method = "duotrio") 
d.primePwr(d.primeA = 1.5, sample.size = 20, alpha = 0.05, method = "triangle") 
d.primePwr(d.primeA = 1.5, sample.size = 20, alpha = 0.05, method = "tetrad") 
d.primePwr(d.primeA = 1.5, sample.size = 20, alpha = 0.05, method = "twoAFC") 
d.primePwr(d.primeA = 1.5, sample.size = 20, alpha = 0.05, method = "threeAFC") 

##  duotrio triangle   tetrad   twoAFC threeAFC  
##   0.2868   0.4348   0.8596   0.9423   0.9914 

Without an implementation of the double versions in d.primePwr, one may use the 𝑝𝑝𝑑𝑑-based 
power function via the transformation functions: 

discrimPwr(pdA = pc2pd(psyfun(1.5, "duotrio", double = TRUE), Pguess = 1/4),  
           sample.size = 20, alpha = 0.05, pGuess = 1/4) 
discrimPwr(pdA = pc2pd(psyfun(1.5, "triangle", double = TRUE), Pguess = 1/9),  
           sample.size = 20, alpha = 0.05, pGuess = 1/9) 
discrimPwr(pdA = pc2pd(psyfun(1.5, "twoAFC", double = TRUE), Pguess = 1/4),  
           sample.size = 20, alpha = 0.05, pGuess = 1/4) 
discrimPwr(pdA = pc2pd(psyfun(1.5, "threeAFC", double = TRUE), Pguess = 1/9),  
           sample.size = 20, alpha = 0.05, pGuess = 1/9) 

##  double_duotrio double_triangle   double_twoAFC double_threeAFC  
##          0.5506          0.4092          0.9982          0.9976 

ANd with a little bit of R-coding not shown here, all the entire power functions can be plotted next 
to each other: 
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Similar to all the power computations above, one may also find similarity test power, either 
based on 𝑝𝑝𝑑𝑑-specifications or as exemplified here based on dprime-specifications: 

d.primePwr(d.primeA = 0, d.prime0 = 1, sample.size = 20, alpha = 0.05,  
           method = "tetrad", test = "similarity") 

## [1] 0.2972139 

d.primePwr(d.primeA = 0, d.prime0 = 1, sample.size = 100, alpha = 0.05,  
           method = "tetrad", test = "similarity") 

## [1] 0.9341278 

showing that the power of detecting a dprime≤ 1 similarity with 𝑛𝑛 = 20 and the assumption that 
there is truly no difference at all (d.primeA=0) is much too low but nicely high with 𝑛𝑛 = 100. The 
additional investigation one could make here is to look into the power, in case that the alternative 
is not the most optimistic scenario: What if the alternative is really at a smaller difference, e.g. 
d.primeA=0.5, that is, still a similarity setting, as similarity is defined at a value of 1: 

d.primePwr(d.primeA = 0.5, d.prime0 = 1, sample.size = 100, alpha = 0.05,  
           method = "tetrad", test = "similarity") 

## [1] 0.7150384 

Of course, similarity would then only be detected with much lower power. This would also be 
seen from the two corresponding sample size computations: 
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d.primeSS(d.primeA = 0, d.prime0 = 1, target.power = 0.9, alpha = 0.05,  
          method = "tetrad", test = "similarity") 

## [1] 81 

d.primeSS(d.primeA = 0.5, d.prime0 = 1, target.power = 0.9, alpha = 0.05,  
          method = "tetrad", test = "similarity") 

## [1] 160 

Similarity test sample sizes can in a similar way also be found based on 𝑝𝑝𝑑𝑑-specifications and 
difference test sample sizes can be found exactly similar either 𝑝𝑝𝑑𝑑-based or dprime-based: (𝛼𝛼 =
0.05 and test="difference" are default settings) 

d.primeSS(d.primeA = 1, target.power = 0.9, method = "tetrad") 

## [1] 82 

discrimSS(pdA = 0.2407, target.power = 0.9, pGuess = 1/3) 

## [1] 82 

rescale(d.prime=1, method="tetrad") 

##  
## Estimates for the tetrad protocol: 
##          pc        pd d.prime 
## 1 0.4938084 0.2407126       1 

As all powers, sample sizes and critical values are available via the functions showed, anyone 
could design and make any kinds of tables or figures based on these functions and based on any 
choice of effect sizes, powers, sample sizes, alpha levels, test types and interpretation levels. It is 
part of onging developments to extend the sensR package with such table and figure facilities in a 
user friendly way.  

Two approaches for similarity testing planning and analysis 

Above and in the sensR package in general the approach to similarity testing is to be formal about 
which hypothesis is being tested and the Type I (𝛼𝛼) and Type II (𝛽𝛽) risks related to that. 
Compared to the more commonly expressed hypotheses used for difference testing, this amounts 
to a swap between the use of the null and the alternative hypotheses. For similarity testing 
purposes the null now includes the "difference statement" and the alternative the "similarity 
statement", and you then have to consider and define explicitly what the latter really is in the 
context. It is not uncommon, and used in standards also, to handle this "swapping" by instead 
swapping the roles of 𝛼𝛼 and 𝛽𝛽 and then making sure that the power of the difference test is high 
enough, and claim similarity if there is no significant difference found. 

Whereas the latter approach, if used carefully, is valid, it does have its limitations and in the point 
of view of this author rapidly challenges the understanding and communication of results: 
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1. Generally it appears questionable (for an outsider) to claim a significance by noting an NS 
result 

2. If you for some reason suddenly increase the 𝑛𝑛, it is indeed invalid in general! 
3. Swapping the names of what is really the Type I and Type II risks for what you are doing 

may be difficult to understand and communicate 

The benefit of the approach of the standards, combined with actually providing additional tables 
of critical values for the proper similarity tests to be used for any choice of 𝑛𝑛, was of course that 
already available difference test power and sample size tables could be used. With the flexibility 
of the implementations of this in sensR this simplicity argument is no longer relevant. 

Let us consider the example of Chapter 9: The aim is to perform a level 10% similarity test to be 
able prove a d-prime similarity of 1 with power 80%. So for the similarity test the 𝛼𝛼 = 0.10 and 
𝛽𝛽 = 0.20 and the defintion of similarity is given by the effect being less than or equal to 1. In the 
standards approach as also taken in Chapter 9, the roles of 𝛼𝛼 and 𝛽𝛽 are swapped and the required 
sample size is found as 

d.primeSS(d.primeA = 1, target.power = 0.9, alpha = 0.20, method = "tetrad") 
d.primeSS(d.primeA = 1, target.power = 0.9, alpha = 0.20, method = "tetrad", 
          statistic = "stable.exact") 

yielding 47 and 49 respectively. The default of the d.primeSS function is to find the difference test 
sample size, and the default is also to find the smallest 𝑛𝑛 with the required power, the first R-call 
and the number 47. By specifying "stable.exact", the smallest 𝑛𝑛 for which no larger one has a 
lower power is found, the second R-call and the number 49. The actual beta-risk for the difference 
test, corresponding to the alpha-level for the similarity test is: 

1-d.primePwr(1, sample.size = 49, method = "tetrad", alpha=0.2) 

## [1] 0.08943058 

The critical value for the difference test is found to be 

findcr(49, alpha = 0.2, p0 = 1/3 ) 

## [1] 20 

so with 20 or more one would declare difference and with 19 or less one would conclude 
similarity. The similarity test critical value can also be found directly as, now using the real 
similarity test alpha-level as the 𝛼𝛼-level in the call: (and using the 𝑝𝑝𝑑𝑑-definition of similarity 
coming from the tetrad psychometric function and dprime=1, which is 0.24 ) 

pc2pd(psyfun(1, method = "tetrad"), 1/3) 

## [1] 0.2407126 

findcr(49, alpha = 0.1, p0 = 1/3, test = "similarity", pd0 = 0.2407126) 

## [1] 19 
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So this is completely in line with the decision criterion found from the difference test critical 
value found above. If you analyze the data 𝑥𝑥 = 16 using the difference test analysis we get the 
reported difference test p-value of 0.5933. And we know the conclusion of the similarity test, 
which we similarly knew directly by noting that 𝑥𝑥 = 16 is less than 20. With the choice of level 
such that the upper confidence limits can used for the wanted similarity test 

discrim(16, 49, conf.level = 0.80, method = "tetrad") 

##  
## Estimates for the tetrad discrimination protocol with 16 correct 
## answers in 49 trials. One-sided p-value and 80 % two-sided confidence 
## intervals are based on the 'exact' binomial test.  
##  
##         Estimate Std. Error  Lower  Upper 
## pc        0.3333         NA 0.3333 0.4269 
## pd        0.0000         NA 0.0000 0.1403 
## d-prime   0.0000         NA 0.0000 0.7407 
##  
## Result of difference test: 
## 'exact' binomial test:  p-value = 0.5933  
## Alternative hypothesis: d-prime is greater than 0 

we see the reported difference test p-value. The actual p-value for the difference test is not 
known from this but could be found to be 0.01333 from: 

discrim(16, 49, conf.level = 0.80, method = "tetrad",  
        test="similarity", pd0 = 0.2407126) 

##  
## Estimates for the tetrad discrimination protocol with 16 correct 
## answers in 49 trials. One-sided p-value and 80 % two-sided confidence 
## intervals are based on the 'exact' binomial test.  
##  
##         Estimate Std. Error  Lower  Upper 
## pc        0.3333         NA 0.3333 0.4269 
## pd        0.0000         NA 0.0000 0.1403 
## d-prime   0.0000         NA 0.0000 0.7407 
##  
## Result of similarity test: 
## 'exact' binomial test:  p-value = 0.01333  
## Alternative hypothesis: pd is less than 0.2407 

What if we finally did out study with a larger n than planned, eg. using n=100? We couldn't find 
the critical value from the difference test anymore: 

findcr(100, alpha = 0.2, p0 = 1/3 ) 

## [1] 38 
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findcr(100, alpha = 0.1, p0 = 1/3, test = "similarity", pd0 = 0.2407126) 

## [1] 42 

So, properly with 42 or less one would declare similarity, and not with just 37 or less. 
But the analysis from sensR can be used no matter what n was chosen and used, e.g. with the 
outcome x=42: 

discrim(42, 100, conf.level = 0.80, method = "tetrad",  
        test="similarity", pd0 = 0.2407126) 

##  
## Estimates for the tetrad discrimination protocol with 42 correct 
## answers in 100 trials. One-sided p-value and 80 % two-sided confidence 
## intervals are based on the 'exact' binomial test.  
##  
##         Estimate Std. Error  Lower  Upper 
## pc         0.420    0.04936 0.3535 0.4890 
## pd         0.130    0.07403 0.0302 0.2335 
## d-prime    0.711    0.21733 0.3335 0.9827 
##  
## Result of similarity test: 
## 'exact' binomial test:  p-value = 0.08415  
## Alternative hypothesis: pd is less than 0.2407 

The power of the n=100 similarity test could also be easily found: 

d.primePwr(d.prime0=1, sample.size = 100, method = "tetrad", alpha=0.1,  
           test="similarity", d.primeA = 0) 

## [1] 0.9724325 

Analysing replicated difference test 

When N assessors/consumers each performed K discrimination tests we face the additional 
challenge in the data analysis that persons may be heterogeneous in their response. The betabin 
function in sensR offers as well the standard beta-binomial as the corrected beta-binomial 
analysis of replicated data. For paired comparison data where the natural alternative is two-
tailed the standard beta-binomial would be the natural choice. The natural model for the one-
tailed setting corresponding to the standard assumption of equal perceptual variability in test 
and reference products is the corrected beta-binomial, which is also the default choice by the R-
function betabin. 

Before the analysis is exemplified, it is illustrated what the effect of a replicated design could be 
by simulations using the sensR simulation function discrimSim. The results of having 15 
assessors doing each 10 tetrad test in a dprime=1 scenario with a latent standard deviation of 
individual dprimes of 1 could be simulated by the following: 

discrimSim(15, 10, d.prime = 1, method = "tetrad", sd.indiv=1) 
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##  [1]  2  6  4  0  5  6  9  8  7 10  6  5  8  3  7 

giving the number of correct answers (out of 10) for each of the 15 assessors. In four different 
heterogeneity scenarios it could look as follows: 

 

In the top left plot the variability seen is what could be called "usual binomial" variability, 
whereas the other three plots show an increasing level of so-called "over-dispersed" data. A 
proper analysis will estimate as well the average dprime-level as well as the (extra) variability. 
The model used for the simulations in discrimSim is in fact not the corrected beta-binomial 
model, but rather a latent random varying random d-prime model with the restriction that the 
individual d-prime could never be lower than 0. 

To do the analysis of replicated data the data has to be stored in a matrix or a data.frame with 
two columns; first column containing the number of success and the second the total number of 
tests for each assessor. The number of rows should correspond to the number of assessors. In the 
following the example data from Næs et al (2010) is analysed as if it was the result of tetrad tests, 
corresponding to 𝑁𝑁 = 15 assessors each having performed 𝐾𝐾 = 12 tetrad tests: 

#  Replicated data from the Næs et al book: 
x <- c(2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6, 10, 11) 
X2 <- cbind(x, 12) 
 
# Analyzed as tetrad data 
summary(betabin(X2, method = "tetrad"),  level = 0.9) 

##  
## Chance-corrected beta-binomial model for the tetrad protocol 
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## with 90 percent confidence intervals 
##  
##         Estimate Std. Error  Lower  Upper 
## mu        0.0978     0.0660 0.0000 0.2064 
## gamma     0.6252     0.2061 0.2862 0.9641 
## pc        0.3985     0.0440 0.3333 0.4709 
## pd        0.0978     0.0660 0.0000 0.2064 
## d-prime   0.6111     0.2173 0.0000 0.9161 
##  
## log-likelihood:  -30.9817  
## LR-test of over-dispersion, G^2: 13.0534 df: 1 p-value: 0.0003027  
## LR-test of association, G^2: 15.492 df: 2 p-value: 0.0004325 

The corrected beta-binomial model has two unknown parameters the mean 𝜇𝜇 and the scale 𝛾𝛾 
expressing the over-dispersion and they are estimated by maximum likelihood. The mean is the 
same as 𝑝𝑝𝑑𝑑 and can then be transformed to as well the 𝑝𝑝𝑐𝑐 as the dprime scale through the 
relevant psychometric function. Similarly the standard so-called Wald type confidence intervals 
for all the parameters are found from classical approximate likelihood theory. The hypothesis 
test for no product difference is a joint test for the mean being at the guessing level 1/3 and the 
over-dispersion being non-existent. The test-statistic is in this case 15.492 and a p-value based 
on the 𝜒𝜒2(2)-distribution is reported to be 0.0004325. 

It is illustrative to compare with the "naive" analysis, where all data are simply pooled across 
persons: 

discrim(sum(x), 180, method = "tetrad", conf.level = 0.9) 

##  
## Estimates for the tetrad discrimination protocol with 70 correct 
## answers in 180 trials. One-sided p-value and 90 % two-sided confidence 
## intervals are based on the 'exact' binomial test.  
##  
##         Estimate Std. Error  Lower  Upper 
## pc       0.38889    0.03634 0.3333 0.4525 
## pd       0.08333    0.05450 0.0000 0.1787 
## d-prime  0.56191    0.19206 0.0000 0.8455 
##  
## Result of difference test: 
## 'exact' binomial test:  p-value = 0.0678  
## Alternative hypothesis: d-prime is greater than 0 

The hypothesis test part of the naive analysis can be argued to be valid as the null distribution is 
the right one. It becomes clear from the above though, that it would not be the most powerful 
analysis in cases with high levels of heterogeneity as here. The replicated analysis provides an 
extremely smaller p-value for detection of a product difference. This appears meaningful for 
these data where two of the assessor show strong effects with 10 and 11 correct out of 12. 
Having two out of 15 assessors showing such extreme data for 12 replications would only happen 
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very rarely if the null hypothesis of no product diffence (and hence also no extra variation) were 
true. 

Also compare the widths of the confidence intervals for the dprime: They become wider in the 
replicated analysis, as expected, or at least as expected when it comes to the upper limit, due to 
the extra variability. Generally, the confidence intervals from the naive analysis cannot be used, 
as they do not incorporate the individual heterogeneity and hence are based on potentially 
wrong assumptions of independence/homogeneity. In fact the lower confidence limits provided 
in the replicated analysis is counter intuitive: In spite of a highly significant difference result, the 
interval includes 0! This illustrates one of the strong limitations of the methodological status quo 
of replicated difference testing analysis: It is entirely based on the so-called "asymptotic 
likelihood theory". The hypothesis tests are using 𝜒𝜒2-distributions and the confidence intervals 
are classical normal based ±𝑧𝑧1−𝛼𝛼/2𝑆𝑆𝑆𝑆 versions. And no one investigated how good these methods 
really are for various values of 𝑁𝑁 and 𝐾𝐾. For sure, many times the confidence intervals would not 
even be estimable, and even when they are, they are likely off the nominal coverage levels. Also 
the actual type I levels of the hypothesis tests are likely off the nominal levels. This could easily 
be investigated by simulation or enumeration studies. For e.g. 𝑁𝑁 = 20 and 𝐾𝐾 = 2 such (yet 
unpublished) studies show that the actual type 1 level of the 𝜒𝜒2(2) (nominal) level 𝛼𝛼 = 0.05 test 
is only around 1%. And the proper level 𝛼𝛼 = 0.05 critical value for the likelihood ratio statistic is 
around 3.41 rather than the 5.99 from the 𝜒𝜒2(2)-distribution. The field needs improved analysis 
methods for replicated data for these to be used more substantially, and the recommended "best 
practice" otherwise given in this book, that replicated data should not be used for similarity 
purposes, is meaningfull in light of this. 

With proper developed analysis tools, replicated data could be used for as well discrimination as 
similarity purposes: If we were completely on top of the Type I and II errors and confidence 
intervals, we would not do errornous analysis for either purpose. Improved difference test 
hypothesis testing for replicated data was allready discussed by Meyners (2007a) and Meyners 
(2007b), but the full methodology including the link to Thurstonian interpretation of the results 
including confidence intervals and as well difference test as similarity test approaches and power 
and sample size considerations still needs to be completely developed and implemented. 

Link to more general Thurstonian generalized linear modelling and dprime 
comparisons 

The unreplicated analyses provided above for any of the supported protocols by the use of the 
discrim function corresponds in generic statistical terminology to a "one-sample" analysis of 
proportions data. And the dprime estimation is a way to "link" the underlying sensory scale to the 
proportions scale through the psychometric function. In Brockhoff and Christensen (2010) it is 
illustrated how this in fact is exactly the same as what in statistics is called "generalized linear 
models" (glm), which in short is the name for a way to do everything which can be done in 
normal distribution based linear modelling (two- and multisample comparisons, multifactorial 
ANOVA, regression, ANCOVA etc) for other types of responses and probability distributions, by 
expressing the linear mean part of the model for some non-linear link function of the mean of the 
actual data distribution. For binomial type data like treated here, well known examples of this are 
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logistic and probit regression type models where the logit (𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝/(1 − 𝑝𝑝))) and probit 𝛷𝛷−1(𝑝𝑝) 
are the "link functions". In base R the function lm (=linear model) is the function that can analyze 
data based on any one of all the mentioned normal based linear models, and similarly the glm 
function can analyze data from such extended collection of distributions and settings. 

The glm function in base R offers through the binomial family object a number of different 
potential non-linear link functions for the analysis of binomial data. Also the glm function allows 
for user specified link functions, if they are implemented in the right way. In sensR the various 
protocols supported in the discrim function, that is, currently 12 different ones, cf. Table 1, are 
implemented in such a way that the inverse psychometric functions can be used as generic link 
functions in an analysis by the glm function. In Brockhoff and Christensen (2010) this was only 
explicitly mentioned for the four original protocols supported by the discrim function. Now it 
holds for all 12 of them. 

Let us re-analyze the (artifically) constructed experimental data from Brockhoff and Christensen 
(2010) as if it was the results of 160 tetrad tests: 80 males and 80 females were randomly 
allocated into 4 groups of 20 each. Each two set of groups then tested one of four products versus 
a reference product. The four products came with an increasing concentration level of some kind: 

## Generate the data: 
data <- expand.grid(conc = 1:4, gender = c("Males", "Females")) 
data$correct <- c(9, 11, 13, 14, 13, 14, 16, 18) 
data$total <- rep(20, 8) 
data$concGrp <- factor(data$conc) 
 
## View data: 
data 

##   conc  gender correct total concGrp 
## 1    1   Males       9    20       1 
## 2    2   Males      11    20       2 
## 3    3   Males      13    20       3 
## 4    4   Males      14    20       4 
## 5    1 Females      13    20       1 
## 6    2 Females      14    20       2 
## 7    3 Females      16    20       3 
## 8    4 Females      18    20       4 

So one approach could be to carry out 8 separate analyses with 𝑛𝑛 = 20 in each analysis, e.g. by 8 
calls to the discrim function. These 8 dprimes and their standard errors would also come 
directly out of the following glm analysis, where the option family = tetrad is used within the 
generic glm function of R: 

## Fit Inital  model: 
glm0 <- glm(cbind(correct, total - correct) ~ gender:concGrp - 1, data, 
             family = tetrad) 
summary(glm0) 
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##  
## Call: 
## glm(formula = cbind(correct, total - correct) ~ gender:concGrp -  
##     1, family = tetrad, data = data) 
##  
## Deviance Residuals:  
## [1]  0  0  0  0  0  0  0  0 
##  
## Coefficients: 
##                        Estimate Std. Error z value Pr(>|z|)     
## genderMales:concGrp1     0.8357     0.4396   1.901   0.0573 .   
## genderFemales:concGrp1   1.5307     0.3628   4.219 2.45e-05 *** 
## genderMales:concGrp2     1.1950     0.3763   3.175   0.0015 **  
## genderFemales:concGrp2   1.7045     0.3656   4.662 3.14e-06 *** 
## genderMales:concGrp3     1.5307     0.3628   4.219 2.45e-05 *** 
## genderFemales:concGrp3   2.0946     0.3907   5.361 8.29e-08 *** 
## genderMales:concGrp4     1.7045     0.3656   4.662 3.14e-06 *** 
## genderFemales:concGrp4   2.6326     0.4686   5.618 1.93e-08 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 9.0733e+01  on 8  degrees of freedom 
## Residual deviance: 1.5543e-15  on 0  degrees of freedom 
## AIC: 41.85 
##  
## Number of Fisher Scoring iterations: 4 

The model syntax notation using ~ gender:concGrp - 1 means that each of the 8 groups is 
separated and "no intercept" is estimated. This is linked to basic ANOVA parametrizations and 
simply ensures that the results are summarized directly for each of the 8 groups, and not by some 
kind of contrasts. So this is in fact an 8 group one-way ANOVA analysis using the inverse tetrad 
psychometric function as the link function to ensure that the results are provided directly with a 
tetrad dprime interpretation. The two-way ANOVA decomposition could also be easily carried 
out following exatly the way this would be done for regular ANOVA type data: 

## Fit Inital  model again: 
glm0 <- glm(cbind(correct, total - correct) ~ gender*concGrp, data, 
             family = tetrad) 
anova(glm0, test = "Chisq") 

## Analysis of Deviance Table 
##  
## Model: binomial, link: Link for the unspecified tetrad test 
##  
## Response: cbind(correct, total - correct) 
##  
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## Terms added sequentially (first to last) 
##  
##  
##                Df Deviance Resid. Df Resid. Dev Pr(>Chi)   
## NULL                               7    13.0505            
## gender          1   5.6361         6     7.4145  0.01759 * 
## concGrp         3   7.0893         3     0.3251  0.06910 . 
## gender:concGrp  3   0.3251         0     0.0000  0.95523   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

In the glm universe "ANODE" (analysis of deviance) tables are used to summarize various test 
results similar to the use of ANOVA tables. We see that the interaction is not significant, genders 
do not react differently to the four products. It turns out that the product differences can be fully 
described by a regression model as a linear function of the concentration levels but with two 
different (gender dependent) intercepts. First, this simpler model is fitted and compared to the 
general 8-parameter model, and found to fit the data adequately: (p-value is 0.9965) 

## Fit final model: 
glm1 <- glm(cbind(correct, total - correct) ~ gender + conc, data, 
             family = tetrad) 
## Compare with inital model 
anova(glm1, glm0, test = "Chisq") 

## Analysis of Deviance Table 
##  
## Model 1: cbind(correct, total - correct) ~ gender + conc 
## Model 2: cbind(correct, total - correct) ~ gender * concGrp 
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi) 
## 1         5    0.35567                      
## 2         0    0.00000  5  0.35567   0.9965 

Next we study the results of this analysis: 

summary(glm1) 

##  
## Call: 
## glm(formula = cbind(correct, total - correct) ~ gender + conc,  
##     family = tetrad, data = data) 
##  
## Deviance Residuals:  
##        1         2         3         4         5         6         7   
##  0.01198   0.10879   0.14734  -0.26259   0.10702  -0.30269  -0.11248   
##        8   
##  0.37055   
##  
## Coefficients: 
##               Estimate Std. Error z value Pr(>|z|)   
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## (Intercept)     0.5070     0.3841   1.320   0.1869   
## genderFemales   0.6615     0.2759   2.398   0.0165 * 
## conc            0.3234     0.1262   2.563   0.0104 * 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 13.05053  on 7  degrees of freedom 
## Residual deviance:  0.35567  on 5  degrees of freedom 
## AIC: 32.206 
##  
## Number of Fisher Scoring iterations: 3 

And apart from the difference between gender dprimes of 0.66 the dprime generally is expected 
to increase with 0.32 for each increasing concentration unit (within the range of the data). 

This little example serves as an illustration of how the sensR protocol implementations on top of 
all the detailed one-sample analyses provided also provides the practical connection to generic 
statistical modelling which is often called for when having carried out larger research or 
industrial experimental studies. And the connection allows for maintaining the Thurstonian 
model and the proper interpretation of the results in light of this. In several developments and 
uses of the ordinal package similar connections between Thurstonian modelling, complex 
experimental settings and generic statistical modelling including mixed model versions was 
done, cf. e.g. Christensen at al (2011) and Christensen at al (2012). The latter lead to the 
implementation of the 2-AC protocol in sensR via the functions twoAC and twoACpwrfuntions. The 
use of mixed model versions for 2-AFC data in replicated multi-product experiments is 
investigated in Linander et al (2017a). 

The sensR package in addition offers detailed, novel and improved tools for the one-way ANOVA 
type comparisons of two or more d-primes from potentially different protocols in the functions 
dprime_test, dprime_compare and dprime_table. We refer to Linander et al (2017) for details 
and examples of this. 

Analysis of A-not A tests 
The basic A-not A or Yes/No testing paradigm is probably the most well known in Signal 
Detection Theory (SDT), MacMillan and Creelman (2005). Consider an example with 8 "yes"-
responses to yes-samples, 1 "yes"-responses to no-samples, 17 "no"-response to yes-samples and 
24 "no"-responses to no-samples. The classical SDT approach of finding the d-prime would then 
be the subtraction of the two standard normal quantiles corresponding to the hit rate 𝐻𝐻 = 8/25 
and false alarm rate 𝐹𝐹𝐹𝐹 = 1/25: 

H <- 8/(8+17) 
FA <- 1/(1+24) 
zH <- qnorm(H) 
zFA <- qnorm(FA) 
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## d-prime: 
zH - zFA  # d' 

## [1] 1.282987 

Which can also be found like this by the SDT function of sensR: 

data <- rbind(c(8, 17), 
              c(1, 24)) 
SDT(data) 

##   z(Hit rate) z(False alarm rate)  d-prime 
## 1  -0.4676988           -1.750686 1.282987 

The basic A-not A model and analysis was also in Brockhoff and Christensen (2010) identified as 
a probit version of a generalized linear model and implemented in sensR in its own function, 
which offers improved likelihood based confidence intervals and some plotting features: 

(m1 <- AnotA(8, 25, 1, 25)) 

##  
## Call:  AnotA(x1 = 8, n1 = 25, x2 = 1, n2 = 25)  
##  
## Results for the A-Not A test: 
##  
##         Estimate Std. Error     Lower    Upper    P-value 
## d-prime 1.282987  0.5243127 0.2553532 2.310621 0.01160771 

## likelihood based confidence intervals: 
confint(m1)[2,] 

## Waiting for profiling to be done... 

##     2.5 %    97.5 %  
## 0.3375385 2.4593495 

par(mfrow = c(1, 2)) 
ROC(m1) 
plot(m1, main = "") 
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 The p-value 
provided by the AnotA function is the one-tailed Fisher's Exact Test p-value and the d-prime 
confidence interval is the Wald based using the standard error also given. The confintcall 
provides the better likelihood based confidence interval for d-prime. The left plot shows the 
model estimate of the so-called ROC-curve, see more details in the next section, as the solid curve. 
The dotted curves show the 95% confidence interval of the ROC curve. The plot to the right is just 
showing the perceptual distributionson the standard normal scale - the shift in the distributions 
is the d-prime value 1.28. 

A-not A with sureness 

Sometimes the A-not A protocol is extended by the use of a sureness scale with e.g. three levels of 
sureness for each of the two possible reponses. This then leads to a 6-level ordinal response 
scale. In Christensen et al. (2011) it is covered in quite some detail how the Thurstonian model in 
this case directly becomes a so-called cumulative link model with the probit link, and using the 
clm and clmm functions of the ordinal package, Christensen (2015) can fit these models including 
all sorts of extended versions of the basic Thurstonian model inluding mixed model versions. 
Below a simple example of this is shown as part of the same-diff with sureness analysis. 

Analysis of Same - different tests 

Case study 1, Chapter 2: The Same Different Test 

The basic 𝜒𝜒2-analysis of the same different data can be done by one of the inbuilt R-functions for 
this either in the uncorrected version as found in Chapter 2 or the so-called continuity corrected 
version, where the 𝜒𝜒2-distributional assumption is usually better:(The latter is the default choice 
by the R function) 
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# The standard uncorrected pearson test: 
chisq.test(matrix(c(21, 21, 9, 33), ncol=2), correct=F) 

##  
##  Pearson's Chi-squared test 
##  
## data:  matrix(c(21, 21, 9, 33), ncol = 2) 
## X-squared = 7.4667, df = 1, p-value = 0.006285 

# The standard corrected pearson test: 
chisq.test(matrix(c(21, 21, 9, 33), ncol=2)) 

##  
##  Pearson's Chi-squared test with Yates' continuity correction 
##  
## data:  matrix(c(21, 21, 9, 33), ncol = 2) 
## X-squared = 6.2741, df = 1, p-value = 0.01225 

The reported p-value is the two-tailed version, so to get the proper one-tailed p-value for the 
relevant hypothesis test in the same different setting, this should be divided by 2, so p-value = 
0.0061 (or 0.0031). The critical value for the one-tailed 𝛼𝛼 = 0.05 𝜒𝜒2-test could also be easily 
found as: 

qchisq(0.9, 1) 

## [1] 2.705543 

The same different test is treated in much detail in Christensen & Brockhoff (2009), where a 
thorough thurstonian modelling including likelihood based analysis approach is given. All of this 
was implemented in some easy to use functions within sensR. Some of the benefits of this are that 
improved likelihood confidence intervals are available, which also works for extreme data cases 
(e.g. all same or all diff outcomes), and of course the Thurstonian d-prime together with the "tau" 
decision criterion are estimated including CIs. 

The same-diff analysis is simply carried out in R as follows: 

sdres <- samediff(21, 21, 9, 33) 
summary(sdres) 

##  
## Call: 
## samediff(nsamesame = 21, ndiffsame = 21, nsamediff = 9, ndiffdiff = 33) 
##  
## Coefficients 
##       Estimate Std. Error  Lower  Upper P-value     
## tau     0.9539     0.1717 0.6460 1.3157 < 2e-16 *** 
## delta   1.9841     0.4157 1.0213 2.7626 0.00288 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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##  
## Log Likelihood: -50.9345     AIC: 105.8691 

# Sensitivity, AUC value with CI: 
AUC(sdres$coef[2], sdres$se[2]) 

## AUC: 0.919684  
## 0.95% CI: [0.7958242, 0.9760976] 

Note how the uncorrected one-tailed 𝜒𝜒2 based p-value rounded becomes 0.003 just like the 
reported p-value for the delta (d-prime) in the R-ouput. The AUC-value is, like the dprime, 
another measure of difference between products, also called the sensitivity, and is the probability 
that a random sample from the low-intensity distribution has a lower intensity than a random 
sample from the high-intensity distribution, and is linked to the dprime in a simple way, 
𝛷𝛷(𝑑𝑑′/√2): 

pnorm(1.9841/sqrt(2)) 

## [1] 0.9196872 

The power of same-diff tests is also available, e.g. like: 

samediffPwr(n = 100, tau = 1, delta = 2.5, Ns = 10, Nd = 10) 

## [1] 0.56 

Case study 2, Chapter 2: The Same Different Test with sureness 

The sureness-scale used in this case produces two-sample data on the ordered categorical, 
ordinal, scale. Such data can be analyzed by the "R index method". The R-index express Area 
Under the Curve of the empirical Receiver Operator Charateristics (ROC) curve, based on the 
accumulated hit rates and false alarm rates of the two sample frequencies: 

## Accumulated data: 
FA <-c(0,  1,  2,  6,  8, 16, 36, 36)/36 
H <- c(0, 24, 32, 36, 40, 40, 40, 40)/40 
 
## The empirical ROC curve: 
plot(FA, H) 
lines(FA, H) 
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The dotted diagnoal line represents the pattern that the ROC curve would take if the two sets of 
proportions were exactly the same. It turns out that the R-index is related to the non-parametric 
two-sample Wilcoxon rank sum test, also called Mann-Whitney's test, such that one can find the 
R-index and get the corresponding p-value from basic routines providing this test: 

## Constructing the two-sample ordinal data from the frequencies 
x <- rep(1:6, c(24,8,4,4,0,0)) 
y <- rep(1:6, c(1,1,4,2,8,20)) 
 
## Using inbuilt Wilcoxon function: 
(U <- wilcox.test(y, x, correct=F)) 

##  
##  Wilcoxon rank sum test 
##  
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## data:  y and x 
## W = 1372, p-value = 2.767e-12 
## alternative hypothesis: true location shift is not equal to 0 

## Finding the R-index from that, U/(n1*n2) 
(Rindex <- U$statistic/(length(x)*length(y))) 

##         W  
## 0.9527778 

To get the relevant one-tailed p-value the reported p-value should be divided by 2. 

Two-sample ordinal data like this could also be analysed as "truly ordinal" (a bit more 
"Thurstonian") using the ordinal-package, Christensen (2015). For this, the data should be on 
the "long" form and the response should be stored as a factor: 

library(ordinal) 
# Making the data frame: 
mydata <- cbind(c(x, y), c(rep("Same", 40), rep("Diff", 36))) 
mydata <- as.data.frame(mydata) 
mydata$V1 <- ordered(mydata$V1) 
 
# Analysing by ordinal regression model (cumulative link model, clm): 
ordinal_res <- clm(V1~V2, data=mydata, link="probit") 
summary(ordinal_res) 

## formula: V1 ~ V2 
## data:    mydata 
##  
##  link   threshold nobs logLik AIC    niter max.grad cond.H  
##  probit flexible  76   -92.45 196.90 5(0)  9.46e-11 3.5e+01 
##  
## Coefficients: 
##        Estimate Std. Error z value Pr(>|z|)     
## V2Same  -2.4912     0.3309  -7.528 5.16e-14 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Threshold coefficients: 
##     Estimate Std. Error z value 
## 1|2 -2.20082    0.31231  -7.047 
## 2|3 -1.65069    0.28261  -5.841 
## 3|4 -1.12916    0.25133  -4.493 
## 4|5 -0.69041    0.22775  -3.031 
## 5|6 -0.09869    0.20725  -0.476 

# Finding the AUC from the (apparent) d-prime with CI: 
AUC(-ordinal_res$coefficients[6], 0.3856) 
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## AUC: 0.9609293  
## 0.95% CI: [0.8901205, 0.9891614] 

In the clm-output is seen a "d-prime" of 2.49, which would be the d-prime, if the data had been 
"A-not-A with sureness data". And note how the AUC extracted from this number is very close to 
the non-parametric R-index found from these data. So for such data the R-index has a relevant 
Thurstonian interpretation. But this will not be the right d-prime for the same-diff protocol.  

But actually the "same-diff-with-sureness" is just another name for unspecified "Degree-of-
difference, DOD" -testing, which is covered in Ennis and Christensen (2015), and implemented as 
a part of the sensR package: 

# Analysing as a Degree-of-difference, DOD data: 
dodresults <- dod(mydata$V1[mydata$V2=="Same"], mydata$V1[mydata$V2=="Diff"]) 
print(dodresults) 

##  
## Results for the Thurstonian model for the Degree-of-Difference method  
##  
## Confidence level for 2-sided profile likelihood interval: 95% 
##  
##         Estimates Std. Error Lower Upper 
## d.prime     4.077     0.4388 3.237 4.959 
##  
## Boundary coefficients: 
##                 1      2      3      4      5 
## Estimate   1.2035 1.8085 2.4646 3.0721 3.9212 
## Std. Error 0.1956 0.2458 0.3038 0.3671 0.4339 
##  
## Data: 
##             1 2 3 4 5  6 
## same-pairs 24 8 4 4 0  0 
## diff-pairs  1 1 4 2 8 20 
##  
## Results of discrimination test: 
## Likelihood Root statistic = 8.111544, p-value = 2.499e-16 
## Alternative hypothesis: d-prime is greater than 0 

## The AUC 
AUC(dodresults$d.prime, dodresults$coefficients[2]) 

## AUC: 0.9980275  
## 0.95% CI: [0.9885301, 0.999759] 

Note how the d-prime is now estimated considerably larger and also the Sensitivity (AUC).  

This appears to a more informative analysis of the same-diff-with-sureness data than merely 
finding the R-index and noting that it is more extreme than a critical value from a table. 
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The (simulation based) power of the DOD is also available, as well for difference test: (results not 
shown) 

dodPwr(d.primeA=1, d.prime0=0, ncat=6, sample.size=100, nsim=1000, 
       alpha=.05, method.tau="LR.max", statistic="likelihood") 

as for similarity testing: 

dodPwr(d.primeA=0, d.prime0=1, ncat=6, sample.size=100, nsim=1000, 
       alpha=.05, method.tau="LR.max", statistic="Pearson", 
       alternative="similarity") 

Difference from Control (DFC) data 
In chapter 11 DFC protocols and data are discussed. The scales exemplifed are all ordinal scales 
of some kind. The analysis of such data could be with or without formal Thurstonian model 
embedding. Without any attempts of using Thurstonian models such data could either be naively 
integer scored and then analyzed by normal based linear models using standard linear model 
functionality of R, or they could in a somewhat less restrictive approach be analyzed by ordinal 
regression models using e.g. the R-package ordinal. The former is probably more common than 
the latter. The former has the benefit that it becomes ANOVA analysis well known from e.g. QDA-
type data. So people would not be unfamiliar with the need and tools to take "repeated 
measures" issues into account. That is, including effects, and potentially interaction effects, 
related to assessors as random effects leading to the relevant mixed model ANOVA for the design 
used. Such analysis makes some basic assumption about the scales, that it is (at least) on interval 
scale, i.e. that the naive integer scoring makes good sense. This assumption is not imposed when 
such data is analyzed by the ordinal package. And in fact the ordinal package offers also quite 
general mixed model versions of these models to take repeated measures structures into account 
in a similar way to the normal mixed linear models. And using much the same syntax as linear 
mixed models in R, see e.g. Christensen & Brockhoff (2013). But admittedly, such models and the 
corresponding analysis is more complex to comprehend, and likely for that reason not used as 
much as the linear ones. A particularly nice feature about the implementation of this in the 
ordinal package is the fact, that the hypothesis of equidistant thresholds between categories, 
necessary for the scale assumption needed to do linear model analysis is easily tested by a single 
option choice, example given below. 

For a single product versus control protocol the unspecified DFC protocol is the same as the 
already discussed degree-of-difference, and we saw above how we could analyse such data in a 
formal Thurstonian framework using the dod-functionality of sensR, which in fact is based on a 
symmetric threshold ordinal regression model. 

Case study 1, Chapter 11 

Let us re-analyze the two data sets from Chapter 11, first the paired t-test, which then 
corresponds to a naive scoring approach where dependencies are taken into account properly by 
the differencing: 



31 
 

## Reading the data from a file with same structure as table 1, Chapter 11  
DFCdata1 <- read.table("DFCdata1.txt", header = TRUE, sep =";") 
t.test(DFCdata1$Dif) 

##  
##  One Sample t-test 
##  
## data:  DFCdata1$Dif 
## t = 1.8198, df = 59, p-value = 0.07387 
## alternative hypothesis: true mean is not equal to 0 
## 95 percent confidence interval: 
##  -0.02157856  0.45491189 
## sample estimates: 
## mean of x  
## 0.2166667 

The same could have been achieved by a mixed model for the raw data as follows: 

library(lmerTest) 
 
## Making a "long version"" of the same data  
library(tidyr) 
DFCdata1_long <- gather(DFCdata1[,1:3], value = score,  
                        key = Product, Test, Control) 
DFCdata1_long$Assessor <- factor(DFCdata1_long$Assessor) 
DFCdata1_long$Product <- factor(DFCdata1_long$Product) 
 
## Analysing by mixed model, random assessor effect 
lmer1 <- lmer(score ~ Product + (1|Assessor), data = DFCdata1_long) 
anova(lmer1) 

## Analysis of Variance Table of type III  with  Satterthwaite  
## approximation for degrees of freedom 
##         Sum Sq Mean Sq NumDF DenDF F.value  Pr(>F)   
## Product 1.4083  1.4083     1    59  3.3115 0.07387 . 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Here we used the packages lmerTest and lme4 for the linear mixed model analysis, Kuznetosva et 
al (2016), Kuznetosva et al (2017) and Bates et al (2015). Now we could make the similar 
analysis in an ordinal way: 

library(ordinal) 
DFCdata1_long$scoreOrd <- ordered(DFCdata1_long$score)  
 
clmm1 <- clmm(scoreOrd ~ Product + (1|Assessor), data = DFCdata1_long,  
              link = "probit") 
summary(clmm1) 
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## Cumulative Link Mixed Model fitted with the Laplace approximation 
##  
## formula: scoreOrd ~ Product + (1 | Assessor) 
## data:    DFCdata1_long 
##  
##  link   threshold nobs logLik  AIC    niter    max.grad cond.H  
##  probit flexible  120  -133.01 278.02 289(825) 1.01e-04 2.2e+01 
##  
## Random effects: 
##  Groups   Name        Variance Std.Dev. 
##  Assessor (Intercept) 0.5621   0.7498   
## Number of groups:  Assessor 60  
##  
## Coefficients: 
##             Estimate Std. Error z value Pr(>|z|)   
## ProductTest   0.3545     0.2122   1.671   0.0948 . 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Threshold coefficients: 
##     Estimate Std. Error z value 
## 0|1  -1.7383     0.3116  -5.579 
## 1|2   0.2422     0.1892   1.280 
## 2|3   1.9119     0.2995   6.383 
## 3|4   3.1425     0.5244   5.992 

We see that the p-value is 0.0948 - not far from the paired t-test p-value. The four category 
thresholds are not estimated exactly equidistant, but they are also estimated with uncertainties, 
so let's compare with an analysis with equidistant thresholds: 

clmm2 <- clmm(scoreOrd ~ Product + (1|Assessor), data = DFCdata1_long,  
              link = "probit", threshold = "equidistant") 
summary(clmm2) 

## Cumulative Link Mixed Model fitted with the Laplace approximation 
##  
## formula: scoreOrd ~ Product + (1 | Assessor) 
## data:    DFCdata1_long 
##  
##  link   threshold   nobs logLik  AIC    niter    max.grad cond.H  
##  probit equidistant 120  -134.10 276.21 146(425) 9.27e-07 2.5e+01 
##  
## Random effects: 
##  Groups   Name        Variance Std.Dev. 
##  Assessor (Intercept) 0.4835   0.6954   
## Number of groups:  Assessor 60  
##  
## Coefficients: 
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##             Estimate Std. Error z value Pr(>|z|)   
## ProductTest   0.3786     0.2095   1.807   0.0707 . 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Threshold coefficients: 
##             Estimate Std. Error z value 
## threshold.1  -1.5442     0.2460  -6.277 
## spacing       1.7222     0.1968   8.752 

The average threshold spacing is estimated at 1.72. Comparing the log-likelihood values for the 
two models show that −2log𝑄𝑄 = 2(134.10 − 133.01) = 2.18, which is not significant: 

1-pchisq(2.18, 1) 

## [1] 0.1398145 

So the hypothesis of equidistant thresholds cannot be rejected. The p-value for product 
difference 0.0707 in this model is very close to the simple paired t-test p-value. We could actually 
also in a meaningful way analyze these data as DOD-data: 

Controldata <- DFCdata1_long$scoreOrd[DFCdata1_long$Product=="Control"] 
Testdata <- DFCdata1_long$scoreOrd[DFCdata1_long$Product=="Test"] 
dod(Controldata, Testdata) 

##  
## Results for the Thurstonian model for the Degree-of-Difference method  
##  
## Confidence level for 2-sided profile likelihood interval: 95% 
##  
##         Estimates Std. Error  Lower Upper 
## d.prime     1.271     0.3086 0.5375 1.838 
##  
## Boundary coefficients: 
##                  1      2      3      4 
## Estimate   0.14033 1.1682 2.9138 4.4453 
## Std. Error 0.04903 0.1407 0.2862 0.5835 
##  
## Data: 
##            1  2  3 4 5 
## same-pairs 3 30 27 0 0 
## diff-pairs 5 24 21 9 1 
##  
## Results of discrimination test: 
## Likelihood Root statistic = 2.487306, p-value = 0.006436 
## Alternative hypothesis: d-prime is greater than 0 

The d-prime estimate of 1.27 is likely the best estimate given the data, and the tools we have 
available. However, the p-value, very different from above, is not to be trusted as the DOD model 
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and analysis is assuming that the samples are independent, and hence does not take the repeated 
measures structure of this design into account. On the other hand, the large difference in p-values 
cannot be explained purely by the repeated measures issue, as the independent sample ordinal 
based comparison (not shown in detail) has a p-value even larger than the paired analysis. So it is 
quite noteworthy that a proper dod-analysis of some data (they could have been the results of an 
independently designed study) shows a clear significant effect of the relevant test, whereas other 
types of analysis don't. For same-diff and DFC type protocols, it may be worthwile to consider the 
formal Thurstonian model to make sure that the optimal anlaysis is performed. 

Case study 2, Chapter 11 

Then we analyze the 3-product design of case study 2 in Chapter 11: Reading the data, making 
the long version of the data and then, as above, doing the linear anlysis followed by the two 
versions of the ordinal based analysis (without and with equidistant threshold assumption) 

## Reading the data from a file with same structure as table 5, Chapter 11 
DFCdata2 <- read.table("DFCdata2.txt", header = TRUE, sep =";") 
DFCdata2_long <- gather(DFCdata2[,1:4], value = score, 
                        key = Product, C, TestA, TestB) 
DFCdata2_long$Assessor <- factor(DFCdata2_long$Assessor) 
DFCdata2_long$Product <- factor(DFCdata2_long$Product) 
 
## Analysing by mixed model, random assessor effect 
lmer2 <- lmer(score ~ Product + (1|Assessor), data = DFCdata2_long) 
anova(lmer2) 

## Analysis of Variance Table of type III  with  Satterthwaite  
## approximation for degrees of freedom 
##         Sum Sq Mean Sq NumDF DenDF F.value    Pr(>F)     
## Product 36.796  18.398     2    70  12.013 3.271e-05 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

difflsmeans(lmer2) 

## Differences of LSMEANS: 
##                       Estimate Standard Error   DF t-value Lower CI 
## Product C - TestA          1.2         0.2917 70.0    4.09    0.613 
## Product C - TestB         -0.1         0.2917 70.0   -0.29   -0.665 
## Product TestA - TestB     -1.3         0.2917 70.0   -4.38   -1.859 
##                       Upper CI p-value     
## Product C - TestA        1.776   1e-04 *** 
## Product C - TestB        0.498     0.8     
## Product TestA - TestB   -0.696  <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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## The ordinal analysis 
DFCdata2_long$scoreOrd <- factor(DFCdata2_long$score, ordered = TRUE)  
 
clmm1 <- clmm(scoreOrd ~ Product + (1|Assessor), data = DFCdata2_long,  
              link = "probit") 
summary(clmm1) 

## Cumulative Link Mixed Model fitted with the Laplace approximation 
##  
## formula: scoreOrd ~ Product + (1 | Assessor) 
## data:    DFCdata2_long 
##  
##  link   threshold nobs logLik  AIC    niter     max.grad cond.H  
##  probit flexible  108  -163.05 344.11 556(1112) 1.66e-04 8.9e+01 
##  
## Random effects: 
##  Groups   Name        Variance Std.Dev. 
##  Assessor (Intercept) 0.2506   0.5006   
## Number of groups:  Assessor 36  
##  
## Coefficients: 
##              Estimate Std. Error z value Pr(>|z|)     
## ProductTestA  -0.9513     0.2663  -3.573 0.000353 *** 
## ProductTestB   0.1193     0.2545   0.469 0.639070     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Threshold coefficients: 
##       Estimate Std. Error z value 
## -3|-2  -2.6634     0.3955  -6.734 
## -2|-1  -1.7656     0.2781  -6.349 
## -1|0   -0.9514     0.2310  -4.118 
## 0|1    -0.6354     0.2199  -2.889 
## 1|2     0.3199     0.2122   1.508 
## 2|3     2.4882     0.4565   5.451 

clmm2 <- clmm(scoreOrd ~ Product + (1|Assessor), data = DFCdata2_long,  
              link = "probit", 
              threshold = "equidistant") 
summary(clmm2) 

## Cumulative Link Mixed Model fitted with the Laplace approximation 
##  
## formula: scoreOrd ~ Product + (1 | Assessor) 
## data:    DFCdata2_long 
##  
##  link   threshold   nobs logLik  AIC    niter    max.grad cond.H  
##  probit equidistant 108  -181.89 373.78 175(360) 1.21e-06 2.2e+02 
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##  
## Random effects: 
##  Groups   Name        Variance Std.Dev. 
##  Assessor (Intercept) 0.1909   0.4369   
## Number of groups:  Assessor 36  
##  
## Coefficients: 
##              Estimate Std. Error z value Pr(>|z|)     
## ProductTestA -1.00630    0.25842  -3.894 9.86e-05 *** 
## ProductTestB  0.07367    0.24272   0.304    0.761     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Threshold coefficients: 
##             Estimate Std. Error z value 
## threshold.1 -2.81982    0.31457  -8.964 
## spacing      0.83219    0.07486  11.117 

Here we see an example of data where the equidistant threshold assumption is significantly 
wrong: Comparing the log-likelihood values for the two ordinal models shows that −2log𝑄𝑄 =
2(181.89 − 163.05) = 37.68, which is extremely significant: 

1-pchisq(37.68, 1) 

## [1] 8.335481e-10 

So actually the message here would be that the simple mixed linear model analysis is not 
completely valid. Note how the category widths differs from around 0.3, the center one, to 2.2. 
Also note that generally the product effects estimated in the ordinal based analysis corresponds 
to relative effect sizes in the similar linear mixed model, in line with Brockhoff et al (2016) (with 
an opposite sign). For instance, the difference between the evaluation of the blind control and the 
A test product has a mean of 1.2. The residual standard deviation from this model is: 

summary(lmer2)$sigma 

## [1] 1.23753 

so the relative effect size is 1.2/1.23773 = 0.97 and the estimate of this number extracted from 
the clmm1 result is 0.95. So the advantage of the ordinal base analysis is that it does not make 
any assumptions about the scale and the results automatically come on a "d-prime-like" scale. It 
should be remembered, though, that only if there also is a meaningful Thurstonian model, these 
values are "real" dprimes. For blocked/correlated DFC data like this, the sensR package does not 
have the tools for this. 

Ranking data 
Rank data can be modelled and analyzed by all sorts of methods including Thurstonian and 
Bradley-Terry type models, and it is beyond the scope of this chapter to cover all these. In Rayner 
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et al (2005) methods to decompose and visualize sensory rank data in continuation of classical 
non-parametric rank based data analysis are presented, and R scripts for this is available at the 
book website. Examples of relevant R-packages for more model based approaches are the pmr 
package, Lee & Yuo (2015) and the BradleyTerry2 package, Turner & Firth (2012). 

Below we analyze the Chapter 12 case study 1 data by one of the classical rank based methods 
the friedman's test. First the reader is imported, next a long version created and then the 
friedman.test function of base R: 

## Reading the data from a file with same structure as table 10, Chapter 12  
Rankdata1 <- read.table("Rankdata1.txt", header = TRUE, sep =";") 
Rankdata1_long <- gather(Rankdata1, value = score,  
                         key = Product, Sample1, Sample2, Sample3, Sample4) 
Rankdata1_long$Assessor <- factor(Rankdata1_long$Assessor) 
Rankdata1_long$Product <- factor(Rankdata1_long$Product) 
 
## Analysing by Friedman's test 
(fried1 <- friedman.test(score ~ Product | Assessor, data = Rankdata1_long)) 

##  
##  Friedman rank sum test 
##  
## data:  score and Product and Assessor 
## Friedman chi-squared = 36.9, df = 3, p-value = 4.831e-08 

## Doing the post hoc comaprison 
library(PMCMR) 
with(Rankdata1_long, posthoc.friedman.conover.test(score, Product, Assessor,  
                                                   p.adjust="holm")) 

##  
##  Pairwise comparisons using Conover's test for a two-way  
##                     balanced complete block design  
##  
## data:  score , Product and Assessor  
##  
##         Sample1 Sample2 Sample3 
## Sample2 0.54    -       -       
## Sample3 <2e-16  <2e-16  -       
## Sample4 <2e-16  <2e-16  0.71    
##  
## P value adjustment method: holm 

The overall significance and the grouping of the four products in two separate groups is clearly 
seen. Here we used the PMCMR package for the post hoc part, Pohlert (2014), where different 
multiple testing p-value adjustment methods are available. 
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ABX and dual standard data 
Chapters 13 and 14 present the ABX and Dual Standard protocols. None of these are specifically 
supported by dedicated functions in sensR. The dual standard protocol is another example of 
what previously was termed a "basic single proportion of correct" protocol". The guessing 
probability is 1/2 like the duo-trio protocol, so the functions in sensR could be applied, as long as 
the thurstonian parts, dprime related issues, are not used. Or one could simply, as also 
exemplified previously use the exact binomial test function and/or generic binomial confidence 
interval functions. Thurstonian analysis of dual standard data is not provided. For the ABX 
protocol a thorough analysis is given which shows the strength of a computational framework 
like R - only very little is required to perform quite advanced analysis. 

Dual standard case studies 

In Chapter 14 the first case has n=32, which for a difference test then has the following critical 
value: 

findcr(32, p0=1/2) 

## [1] 22 

With the outcome 𝑥𝑥 = 17 we could use the discrim function as described: 

discrim(17, 32, method = "duotrio", conf.level = 0.9) 

##  
## Estimates for the duotrio discrimination protocol with 17 correct 
## answers in 32 trials. One-sided p-value and 90 % two-sided confidence 
## intervals are based on the 'exact' binomial test.  
##  
##         Estimate Std. Error Lower  Upper 
## pc        0.5312    0.08822   0.5 0.6846 
## pd        0.0625    0.17643   0.0 0.3691 
## d-prime   0.5946    0.87291   0.0 1.6241 
##  
## Result of difference test: 
## 'exact' binomial test:  p-value = 0.43  
## Alternative hypothesis: d-prime is greater than 0 

confirming the non-significant result. Remember to ignore the dprime-result row. 

In the second case, with similarity in focus 𝑛𝑛 = 95 was used with 𝑥𝑥 = 58 correct responses. 
Without a pre-specified similarity definition we cannot perform formal similarity test, but we can 
do basic analysis similarly: 

discrim(58, 95, method = "duotrio", conf.level = 0.9) 

##  
## Estimates for the duotrio discrimination protocol with 58 correct 
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## answers in 95 trials. One-sided p-value and 90 % two-sided confidence 
## intervals are based on the 'exact' binomial test.  
##  
##         Estimate Std. Error   Lower  Upper 
## pc        0.6105    0.05003 0.52121 0.6945 
## pd        0.2211    0.10006 0.04243 0.3891 
## d-prime   1.1817    0.31227 0.48679 1.6829 
##  
## Result of difference test: 
## 'exact' binomial test:  p-value = 0.0198  
## Alternative hypothesis: d-prime is greater than 0 

On a 𝛼𝛼 = 0.05 the products would be claimed different, but if simlarity is in focus that test and p-
value is really irrelevant, The relevent number is the upper confidence limit for 𝑝𝑝𝐷𝐷 which is 0.389. 
So we have shown 𝑝𝑝𝑑𝑑 ≤ 0.39 similarity with a 𝛼𝛼 = 0.05 similarity test. 

ABX case studies 

Two data examples are used in Chapter 14. The data is of the same structure as same-diff data: A 
hit rate HA and a false alarm rate FA, e.g. for initial illustrative example used: 

(HA <- 40/50) 

## [1] 0.8 

(FA <- 20/50) 

## [1] 0.4 

qnorm(HA) - qnorm(FA) 

## [1] 1.094968 

The analysis is then carried out by the use of Table A.5.3 in MacMillan and Creelman (2005), 
where the number 𝑧𝑧(𝐻𝐻) − 𝑧𝑧(𝐹𝐹) = 1.095 is used to identify that 𝑝𝑝(𝑐𝑐)𝑢𝑢𝑢𝑢𝑢𝑢 = 0.708 and that the 
dprime is either 1.57 or 1.765 depending on the decision rule (and using linear interpolation). 

The mathematics behind the table is that (equations (9.7), (9.11) and (9.12) in Chapter 9 of 
MacMillan and Creelman (2005)) 

𝑝𝑝(𝑐𝑐)𝑢𝑢𝑢𝑢𝑢𝑢 = 𝛷𝛷((𝑧𝑧(𝐻𝐻) − 𝑧𝑧(𝐹𝐹))/2) 

and 

𝑝𝑝(𝑐𝑐)𝐴𝐴𝐴𝐴𝐴𝐴,𝐼𝐼𝐼𝐼 = 𝛷𝛷(𝑑𝑑/√2) ⋅ 𝛷𝛷(𝑑𝑑/2) + 𝛷𝛷(−𝑑𝑑/√2) ⋅ 𝛷𝛷(−𝑑𝑑/2) 

and 

𝑝𝑝(𝑐𝑐)𝐴𝐴𝐴𝐴𝐴𝐴,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝛷𝛷(𝑑𝑑/√2) ⋅ 𝛷𝛷(𝑑𝑑/√6) + 𝛷𝛷(−𝑑𝑑/√2) ⋅ 𝛷𝛷(−𝑑𝑑/√6) 
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These equations are easily implemented in R via the inbuilt standard normal distribution and 
quantile functions: 

pc_unb <- function(HA, FA){ pnorm((qnorm(HA) - qnorm(FA))/2)} 
pcABX_IO <- function(d){pnorm(d/sqrt(2))*pnorm(d/2) + pnorm(-d/sqrt(2))*pnorm(-d/2
)} 
pcABX_diff <- function(d){pnorm(d/sqrt(2))*pnorm(d/sqrt(6)) + pnorm(-d/sqrt(2))*pn
orm(-d/sqrt(6))} 
 
# Check: 
pc_unb(4/5, 2/5) 

## [1] 0.7079769 

pcABX_IO(1.57) 

## [1] 0.7080253 

pcABX_diff(1.765) 

## [1] 0.7083505 

Now Table A.5.3 is actually the inverse of these functions: For a value of 𝑝𝑝(𝑐𝑐)𝑢𝑢𝑢𝑢𝑢𝑢 it gives the d-
value that corresponds to this. A little Google search tells you how to define the inverse of a 
function in R: 

inverse <-  function (f, lower = -100, upper = 100) { 
  function (y) uniroot((function (x) f(x) - y), lower = lower, upper = upper)[1] 
} 
 
pcABX_IO_inverse <-  inverse(function (x) pcABX_IO(x), 0.01, 100) 
pcABX_diff_inverse <-  inverse(function (x) pcABX_diff(x), 0.01, 100) 

With these, we have now defined the functions that allows us to reconstruct the entire ABX part 
of the Table A.5.3, so we can use these istead of the table to find the dprime-values for a given 
data set, either the differencing version: 

pcABX_diff_inverse(pc_unb(HA, FA)) 

## $root 
## [1] 1.762769 

pcABX_diff_inverse(0.708) 

## $root 
## [1] 1.762907 

or the IO version: 

pcABX_IO_inverse(pc_unb(HA, FA)) 
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## $root 
## [1] 1.56975 

pcABX_IO_inverse(0.708) 

## $root 
## [1] 1.569869 

As a final step let us take one step further and make a link to generic statistical modelling to make 
us able to find likelihood based confidence intervals for the estimated dprimes. So we even by-
pass the more classial Wald based intervals that people might think of as a first attempt. The key 
observation is that the core number 𝑧𝑧(𝐻𝐻) − 𝑧𝑧(𝐹𝐹) actually exactly is the difference between the 
two mean parameters of an independent two-samples probit-regression model: 

## Doing the two-sample probit regression 
y <- c(rep(0, 40), rep(1, 10), rep(0, 20), rep(1, 30)) 
trt <- c(rep("same", 50), rep("diff", 50)) 
myprobit <- glm((1-y) ~ trt, family=binomial(link="probit")) 
## model summary 
summary(myprobit) 

##  
## Call: 
## glm(formula = (1 - y) ~ trt, family = binomial(link = "probit")) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -1.7941  -1.0108   0.6681   0.6681   1.3537   
##  
## Coefficients: 
##             Estimate Std. Error z value Pr(>|z|)     
## (Intercept)  -0.2533     0.1793  -1.413    0.158     
## trtsame       1.0950     0.2702   4.053 5.06e-05 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 134.60  on 99  degrees of freedom 
## Residual deviance: 117.34  on 98  degrees of freedom 
## AIC: 121.34 
##  
## Number of Fisher Scoring iterations: 4 

Note that the trtsame estimate is exactly the same and claimed number. 
And now we can use inbuilt likelihood confidence interval routines of R to get these for this 
difference: 

confint(myprobit)[2,] 
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## Waiting for profiling to be done... 

##     2.5 %    97.5 %  
## 0.5721692 1.6323816 

And finally we can transform these confidence intervals though the non-linear functions already 
defined to get the wanted CIs for the actual dprimes, first for the differencing version: 

pcABX_diff_inverse(pnorm(0.572/2)) ## Lower CI limit 

## $root 
## [1] 1.1944 

pcABX_diff_inverse(pnorm(1.632/2)) ## Upper CI limit 

## $root 
## [1] 2.303498 

and then for the IO version: 

pcABX_IO_inverse(pnorm(0.572/2)) ## Lower CI limit 

## $root 
## [1] 1.072174 

pcABX_IO_inverse(pnorm(1.632/2)) ## Upper CI limit 

## $root 
## [1] 2.029674 

Apart from giving a really nice analysis of ABX data including and going way beyond what is 
presented in MacMillan & Creelman (2005), it also serves as the promised example of how to be 
able to handle single proportion of correct protocols not covered in sensR: Simply implement the 
psychometric function as exemplifed here, and similarly the inverse, and everything would be 
available. 
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