Preface to the Special Issue 'Targeting Fish vaccination'

Wiegertjes, Geert; Lorenzen, Niels; Tafalla, Carolina

Published in:
Fish and Shellfish Immunology

Link to article, DOI:
10.1016/j.fsi.2018.09.048

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Preface to the Special Issue ‘Targeting Fish vaccination’

Fish farming in Aquaculture employs some 100,000 people and with an annual turnover of 7 billion euros in Europe alone, is the world’s fastest growing industry within animal food production. However, the outcome can be severely affected by outbreaks of infectious diseases among the farmed fishes, not only costing the sector up to 20% of its production value on average, but also having a significant impact on individual fish health and welfare, as well as on the environmental footprint of the industry, aspects which cannot be directly expressed in euros. When disease resistant fish are not available, the most appropriate method for controlling disease problems, both from a production and welfare point of view is often to vaccinate the fish in order to prevent these diseases from occurring in the first place. This is also in accordance with the EC-adapted strategy of prevention being better than cure in terms of husbandry animal health. The EU-funded TARGETFISH project (2012-2017) was thus set out to not only lay the fundamentals of how fish can establish an adequate memory response through vaccination able to confer them with a long term protection, but also to generate practically-relevant knowledge regarding, for example, safer and cheaper antigen formulations, novel types recombinant vaccines, different routes of vaccine administration suitable for mass vaccination or the development of adequate adjuvants. This special issue provides a glance of the diverse approaches taken within the project and provides interesting insights into a number of relevant issues fundamental to the success of fish vaccination.

Specifically, this special issue includes fundamentally important issues such as the mechanisms of immunological memory (Yamaguchi et al.), essential for the duration of protection and underpinning the success of fish vaccination. Further related to vaccine induced immune
mechanisms, Granja and Tafalla studied the peritoneal responses of B cells in vaccinated fish, while Wangkahart, Secombes and Wang established the immune pathways involved in the response to a highly protective vaccination against ERM.

Further, the use of (novel) adjuvants remains a continuing topic of interest (Galindo-Villegas et al.) for many antigenic formulations not able to provide a full protection on their own, exemplified by the use of a non-mineral oil adjuvanted vaccine to induce a protective immune response against one of the most important bacteria causing disease in salmonid fish, namely *Flavobacterium psychrophilum* (Hoare et al.). Other studies specifically include attempts of vaccine delivery by oral route, not always successful but nonetheless (and maybe even more so) informative (Jaafar et al.; Embregts et al.). Along this line, the protection of antigens from degradation in the gastro-intestinal tract is an issue of importance when oral vaccination routes are preferred as addressed by Embregts et al. Often, different forms of antigen protection can indeed lead to a strong uptake of antigen and subsequent immune responses in the gut which, regretfully, are not always fully protective upon challenge. Yet, tailoring to individual diseases might be required, and better protection rates may be expected in the future when formulations, doses and distribution regimes of oral vaccines are optimized. Related to tailoring of vaccines against viral diseases studies of both protein and DNA based vaccines are included (Buonocore et al., Pascoli et al.; Embregts et al.; Sepulveda et al.). Recognizing that the latter type of recombinant vaccine, after having been used commercially for a decade in Canada, was recently approved by EMEA for protection of Atlantic salmon against pancreas disease and hereby becoming a practical reality also in Europe, a review of the history and perspectives of DNA based vaccines for aquacultured fish is also included (Collins, Lorenzen and Collet).
Last but not least, articles within this issue have focused on generic aspects related to vaccine development such as optimizing the sampling strategy during challenge trials (Hall, Collins and Collet) as well as identification of correlates of protective immunity following vaccination (Munang’anda and Evensen). These aspects have high practical relevance in terms of defining reliable read-outs of successful vaccines and vaccinations without use of large numbers of experimental animals. Currently, vaccine batch potency testing thus typically relies on vaccination-challenge trials comparing mortality in groups of vaccinated and control fish.

While vaccination of aquacultured fishes has expanded very significantly since the early 1980´ies, the most commonly used vaccines are still the traditional bacterin-based formulations for immersion or intraperitoneal delivery. However, these largely empirically-based vaccines are limited to a certain type of bacterial infections, and as illustrated by the papers in this issue and also exemplified by the new DNA vaccines, dedicated research combining both basic and applied aspects of fish immunology and vaccinology is needed to further explore the potential of disease prophylaxis by vaccination in the modern expanding aquaculture production.

Geert F. Wiegertjes, Niels Lorenzen and Carolina Tafalla

Editors of the Special Issue

Preferred order of articles

1. What could be the mechanisms of immunological memory in fish?
2. Different IgM+ B cell subpopulations residing within the peritoneal cavity of vaccinated rainbow trout are differently regulated by BAFF

3. Dissecting the immune pathways stimulated following injection vaccination of rainbow trout (Oncorhynchus mykiss) against enteric redmouth disease (ERM)

4. Aluminum adjuvant potentiates gilthead seabream immune responses but induces toxicity in splenic melanomacrophage centers.

5. Efficacy and safety of a non-mineral oil adjuvanted injectable vaccine for the protection of Atlantic salmon (Salmo salar L.) against Flavobacterium psychrophilum

6. Pichia pastoris yeast as a vehicle for oral vaccination of larval and adult teleosts

7. Effect of oral booster vaccination of rainbow trout against Yersinia ruckeri depends on type of primary immunization


9. VACCINATION AND IMMUNE RESPONSES OF EUROPEAN SEA BASS (Dicentrarchus labrax L.) AGAINST BETANODAVIRUS
10. Lack of in vivo cross-protection of two different betanodavirus species RGNNV and SJNNV in European sea bass Dicentrarchus labrax

11. Intra-muscular and oral vaccination using a Koi Herpesvirus ORF25 DNA vaccine does not confer protection

12. Time-course study of the immune protection induced by an interferon inducible DNA vaccine against viral haemorrhagic septicaemia in rainbow trout

13. DNA vaccination for the finfish aquaculture

14. The potential benefits of repeat sampling experiments for fish disease-challenge host-pathogen investigations

15. Correlates of protective immunity for fish vaccines