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Preface

This dissertation concludes the work carried out in a Ph.D. project at the Department of
Mechanical Engineering at the Technical University of Denmark during the period April 1,
2015 – June 30, 2018. The content of this dissertation is original work where most parts have
been published in scientific journals or presented at conferences.
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Structure of the dissertation

The dissertation proceeds chapter by chapter as the complexity of the presented numerical
model increases: Chapter 1 introduces a Fourier-based Poisson solver for a mixture of un-
bounded, periodic and homogeneous Dirichlet or Neumann boundary conditions. Chapter 2
outlines the base flow solver; a vortex-particle method for incompressible fluid flow simulation
in the absence of solid bodies. The method relies on the Poisson solver from Chapter 1. In
Chapter 3 the method is extended to three dimensional flow past solid bodies using the iterative
Brinkman penalization technique. The method is applied for low Reynolds number (Re ≤ 103)
and simple shapes. Local refinement using a multiresolution formulation of the Poisson solver
and multilevel particle-vorticity redistribution is presented in Chapter 4. The procedure is veri-
fied by simulating the Taylor-Green vortex in 3D and the transitional flow past a 3D section of
a circular cylinder. Chapter 5 regards large-eddy-simulation and subgrid-scale stress modeling
based on a Smagorinsky model and a Lagrangian averaged dynamic variation of this. These are
tested for simulating homogeneous turbulence and the flow past a square cylinder at a moderate
Reynolds number (Re ≥ 104). Chapter 6 describes an application of the method for numerical
investigation of aerodynamic instability.
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Resumé (in danish)

En vortex-partikel net metode, der gør brug af net med lokalt forfinet opløsning, præsenteres
til beregning af strømninger om faste legemer vha. Brinkman penalisering.

Vortex-partikel net metoden beror på regularisede Greens funktioner til løsning af Poisson
ligningen med åbne randbetingelser. Poisson-løseren er baseret på foldningsmetoden af Ho-
ckney and Eastwood (1988) og udvidet til at omfatte kombinerede periodiske- og homoge-
ne Dirichlet eller Neumann randbetingelser. Mix af åbne- og periodiske betingelser opnås via
teknikken af Chatelain and Koumoutsakos (2010), hvor Poisson ligningen først Fourier trans-
formeres i de periodiske retninger. Dernæst løses en modificeret Helmholtz ligning af reduceret
dimensionalitet for hvert diskrete bølgetal. Raten hvormed fejlen aftager svarer til ordenen af re-
gulariseringsfunktionen anvendt, enten Gaussisk eller det ideele diskrete low-pass filter, hvilket
påvises for test problemer. Homogene Dirichlet og Neumann betingelser opnås ved at medtage
refleksioner af problemets egentlige ladning om domænets rande. Poisson løseren implemen-
teres parallel algoritme og en god skalering demonstreres derved. Brug af løseren i en vortex
metode vises og kombinationens konsistens demonstreres ved simulering af et semi-periodisk
problem bestående af en ustabil konfiguration af to parallelle aflange hvirvler også studeret af
Chatelain and Koumoutsakos (2010).

Vortex metoden udvides til at omfatte faste legemer i tredimensionelle strømninger ved brug
af en Brinkman penaliseringsteknik af Hejlesen et al. (2015a).

En god opløsning af de faste legemers overflade er en nødvendighed for at kunne simule-
re strømninger med høj nøjagtighed, derfor bruges en multi-opløsningsformulering af metoden
baseret på lokale forfiningsnet. Multi-opløsningsformuleringen anvendes for strømning om en
circulær cylinder ved lavt Reynoldstal (Re = 300) i tre dimensioner. Resultaterne, der opnås
herved, er i god overenstemmelse med det der reporteres i litteraturen med hensyn til kraft-
koefficienter, vækstrate- og topologien af den dominerende modalform i transitionen fra to- til
tredimensionel strømning.

Large-eddy-simulation ved brug af to forskellige subgrid-scale stress modeller bliver her-
efter implementeret og verificeret for problemer bestående af homogen turbulens. Dernæst an-
vendes metoden for strømning om faste legemer ved moderat høje Reynoldstal (Re ≥ 104).
En kvalitativ god overenstemmelse med eksperimentelle og numeriske resultater opnås herved,
men der identificeres dog nogle udfordringer for metoden anvendt til løsning af sådanne pro-
blemer.
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Abstract

This dissertation presents a vortex-particle mesh method for bluff body aerodynamics using
iterative Brinkman penalization, local mesh refinement and large-eddy-simulation. The method
relies on regularized Green’s function solutions to the unbounded Poisson equation. The Pois-
son solver is based on the convolution approach by Hockney and Eastwood (1988) and is ex-
tended to a mixture of unbounded, periodic and homogeneous Dirichlet or Neumann conditions.
A mixture of unbounded and periodic conditions is achieved using the technique of Chatelain
and Koumoutsakos (2010), where the Poisson equation is initially Fourier transformed in the
periodic directions. For each discrete wavenumber a modified Helmholtz equation of reduced
dimensionality is then solved. The rate of convergence corresponds to the order of the regu-
larization function used, either Gaussian or an ideal low-pass filter, which is demonstrated for
test problems. Homogeneous Dirichlet or Neumann conditions are achieved using the method
of images. The Poisson solver is implemented in parallel and demonstrated to be highly scal-
able. It is used within a remeshed vortex-method and the consistency of this combination is
demonstrated for a semi-periodic problem of an unstable system of two parallel vortex pairs
also considered by Chatelain and Koumoutsakos (2010).

The vortex method is extended to handle solid bodies using the iterative Brinkman penal-
ization technique by Hejlesen et al. (2015a) for three dimensional flow. An accurate prediction
of bluff body flow requires that the solid interface is well resolved, hence a multiresolution
formulation of the method is applied based on refinement patches. The technique depends on
a superposition of solutions to a scale-decomposed Poisson equation, which are obtained level
wise in a mesh hierarchy. The multiresolution method is applied for the flow past a circular
cylinder at low Reynolds number (Re = 300) in three dimension.The obtained results are found
to be in excellent agreement with what is reported in the literature, in terms of force coefficients,
growth rate and the topology of spectral profile of the primary unstable mode of the transition
from two- to three dimensional flow.

Large-eddy-simulations using two different subgrid-scale stress models are implemented and
verified for benchmark cases of homogeneous turbulence. Subsequently, the models are applied
for bluff body flow at moderate Reynolds number (Re ≥ 104). A qualitative good agreement is
obtained with experimental and numerical results from the literature, but several challenges of
the method applied for such applications are also identified.
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Introduction

The ability to predict the motion of fluid flow and its interaction with solid structures is
essential for engineering design. Examples include the design of tall buildings and long span
suspension bridges. The aerodynamic loads on such structures may lead to failure, due to
aerodynamic instability. Perhaps, the best known example is the first Tacoma Narrows Bridge in
1940, which collapsed after being set into large amplitude torsional oscillations by the oncoming
wind as seen in Fig.1. A posterior investigations revealed that the H-shaped design of the
free-span cross section was especially prone to vortex induced vibrations caused by unsteady
separation of the boundary layers due to sharp corners at the leading edge.

Through experiments, engineers must carefully establish such error-prone designs to be able
to guarantee the mechanical integrity before construction and operation. Computer simulation
may be a cost efficient complement to physical experiments. However, computers can only
handle a limited amount of data, hence they will neccesarily be based on a simplified reality.
The main challenge of simulation is to resemble the physics sufficiently well to be able to draw
the relevant conclusions from the simulated results.

During the many last decades continuing development of the simulation models has been
undertaken and a wide range of different methods have been proposed. One branch of methods
is vortex-particle methods. They rely on a Lagrangian approach due to the high spatial adap-
tivity, numerical stability and accuracy that may be achieved with those. If combined with a
computational mesh the methods are sometimes referred to as the vortex-particle mesh (VPM)
methods. The applications of VPM methods range from simulation of wind turbine wakes
(Chatelain et al., 2013; Backaert et al., 2015; Branlard et al., 2015) to prediction of animal lo-
comotion (Gazzola et al., 2011a; Gazolla et al., 2012). Further, simple methods based on two
dimensional (2D) analysis has been applied as a complementary design tool for bridge aerody-
namics (Walther and Larsen, 1997; Larsen and Walther, 1997, 1998; Rasmussen et al., 2010;
Hejlesen et al., 2015c) The extension of such a tool to three dimensions (3D) is relevant as bluff
body flow even at moderate Reynolds numbers exhibit a high degree of three-dimensionality
and turbulent nature (Sohankar et al., 1999; Luo et al., 2003).

Unlike Eulerian methods, where the solid bodies are captured directly by enforcing no-slip
boundary conditions on the solid interface with body fitted meshes, vortex methods have no
natural way to do this accurately and efficiently. Another major challenge is to preserve a high
numerical accuracy while minimizing computational efforts. These are still ongoing topics of
research and the ones addressed in this dissertation.
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Figure 1: Large amplitude torsional oscillations of the first Tacoma Narrows Bridge in 1940.
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Chapter 1

A Fourier-based solver for the Poisson Equation

This chapter introduces a solver for the Poisson equation for problems of mixed boundary
conditions. Parts of the chapter are based on the paper “A regularization method for solving
the Poisson equation for mixed unbounded-periodic domains” published in Journal of Compu-
tational Physics 2018 (Spietz et al., 2018).

The solution to the scalar Poisson equation

∇2u(x) = −f(x) (1.1)

is by application of Green’s theorem the convolution in d dimensions

u(x) =

∫ ∞

−∞
G(x− x′)f(x′) ddx′ ⇔ u(x) = G(x) ∗ f(x), (1.2)

where the notation
∫

ddx should be interpreted as
∫ ∫ ∫

dx1dx2dx3 in the following, here ex-
emplified for d = 3. G(x) in Eq.(1.2) is the Green’s function that satisfies the elementary
equation

∇2
xG(x,x′) = −δ(x− x′). (1.3)

By integration of Eq. (1.3) over a hyper-sphere of radius r = |x− x′| centered at x′

∫
∇x · ∇xG(x,x′) dV =

∫
−δ(x− x′) dV (1.4)

(1.5)

and further by applying Gauss’ theorem
∫
∇xG(x,x′) · n dS = −1, (1.6)

it is easy to verify that the Green’s function solutions are

G(x,x′) =





−1
2
|x− x′|+ c1 in 1D

− 1
2π

ln (|x− x′|) + c2 in 2D
1

4π|x−x′| in 3D

(1.7)

with c1 and c2 being arbitrary constants. The condition of the solution to be unbounded or free-
space refers to the behavior u(x) → 0 for |x| → ∞. Only in 3D the Green’s function goes

3



A Fourier-based solver for the Poisson Equation

to zero at infinity, which implies that the solution obtained by Eq. (1.2) does the same if the
right hand side is compact. In 2D however the derivative of the Green’s function vanish at large
distances, which is what is of primary interest in methods considered here.

The solution to Eq. (1.2) may be obtained either by applying a quadrature technique directly
to determine the integral, with an appropriate treatment of the singularity, or by computing the
convolution sum via Fourier-space

u(x) = G(x) ∗ f(x) ⇔ û(k) = Ĝ(k)f̂(k). (1.8)

In Eq. (1.8) k is the wavenumber vector and û(k) is the Fourier coefficients obtained with the
Fourier transform for the space of dimensionality, d defined as

û(k) =

∫ ∞

−∞
u(x)e−ιk·x ddx. (1.9)

The solution is recovered from the Fourier coefficients by applying the inverse transform defined
as

u(x) =

(
1

2π

)d ∫ ∞

−∞
û(k)eιk·x ddk. (1.10)

The Fourier transform of Eq. (1.3) gives the Fourier coefficients of the Green’s function
directly as

−k2 Ĝ(k) = −1 ⇒ Ĝ(k) = Ĝ(k) =
1

k2
, (1.11)

where k = |k| is the magnitude wavenumber vector.
For numerical simulation a Fourier-space representation of the elementary function as Eq. (1.11)

would be sufficient, but the singularity of Eq. (1.11) prevents the direct use of the spectral func-
tion in Fourier-space.

Hejlesen et. al (Hejlesen et al., 2013; Hejlesen, 2016; Hejlesen et al., 2017) and Vico et al.
(2016) demonstrated that by requiring the Green’s function to be bounded in either real- or
Fourier-space the representation in the complementary-space becomes regular and smooth.

Vico et al. (2016) truncated the real-space functions Eq. (1.7) using a radial box filter to
derive regular Fourier-space expressions for various linear operators. By truncating the Green’s
function at a radius larger than the maximum distance between any two sources in the problem,
the solution procedure obtains the spectral accuracy imposed by the trapezoidal integration-rule
used with the discrete Fourier transform (DFT). The Fast Fourier Transform (FFT) which is
a fast DFT-algorithm is commonly used to compute unbounded convolution using the domain
doubling technique by Hockney and Eastwood (1988). In this case the extended domain must
cover twice the truncation radius (2R) to avoid error from the truncated convolution integral
(Vico et al., 2016). In 3D for the unit domain the truncation radius may conservatively be
chosen as R = 2 >

√
3 which impose a extended domain of (4N)3, where N is the unit

resolution along in all directions. The necessary length of the transforms may be reduced the
original (2N)3 after a precomputation step based on the (4N)3 transform. However in the
general case the truncation radius must be larger than the length of leading dimension of the
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domain. Hence for domains with large aspect ratios, this requirement has been found to render
the procedure impractical.

Alternatively, the procedure by Hejlesen et. al (Hejlesen et al., 2013; Hejlesen, 2016; Hejle-
sen et al., 2017) relies on deriving regular Green’s functions in real-space by convolution of
the singular solutions with a filter, whose spectral transfer function ζ(k) approximates the ideal
low-pass filter and removes content above the Nyquist wavenumber (k = π/h)

ζ̂(k) =

{
1 k = 0

0 k = π
h
.

(1.12)

The ideal regularization function may be derived from the multidimensional Fourier trans-
form of a radial function expressed by the Hanckel transform in d dimensions

ζ̂(k) = (2π)
d
2k−

d−2
2

∫ ∞

0

r
d
2 f(r)J d−2

2
(kr) dr. (1.13)

By introducing the normalized radius, ρ = r σ and corresponding wavenumber s = σk

ζ̂(s) = s−
d−2

2

∫ ∞

0

(2π)
d
2σdρ

d
2 ζ(ρ)J d−2

2
(sρ) dρ, (1.14)

a property of the integral of a Bessel function product

s
−d−2

2

∫ ∞

0

Jd/2(ρ)J(sρ) dρ =





1 s < 0

1
2

s = 1

0 s > 1

(1.15)

may be used to obtain filters which frequency response has bandwidth 1/σ. Choosing the
normalization σ = h/π the cut-off falls at the Nyquist wavenumber. The ideal filters for d ≤ 3
are

ζ(ρ) =
Jd/2(ρ)

(2π)
d
2σρ

d
2

=





sin(ρ)
πρσ

d = 1

J1(ρ)
2πσ2ρ

d = 2

sin(ρ)−cos(ρ)ρ
2π2σ3ρ3 d = 3.

(1.16)

By radial integration of Eq. (1.3) convolved with the filters

∇2G(r) = −ζ(r) (1.17)

the associated Green’s functions become

G(r) =





−σ
π
(Si(ρ)ρ+ cos (ρ)) + c1 d = 1

1
2π

Ji0(ρ) + c2 d = 2

Si(ρ)
2π2σρ

d = 3.

(1.18)
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The constants c1 and c2 are arbitrary because a condition has only be imposed on the derivatives
of the Green’s function for d ≤ 2. The function, Si(ρ) which occurs in the expressions is the
sine-integral function

Si(ρ) =

∫ ρ

0

sin (t)

t
dt, (1.19)

which may be approximated to arbitrary accuracy using a fast evaluation technique based on
polynomial expansion. The Bessel-integral of zeroth order

Ji0(ρ) =

∫ ρ

0

J0(t)− 1

t
dt, (1.20)

may be evaluated by a similar approximation technique based on a rapidly converging expansion
in Chebyshev polynomials (Luke, 1962, Tab. 9.3).

An alternative method for truncating the spectral function is based on high order Gaussian
filters, which are constructed by approximate deconvolution (Hejlesen et al., 2013). By mul-
tiplying the Gaussian function with the m/2 first terms of the Taylor expansion of its inverse
(Dm)

ζ̂m(k) = e
−k2

2 Dm(k) where Dm(k) =

m/2−1∑

0

1

n!

(
k2

2

)n
, (1.21)

the m-first derivatives are nullified at k = 0

dβ ζ̂m
dkβ

∣∣∣∣∣
k=0

=

∫ ∞

−∞
rβ ζm(r) ddx = 0β for β = 0, 2, ...,m− 2. (1.22)

This corresponds to conserving moments of the corresponding real-space function. Note that m
is an even number and that the moments for odd integers of β are automatically satisfied due to
the radial symmetry of the function. The filter does not satisfy ζ̂(π/h) = 0 due to the infinite
support of the Gaussian function. So, again a normalization of the coordinates as ρ = r/σ and
the wavenumber s = kσ through a smoothing radius (σ = αh) is introduced, here to ensure that
the filter is well resolved when sampled

ζ̂m(s) = D̂m(s) e−
s2

2 where D̂m(s) =

m/2−1∑

n=0

1

n!

(
s2

2

)n
. (1.23)

At the maximum resolved wavenumber kmax = ks/2 = π/h the truncation of the regularization
function is ζ̂(πα). Hence the choice of normalization ensures that the truncation is independent
of the mesh resolution. The regularised kernels by radial integration of Eq. (1.17) are given in
(Hejlesen et al., 2013; Hejlesen, 2016) for 2D and 3D and in Appendix A for 1D.

Spectral transfer functions of various filters have been plotted in Fig. 1.1 and the correspond-
ing Green’s functions in Fig. 1.2 for comparison.
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ζ̂
(k

)

Figure 1.1: Spectral transfer function of filters used to derive regular Green’s function solution
for free-space problems: Gaussian function for m = 2 and α = 2 ( ) Gaussian function for
m = 4 and α = 2 ( ) Gaussian function for m = 10 and α = 2 ( ) and ideal regularization
function ( ) .

1.1 Mixed free-space and periodic boundary conditions

To obtain a Green’s function representation in the case of a mixture of free-space and peri-
odic boundary condition the procedure by Chatelain and Koumoutsakos (2010) is applied that
consists of initially Fourier transforming the Poisson equation (Eq. (2.4)) in the periodic direc-
tions. Subsequently, a modified Helmholtz equation of reduced dimensionality is solved for
each wavenumber before applying the inverse transform.

E.g. in 2D with one periodic (the y-direction) and one free-space (the x-direction) boundary
condition, the partly transformed regularized elementary equation is

∇2
xĜ(x, ky)− k2

yĜ(x, ky) = −ζ(x)ζ̂(ky), (1.24)

The solution to Eq. (1.24) using normalized coordinates, is

Ĝ(ρx, sy) =
σ

2π

∫ ∞

−∞

ζ̂
(√

s2
x + s2

y

)

s2
x + s2

y

eι sx ρx dsx, (1.25)

where sx = σ kx, sy = σ ky, and ρx = |x|/σ. A closed form expression for Eq. (1.25) has been
derived in Hejlesen (2016); Spietz et al. (2018). A discrete spectral representation is sufficient
to compute the discrete convolution. Rather than solving the integral Eq. (1.25), it is noted that
the singularity lies on the line sy = 0. For sy = 0 the problem Eq. (1.24) reduces to a 1D
Poisson equation which regularized solution has already been derived.

The Fourier transform of the Green’s function for the combination of a free-space condition
(x-direction) and a periodic condition (y-direction) may be written semi-explicitly as

Ĝ(sx, sy) =

{
Ĝ1D(sx) for sy = 0

ζ̂(s)
s2

otherwise.
where s2 = s2

x + s2
y (1.26)
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Figure 1.2: Free-space Green’s functions for the Laplace operator in 1D (a), in 2D (b) and in 3D
(c): Singular ( ) , Gaussian regularization for α = 2 and m = 2 ( ) , m = 4 ( ) , m = 10
( ) and ideal regularization ( ) .
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The discrete convolution kernel in Fourier-space is obtained by taking the DFT ofG1D(ρx) from
either Eq. (1.18) or Eq. (A.2) on the strip sy = 0 and by direct evaluation of the non-singular
spectral expression for sy 6= 0.

Similarly in 3D the Green’s function in fourier-space for a single free-space condition (x-
direction) and two periodic conditions (x, y-directions) is obtained by taking the DFT of the
regularised 1D Green’s function on the strip sy = sz = 0

Ĝ(sx, sy, sz) =

{
Ĝ1D(sx) for sy = sz = 0

ζ̂(s)
s2

otherwise.
where s2 = s2

x + s2
y + s2

z (1.27)

For a two free-space conditions (x, y-directions) and a single periodic condition (z-direction)
we use the regularised 2D Green’s function from Eq. (1.18) or (Hejlesen et al., 2015b) on the
slice sz = 0

Ĝ(sx, sy, sz) =

{
Ĝ2D(

√
sx + sy) for sz = 0

ζ̂(s)
s2

otherwise.
where s2 = s2

x + s2
y + s2

z (1.28)

1.1.1 Verification of the consistency of the Poisson solver for mixed free-space and periodic
boundary conditions

We verify the consistency of the proposed FFT-based solver with mixed unbounded and
periodic conditions using a test function that is bounded within the computational domain in
the unbounded directions and fully continuously differentiable in the periodic directions.

For simplicity we consider only the scalar poisson equation here. The unbounded scalar
Poisson kernels in 1D and in 2D provide solutions that are arbitrary up to a constant. Hence
we require the integral of the test function (utest) in the unbounded directions to be zero so that
the dependency of the constant is removed. This could also have been achieved by comparing
derivatives of the solution only.

To meet these requirements we use sine functions for the periodic directions and a normalized
bump function distribution in the unbounded directions, which both are of class C∞ i.e. it has
an infinite number of continuous derivatives. The bump function is defined as

b(q) =





exp
(
c
[
1− 1

1−q2

])
for |q| < 1

0 for |q| ≥ 1,

(1.29)

where c is an arbitrary positive constant. For the presented cases c = 400 is used. Further
we ensure that test function is non-zero when averaged in the periodic direction to verify a
consistent treatment of the singularity.

For the 2D case with one unbounded (x) and one periodic (y) direction, we solve the scalar
equation of Eq. (1.1) using the test function solution

utest(x, y) = b (x) [1 + sin (2π y)] . (1.30)
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Similarly, for the 3D case with one unbounded (x) and two periodic (y and z) directions, we
use the test function solution

utest(x, y, z) = b (x) [1 + sin (2π y) sin (2π z)] . (1.31)

For the 3D case with two unbounded (x and y) and one periodic (z) directions

utest(x, y, z) = b
(√

x2 + y2
)

[1 + sin (2π z)] . (1.32)

When solving

∇2u = −f, where f = −∇2utest (1.33)

we measure the error as the second norm of the deviation on the mesh points

error =

(
N∑

i=1

(u(xi)− utest(xi))
2/

N∑

i=1

utest(xi)
2

)1/2

(1.34)

The error for the various cases is shown in Fig. 1.3 where it is compared to the non-regularized
method of Chatelain and Koumoutsakos (2010). It is seen that the method obtains the conver-
gence rate corresponding to the respective design parameters of the Green’s functions. The
regularized method is shown to quickly produce an error which is significantly lower than that
of Chatelain and Koumoutsakos (2010) for m > 2. Using the ideal regularization function the
error decays exponentially until it flattens out near the level arithmetic precision.

1.2 Homogeneous Dirichlet and Neumann conditions

Homogeneous Dirichlet and Neumann conditions may also be imposed. This is achieved
using the method of images. The method of images is a domain extension technique convenient
for simple symmetric domains such as cuboids, where image charges are added outside the
original domain to satisfy the conditions on the original boundaries. By the uniqueness theorem
an extended solution that complies with the boundary conditions is also the correct solution
within the original domain.

E.g. the elementary solution to the half-unbounded 2D problem

∇2GD(x,x′) = −δ(x− x′), x ≥ 0,−∞ < y <∞ (1.35)
GD(x,x′) = 0, x = 0 (1.36)

may be obtained solving the extended problem with the unit source at x = (x, y) oddly reflected
in (x = 0, y) corresponding to the location x̃ = (−x, y)

∇2GD(x,x′) = −δ(x− x′) + δ(x− x̃′), −∞ < x, y <∞. (1.37)

The solution for this problem is the superposition of the free-space Green’s functions. Clearly
the boundary condition is satisfied for a radially symmetric Green’s function (G(x,x′) =
G(|x− x′|))

GD(x,x′)|x=0 = G(|x− x′|)−G(|x− x̃′|) = 0 (1.38)
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Figure 1.3: Error obtained when solving mixed free-space and periodic Poisson equation for
periodic-free 2D problem (a), periodic-periodic-free 3D problem (b) and periodic-free-free 3D
problem (c). Lines indicate the solution obtained using a non-regularized Green’s function
(Chatelain and Koumoutsakos, 2010) ( ) and using a regularized Green’s function with Gaus-
sian regularization for m = 2 and α = 0.75 ( ) , Gaussian regularization for m = 4 and
α = 1.5 ( ) , Gaussian regularization for m = 10 and α = 2.0 ( ) and ideal regularization
( ) . Orders of convergence of convergence from top to bottom O(h2), O(h4), O(h10) ( ) .
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as |x− x′| = |x− x̃′| at x = 0.
Similarly the half-unbounded problem with a Neumann condition

∇2GN(x,x′) = −δ(x− x′), x ≥ 0,−∞ < y <∞ (1.39)
dGN(x,x′)

dx
= 0, x = 0 (1.40)

is equivalent to

∇2GN(x,x′) = −δ(x− x′)− δ(x− x̃′), −∞ < x, y <∞. (1.41)

By differentiation it is confirmed that the boundary condition is satisfied at x = 0 for a radially
symmetric Green’s function

dGN(x,x′)

dx
= (x− x′)

[
1

r

dG

dr

]

r=|x−x′|
+ (x+ x′)

[
1

r

dG

dr

]

r=|x−x̃′|
. (1.42)

To achieve a doubly bounded interval 0 ≤ x ≤ L, e.g. with any combination of homoge-
nous conditions using the method of images an infinite array of images must be considered as
illustrated in Fig. 1.4: To impose a condition at x = 0 a single image reflection is added as in
Eq. (1.37) or Eq. (1.41), then in order impose the boundary condition at x = L, image reflec-
tions of not only the primary charge but also its image reflection about x = 0 must be added.
The influence of the newly added images must then be corrected at x = 0 and so on.

It is straight forward to impose a single Neumann or Dirichlet boundary condition by con-
structing the correct Green’s function by image summation and to use this with the zero-padding
technique. To impose a doubly bounded direction this is not practical as the construction of the
Green’s function impose a sum of infinite terms. Rather than constructing the Green’s function
for the extended problem the extended problem may be solved directly and subsequently the
solution, which is not within the region of interest, may be discarded. This is done by noting
that the convolution to compute is symmetric-periodic. A survey of various symmetric convo-
lutions and how to compute them using discrete trigonometric transforms (DTTs) was given by
Martucci (1994). Further, by the use of a DTT the domain-doubling requirement in that direc-
tion is eliminated and the discrete transform coefficients are real valued. For a doubly bounded
direction of pure Dirichlet or Neumann conditions the extended problem has a 2N periodicity
in the bounded directions, hence the convolution kernel to be used must be for the 2N -periodic
problem. Likewise for doubly bounded problems of a mixture of Dirichlet and Neumann type
conditions the extended problem has a 4N periodicity in the bounded directions, hence the con-
volution kernel to be used must be for the 4N -periodic problem in this case. The relevant DTTs
and their relation to the DFT has been outlined in App. B.2.

1.2.1 1D examples

The capability of imposing boundary conditions using the method of images is tested in 1D
using a normalized Gaussian right-hand-side

f(x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
. (1.43)
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odd image actual odd imageeven image

supercell
periodic sequence

Figure 1.4: A doubly bounded direction with a mixture of Dirichlet (to the left) and Neumann
(to the right) conditions is obtained by including an infinite array of even and odd images of the
actual vorticity.

Fig. 1.5 compares the solution for various boundary conditions imposed on the problem. A
bounded solution may either be obtained by explicitly extending the computational domain to
account for the required images. Alternatively, a symmetric-convolution may be applied for
which any derivative of the solution may be approximated by spectral differentiation. Finally,
for single bounded directions explicit summation of Green’s functions may be applied with
zero-padding technique for the active domain only. By using the last technique the derivatives
are not obtainable by spectral differentiation as seen in Fig. 1.5(b) and Fig. 1.5(c). The deriva-
tives obtained hereby show a oscillatory behavior near the boundaries. Derivatives may be
obtained by analytic differentiation of the Green’s function sum. Alternatively, the derivatives
may be approximated by finite-difference approximation.

It should be noted that the 1D procedure is valid also for multidimensional problems, by ap-
plying it in the bounded directions and the usual domain-doubling procedure in the unbounded
directions.

1.3 Parallel implementation of the Poisson solver

Computations of convolution sums using DFTs are here carried out using efficient FFT al-
gorithms from the Intel MKL library (Wang, 2014) or the FFTW library (Frigo and Johnson,
2005). The 3D DFT is separable, and is computed by sequentially applying the 1D DFT along
the three axis directions.

For parallel computation a pencil-block decomposition of the global mesh-array is employed
as illustrated in Fig. 1.6 for a 9 processor example: For each of the three transform directions
the global mesh-array is decomposed into blocks of 1D strips aligned with the transform di-
rection, such that the 1D FFT/IFFT may be computed locally on each processor. Subsequently
a global mapping operation is required to align the data with the pencil-decomposition of the
next transform direction and so on. This approach supports a parallel decomposition using as
many processors as entries in any 2D slice of the global mesh array, but implies two array
transpositions more than a decomposition based on blocks of 2D slices.

The domain doubling technique by Hockney and Eastwood (1988) increase computational
cost from O(Nd log

(
Nd
)
) to O((2N)d log

(
(2N)d

)
). The increased cost due to domain dou-

bling may be reduced by discarding redundant regions of the transforms. This is done by only
partly extending the pencil-block mesh layouts as needed. The cost may be reduced even further
taking into account the symmetries of the DFT. E.g. solving a Poisson equation for real num-
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Figure 1.5: The solutions (u(x)) ( ) to the 1D poisson equation for right-hand-side (f ) ( )
and various boundary conditions. Also indicated the derivative (du

dx
) obtained by spectral differ-

entiation ( ) : (a) Unbounded solution. (b) Half-unbounded solution with a Dirichlet condition
imposed at x = 0 by solving the extended problem with free-space conditions ( ) , by solving
the extended problem using zero-padded symmetric convolution via DCT2/DST2 ( ) and by
solving the extended problem using explicit summation of free-space Green’s functions ( ) . (c)
Half-unbounded solution with a Neumann condition imposed at x = 0 by solving the extended
problem with free-space conditions ( ) , by solving the extended problem using zero-padded
symmetric convolution via DCT2/DST2 ( ) and by solving the extended problem using explicit
summation of free-space Green’s functions ( ) . (d) Doubly-bounded solution with a Dirichlet
and Neumann condition imposed at respectively x = 0 and x = 2 obtained using symmetric
convolution via DCT4/DST4.
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x-pencils y-pencils z-pencils

y x

z

Figure 1.6: Decomposition of the global mesh array into pencils for parallel computation of a
3D FFT. Illustrated for 9 processes.

bers implies a real-to-complex transform in the first transform direction. The discrete Fourier
coefficients of a real function are Hermitian symmetric (x̂−k = x̂∗k, where (·)∗ denotes the com-
plex conjugate) hence coefficients x̂i,j,k, i = −N/2, ...,−1 may be discarded on the second
and third transform directions (reducing computational efforts and storage by a factor 2). The
discarded coefficients can be restored on the inverse transform. This is implicitly done with a
real-to-complex (r2c) and complex-to-real (c2r) transform pair from the Intel MKL or FFTW
library.

The use of DTTs does not impose additional computational costs as compared to the use
of DFTs. On the contrary the discrete trigonometric transforms (DTT) work purely with real
numbers (r2r transforms), hence the coefficient takes up half the storage and if the DTT is
applied for the first transform direction, Hermitian symmetry may be utilized on the second
transform direction. For the N -point DTTs considered fast algorithms based on the FFT are
used, which are at most twice as expensive as the N -point FFT (Frigo and Johnson, 2005).

The procedure of the convolution using partly extended mesh-arrays and Hermitian symme-
try has been illustrated in Fig. 1.7.

The implementation is tested in terms of parallel efficiency in App. C and found to show a
good parallel speedup.

1.4 Summary

In this chapter regularised Green’s functions based on either Gaussian filters or the ideal
low-pass filter were introduced. The derivations were based on those by Hejlesen et al. (2013);
Hejlesen (2016). The solution for unbounded problems was extended to a mixture of un-
bounded, periodic and homogeneous Dirichlet or Neumann conditions. The Dirichlet and Neu-
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Figure 1.7: Layouts of the partly-extended mesh array used for solving the Poisson equation dis-
carding redundant regions and utilizing the Hermitian symmetry of real-to-complex transform.
The red regions illustrate a representative mesh-block held by a single process, which is trans-
formed using a 1D FFT algorithm. The dark-gray regions indicate the original computational
domain. The light-gray region indicates non-zero input/output to/from the FFT that must be
stored in memory and transferred to the next layout for the following transform. The combined
light-gray and dashed region indicate the extent of the Green’s function Fourier coefficients: (a)
An unbounded problem: zero-padding is applied in all directions. A real-to-complex transform
is used in the first direction (x) and Hermitian symmetry of the discrete Fourier coefficients is
assumed for the subsequent transforms. (b) A mixed doubly-bounded (x) and unbounded (y, z)
problem: A real-to-real transform is used in this direction, hence the real-to-complex transform
is applied in the second direction.
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mann conditions are well suited for fluid flow simulations, when it is necessary to impose e.g. a
through-flow or a no-through condition in one or more directions. It should be noted that a no-
through condition based on the homogenous boundary conditions may further be extended to a
no-slip condition in vortex-particle mesh methods using a vortex-panel diffusion approach as in
Koumoutsakos et al. (1994); Ploumhans and Winckelmans (2000); Ploumhans et al. (2002).

17



A Fourier-based solver for the Poisson Equation

18



Chapter 2

Vortex-particle mesh methods

This chapter introduces the vortex-particle mesh method for fluid flow simulation. The im-
plementation is based on the Fourier-based Poisson solver from the previous chapter. Some of
the results presented were published in Spietz et al. (2018).

Incompressible fluid flow may be described mathematically by the Navier-Stokes equations
in their velocity-pressure form

Du

Dt
=
∂u

∂t
+ (u ·∇)u = −∇p

ρ
+ ν∇2u, ∇ · u = 0. (2.1)

In the analysis of many flows it is natural to formulate the problem in terms of vorticity (ω =
∇×u). By looking at the vorticity the coherent structures of the flow may be identified directly.
Further more, in bluff body flows the evolution of vorticity is directly related to the variation of
the fluid force.

Vortex methods discretize the vorticity rather than fluid momentum and are based on the
Navier-Stokes equations (Eq. (2.1)) recast into the vorticity transport equation

Dω

Dt
=
∂ω

∂t
+ (u ·∇)ω = (ω ·∇)u+ ν∇2ω. (2.2)

A relation between the velocity and vorticity is derived by decomposing the velocity into
potential functions as

u = ∇×Ψ−∇φ, ∇ ·Ψ = 0. (2.3)

By further taking the curl of Eq. (2.3) a Poisson equation for the vector potential is obtained

∇2Ψ = −ω, uω = ∇×Ψ. (2.4)

2.1 Approximation with particles and meshes

In vortex-particle methods the vorticity in d-dimensions

ω(x, t) =

∫
ω(x′, t)δ(x− x′) ddx′ (2.5)

is approximated using discrete particles

ω(x, t) ≈
∑

p

ωp(t)vpζ(x− xp), (2.6)
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Figure 2.1: Interpolation between particles (red markers) and a uniform in mesh (dashed lines)
is used with the vortex-particle mesh method to aid the particle approximation.

where ζ(x) is a smooth approximation to the Delta function (δ(x)) and vp is the volume repre-
sented by a particle p. The quantity ωpvp is denoted the particle-strength, which corresponds to
the circulation represented by a particle in 2D with units m2/s. In 3D the particle-strength is a
vector quantity of units m3/s. By inserting Eq. (2.6) into Eq. (2.2) a system of coupled differ-
ential equations is obtained, which is solved in a Lagrangian frame of reference using explicit
time-step schemes

dxp
dt

= u(xp), (2.7)

dωp
dt

=
[
(ω ·∇)u+ ν∇2ω

]
p
. (2.8)

Redistribution of particle-strength onto a structured set of points – a mesh (re-meshing)
is necessary to preserve the consistency of the method (Koumoutsakos and Leonard, 1995;
Koumoutsakos, 1997). By using a mesh of spacing h, this impose that the particle volume
corresponds to the cell volume, e.g. vp = h3 in 3D. Further, by distribution of the vortex-
particle strength onto a mesh, the right-hand-side of Eqs. (2.7)–(2.8) may be computed using
mesh-based approximations. In this case centered finite-difference schemes of fourth order ac-
curacy have been used to approximate partial derivatives. The procedure outlined in Chap. 1
is used to solve the Poisson equation (Eq.(2.4)). The approximated rate-of-change of vortic-
ity and the velocity is then interpolated back to the particles, to advance particle-position and
particle-vorticity. The particle mesh interpolation is illustrated in Fig. 2.1.

The distribution of particle-vorticity onto a uniform mesh is written

ω(x, t) ≈
∑

p

ωp(t)vpW

(
x− xp
h

)
, (2.9)

where W is an interpolation kernel. The multidimensional tensor product of the twice differen-
tiable interpolation functionM ′

4(x) in Eq. (2.11) (Monaghan, 1985) is commonly used forW in
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vortex methods. It conserves the first three moments of the distribution interpolated. Also the
fourth order accurate function in Eq. (2.12) (M∗

6 ), introduced by Bergdorf (2007), has been con-
sidered in the current work. It was shown van Rees et al. (2011) that a kernel based on the M∗

6

function significantly improves the accuracy of the 3D vortex method in marginally resolved
and underresolved simulations at the cost of increased computational cost. The 3D stencil of
the discrete interpolation operator based on M ′

4 has a support of 33 grid points whereas M∗
6

requires 43. For completeness, also the second order kernel with 23 support (M2) is given in
Eq. (2.10), which is positive and conserves the first two moments. The interpolation functions
have been plotted in Fig. 2.2 in real-space and Fourier-space.

M2(x) =

{
0 for |x| > 1

1− |x| for |x| ≤ 1,
(2.10)

M ′
4(x) =





0 for |x| > 2
1
2
(2− |x|)2(1− |x|) for 1 < |x| ≤ 2

1− 5|x|2
2

+ 3|x|3
2

for |x| ≤ 1.

(2.11)

M∗
6 (x) =





0 for |x| > 3

− 1
24

(|x| − 2)(|x| − 3)3(5|x| − 8) for 1 < |x| ≤ 2
1
24

(|x| − 1)(|x| − 2)(25|x|3 − 114|x|2 + 153|x| − 48) for 1 < |x| ≤ 2

− 1
12

(|x| − 1)(25|x|4 − 38|x|3 − 3|x|2 + 12|x|+ 12) for |x| ≤ 1

(2.12)

Evaluation of the particle velocity by solving the Poisson equation Eq. (2.4) constitute a
critical part of vortex-methods in terms of accuracy and computational efficiency. The Poisson
equation is an elliptic equation hence the solution at one point relies on information from all
other points in the problem. The basis of most approaches to this problem is to formulate the
solution as a convolution of the right-hand-side with the elementary solution to the Poisson
equation (G) known as the Green’s function solution

Ψ(x) =

∫ ∞

−∞
G(x− x′)ω(x′) ddx′, ∇2G = −δ(x− x′) (2.13)

uω(x) =

∫ ∞

−∞
∇G(x− x′)× ω(x′) ddx′. (2.14)

Using the particle approximation (Eq. (2.6)) it follows that the potential and velocity are ap-
proximated correspondingly as

Ψ(x) =
N∑

p

G(x− xp)ω(xp)vp, ∇2Gε = −ζ(x− x′) (2.15)

uω(x) =
N∑

p

∇Gε(x− xp)× ω(xp)vp. (2.16)

The direct evaluation of Eq. (2.15) or Eq.(2.16) requiresO(N2) arithmetic operations. The Fast
Multipole Method (FMM) (Greengard and Rokhlin, 1987; Carrier et al., 1988) achieves optimal
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Figure 2.2: Interpolation kernels using M2 ( ) , M ′
4 ( ) , M∗

6 ( ) : (a) Real-space. (b)
Fourier-space. h is the mesh spacing and k is the wavenumber.
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O(N) scaling of operation by including only the nearest neighbor particles in the direct sum-
mation and otherwise the lumped charges (by multipole expansion) of well separated particles
in larger and larger clusters, using a hierarchical decomposition of the computational domain.
This method is very versatile in the sense that it handles well a non-uniform distribution of the
particles.

Particle-mesh methods may utilize fast mesh-based Poisson solvers, by either convolution
via the fast Fourier transforms and the domain doubling technique by Hockney and Eastwood
(1988) to achieve unbounded directions or by inversion of the discrete Laplacian operator (e.g.
constructed by finite-difference approximations) using fast linear solvers such as as Multigrid.
In the later case the boundary conditions are restricted to be of type Dirichlet, Neumann or
periodic. Previous work have achieved unbounded directions by combining the FMM with the
solvers that are not based on convolution. In that case, FMM is responsible for computing the
Dirichlet conditions required by the mesh-based solver. This has also been done to achieve
efficient adaptive multilevel decomposition without the need to perform Schwarz-iterations
(Bergdorf et al., 2005; Cocle et al., 2008)

This work use the Fourier-based solver introduced in Chap. 1. The reader is referred to the
references (Langston et al., 2011; Malhotra and Biros, 2015) for details on higher-order FMM
methods for partial differential equations in general and (Gholami et al., 2016) for a detailed
comparison of the computational efforts required by the various methods mentioned.

2.2 Constraints on the time-step size

The use of explicit time stepping in vortex-methods constrains the size of the time-step for
numerical stability. The convective transport term ((u ·∇)ω) does not explicitly appear in the
Lagrangian formulation Eq. (2.7) and Eq. (2.8), hence the time step used with the method is not
limited by the usual Eulerian CFL condition. Instead, the time step is limited by a strain time
scale

‖ω‖∞∆t < CLCFL, (2.17)

where CLCFL ≈ O(1) (Chatelain et al., 2008). In addition, the spatiotemporal discretization of
the solution yields a Fourier condition due to the viscous term as in Eulerian methods

ν∆t

h2
< CFo. (2.18)

The constant (CFo) depends on the time stepping scheme. Here, explicit Runge-Kutta schemes
are considered with CFo ≥ 1

4
.

2.3 Vorticity re-projection

In vortex-particle methods the velocity field is computed from the vorticity field by solving
Eq. (2.4), which ensures that the velocity is divergence free (to the level of accuracy of the
discrete approximation). This is not ensured for the vorticity. To avoid an accumulation of di-
vergence of the vorticity field during simulation, the intermediate vorticity field (ω̃) is typically
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re-projected onto a divergence-free field (ω = ∇ × u) once every few time-steps by applying
a Helmholtz decomposition to the vorticity field

ω̃ = ∇× u−∇a, ∇ · u = 0. (2.19)

A Poisson equation (Eq. (2.20)) is solved for the scalar potential (a) which is used to correct
intermediate vorticity as

∇2a = −∇ · ω̃ (2.20)
ω = ω̃ + ∇a. (2.21)

It is noted that the re-projection (Eq. (2.21)) does not modify the vorticity field if the vorticity
divergence is zero. The correction is conveniently applied in Fourier-space when solving for
the velocity using that

a =∇ ·Ψ. (2.22)

Hence the additional computational efforts of this operation are those associated with the inverse
DFT of the corrected vorticity Fourier coefficients.

2.4 Instability of counter rotating vortex pairs

We illustrate an application of the FFT-based Poisson solver with the VPM method for a
problem with mixed boundary conditions (two unbounded and one periodic direction) by sim-
ulating the evolution of two counter rotating vortex pairs from an initial state (Winckelmans
et al., 2005; Chatelain et al., 2008; Chatelain and Koumoutsakos, 2010). For the Poisson solver
we use the Green’s function derived by Gaussian regularization with m = 10 and α = 1.5.

The initial vorticity field consists of two counter rotating vortex-pairs given as

ω =
2∑

i

Γi
π

(
φ

p2
i + φ2

)2

ez −
2∑

i

Γi
π

(
φ

q2
i + φ2

)2

ez, (2.23)

p2
i = (x+ bi)

2 + (y − ε)2, q2
i = (x− bi)2 + (y − ε)2, (2.24)

where z is the periodic direction and pi, qi are the perturbed radii of the respective vortices in the
unbounded plane. Following (Winckelmans et al., 2005; Chatelain et al., 2008; Chatelain and
Koumoutsakos, 2010) we use Γ2/Γ1 = −0.3, b2/b1 = 0.3, φ1/b1 = 0.075 and φ2/b1 = 0.05
and define the timescale and the Reynolds number based on the initial circulation (Γ0 = Γ1+Γ2)
and centroid (b0 = [Γ1b1 + Γ2b2] /Γ0)

T = 2πb2
0/Γ0, Re = Γ0/ν = 3500. (2.25)

The system is primarily unstable to the mode of wave length λz/b0 = 0.76 (Winckelmans
et al., 2005; Chatelain et al., 2008). To onset the instability the perturbation is set as ε(z) =
10−5b0 sin (2πz/λz). The computational domain spans a single wave length of this mode in the
periodic direction (Lz = λz) and the span in the unbounded directions is adapted to encapsulate
vortex-particles for which |ωp| > 10−4|ω|max.
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We measure the time variation of the enstrophy (Ω) and the distribution of kinetic energy
among wave numbers (E(kz))

Ω =

∫
ω(x, y, z) · ω(x, y, z) dV (2.26)

E(kz) =

∫ ∫
1

2

(
Ψ̂∗(x, y, kz) · ω̂(x, y, kz) + ω̂∗(x, y, kz) · Ψ̂(x, y, kz)

)
dx dy. (2.27)

The enstrophy evolution has been plotted in Fig. 2.3(a). It may be seen that the obtained re-
sults converge (with mesh refinement) towards the same solution as obtained in (Chatelain and
Koumoutsakos, 2010) (for h/Lz = 256). Furthermore the time history of kinetic energy associ-
ated with first three modes has been plotted in Fig. 2.3(b) and shows very similar growth rates as
in (Chatelain and Koumoutsakos, 2010) though the current results are slightly delayed possible
due different perturbation applied or other variations in the algorithms (e.g. time stepping and
projection-scheme). isocontours of the vorticity magnitude have been plotted at several times in
Fig. 2.4. These show a transition from a 2D state into a 3D state primarily through the perturbed
wave length. The 3D dynamic involves a stretching of one pair member around the other and
creation of smaller scales in the solution through non-linear interaction.

2.5 Summary

In this chapter the VPM method was outlined and demonstrated for a mixture of free-space
and periodic boundary condition by simulating the break down of two counter rotating vortex
pairs.
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Figure 2.3: (a) Evolution of enstrophy. (b) Evolution of kinetic energy associated with first
three modes: 0th (solid), 1st (dashed), 2nd (dotted). Line colors indicate results from: (Chatelain
and Koumoutsakos, 2010) ( ) , simulation for h/Lz = 64 ( ) , simulation for h/Lz = 128
( ) , simulation for h/Lz = 256 ( ) .
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t/T = 1.9t/T = 1.3

t/T = 1.1t/T = 0.8

t/T = 0.6t/T = 0.0

Figure 2.4: Isocontours of the vorticity magnitude from blue to red |ωb2
1/Γ0| =

[1, 4, 8, 12, 16, 20, 24, 28, 32] at various times for simulation with h/Lz = 128.
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Chapter 3

Solid bodies

This chapter regards modeling of fluid flow past solid bodies. The chapter is an edited ver-
sion of the paper “Iterative Brinkman penalization for simulation of impulsively started flow
past a sphere and a circular disk” published in Journal of Computational Physics 2017 (Spietz
et al., 2017a). Further, it include some new material.

Conventionally, the analysis of fluid-structure interaction requires the use of conformal meshes
to enforce the no-slip boundary condition on computational points located at the solid-fluid in-
terface. The solid boundary condition may also be enforced with non-conformal meshes using
immersed boundary methods Peskin (1972); Goldstein et al. (1993) or fictitious domain meth-
ods which rely on a modification of the governing equations. These methods may be interesting
since they avoid time consuming generation of high quality, non-orthogonal grids, that require
non-trivial solution algorithms.

One immersed boundary method is the Brinkman penalization method (Angot et al., 1999;
Khadra et al., 2000; Kevlahan and Ghidaglia, 2001). The principle of the method is to model a
fluid flow in a porous medium by adding volume forcing to the governing equations. The porous
medium flow tends to the primary flow past a non-porous immersed body as the permeability is
reduced to zero in the part of the flow occupied by the solid body.

The main challenge of the penalization method is that it may lead to mollified interface.
Another interesting branch of the immersed boundary methods for particle methods aims at
providing sharp interfaces, by introducing control points on the interface itself not neccesarily
coinciding with the background mesh (Poncet, 2009; Marichal et al., 2016; Gillis et al., 2018).
The main complexity of these immersed interface methods lies in the adaptation of the numeri-
cal schemes near the interface.

In the field of vortex methods several numerical schemes are based on the penalization
method (Coquerelle and Cottet, 2008; Rossinelli et al., 2010; El Ossmani and Poncet, 2010;
Rasmussen et al., 2010; Hejlesen et al., 2015a; Gazzola et al., 2011b; Mimeau et al., 2015,
2016). Hejlesen et al. (2015a) proposed an iterative variation of the explicit scheme for the
simulation of 2D fluid flow past solid obstacles with the VPM method. This iterative method
uses a split-step scheme that overcomes a drawback of the conventional non-iterative schemes
for vorticity-velocity formulation of the Navier-Stokes equations. For the non-iterative schemes
an accurate enforcement of the solid boundary condition restricts the time step size because the
numerical formulation lacks the global coupling of the Poisson equation. In this chapter we
present this technique and show that it is extendable to 3D flows.

The proposed method is applied to the impulsively started flow past a sphere and the re-
sults are compared to those of Mimeau et al. (2016) and Ploumhans et al. (2002). The work
by Mimeau et al. (2016) includes a study of the flow past a sphere using the non-iterative im-
plicit penalization. The focus of their studies is on the space-developing simulations since the

29



Solid bodies

F

S

us

Figure 3.1: Domain consisting of a solid and a fluid part.

velocity-vorticity relation is solved using a periodic Poisson solver with a velocity correction
step to account for outflow of vorticity in the stream wise direction. Results are obtained for
Re = 300 and Re = 1000 in simulated times long enough for the flows to reach a steady state.
In this chapter, we focus on the impact of the iterative process on accelerated flows, hence our
approach avoids potential artifacts due to outflow boundary conditions. However, this limits the
time span of the simulation due to growing extent of domain with time. In Sec. 3.4.3 we briefly
assess the need to modify the unbounded boundary condition when using wake truncation in
bluff body flow. Ploumhans et al. (2002) studied the flow past a sphere at various Reynolds
numbers using a particle vortex method combined with a boundary element method (BEM) and
panel-vortex diffusion to enforce the no-slip condition at the fluid-solid interface. They did not
use outflow boundary conditions, but a mapping to a non-uniform grid to reduce the compu-
tational costs. Moreover, we present results for the simulation of the impulsively started flow
normal to a circular disc of finite thickness at Re = 500.

3.1 The Brinkman penalization method

We solve the incompressible Navier-Stokes equations in a domain (Ω) consisting of a solid
region (S ∈ Ω) and a fluid region (F = Ω\S) cf. Fig.3.1. We introduce the Brinkman term that
penalizes the difference between the solid velocity (us) and the flow fluid velocity (u) within
the solid body to be close to zero (Angot et al., 1999). Here we consider the vorticity-velocity
formulation of the Navier-Stokes equations

∂ω

∂t
+ (u ·∇)ω = (ω ·∇)u+ ν∇2ω + ∇× [λχ(us − u)] , (3.1)

where λ is a penalization parameter, which may be seen as the inverse permeability of the solid
region and χ is the characteristic function of S

χ(x) =

{
1 for x ∈ S
0 for x ∈ F .

(3.2)

We note that the Brinkman penalization term may be expanded as

∇× [λχ(us − u)] = λ∇χ× (us − u) + λχ(ωs − ω), (3.3)
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where ωs = ∇ × us. The term causes a production of vorticity in Eq. (3.1) due to residual
in the velocity field (us − u) and vorticity field (ωs − ω). ∇χ is a vector field with non-zero
magnitude only at the fluid-solid interface and is orientated normal to the interface. Hence, this
production term is zero where the residual velocity (us − u) is also normal to the interface. As
a consequence, when the Brinkman term is approximated separately from the elliptic kinematic
relation between the dependent variables, the enforcement of the solid boundary condition will
be delayed in time. This short-coming is distinctive in accelerated flows past objects, whose
geometries have the majority of the surface area normal to the flow direction. This effect has
been illustrated by Hejlesen et al. (2015a) for the impulsively started flow normal to a flat plate
and it is the motivation for considering the impulsively started flow normal to a circular disc in
the present study.

3.2 Numerical implementation of the Brinkman penalization method in a re-meshed
vortex method

We solve the modified vorticity transport equation (Eq. (3.1)) in a split-step algorithm

∂ω

∂t
= ∇× [λχ (us − u)] , (3.4)

Dω

Dt
= (ω ·∇)u+ ν∇2ω. (3.5)

Using the discrete approximation, Eq. (3.5) becomes a system of coupled ordinary differen-
tial equations, which is solved in the Lagrangian frame of reference

dxp
dt

= u(xp, t) (3.6)

dωp
dt

=
[
(ω ·∇)u+ ν∇2ω

]
p
. (3.7)

We denote the solution to Eq. (3.4) ω∗ and the corresponding velocity field u∗. We write the
solution as a correction (ξ) to the vorticity field prior to this step (ω)

ω∗ = ω + ξ. (3.8)

The correction may be determined by discretizing Eq. (3.4) using either the explicit or the
implicit Euler scheme as respectively

ξexp = ∇× (∆tλχv0) (3.9)

or

ξimp = ∇× [∆tλχ(us − u∗)] = ∇×
(

∆tλχ

1 + ∆tλχ
v0

)
, (3.10)

where v0 = us − u is the velocity residual to be penalized. With the Brinkman technique λ
is controlling how effectively the solid boundary condition is enforced, hence it is desirable to
set it as large possible. The explicit scheme (Eq. (3.9)) is stable for 0 < λ ≤ 2

∆t
whereas the
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implicit scheme (Eq. (3.10)) is unconditionally stable and thus formally better suited for the
discretization. However, Rasmussen et al. (2011) noticed that when the explicit scheme is used
with λ = 1

∆t
the two schemes are essentially the same and differs only in the way the mollified

characteristic function of the solid blends into the fluid. We note that

lim
λ=∞

∆tλχ

1 + ∆tλχ
= χ. (3.11)

Consequently, if the mask (χ) is a Heaviside function the implicit scheme, in the limit of λ →
∞, is equivalent to the explicit scheme using λ = 1

∆t
.

When the Brinkman method is used in a discrete vorticity formulation as Eq. (3.9) or Eq. (3.10),
the mesh points where penalization vorticity (ξ) may be produced in a single time step depend
on velocity residual within the solid (us − un) and on the geometry of the solid cf. Eq. (3.3).
Hence, only if the penalization vorticity is found, while invoking the elliptic relation between
vorticity and velocity cf. Eq. (2.4), a strong coupling between the two dependent variables may
be enforced in the general case. To achieve this we compute the correction (ξ) in a number
of iterations (Ni) as Eq. (3.12) and Eq. (3.13) using an update based on a generalization of
Eq. (3.9).

ξk+1 = ξk + η∇×
[
χ
(
v0 − ukξ

)]
, (3.12)

∇2uk+1
ξ = −∇× ξk+1 for k = 1, 2, ...Ni, (3.13)

Here η is a relaxation parameter, and the process is stable for 0 < η ≤ 2. The reader is referred
to Hejlesen et al. (2015a) for the details on the derivation of Eq. (3.12) and Eq. (3.13).

Termination of the process we base on a criteria using the second norm of vorticity (E)
introduced between iterations as

|Ek+1 − Ek|
Ek

< ε, Ek =

∫
ξk · ξk dV, (3.14)

where ε is a specified tolerance.
The accuracy of the Brinkman method may be quantified by considering the residual velocity

(||us−u
U
||) within the solid. When the Brinkman method is used in the velocity-pressure formu-

lation the L∞-norm of the residual velocity has been related to λ as O (λ−0.5) by Angot et al.
(1999). This relationship does not hold in the general case as the geometry of the solid may
have a significant influence as shown by Hejlesen et al. (2015a), who considered the vorticity
formulation.

In the iterative process (Eq. (3.12) and Eq. (3.13)) λ has been eliminated as a free parameter
and replaced it by a relaxation parameter (η) and a termination criteria governing the number of
iterations (Ni). We observe from experiments that using the iterative process the residual may
be reduced with the iteration number asymptotically asO

(
Nβ
i

)
, where β ' −0.5 independent

of the global time step.
In the present method ξ will be non-zero only in the immediate vicinity of the solid body if

a compact approximation to the curl in Eq. (3.12) is applied. In flows where the solid region is
small compared to extent of the vorticity field, the computational efforts associated with solving
the Poisson equation for uξ every iteration is reduced by computing ξ separately from ω using
a smaller sub-set of the computational mesh as indicated in Fig. 3.2.
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3. ξ1. v0 = us − u

4. ω∗ = ω + ξ

5. ∇2u∗ = −∇× ω∗

2. ξ = ∆tλ∇×
[
χ
(
v0 − uξ

)]
, ∇2uξ = −∇× ξ

Figure 3.2: The penalization vorticity may be solved on a subdomain enclosing the solid body.
The procedure is summarized in the steps 1–5.

In other implementations of the Brinkman penalization method (Rossinelli et al., 2010; Ras-
mussen et al., 2010; Gazzola et al., 2011b) χ have been replaced by a smooth approximation,
since it is a Heaviside function, and the derivative of a Heaviside function is a singularity. In
the present study we approximate the curl of the term χ(us − u) (that may be discontinuous)
by second order finite difference (unless otherwise specified) to avoid the dependency on an
additional mollification length. The high order, regularized Poisson solver guarantees a smooth
velocity field and in addition, the vorticity due to penalization is smoothed explicitly to be con-
sistent with the regularized solution obtained with the higher order Poisson solver. This we do
by linear convolution of the vorticity field with a the regularization kernel used for the Poisson
equation

ξε = ζ ∗ ξ. (3.15)

Another view on the iterative penalization method was given by Gillis et al. (2017). Here,
the penalization vorticity is found by solving the linear system

Aξ = b, b = ∇× [χv0] , (3.16)

where the linear operator (A) is defined as

A : ξ →∇× [χuξ] , (3.17)

Gillis et al. (2017) proposed to solve the matrix equation (Eq. (3.16)) using Krylov based iter-
ative solvers for non-symmetric systems e.g. by generalized minimum residual type solvers or
the bi-conjugate-gradient-stabilized solution technique, both which do not require the evalua-
tion of the transpose of A. Further, Gillis et al. (2017) applied solution-recycling to increase
the efficiency. We, note that our approach cf. Eq. (3.12)–Eq. (3.13) corresponds to solving the
matrix equation (Eq. (3.16)) using a relaxed Richardson iterative solver

ξk+1 = ξk + η(b−Aξk). (3.18)
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Further, thatA involves the inverse Laplacian (∇2)−1 i.e. it requires the solution of the Poisson
equation (Eq. (3.13)). In preliminary studies it was observed that by applying the more advanced
iterative solvers, the solution (ξ) becomes highly oscillatory. This we relate to the low-pass
filtering associated with the Poisson solver in the current method, which implies high-pass
filtering in the inverse direction, hence solving Eq. (3.16) is actually discrete deconvolution. The
challenges observed are analogues to those of Beale’s method (Beale, 1988) (see discussion in
Cottet and Koumoutsakos (2000)). In comparison the studies in Gillis et al. (2017) were carried
out for singular Green’s functions. We observed that with the proposed Poisson solver the use
of the relaxed Richardson solver followed by a regularization step cf. Eq. (3.15), although less
efficient, results in stable convergence of the residual and in non-oscillatory solutions in time.

3.3 Calculation of the aerodynamic force and moment

The total aerodynamic force (F ) and moment Mc acting on a solid body may be computed
from the rate of change of the first and second order moment of the vorticity distribution and an
inertia term cf. Wu (1978). For a rigid body moving with solid body velocity (ũs) the force and
moment in d-dimensions are given by

F = −ρ 1

d− 1

d

dt

∫

Ω

x× ω dV + ρ
d

dt

∫

S
ũs dV, (3.19)

Mc = −ρ1

2

d

dt

∫

Ω

|x− xc|2ω dV + ρ
d

dt

∫

S
(x− xc)× ũs dV, (3.20)

where ρ is the density of the fluid and xc is the geometrical center of the solid. We note, that
Eq. (3.19) requires an integration over the entire vorticity field extending e.g., to the far wake of
the flow. In Ploumhans et al. (2002) it was noted, that this global formulation may be inaccurate
when having a coarse spatial resolution in the far wake and found the local control volume ap-
proach by Noca et al. (1997, 1999) to be more accurate. In the present work it has been noticed
that the global approach is also sensitive to truncation, introduced when the vorticity is advected
out of the computational domain, which in practice is necessary to limit the computational effort
in space-developing simulations. Instead we utilize that a change in the first moment of vortic-
ity may only be due to non-conservative external forcing in the momentum equation (Saffman,
1992), which in the present study is due to the penalization function. Following Hejlesen et al.
(2015a) we therefore exploit the vorticity decomposition Eq. (3.8) in Eq. (3.19) to obtain

F = −ρ 1

d− 1

d

dt

∫

Ω

x× ξ dV + ρ
d

dt

∫

S
ũs dV, (3.21)

Mc = −ρ1

2

d

dt

∫

Ω

|x− xc|2ξ dV + ρ
d

dt

∫

S
(x− xc)× ũs dV. (3.22)

This is a local measure and by using this for the evaluation of the total aerodynamic force and
moment we avoid the aforementioned issues. The numerically evaluated total aerodynamic
force by the two different expressions has been found in agreement if the rate of change of
vorticity due to diffusion and stretching is integrated in time by the explicit Euler method such
that it is treated consistently with the penalization term.
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When computing aerodynamic force and moment it should noted that Eq. (3.19) and Eq. (3.20)
are only applicable for unbounded flow. In the control volume formulation by Noca et al. (1997,
1999) the pressure is eliminated by the use of Stokes’ theorem, which may only be applied if
the whole body can be encompassed by a closed control surface, otherwise a modification is
required (Tan et al., 2005). For the case of infinite-periodic structures, to obtain force and mo-
ment one option is to explicitly calculate the pressure. However, in that case, we propose to
exploit tat the force and moment may be obtained directly by integration of the penalization
term following Angot et al. (1999); Kolomenskiy and Schneider (2009) as

F = ρ lim
λ→∞

∫

Ω

λχ(u− us) dV + ρ
d

dt

∫

S
ũs dV, (3.23)

Mc = ρ lim
λ→∞

∫

Ω

λχ(x− xc)× (u− us) dV + ρ
d

dt

∫

S
(x− xc)× ũs dV, (3.24)

Since, the iterative sequence cf. Eqs. (3.12)–(3.13) may be viewed as a series of explicit Euler
sub-steps, force and moment can be approximated as the average force and moment applied
during iterations

F ≈ ρ
η

∆t

Ni∑

k=1

∫

Ω

(uk − us) dV + ρ
d

dt

∫

S
ũs dV, (3.25)

Mc ≈ ρ
η

∆t

Ni∑

k=1

∫

Ω

(x− xc)× (uk − us) dV + ρ
d

dt

∫

S
(x− xc)× ũs dV. (3.26)

3.4 Results

3.4.1 The impulsively started flow past a sphere at Re = 1000

We simulate the impulsively started flow past a stationary sphere at Re = 1000 as sketched
in Fig. 3.3. The Reynolds number and dimensionless time, drag and lift coefficient are defined
as respectively

Re =
UD

ν
, t∗ =

tU

D
, CD =

Fx(
1
2
ρU2

) (
1
4
πD2

) , CL =
Fy(

1
2
ρU2

) (
1
4
πD2

) , (3.27)

where D is the diameter of the sphere. We use a grid spacing of h = 128/D (unless otherwise
stated). A second order explicit Runge-Kutta scheme is applied for the advancement of particles
with time step size ∆t∗ = 0.005. This time step has been found to give accurate results and
is identical to the time step used by Ploumhans et al. (2002). The extent of the domain is
updated every 50th time step to prevent truncation of vortex particles that satisfy the threshold
|ωp|/||ωp||∞ ≥ 10−5. For the iterative scheme we employ a default convergence criteria of
ε = 0.05.
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Figure 3.3: Impulsively started flow past a sphere of diameter (D). A Cartesian coordinate
system (x, y, z) and a spherical coordinate system (r, θ, φ) have also been indicated. The origin
of the coordinate systems is in the sketch displaced from their actual origin being the center of
the sphere.

The potential flow solution and the axisymmetric stream function

The potential flow past a sphere may be described as a singular distribution of vorticity at
the surface of the sphere. The potential flow is axisymmetric. Hence, it has zero variation with
the polar angle (φ) in a spherical coordinate system cf. Fig. 3.3. The vortex sheet is (Batchelor,
1967)

γ = −3

2
U sin (θ) , (3.28)

We compare the analytic solution (Eq. (3.28)) to our split-step result at the first time step of the
impulsively started flow simulation. We refer to this as the solution at time t∗ = 0+. Though
our simulation does not result in a singular distribution of vorticity at t∗ = 0+, we estimate the
vortex sheet by interpolating the split-step vorticity onto a spherical grid (Nr × Nθ × Nφ =
100× 50× 100) and integrate in the radial direction as

γ =

∫ ∞

0

ω∗φ dr. (3.29)

Fig. 3.4(a) and Fig. 3.4(b) shows that the iterative scheme using the relaxation parameter η =
1 results in a sheet that is in excellent agreement with the potential flow solution. The obtained
sheet is approximately constant in the polar direction and the variations may be explained by
errors due to having sampled the geometry of the sphere on a Cartesian grid when discretizing
the characteristic function of Eq. (3.2).

Fig. 3.4(c) shows the vortex sheet by the iterative scheme using η = 1 compared to the vortex
sheet by the non-iterative scheme for η = 1, η = 3

2
and η = 2. The initial vortex sheet produced

in a single iteration using Eq. (3.12) is γ(θ) = −ηuslip(θ) when the solid is a sphere (in the
absence of effects due to finite spatial resolution). The initial slip velocity is uslip(θ) = U sin (θ),
hence the potential solution is produced in a single iteration for η = 3

2
. The figure shows that

the non-iterative scheme produces an almost equally well matching solution using η = 3
2

as
expected based on the aforementioned argument. Some oscillations are observed near θ = 0
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Figure 3.4: The vortex sheet at t∗ = 0+ by the present 3D Brinkman penalization method. (a)
Isocontours of vortex sheet strength (normalized by U ) obtained with the iterative scheme as
function of azimuthal angle, θ and polar angle φ. (b) The vortex sheet strength using the iterative
scheme and averaged in the polar direction ( ) compared to the exact potential solution ( ) .
(c) Vortex sheet strength at t∗ = 0+ by the iterative scheme legendredsolidnone and the non-
iterative scheme using η = 1 ( ) , η = 3

2
( ) and η = 2 ( ) .

and θ = π due to finite spatial resolution. Evidently, the vortex sheet strength obtained without
iterating is incorrect using other values of η

An axisymmetric stream function (ϕ) is computed from the simulated vector potential (ψ),
which is interpolated to a cylindrical grid (Nr×Nφ×Nx = 100×100×1.5D/h) and averaged
in the polar direction as

ϕ(r, x) =
1

2π

∫ 2π

0

rψ(r, φ, x) · eφ dφ. (3.30)

Isocontours of the axisymmetric stream function are shown in Fig. 3.5. The figure demon-
strates that the iterative scheme is capable of accurately imposing the no-through boundary
condition. The overestimation of the vortex sheet strength by using η = 2 with the non-iterative
scheme causes a growth in the effective radius of the sphere and a back flow within the sphere
at this time step. Setting η = 3

2
yields a better boundary condition as compared to the two other

non-iterative cases shown but is not as smooth and accurate near the surface of the sphere as
obtained with the iterative scheme.

Convergence of drag coefficient at the early times of the simulation

We now consider the time interval t∗ ∈ [0, 1] and verify the consistency of the proposed
method by measuring the convergence of the relative error on the drag coefficient for various
spatial resolutions against the best resolved case as

error(t∗) =
|CD(t∗)− CD best resolved(t

∗)|
|CD best resolved(t∗)|

. (3.31)

37



Solid bodies
r
/
D

−0.5 0.0 0.5 1.0 1.5

x/D

r
/
D

−0.5 0.0 0.5 1.0 1.5

x/D

(a)

(b)

(c)

(d)

Figure 3.5: Isocontours of axisymmetric stream function in 10 logarithmically spaced levels in
the interval [−1, 1] at t∗ = 0+. (a) Solution for the iterative scheme using η = 1. (b) Solution
for the non-iterative scheme using η = 1. (c) Solution for the non-iterative scheme using η = 3

2
.

(d) Solution for the non-iterative scheme using η = 2.

The study is carried out for the iterative scheme using η = 1 and mesh spacings D/h = 16,
32, 48, 64, 96, 128 and 256. The error is shown in Fig. 3.6 and the temporal variation of the
drag coefficient in the case with resolutionD/h = 128 is shown in Fig. 3.7(a). The decay of the
error-norms is approximately second order cf. Fig. 3.6. The rate of convergence is not increased
by applying a fourth order finite difference scheme for computation of Eq. (3.12) rather than
a second order scheme. This observation is consistent with the dependency of the maximum
order of accuracy that may be achieved when solving Poisson equation as Eq. (2.4), on the
number of continuous derivative of the vorticity field. In the current method the vorticity field
becomes singular as we compute the rate of change of vorticity as the derivative of a Heaviside
function (χ). However, the resulting velocity field is ensured to be sufficiently smooth to be
used to approximate the solution to the governing equations (u ∈ C2). We do not find that
it is necessary to introduce an ad hoc mollification of χ. Instead we explicitly regularize the
penalization-vorticity field by which the observed rate of convergence of the current method
correspondents to that reported using a mollified χ (Gazzola et al., 2011b). The same study
was also carried out using the M∗

6 interpolation kernel. The results showed an insignificant
improvement on the error level and the same rate of convergence as reported for M ′

4. We relate
this to the explicit regularization that effectively removes singularities at the solid interface
before interpolation each time step.
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Figure 3.6: Convergence of the relative error on the drag coefficient for the impulsively started
flow past a sphere at Re = 1000 using the 3D iterative Brinkman method and a fixed time step
of ∆t∗ = 0.005. The relative error is measured by comparing with the solution obtained using
a spatial resolution of h = D/128 in the time interval t∗ ∈ [0, 5]. L∞-norm ( ) and L2-norm
( ) using a second order approximation to Eq. (3.12). L∞-norm ( ) and L2-norm ( )
using a fourth order approximation to Eq. (3.12). Indication of respectively O(h1) and O(h2)
convergence ( ) .

Comparison of iterative and non-iterative scheme at early times

We compare the drag coefficient obtained using the iterative and the non-iterative scheme
using η = 1 in Fig. 3.7(a). For the impulsively started flow past a sphere at the current Reynolds
number there is no visible deviation between the two in the considered time interval.

The velocity residual at the end of the penalization step, for the iterative and the non-iterative
scheme, is shown in Fig. 3.7(b). The L2-norm of the residual obtained using the iterative
scheme, requiring on average 30 iterations per time step to fulfill the convergence criteria, is ap-
proximately one order of magnitude lower than the norm obtained by the non-iterative scheme.
This indicates that the iterative scheme enforces the solid boundary condition one order of mag-
nitude more accurately than the non-iterative scheme. This is essentially the same as observed
in 2D for the impulsively started flow past a cylinder at Re = 9500 by Hejlesen et al. (2015a).

The rate at which the residual velocity within the solid at various time steps decays with the
iteration number (Ni) has been plotted in Fig. 3.8. The variation has been measured for up to
1000 iterations at each of these time steps, hence exceeding the number of iterations needed to
fulfill the aforementioned termination criteria. In this case, the asymptotic rate is close to −0.5
depending on which time step and norm is considered.

The additional cost of iterating the penalization vorticity relative to the cost of not iterating
has been measured to be about 260 % at time t∗ = 0. At this time the penalization subdomain
constitutes about 40 % of the full domain. At time t∗ = 5.0 the domain has expanded to encap-
sulate all vorticity with strength above the given threshold and consequently the penalization
subdomain constitutes about 10 %. This reduces the relative additional cost of iterating to about
120 %. This indicates that for simulations with extensive wakes, where the penalization subdo-
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Figure 3.7: Impulsively started flow past a sphere at Re = 1000 simulated using h = D/128
and ∆t∗ = 0.005. (a) Time variation of the drag coefficient for the iterative scheme ( ) and
the non-iterative scheme ( ) . (b) Time variation of the L2-norm of the velocity residual for
the iterative scheme ( ) and the non-iterative scheme ( ) .

main may be small compared to the full domain, it is cheaper to reduce the velocity residual
of the penalization by performing iterations rather than by reducing the global time step of the
simulation.

Qualitative comparison of perturbed flow at later stages

Following Ploumhans et al. (2002) and Mimeau et al. (2016), we calculate the variation in
time of the drag and lift coefficient in the interval t∗ ∈ [0, 20] having applied a perturbation to
the free-stream velocity that breaks the axisymmetry

Uy =

{
0.1 sin (π(t∗ − 3)) if 3 < t∗ < 4

0 else.
(3.32)

Due to the perturbation a vortical structure is shed in the near wake from t∗ = 10–14 forming a
complex 3D wake. This shedding causes significant variations in the force coefficients as shown
in Fig. 3.9(a).

The force coefficients are found in good qualitative agreement with the results of Ploumhans
et al. (2002) and Mimeau et al. (2016) cf. Fig. 3.9(a). In the current simulation, the magnitudes
of the obtained coefficients are slightly higher and the two extrema of the drag coefficient time
history at t∗ ' 10.3 and 13.3 are delayed as compared to Ploumhans et al. (2002), which is the
same tendency seen in the results by Mimeau et al. (2016).

Ploumhans et al. (2002) further reported the maximum mesh Reynolds number (Rehmax =
‖|ω|h2/ν‖∞) as a diagnostic of the effective flow resolution in their simulation. The mesh
Reynolds number in the present simulation is shown in Fig. 3.9(b). The figure shows that in
present study the maximum mesh Reynolds number is at its maximum close to t∗ = 0 due to the
singularity occurring in the impulsively started flow. It rapidly decays to a value below 4 as the
flow develops. Ploumhans et al. (2002) reported a maximum mesh Reynolds number increasing
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Figure 3.8: Impulsively started flow past a sphere at Re = 1000 simulated using h = D/128
and ∆t∗ = 0.005. Decay of L2-norm (solid lines) and L∞-norm (dashed lines) of the velocity
residual within the solid body as function of the iteration number (Ni) tested at time step 1
(t∗ = 0) ( ) , 200 (t∗ = 1.0) ( ) and 1000 (t∗ = 5.0) ( ) .

from approximately 4 to 15–20 in their entire domain but approximately 3 in the boundary layer.
The later is close to the present result since the grid resolution near the solid body is about the
same.

It is reasonable to believe that the wake is better resolved in the present simulation as conse-
quence of the uniform resolution. Ploumhans et al. (2002) used a reduced resolution in the far
wake to gain computational efficiency.

The vortical structures of the flow may be identified from a rendering of the immediate
vorticity magnitude at various times shown in Fig. 3.10. The structures observed at t∗ = 20
in the present study appear more entangled than those reported by Ploumhans et al. Ploumhans
et al. (2002). This may be due to a suppression of instabilities in the shed structure caused by
the presumed coarser spatial resolution of the wake in that study.

The number of particles simulated increase from' 2×106 to' 7×107 in the current simu-
lation, which is significantly more than the ' 4.6× 105 to ' 2.3× 106 particles that were used
in the simulation by Ploumhans et al. (2002). The present simulation requires approximately
100 hours on 256 cores of the Intel Xeon E5640 processors.

3.4.2 Impulsively started flow normal to a disc at Re = 500

The impulsively started flow normal to a circular disc at Re = 500 is considered next. The
setup is sketched in Fig. 3.11. The Reynolds number and non-dimensionless time, drag force
we define respectively as

Re =
UD

ν
, t∗ =

tU

D
, CD =

Fx
1
2
ρU2D2

, (3.33)

where D is the diameter of the disc. The thickness of the disk is B = D/16. Again the second
order explicit Runge-Kutta scheme is applied for the advancement of particles and the extent
of the domain is updated as in the sphere simulation. Simulations were performed for spatial
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Figure 3.9: Time variation of simulations diagnostics in the impulsively started and perturbed
flow past a sphere at Re = 1000. (a): Drag coefficient ( ) and lift coefficient ( ) from
present study. Drag coefficient ( ) and lift coefficient ( ) from Ploumhans et al. (2002).
Drag coefficient ( ) and lift coefficient ( ) from Mimeau et al. (2016). (b) Time variation
of the maximum mesh Reynolds number.

resolution h = D/128 and h = D/256 corresponding to a disc thickness of 8 cells and 16 cells
respectively.

Comparison of iterative and non-iterative scheme

The drag coefficient obtained for the disc flow is, unlike the sphere flow, significantly affected
by the choice of penalization scheme. The drag coefficients obtained from the iterative and
the non-iterative scheme using η = 1 and h = D/256 are compared in Fig. 3.12(a). The
figure shows that the iterative scheme match the reference well, when using a time step of
∆t∗ = 0.001. Using the same time step the non-iterative scheme significantly overestimates
the drag coefficient for t∗ < 0.2, since this scheme requires several time steps to impose the
boundary conditions accurately on the surface of the disc. This scheme requires a time step of
∆t∗ = 0.0001 to match the reference solution.

As in the simulation of the flow past the sphere, the iterative method impose a visibly accurate
boundary condition from the first time step depending on the spatial resolution. This may be
seen from the isocontours of the axisymmetric stream function shown in Fig. 3.13. It was
observed that results obtained for h = D/256 complied better with the reference results as
compared to h = D/128 independent of global time step and penalization scheme. We relate
this to the additional degrees of freedom within disc where the penalization vorticity may be
non-zero and to the reduced smoothing of the boundary at the higher resolution.

In this case the maximum residual velocity for the non-iterative scheme is O(1) until t∗ =
0.1–0.5 (not shown) whereas it is lower but still significant (O(0.1)) for the iterative scheme
(cf. Fig. 3.13) using the criteria ε = 0.05 which require approximately 30 iterations per time
step for both spatial resolutions.

However it is noted that the L2-norm of the residual for the iterative scheme is at any time
less than 0.004 which is not the case for the non-iterative scheme until after approximately 1000
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Figure 3.10: Visualization of vorticity intensity (|ωD/U |) at various times: (a) t∗ = 10. (b)
t∗ = 12. (c) t∗ = 14. (d) t∗ = 16. (e) t∗ = 18. (f) t∗ = 20.
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Figure 3.11: Impulsively started flow (U ) past a circular disc of finite thickness (B) and diame-
ter (D). The origin of the Cartesian coordinate system is in the sketch displaced from its actual
origin being at the center of the disc.

time steps at t∗ = 1 when using a time-step of ∆t∗ = 0.001 as shown in Fig. 3.12(b).
It is observed that the maximum residual in the iterative scheme is located at the edges of

the disc, where we see streamlines cross the solid boundary. The regularization applied when
solving the Poisson equation ensures a smooth velocity field across the boundary, hence the
edges of the solid is effectively rounded and one may expect a velocity residual here larger than
elsewhere in the solid at any time. This area near the edge may be reduced by increasing the
spatial resolution as may be seen in Fig. 3.14, which shows the isocontours of the axisymmetric
stream function and the averaged velocity residual within the solid at time t∗ = 1.0 for grid
sizes h = D/128 and h = D/256.

Fig. 3.15 shows the rate at which the residual velocity within the solid decays with the it-
eration number (k). As for the impulsively started flow past the sphere, the asymptotic rate
is around −0.5. The rate is steeper the first few iterations of the first time step because of
the geometry in this case. So indeed it is possible to reduce the velocity level even further by
increasing the number of iterations, but the rate at which the residual decays is slow.

3.4.3 Assessment of the need to modify the unbounded condition in truncated flow

Finally, we assess the necessity of modifying the unbounded boundary conditions for flows
that are essentially not unbounded. This we do by considering a space-developing flow with
wake truncation. In this case the flow with a free-stream velocity U past a sphere of diameter D
and a Reynolds number of Re = 300. It is simulated in a finite domain as sketched in Fig. 3.16
with the non-iterative penalization scheme, as the iterations cannot be performed separately in
this case.

It may be argued that in order to ensure a physical behavior of the velocity field at the
interface of the domain, inlet and outlet conditions are required (Cocle et al., 2008; Chatelain
et al., 2013). For the bluff body flows considered in this project, the appropriate condition
would be to impose the free-stream velocity U in the normal direction (u · n = U , ∂u

∂n
· t = 0)
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Figure 3.12: Impulsively started flow normal to disc at Re = 500. (a) Drag coefficient obtained
for the iterative scheme using ∆t∗ = 0.001 ( ) . Drag coefficient obtained for the non-iterative
scheme using ∆t∗ = 0.001 ( ) and ∆t∗ = 0.0001 ( ) . Reference solution from a high
resolution, axisymmetric simulation performed using a commercial finite-volume code ( ) .
(b) Time variation of the L2-norm of the velocity residual. Iterative scheme using ∆t∗ = 0.001
( ) , non-iterative scheme using ∆t∗ = 0.001 ( ) and ∆t∗ = 0.0001 ( ) .

at the domain inlet, where vorticity is clipped e.g. in case of non-zero turbulent intensity in the
oncoming flow, with a “through-flow” condition at the outlet. The later ensures that structures
leave the domain in the normal direction (u · t = 0, ∂u

∂n
· n = 0).

The inlet condition is enforced by imposing the image

ω−n = ω+
n , ω−t = −ω+

t . (3.34)

Similarly the through-flow plane with zero tangential velocity is enforced by imposing the
image

ω−n = −ω+
n , ω−t = ω+

t . (3.35)

As described in Sec. 1.2 the use of both an inlet and an outlet condition, implies that the
Poisson equation should be solved, not only with the two images cf. Eqs. (3.34)–(3.35), but
with an infinite array of images. This is efficiently computed using a periodic Green’s function
and a combination of DTTs for the convolution.

For various truncation lengths, solutions for entirely unbounded conditions are compared to
solutions obtained with the inlet/outlet combination. A uniform mesh of spacing h = D/64
and a time-step adapted according to CLCFL = 0.125 is applied in all cases. With the Poisson
solver a Gaussian kernel with m = 10 and α = 1.5 is used. The Reynolds number and force
coefficients are calculated as Eq. (3.27). Results in terms of force coefficients and Strouhal
number (St = fD

U
) are given in Tab. 3.1. It may be seen that all results are quite similar and

compares well with those found in the literature. The evolution of the force coefficients has been
plotted in Fig. 3.17 for the unbounded and the bounded solution for the cases with xoutlet = 12D.

The immediate vorticity every quarter period of single shedding cycle has been compared
to that of Ploumhans et al. (2002) for the bounded simulation in Fig. 3.18–3.18. Also, an
illustration of the 3D structures at tU/D = 200 is given in Fig 3.20.
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Figure 3.13: Impulsively started flow normal to disc at Re = 500 at t∗ = 0+. Isocontours of the
stream function in 10 logarithmically spaced levels in the interval [−1, 1] ( ) and indication
of velocity residual within disc averaged in polar direction (grayscale). Zoom of the disc tip
shows the maximum velocity residual is localized at the upstream edge, where streamlines may
be seen to cross the interface. (a) Solution for spatial resolution h = D/128. (b) Solution for
spatial resolution h = D/256.
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Figure 3.14: Impulsively started flow normal to disc at Re = 500 at t∗ = 1. Isocontours of the
stream function in 10 logarithmically spaced levels in the interval [−1, 1] ( ) and indication
of velocity residual within disc averaged in polar direction (grayscale). Zoom of the disc tip
shows the maximum velocity residual is localized at the upstream edge, where streamlines may
be seen to cross the interface. (a) Solution for spatial resolution h = D/128. (b) Solution for
spatial resolution h = D/256.
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Figure 3.15: Impulsively started flow normal to a disc at Re = 500 simulated using h = D/256
and ∆t∗ = 0.001. Decay of L2-norm (solid lines) and L∞-norm (dashed lines) of the velocity
residual within the solid body as function of the iteration number (k) tested at time step 1
(t∗ = 0) ( ) 200 (t∗ = 0.2) ( ) and 1000 (t∗ = 1.0) ( )
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Figure 3.16: Sketch of the computational domain used to simulate the flow past a sphere at
Re = 300. The extent of the domain is fixed in the x-direction whereas it is adapted to the
immediate vorticity field in the y, z-directions

The results imply that the simplified model using unbounded conditions give acceptable
results for truncated bluff body flows. One explanation of this, is that the use of the regularized
Green’s functions ensures a smooth velocity field, even where vorticity is clipped.

Because the DTT method, which was used in this example, is not applicable to account for
other images than those that are reflections of the mesh vorticity about the mesh boundaries,
the vorticity splitting cf. Eq. (3.8) is not easily used with doubly bounded conditions. A doubly
bounded direction used with the vorticity splitting would require constructing a doubly bounded
Green’s function by explicit summation (Cottet and Koumoutsakos, 2000; Hejlesen, 2016) when
solving the Poisson equation on penalization subdomain. Alternatively, a contribution from a
sum of shifted multipole expansions corresponding to the array of images, could be added to an
unbounded solution, in a manner á la Kabadshow (2012) for the FMM method. The later would
however greatly increase the complexity of the algorithm and has not been pursued.

3.5 Summary

A 3D iterative Brinkman method for accurate simulation of unsteady flows was presented.
The work is based on the 2D method proposed by Hejlesen et al. (2015a).

The method was validated for the impulsively started flow past a sphere at Re = 1000. The
iterative scheme produces a vortex sheet at the first time-step of the simulation (t∗ = 0+) that
agrees with the exact potential flow solution. At later stages the unsteady force coefficients ob-
tained were found to be comparable to results obtained by Ploumhans et al. (2002) and Mimeau
et al. (2016) using a boundary element method in a vortex particle method and vortex penaliza-
tion method respectively.

The impulsively started flow normal to a circular disc of finite thickness at Re = 500 was
also considered and found to be a challenging problem for the Brinkman penalization method
due to the geometry having the majority of its surface area orientated normal to the free-stream.
This introduces a delay in the enforcement of the solid boundary condition for the non-iterative
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Figure 3.17: Time history of force coefficients for xoutlet = 12 with condition in x-direction as
unbounded ( ) inlet/outlet ( ) (a) drag coefficient. (b) lift coefficient.

xoutlet C̄D C̄L ∆CL St
unbounded 6D 6.74× 10−1 −6.8× 10−2 1.8× 10−2 0.135
unbounded 8D 6.73× 10−1 −6.8× 10−2 1.7× 10−2 0.135
unbounded 12D 6.73× 10−1 −6.8× 10−2 1.8× 10−2 0.135
inlet/outlet 6D 6.73× 10−1 −6.7× 10−2 1.9× 10−2 0.135
inlet/outlet 8D 6.73× 10−1 −6.7× 10−2 2.0× 10−2 0.135
inlet/outlet 12D 6.73× 10−1 −6.7× 10−2 1.9× 10−2 0.135
Johnson and Patel (1999) - 6.56× 10−1 −6.9× 10−2 1.6× 10−3 0.137
Mimeau et al. (2016) - 6.73× 10−1 −6.6× 10−2 – 0.133
Ploumhans et al. (2002) - 6.83× 10−1 −6.1× 10−2 1.4× 10−2 0.135
Tomboulides and Orszag (2000) - 6.71× 10−1 – – 0.136

Table 3.1: Results obtained for simulations with different boundary conditions in the x-direction
and measured in the interval tU/D ∈ [100; 200] in terms of mean force coefficients (C̄D, C̄L),
lift coefficient oscillation amplitude (∆CL = 1

2
(CLmax − CLmin)) and dimensionless shedding

frequency identified from the lift signal. Also results from the literature are presented.
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plotted every quarter period. Comparison between Ploumhans et al. (2002) (right) and present
results (left). Levels are the same as in Ploumhans et al. (2002).
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Figure 3.19: Isocontours ofωx in the xz-plane (z = 0) for the for flow past a sphere at Re = 300
plotted every quarter period. Comparison between Ploumhans et al. (2002) (right) and present
results (left). Levels are the same as in Ploumhans et al. (2002).
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xy-plane

xz-plane

Figure 3.20: Instantaneous vorticity structures identified by the Q-criterion (Wray et al., 1988)
at time tU/D = 200 for solution with xoutlet = 12 and inlet/outlet boundary conditions.

scheme. This is a consequence of the lack of global coupling otherwise imposed by the elliptic
kinematic relation between vorticity and velocity. The iterative Brinkman method accounts
for this and has been found to produce a time variation of the simulated drag coefficient in
agreement with a reference solution using a time step that is five to ten times larger than what
is required with the corresponding non-iterative scheme.

We note that at times away from the impulsive start the iterative and non-iterative solutions
are comparable in the presented cases, thus the benefit of the iterative process on the solution is
negligible at these time stages.
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Chapter 4

Multiresolution

Parts of this chapter were prepared for a presentation at the ECCOMAS conference 2016 en-
titled “Simulation of bluff-body flows using iterative penalization in a multiresolution particle-
mesh vortex method” (Spietz et al., 2016).

It is relatively simple to solve the Poisson equation (Eq. (1.1)) on a uniform grid using the
Fourier based convolution approach with an appropriate Green’s function and the technique by
Hockney and Eastwood (1988). When the charge of the problem has a sparse spatial distribu-
tion in the computational domain, this procedure becomes expensive as all regions have to be
resolved on the same uniform mesh. In this work we adopt a method based on a multilevel de-
composition of the potential (or any derivative of it) using a hierarchy of nested uniform meshes
to achieve local refinement.

4.1 Multilevel decomposition

A hierarchy of nested meshes is defined from a base mesh with spacing h0, that spans the
entire computational domain as sketched in Fig. 4.1. Each level (l) is associated with a set of
particles and a uniform mesh with spacing

hl =
1

2l
h0. (4.1)

The solver is inspired by the particle-particle particle-mesh (P3M) approach by Hockney and
Eastwood (1988), where the solution is separated into a short-range part computed directly from
particle-particle interaction and a smooth long-range part computed on a uniform mesh using
FFT. The P3M method was extended to the adaptive particle-particle particle-mesh (AP3M) by
Couchman (1991). Here, the short-range part is further separated into a number of band-limited
components dependent on the local resolution requirement. These are then solved for using a
hierarchy of meshes to minimize the number of particles in the direct summation.

In this case a purely mesh-based computation of the potential (or any of derivative of it) is
decomposed into a sum of band-pass filtered solutions, which are defined using a smoothing
function (S)

Ψ = Ψ0 +
lmax∑

l=1

Ψ′l =

(
G0 +

lmax∑

l=1

G′l

)
∗ ω (4.2)

with Ĝ0 =
Ŝ0

k2
and Ĝ′l =

Ŝl − Ŝl−1

k2
. (4.3)
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l = 0

l = 2

l = 1

h0

h1

Figure 4.1: Mesh decomposition for local refinement.

G′l is the Green’s function for the band of scales between the two smoothing functions Sl and
Sl−1. Following Hejlesen and Walther (2016) the smoothing functions are here taken as the high
order, moment conserving filters (Eq. (1.23)) used to obtain regular solutions to the Poisson
equation. Hence a base level Green’s function and (G0,m) refinement Green’s function (G′l,m) of
order m are defined for mesh refinement by a factor of 2 as

Ĝ0,m =
ζ̂m(σk)

k2
for σ = αh0, (4.4)

Ĝ′l,m =
ζ̂m(σk)− ζ̂m(2σk)

k2
for σ = αhl. (4.5)

Eqs. (4.4)–(4.5) may be used obtain solutions (Ψ′l) level-by-level from which the full solution
may be reconstructed cf. Eq. (4.2). The advantages of this approach are:

1. The refinement Green’s function (Eq. (4.5)) is compact, i.e. it has short-range; a point
charge only induce a non-zero potential in a finite radius. This limited radius reduce
the amount of zero-padding and overlap with other meshed required when obtaining a
solution.

2. For the same reason far field conditions imposed by the method of images require only
that the immediate neighbors are taken into consideration.

The 3D refinement Green’s function for m = 4 and α = 1.0 has been plotted in Fig. 4.2(a).
The compactness of the refinement kernel depends on the normalization parameter α as shown
in Fig. 4.2(b). A smaller α implies a faster decay of the real-space function. By choosing α too
low, the real-space function may become underresolved when sampled on the mesh introducing
alias errors, which are associated with a break down of the convergence rate as demonstrated in
Hejlesen et al. (2015b). The optimal α is a compromise between accuracy and efficiency.
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Figure 4.2: (a) Regularized free-space Green’s functions for m = 4 and α = 1.0: Regular-
ization as σ = αh ( ) , regularization as parent level σ = 2αh ( ) and the difference the
two corresponding to the refinement Green’s function ( ) . (b) Decay of various refinement
functions m = 2 ( ) , m = 4 ( ) and m = 10 ( ) for α = 1.0 ( ) , α = 1.5 ( ) and
α = 2.0 ( ) .
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4.2 Mesh-to-mesh interpolation between levels

The approach in practice implies that additional operators must be defined, to transfer data
up and down in the mesh hierarchy. These add algorithmic complexity to the method and the
properties of these operators affect the global accuracy of the method not only in transition
regions between different meshes, but also in the interior regions.

A coarsening operator (D) is required

ωl−1 ≈ Dl→l−1 {ωl} , (4.6)

to take a mesh field (the right-hand-side of the Poisson equation i.e. the vorticity) from level l
to l− 1 as the vorticity will be evolved on the finest mesh available at any given spatial location
but is needed also on the lower levels, when solving the Poisson equation.

Similarly, when reconstructing the full (regularized) potential at level l > 0 cf. Eq. (4.2) a
lifting operator (U) is required

Ψl = Ψ0 +
l∑

i=1

Ψ′i ≈ Ul→l+1 {Ψl−1}+ Ψ′l. (4.7)

The process of mesh field coarsening is a two step operation consisting of (1) low-pass filter-
ing the input sequence and (2) down-sampling the filtered sequence at a reduced rate. Low-pass
filtering before sample rate reduction is required to suppress aliasing (Crochiere and Rabiner,
1981). Similarly, when up-sampling a sequence, images of the Fourier coefficients due to the
periodicity of these, will be present in the output sequence (Crochiere and Rabiner, 1981). Sub-
sequent, low-pass-filtering is required to supress imaging.

The ideal discrete low-pass filter is not compact in real-space and hence impractical to use to
achieve local refinement. In stead the interpolation filters also used for particle-mesh interpola-
tion (Eqs. (2.10)–(2.12)) are considered in the current work. These are compact (in real-space)
approximations to the ideal discrete low-pass filter with spectra shown in Fig. (2.2)(b). The
degree of smoothness i.e. the number of continuous derivatives of the real-space function de-
termines how fast the Fourier coefficients decay. The lack of flatness of the Fourier coefficients
within the band-pass region can be amended for by including the additional smoothing in the
refinement operator using the Fourier transform of the discrete interpolation functions as

Ĝ′l,m =
ζ̂m(σk)−

∑
n Ŵ (2kn)2ζ̂m(2σk)

k2
(4.8)

for σ = αhl, kn = k + n2π/hl, n ∈ Z3. (4.9)

Although the modal-coupling imposed by down-sampling and up-sampling (aliasing and imag-
ing) does not imply a loss of information, it is not simple to amend for these errors e.g. by
modifying G′. For the summation in Eq. (4.8) only indices n = [−1, 0, 1]3 are included as the
imaging and aliasing error were observed to dominate for high order interpolation.

4.3 Convergence test of the multilevel Poisson solver in 1D

Usingm = 4 and α = 1.0 for the Gaussian functions cf. Eq. (1.23) in Eq. (4.8) for multilevel
decomposition and 6 ghost cells, the unbounded Poisson equation is solved for the right hand
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Figure 4.3: Setup for convergence test in 1D: The test function f ( ) and also indication of a
multiresolution mesh with cell centers ( ) . Vertical lines ( ) indicate the interface between
mesh levels.

side constructed from the test function

uana(x) =





exp
(
c
[
1− 1

1−x2

])
for |x| < 1

0 for |x| ≥ 1.
(4.10)

as f = −∇2uana. The right-hand-side has been plotted in Fig. 4.3 with an indication of a
multiresolution mesh. The L2-norm of the error

error(x) = u(x)− uana(x) (4.11)

is plotted in Fig. 4.4. The convergence of the error is restricted to O(h2), O(h3), O(h4) for
interpolation byM2,M ′

4 andM∗
6 respectively. The distribution of the error for the coarsest mesh

considered has been plotted in Fig. 4.5 for interpolation using the three different functions. It is
notable to observe that the error does not go to zero away from the center of the f distribution,
which is significant for the lower order interpolation. This is because the zero moment is not
exactly conserved, when re-sampling f by down-sampling. This is also discussed in the next
section. For M2 this error dominates, whereas for M ′

4 a smooth oscillating error in the coarse
regions is also significant, which is related to the regularization. A high frequency error is
observed in the refinement region due to mesh-to-mesh interpolation. If the M∗

6 function is
used the high frequency error from aliasing and imaging decay with the same rate as the filter
function (m = 4), and is not dominating.
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4.4 Multilevel particle-strength redistribution

A multiresolution particle-method also requires a particle-strength redistribution scheme,
which is explained using the same two level example as for the Poisson convergence test. A
combined set of particles representing the two mesh levels has been illustrated in Fig. 4.6(a).
Redistribution of the particle-strength onto the non-uniform grid is done in two steps:

1. Level wise, the strength of particles and ghosts particles whose volume correspond to the
cell volume on the mesh at the current level, is redistributed onto interior- and ghost cells
using classic particle-mesh interpolation with the M ′

4 kernel, as illustrated in Fig. 4.6(b).

2. The ghost layers are populated by mesh-to-mesh interpolation by coarsening and lifting
of the vorticity at higher- and lower levels respectively as illustrated in Fig. 4.6(c). Ghost
particles are created by re-meshing the ghost regions at the first stage of every time step,
for consistent particle-mesh interpolation at the subsequent stages and at the first stage of
the following time-step. In order to transfer correctly a particle from one level to another,
the ghost region must have a certain width relative to size of the time-step, which impose
a CFL like condition (we refer readers to Rasmussen et al. (2011) for further details).

It should be noted that this redistribution scheme favors smoothness of the interpolated fields
over exact moment-conservation as the overlapping interpolation is not conservative at the in-
terfaces. This could be improved by correcting the stencil of the discrete interpolation operator
near the interface as done by Rossinelli et al. (2011) for average interpolation wavelets. How-
ever, the operators considered here are wider than those used with wavelet adapted multireso-
lution, which makes the correction quite complex. This has not been studied further, as exact
momentum-conservation would also involve the correction of vorticity-fluxes.

We test the error on the redistribution of the particle set and on the derivatives of the re-
distributed variables approximated with fourth order centered finite-differences. The particles-
strengths are obtained from the test function Eq. (4.10). The error on the mesh field and its
two first derivatives with respect two the analytic solution have been plotted on Fig. 4.6. It may
be seen that the mesh-to-mesh interpolation scheme produce an additional error in the ghost
regions. This error may be reduced by applying a scheme based on mesh-to-mesh interpola-
tion with M∗

6 when using M ′
4 for particle-mesh interpolation on the individual levels, but this

has small effect on the error of the derivatives. It is observed that the error on the derivatives
computed from the redistributed field converge with mesh refinement, but at a reduced rate as
compared to O(h3). As seen in Fig. 4.8 for this problem the rate is O(h2.5) and O(h1.5) for the
first and second derivative respectively when using mesh-to-mesh interpolation with M ′

4 and
M∗

6 and O(h1.5) and O(h0.5) when using mesh-to-mesh interpolation with M2. Redistribution
is in the following carried out using M ′

4 for both particle-mesh interpolation and mesh-mesh
interpolation.

4.5 Remarks on the implementation

The proposed method is implemented for predefined local refinement and time marching is
done using a global time-step for simplicity.
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b)
particles on level 1

mesh on level 1

particles on level 0

mesh on level 0
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mesh on level 1

mesh on level 0

Figure 4.6: Redistribution of particle strength onto a mesh with a single refinement region.
The unfilled markers represent ghost particles or ghost mesh points. (a) The combined mesh
and set of particles for both levels (excluding ghost particles and ghost cells). (b) Level wise
particle redistribution on meshes. (c) Mesh-to-mesh interpolation to populate mesh points in
ghost regions. Ghost particles are subsequently created by re-meshing of the ghost regions.
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Figure 4.7: (a) Redistribution error, error = u− uana on mesh (interior and ghosts cells): l = 0
( ) l = 1 ( ) . (b) Error on derivatives on mesh (interior only): error =
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)
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(

d2u
dx2 − d2u

dx2 |ana

)
h2 ( ) From top to bottom mesh-to-mesh interpolation by M2,

M ′
4 and M∗

6 . Vertical lines indicate the interface between mesh levels.
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Figure 4.8: L2-norm of the error on multilevel redistribution with M∗
4 used for particle to mesh

interpolation and mesh-to-mesh interpolation by M2 ( ) , M ′
4 ( ) M∗

6 ( ) . Line types
indicate: Error on first order derivative ( ) , error on the second order derivative ( ) and
order of convergence from top to bottom as O(h0.5), O(h1.5), O(h2.5) ( ) .
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The procedure is implemented by level wise applying the single level parallel solution pro-
cedure; all processes contain a single subdomain of each mesh on every level (a patch). Sub-
domains belonging to a single processor are not neccesarily overlapping. This hinters patches
from being arbitrarily small and sparsely distributed over the computational domain. Further,
the communication overhead when interpolating mesh fields between levels may be high for
this reason. An efficient parallel decomposition as a block-structured multilevel mesh layout, as
commonly used with adaptive mesh refinement (AMR) (Berger and Colella, 1989), would be an
obvious improvement of the method. This would allow local adaptivity, as smaller mesh-blocks
can dynamically be selected for refinement or coarsening. Further, it would allow preservation
of the data for interpolation on the same processor, thereby minimizing inter-processor commu-
nication. By taking advantage of the compactness of the refinement kernel, the Poisson equation
may further be solved sequentially for each subdomain on levels l > 0. This is practical if the
overlap can be kept at 4-6 cells, especially when taken into consideration, that the global data
mapping associated with the FFT convolution will no longer be required. We note that such
parallel implementations for particle dynamics already exist e.g. ENZO by Bryan and et. al
(2014). An adaptation of the current method into such framework would indeed be possible
(see a similar solver for cosmology simulations by Passy and Bryan (2014)).

4.6 Verification of the combined procedure

To test the combined procedure of multilevel Poisson solver and multilevel redistribution of
particle vorticity we consider the Taylor-Green Vortex in a triple-periodic cuboid domain of side
length L with initial condition as

ωx = −2π

L
U cos

(
2π

L
x

)
sin
(

2π

L
y

)
sin
(

2π

L
z

)
(4.12)

ωy = −2π

L
U sin

(
2π

L
x

)
cos
(

2π

L
y

)
sin
(

2π

L
z

)
(4.13)

ωz =
4π

L
U sin

(
2π

L
x

)
sin
(

2π

L
y

)
cos
(

2π

L
z

)
. (4.14)

We use length scale L
2π

and velocity scale U to define a Reynolds number as

Re =
U L

2π

ν
. (4.15)

The evolution of the initial condition cf. Eq. (4.12) is simulated for Re = 200 in a single
resolution setup with mesh spacing h/L = 96 and a setup with single refinement level such
that h0/L = 96, h1/L = 192, where the refinement is located as indicated Fig. 4.9. For
comparison both simulations are performed using Gaussian regularization functions for m = 4
and α = 1.0 with the Poisson solver and third order Runge-Kutta time-step scheme with time-
step size adapted with CLCFL = 0.125. The overlap region on the refinement patch is 6 cells
wide, which has been found sufficient in 3D.

The large scale initial condition develops into smaller scales localized on two parallel planes
(see Fig. 4.9). The evolution is associated with an increase in the enstrophy (not shown) and an
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a) b)

Figure 4.9: Instantaneous vorticity magnitude obtain from multiresolution simulation of Taylor
Green Vortex at Re = 200 with refinement region indicated as the box in the center of the
domain. (a) |ω|U/L ∈ [2; 12] (from blue to red) at tU/L = 0.0 (b) |ω|U/L ∈ [8; 32] (from blue
to red) at tU/L = 6.3

increased rate of dissipation of kinetic energy (E). The two shear layers intersect the refinement
region, hence the simulation should be sensitive to errors on the interfaces. It is seen from
Fig. 4.10(a) that the multiresolution simulation produces a solution that compares equally well
with the reference solution by Brachet et al. (1983) as the single resolution does in terms of rate
of change of the kinetic energy.

A measure of numerical dissipation may be obtained by comparing the theoretical viscosity
to the mean simulated viscosity defined as (Saffman, 1992)

νeff = − 1

E
dE

dt
, (4.16)

where Ω is the enstrophy (E =
∫
ω × ω dV ).

From Fig. 4.10(b) it is seen that the multiresolution setup results in numerical dissipation
that is slightly higher but around the same magnitude (0–1%) as for a single resolution level.

Note that vorticity is re-projected onto a divergence-free field every 5th time-step which is re-
flected as an oscillating behavior of the simulation diagnostics, especially the effective viscosity.
Also, the numerical dissipation is at times negative, which may be related to the energy being
computed from filtered velocities and therefore it is underestimated relative to the enstrophy.

4.7 Multiresolution simulation of the flow past a circular cylinder at Re = 400

The circular cylinder is a challenging flow to simulate even at relatively low Reynolds num-
bers with a VPM method. An accurate prediction of the separation point requires a well resolved
interface, especially using the Brinkman penalization technique because of the mollification ef-
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Figure 4.10: Comparison of diagnostics obtained from single- and multiresolution simulation
of Taylor Green Vortex at Re = 200. (a) Rate of change kinetic energy from simulation with
uniform resolution (h/L = 96) ( ) , simulation with the same base resolution (h0/L = 96)
using a single level of refinement ( ) and simulation from Brachet et al. (1983) ( ) . (b)
Relative error on effective viscosity from simulation with uniform resolution (h/L = 96) ( )
and simulation with the same base resolution (h0/L = 96) using a single level of refinement
( ) .

fect of this. Consequently a much finer mesh must be used near the interface, than is required
in the wake, thus the flow is well suited for multiresolution simulation. Moreover, it is evident
from experiments that the wake behind a circular cylinder becomes 3D as early as at Re ≥ 190
(Leweke and Williamson, 1998). This transition affects the measured lift- and drag force sig-
nificantly. Hence, we consider a 3D finite periodic section of the geometry.

The 3D flow has also been simulated with a vortex-particle method by Cottet and Poncet
(2003); Poncet (2004) at Re = 300 and 400, who applied a Poisson solver with Dirichlet
conditions on a body-fitted O-grid, coupled with a panel-diffusion approach to the cancel slip
velocity at the interface. The impact of truncating the wake at a fixed outer radius, where the
free-stream velocity is enforced, was rigorously clarified by Cottet and Poncet (2003) for the
2D flow. Homogeneous convergence of force coefficients and Strouhal number was observed,
and a domain truncation about 6 diameters downstream the cylinder was found to be sufficient
for acceptable results.

4.7.1 Setup

A section of the cylinder with length Lz = 4.125D is simulated in the current using the mul-
tiresolution approach with mixed periodic and free-space conditions. Lz corresponds to about 5
times the principal wave length (λz) of the principal mode associated with the transition to 3D
flow at this Re. The wave length was reported in Barkley and Henderson (1996) as λz/D = 0.82
and Poncet (2004) as λz/D = 0.79. In the stream wise direction (x) the computational domain
extends 8D downstream from the cylinder. The height of the domain (y-direction) is adapted to
the immediate vorticity field every 25 time step. 2 nested refinement patches are applied to have
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Figure 4.11: Multi resolution setup for simulation of flow past a circular cylinder with h0 =
D/32, h1 = D/64 and h2 = D/128. The domain length in the transverse direction is Lz =
4.125D.

sufficient resolution of the solid interface. In this case we found from a prior 2D studies that a
mesh resolution of h = D/128 resulted in converged results in terms of the force coefficients
and Strouhal number (not presented). The mesh resolution is gradually decreased downstream
the cylinder using the patch configuration sketched in Fig. 4.11. Moreover, the Reynolds num-
ber based on the free stream velocity is Re = UD/ν = 400, corresponding to that of Poncet
(2004).

For the advancement of particles a second order Runge-Kutta scheme with constant time-
step ∆tU/D = 0.005, to satisfy the constraint due to diffusion cf. Eq. (2.18). The Poisson
solver used is for m = 10 and α = 1.5, hence to be conservative a large buffer region of 16
cells was used for the refinement patches.

The vortex shedding is initialized artificially by ramping the direction of the free stream,
with respect to horizontal, from 45◦ to 0◦ within the first 2 time units of the simulation.

4.7.2 Results

The dimensionless force coefficients are defined as

CD =
Fx

1
2
ρU2DLz

, CL =
Fy

1
2
ρU2DLz

. (4.17)

The forces obtained with Eq. (3.21), Eq. (3.25) and the momentum equation from Noca
et al. (1999) in a 2D study, are compared in Fig. 4.12. It may be seen that the forces obtained
with Eq. (3.21) and Eq. (3.25) cannot be distinguished from each other, whereas the drag force
obtained with the control volume formulation deviates slightly. This is likely since it involves
the partial derivatives of the velocity field calculated by finite difference approximations. The
deviation between the three expressions is insignificant and it may be concluded that Eq. (3.25)
is able to give just as reliable an estimate as the two other formulations. Furthermore, it is
valid in 3D and is thus used in the following. The force obtained in the 3D simulation has been
plotted in Fig.4.13(a). At about tU/D = 40 a harmonic signal is observed which is associated
with the 2D oscillatory flow. The flow transitions into the 3D at about tU/D = 100 as seen
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Figure 4.12: Drag and lift coefficient obtained with Eq. (3.21) ( ) , Eq. (3.25) ( ) and the
momentum equation from Noca et al. (1999) ( ) in 2D simulation of flow past a circular
cylinder at Re = 400: (a) Drag. (b) Lift.

2D 3D
C̄D St C̄D St

Current study 1.414 0.22± 0.01 1.199 0.20± 0.02
Henderson (1995) 1.414 0.2198 – –
Cottet and Poncet (2003) 1.408 0.2237 1.198 0.210

Table 4.1: Mean values of force coefficients and Strouhal number for flow past a circular cylin-
der at Re = 400.

from the signals and stabilizes around tU/D = 125 as also seen from the immediate vorticity
field at various times plotted in Fig. 4.14. Mean values and Strouhal numbers (St = fD/U ) for
the two distinctive phases are given in Tab. 4.1. The currently obtained mean drag coefficient
deviates by less than 0.5% from the results of Henderson (1995) and Cottet and Poncet (2003)
and the deviation of the Strouhal number may be larger (0–6% in 2D and 0–24% in 3D) because
of the uncertainty of this estimate due to a finite number of shedding cycles sampled.

The degree of three-dimensionality of the flow is quantified using the transverse enstrophy
defined as

E⊥ =
1

2

∫
(ω2

x + ω2
y) dV. (4.18)

As seen Fig. 4.13(b) the transverse enstrophy grows exponentially before saturation is reached
at about tU/D = 110. The growth rate 1/b obtained from regression with the expression
a exp

(
tU
bD

)
to the exponential region is b = 1.51. This is only 4% higher than the value (b =

1.45) observed by Poncet (2004). The main growth mode is identified from the peak in axial
energy spectrum plotted in Fig. 4.13(c). The wave length of the mode is seen to be λz/D =
0.825 which deviates also about 4% from λz/D = 0.79 reported in Poncet (2004). The minor
deviation is likely a consequence of the different span wise domain sizes (Lz = 6.28D in Poncet
(2004)). The profile of the transitional mode has been compared to that obtained by Poncet
(2004) in Fig. 4.15. The two profiles are also very similar. For this simulation on average 20
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iterations were used per time step and the number of particles varied from an average of 60×106

during the 2D stages to about 90× 106 during the 3D stages.

4.8 Summary

A multiresolution vortex-particle mesh method based on a multilevel decomposition of the
potential has been introduced and its consistency verified.

The refinement Green’s functions used, with the multiresolution Poisson solver, are compact.
By choosing α sufficiently small the method may be used with an overlap region small enough
for practical applications. Moreover, it was demonstrated that the multiresolution approach
could be combined with the iterative penalization technique to simulate bluff body flow. This
was done for the circular cylinder at Re = 300 and a combination of free-space and periodic
boundary conditions. Reliable results were obtained hereby, both in terms of force coefficients
and in terms of the topological structure of the vortex wake and growth-rate of the primary
mode of the transition. The main challenge of the multiresolution method is the use of mul-
tilevel reconstruction by interpolation, which impose an additional restriction on the accuracy
of the regularized Poisson solver. The smoothing error associated with interpolation is explic-
itly accounted for using the modification Eq. (4.8), but aliasing and imaging artifacts prevail.
Further, work would consist of identifying more optimal interpolation schemes that suppress
aliasing and imaging more than the particle-mesh interpolation functions are able to.
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Figure 4.13: Flow past a circular cylinder at Re = 400: (a) Evolution of drag coefficient ( ) ,
and lift coefficient ( ) also indication of mean drag in 2D and 3D phase of the flow ( ) . (b)
Evolution of transverse enstrophy ( ) and a exp

(
tU
bD

)
with b = 1.51 ( ) . (c) Spectrum of

transverse energy at tU/D = 70 ( ) , tU/D = 110 ( ) , tU/D = 180 ( ) and indication
of λz/D = 0.825 ( ) .
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a) b)

c) d)

Figure 4.14: Isocontours of the immediate vorticity magnitude from blue to red |ω|D/U =
[2, 4, 6, 8] at various times: (a) tU/D = 70 (top-view). (b) tU/D = 110 (top-view). (c)
tU/D = 180 (top-view). (d) tU/D = 110 (side-view).
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Figure 4.15: Isocontours of the spectral profile, |û(x, y, kz)|2: (a) current study for λz/D =
0.825. (b) Poncet (2004) for λz/D = 0.79.
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Chapter 5

Large eddy simulation

Parts of this chapter were prepared for a presentation at the APS conference 2017 entitled
“A regularized vortex-particle mesh method for large eddy simulation” (Spietz et al., 2017b).

5.1 Modeling

A large eddy simulation approximates a solution to a spatially low-pass filtered variant of the
governing equations. The solution is expressed in terms of the filtered variables. By denoting a
filtered dependent variable (f) the result of a convolution with the filter kernel ζ of width ∆

f̄(x,∆, t) = f ∗ ζ =

∫ ∞

−∞
ζ(x− x′,∆)f(x′, t) dx′. (5.1)

and assuming commutation of the filter and the derivative operator, applying the filter to the
momentum equation of the Navier-Stokes equation yields

∂ūi
∂t

+
∂uiuj
∂xj

= − ∂p̄

∂xi
+ ν

∂2ūi
∂x2

j

. (5.2)

Eq. (5.2) may be rewritten in terms of scales that are conserved by the filter (resolved scales)
and a tensor (τij) that depends also on scales removed by the filter (unresolved scales)

∂ūi
∂t

+
∂ūiūj
∂xj

= − ∂p̄

∂xi
+ ν

∂2ūi
∂x2

j

− ∂τij
∂xj

(5.3)

τij = uiuj − ūiūj. (5.4)

To close the system Eq. (5.3) we require a subgrid-scale (sgs) stress model that approximates
the interaction of the unresolved scales with the resolved scales based on resolved quantities
only.

Frequently used models are based on an eddy-viscosity (νsgs) approach to approximate τij ,
i.e. assuming that the interaction between subgrid scales and resolved scales works in a manner
similar to molecular diffusion

τij −
1

3
δijτkk = −2νsgsS̄ij, S̄ij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (5.5)

Since the trace of Sij is zero, τkkδij is not modeled. The gradient of τkkδij may in stead be incor-
porated into a modified pressure, and is thus not important for the dynamics of incompressible
flow.
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kcresolved scales sgs

E(k)

k

εP

εsgs

εv

Figure 5.1: The Smagorinsky model is based on the assumption that the production of energy at
large scales (εP ), the energy transport through the filter cut-off (εsgs) and the energy dissipation
of subgrid-scale energy near the Kolmogorov scale (εv) are in equilibrium. Indication of a filter
cut-off at kc

The eddy-viscosity is commonly used with the single coefficient Smagorinsky model (Smagorin-
sky, 1963)

νsgs = (cs∆)2|S̄|, |S̄| =
√

2S̄ijS̄ij. (5.6)

5.1.1 Theoretical foundation

This model is based on the hypothesis that the energy spectrum in the range of the subgrid
scales is in equilibrium; the average energy flux through the cut-off (〈εsgs〉 = 〈τijSij〉) equals
the average rate of viscous dissipation over the range spanned by the subgrid scales (〈εv〉) as
sketched in Fig. 5.1 (see e.g. Sagaut (1998))

−〈τijS̄ij〉 = 〈εv〉. (5.7)

Based on dimensional analysis the eddy-viscosity should be modeled as νsgs ∝ l20t
−1
0 , where

l0 and t0 are respectively a characteristic length and time scale. Similarly the rate of viscous
dissipation must be modeled εv ∝ l20/t

3
0. The relation Eq. (5.6) is obtained for l0 = ∆ and

t0 = |S̄|−1.
Inserting Eq. (5.5) with the ansatz Eq. (5.6) into Eq. (5.7) gives the relation

〈εv〉 = 〈νsgs|S̄|2〉 ' 〈νsgs〉〈|S̄|2〉 (5.8)

where 〈|S̄|2〉 = 〈ω̄ · ω̄〉 is the average resolved enstrophy density per unit volume, which may

72



Large eddy simulation

be determined under the assumption of isotropy

〈|S̄|2〉 =

∫ kc

0

2k2E(k) dk. (5.9)

Following Lilly (1967) the inertial spectrum E(k) = K0〈ε〉2/3k−5/3 may be used to obtain
an equation for the rate of total energy dissipation (〈ε〉 ' 〈εv〉) in terms of ∆, 〈|S̄|2〉 and the
Kolmogorov constant (K0 ≈ 1.5)

〈ε〉 =

(
∆

π

)2(
3

2
K0

)−3/2

〈|S̄|2〉3/2. (5.10)

Combining Eqs. (5.6), (5.8) and (5.10) the model coefficient cs may be estimated as

cs =
1

π

(
3

2
K0

)−3/4

≈ 0.17. (5.11)

Using this coefficient, the model is a good approximation, when the flow has an equilibrium
range and the kinetic energy spectrum is well described by the inertial spectrum such as in
the case of isotropic decaying turbulence. In statistically unsteady or in-homogeneous flow a
method using a constant model coefficient in the entire domain may not be appropriate. From
the identity 〈|S̄|2〉 = 〈ω̄ · ω̄〉 its is evident that the Smagorinsky model leads to non-zero
turbulent-viscosity, whenever vorticity is non-zero. Hence, the model will also be active in
laminar flow. Thus it does not display a physical near-wall behavior or can be used to simulate
transitional flows accurately.

5.1.2 Dynamic variation

Variations of the Smagorinsky model have been proposed to improve its erroneous behavior.
Germano et al. (1991) proposed to determine the coefficient adaptively by relating modeled
stresses obtained at two separate filter scales. Such a dynamic approach has the advantage
that a prior knowledge the model coefficient is not required. However the dynamic approach
involve some kind of regularization to ensure numerical stability (Ghosal et al. (1995)). This
has traditionally been averaging in one ore more homogeneous directions. This is possible
e.g. in turbulent flows with one or more homogeneous directions such as a channel flow. If
the problem has a higher degree of heterogeneity a local spatial averaging or an averaging
along fluid trajectories may formally be better suited. These approached however introduce a
dependency on the extent of the averaging region or a time span of the motion along trajectories
considered.

The model coefficients of any sgs stress model may be determined dynamically. For sim-
plicity we consider only an eddy viscosity model based on the Smagorinsky ansatz. The model
parameter is adapted by relating sgs stresses Tij and τij obtained using two separate filters of
width ∆ (¯) and γ∆ ( ̂ ), which is expressed using the Germano identity

Lij = Tij − τ̂ij, (5.12)
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Figure 5.2: Indication of a primary filter (assuming spectrally sharp cut-off) of width ∆ with
spectral cut-off at kc = π

∆
and test filter of width γ∆, γ > 1.0 with cut-off kc = π

γ∆
utilized in

dynamic procedure to estimate model coefficient, c2
s. The sgs stress to model for the primary

filter is τij and the Tij for test filter.

where Lij is the resolved sgs stress associated with the test filter

Lij = ̂̄uiūj − ̂̄uî̄uj, Tij = ûiuj − ̂̄uî̄uj, τ̂ij = ûiuj − ̂̄uiūj. (5.13)

These stresses may be approximated by applying Smagorinsky model to both filtered fields

τij = −2c2
s(∆)2|S̄|S̄ij, (5.14)

Tij = −2c2
s(γ∆)2∆2|̂̄S|̂̄Sij. (5.15)

By inserting Eq. (5.14)-(5.15) into Eq. (5.12) and assuming that c2
s has a weak spatial variation

over the width of the filters it may be removed from the filter operation in Eq. (5.16)

eij = Lij − 2c2
s(∆)Mij where (5.16)

Mij = ∆2
[
|̂S̄|S̄ij − βγ2|̂̄S|̂̄Sij

]
with β =

c2
s(γ∆)

c2
s(∆)

. (5.17)

The standard dynamic model of Germano et al. (1991) uses only a single test filter and assumes
that c2

s is the same at two cut-off scales, which implies that β = 1 in Eq. (5.16). With this
assumption the minimizer of (5.16) in the least square sense is

c2
s(∆) =

LijMij

MijMij

. (5.18)

This expression may be singular, hence instead a minimizer for an averaged error 〈eij〉 is sought

c2
s(∆) =

〈LijMij〉
〈MijMij〉

. (5.19)
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Scale-similarity (β = 1) may not be a good assumption, when the filters cuts the spectrum
outside an inertial range. Either when the simulation approaches a DNS, such that the cut-off
filter falls close to the Kolmogorov scale or if the filter cut-off approaches the integral scale
in an underresolved or locally underresolved simulation. (Porte-Agel et al., 2000) formulated
a scale-dependent dynamic model by assuming a power-law relation of the model coefficient
which relies on an additional test filter and thereby increased computational overhead.

5.1.3 Lagrangian averaging

In the present work averaging along particle trajectories as proposed by Meneveau et al.
(1996) is applied. The average of the fields along particle trajectories may be written as the
integrals

ILM(x, t) =

∫ t

−∞
LijMij(z(t′), t′)W (t− t′) dt′ (5.20)

IMM(x, t) =

∫ t

−∞
MijMij(z(t′), t′)W (t− t′) dt′, (5.21)

where z(t) is the particle position on the trajectory. By choosing the weighting function W (t−
t′) as

W (t− t′) =
1

T
e
−(t−t′)

T (5.22)

a control of the temporal averaging length along trajectories through a parameter (T ) is ensured
and further Eqs. (5.20)–(5.21) become solutions to the transport equations

DILM
Dt

=
1

T
(LijMij − ILM) (5.23)

DIMM

Dt
=

1

T
(MijMij − IMM). (5.24)

To prevent one of the averaged quantities from becoming negative, which may render a numer-
ical method unstable, we use an averaging time as

T = θ∆(ILMIMM)−1/8, (5.25)

where a constant value θ = 1.5 is based on correlations obtained from DNS of homogeneous
isotropic decaying turbulence (Meneveau et al., 1996). Eq. (5.25) is not a universal relation. It
may be argued that in flows with higher degree of heterogeneity a shorter time scale would be
more appropriate see e.g. Murakami et al. (1999). Verma and Mahesh (2012) even proposed
to solve an additional transport equation for the averaging time, but noted that for moderate
Reynolds flow past a circular cylinder the results agree reasonably well those obtained from
Eq. (5.25) with θ = 3.
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5.2 Implementation in vortex-particle mesh method

The sgs stress is introduced into the vorticity transport equation (Eq. (2.2)) as a vortex force
(gsgs)

Dω̄

Dt
= (ω̄ ·∇)ū+ ν∇2ω̄ + gsgs, (5.26)

where gsgs may be expanded as

gsgs = ∇× (∇νsgs ·
[
∇ū+ (∇ū)T

]
+ νsgs∇2ū). (5.27)

We use a simplified expression corresponding to that of Mansfield et al. (1998) and compute
the vortex force from the divergence-free expression

gsgs ≈∇ ·
(
νsgs
[
∇ω̄ − (∇ω̄)T

])
. (5.28)

Eq. (5.23), Eq. (5.24) and Eq. (5.26) are discretized using the VPM method of Chap. 2; the
two averaged quantities are similarly to the vorticity field also carried by the vortex-particles.
However due to the requirement of positivity of the averaged quantities to preserve numerical
stability, particle-mesh interpolation of these is carried out using linear interpolation, which
preserves the sign of the interpolated quantities. The discrete approximation is evolved in the
Lagrangian frame of reference as

dxp
dt

= ū(xp, t) (5.29)

dω̄p
dt

=
[
(ω̄ ·∇)ū+ ν∇2ω̄ + ∇ ·

(
νsgs
[
∇ω̄ − (∇ω̄)T

])]
p

(5.30)

dILM p

dt
=

[
1

T
(LijMij − ILM)

]

p

(5.31)

dIMM p

dt
=

[
1

T
(MijMij − IMM)

]

p

. (5.32)

Second or third order Runge-Kutta schemes are used to advance particle-vorticity and particle-
position but explicit Euler for the particle-averages. This is done as it was observed by Mene-
veau et al. (1996) that a high accuracy on the estimates of the average quantities is not necessary.
For simplicity we use the same time-step size for all quantities. The Eqs. (5.23)–(5.24) contain
non-linear terms of up to fourth order hence the solution may be highly fluctuating. Vasilyev
et al. (2008) proposed to by-pass this problem introducing a diffusive term in the transport
equation for the averaged quantities. We have observed that these fluctuations are satisfactorily
smoothed from re-meshing with linear interpolation.

The computation of the right hand side of Eqs. (5.31)–(5.31) requires the test filtering of
the three velocity components (ūi) which is done while solving the Poisson equation. Addi-
tionally the computation requires test filtering of two symmetric second order tensors (ūiūj and
|S̄ij|S̄ij) with 12 unique components in total, which are computed in real-space from ūi and
subsequently filtered in Fourier-space. Because these tensor fields may be less compact than
the vorticity, even-symmetry is assumed at free-space boundaries and the filtering is therefore
carried out using real-to-real fast DCT transforms without zero-padding, which makes filtering
less expensive than obtaining a solution to the Poisson equation.
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5.3 Verification

5.3.1 Homogeneous isotropic turbulence

A velocity field with properties of isotropic turbulence is synthesized using the procedure by
Rogallo and Moin (1984) by generating a distribution of random Fourier coefficients matching
a radial target spectrum (E(|k|)). This is useful for the generation of initial conditions in simple
problems of homogeneous turbulence to study the consistency and accuracy of the sgs model
proposed and may be used in a vortex formulation by computing the corresponding vorticity
field.

For each wave number a pair of complex random numbers are generated

a =
√
E(|k|)/ (2π|k|2) exp (iθ1) cos (φ) (5.33)

b =
√
E(|k|)/ (2π|k|2) exp (iθ2) sin (φ) , (5.34)

where the complex phases θ1, θ2, φ ∈ [0, 2π] are drawn from a uniform distribution. The random
complex numbers are then used to construct the Fourier coefficients of the velocity field which
by construction is divergence free as the coefficient vector (û) is parallel to the wave number
vector k

û1 =
a|k|k2 + bk1k3

|k|
√
k2

1 + k2
2

(5.35)

û2 =
bk2k3 − a|k|k1

|k|
√
k2

1 + k2
2

(5.36)

û3 =
−b
√
k2

1 + k2
2

|k|
. (5.37)

Finally the vorticity field is approximated by spectral differentiation. Hermitian symmetry of
the Fourier coefficients ensures a zero imaginary part in real space and is required to generate
physically meaningful fields and must be enforced explicitly.

5.3.2 Forced isotropic turbulence

As a first experiment we test the performance of the model to predict a decay of modal energy
as E(k) ∝ k−5/3 in correspondence with the Kolmogorov law. To do this an initial condition
is generated with the outlined procedure matching a E(k) ∝ k−5/3 radial spectrum. Then an
external force (f ) is applied to the system as proposed by Ghosal et al. (1995) that injects energy
into the largest scales at a constant rate

f̂ =





ε
û

Nk|û|2
for |k| < 2

0 for |k| ≥ 2,
(5.38)

where Nk is the number of Fourier coefficients within the shell |k| < 2. By applying Parseval’s
theorem it is seen that the rate of change of energy in the system due to the force is

∫
V
f · u dx
V

=
1

2

∑
(f̂ ∗ · û+ f̂ · û∗) = ε. (5.39)
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The corresponding vortex force as applied within a vorticity-velocity formulation g = ∇ × f
has the Fourier coefficients

ĝ =





ε
ω̂

Nk|û|2
for |k| < 2

0 for |k| ≥ 2.
(5.40)

In the algorithm the force is applied directly in Fourier space in an Euler time-split-step as

ω̂∗ = ω̂n + ∆tĝn. (5.41)

We run simulations assuming the explicit filter is one out of two different filters: the first
the smooth Gaussian (m = 10) with ∆ = αh and α = 1.5 and the second a Fourier cut-off
filter. For test filtering γ = 2 is used. The outlined LES method was derived assuming a well
known filter. However, a numerical approximation implies truncation errors. The effect of
the approximation is commonly denoted the mesh filter, which is in general not known. LES
is commonly carried out assuming a shape of this filter. Alternatively, for methods that do
not have spectral accuracy, one may seek to minimize the effect of numerical errors besides
the projection, by explicitly applying a filter, for which the sgs stress may then be recovered
using variations of the approximate deconvolution model (ADM) (Stolz and Adams, 1999; Stolz
et al., 2001). Although appealing, explicit filtering cannot directly, be used in a Lagrangian
formulation due to the implicit treatment of the convective term. Replacing the vorticity field
by its filtered version every time step ensures a limited frequency content in the solution, but
the cumulative effect of multiple filter operations is harmful if

ζ 6= ζ ∗ ζ ∗ ..., (5.42)

as emphasized by Lund (2003). In stead the model is tested in the naive way; only the velocity is
explicitly filtered regularly as a consequence of using a regularized Poisson solver. We assume
that the mesh filter is that used for regularizing the Poisson equation. A filtered velocity is
sufficient to approximate the eddy-viscosity with the Smagorinsky model, when formulated
solely in terms of velocity. In case of a sharp Fourier cut-off filter both velocity and vorticity
are filtered every time step for consistency, since in that case

ζ = ζ ∗ ζ ∗ .... (5.43)

Fig. 5.3 and shows the results obtained using respectively the two filters at resolution h = L/48.
The presented energy spectra are averages of samples taken every time step over 8 integral large-
scale turnover times discarding 2 turnover times before approximate steady state was observed.
The spectra are close in the medium wave number range k/kmax = 0.1 − 0.7 and only a slight
variation is observed in the high wave number range. When the spectrum is pre-multiplied by
k5/3 it is seen that there exist only a short range k/kmax = 0.2 − 0.3 where the gradient is
close to zero indicating the inertial subrange. From experiments the Kolmogorov value have
been reported to take a value in the range 1.3 − 2.1 (Chasnov, 1991). We expect the pre-
multiplied spectrum fall within this range for high wave numbers too since the Kolmogorov
scale is infinitely small in this case of vanishing viscosity. However the results are observed to
be out of range for k > 0.4kmax, which is expected for the smooth filter. For the sharp filter
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we can relate this to numerical dissipation associated with numerical approximations used with
the particle method, especially re-meshing of particle-vorticity. The volume averaged model
coefficient, which was initially set to cs = 0.17 according to the theoretical value, levels out in
the range 0.17− 0.18 corresponding to a slight overshoot as compared to the expected value for
the smooth filter indicating that the effective width of the filter is ∆ > αh because of smooth
cut-off.

5.3.3 Decaying isotropic turbulence

As a second case we test the ability of the model to reproduce the decay of energy in a
turbulent flow from an initial radial spectrum measured in a wind tunnel by Comte-Bellot and
Corrsin (1971). In the experiment turbulence was generated by leading the flow through a grid
of spacing M = 5.08 cm. Energy spectra were measured at three locations downstream where
the Reynolds number based on Taylor’s micro scale was measured within Reλ = 71.6 − 60.0.
The locations were converted to times assuming that all fluid traveled with the mean cross sec-
tional wind speed, which was measured as a function of downstream distance. Furthermore a
wind speed prior to the grid U0 = 10 m/s was reported for the experiment. The simulations
are performed in a triple periodic box of side length L = 10.8M . The turbulence is initialized
through an initial vorticity field using the spectrum obtained at first location in the experiment
corresponding to the time tU0/M = 42 filtered according to the filter used with the LES formu-
lation. The viscosity was adapted so that initially the Reynolds number matched the experiment.

The simulated energy spectrum at the three different times are plotted for various grid res-
olutions in Fig. 5.4(a) and Fig. 5.5(a). There is a notable difference between results using the
two different filter types. The smooth filter results in a smooth decay near the cut-off, but also
pile-up in the mid wavenumber range. This indicate that the model is too dissipative in the high
wavenumber range, which partly obstructs the turbulent cascade. In both cases the total resolved
energy compares equally well with the experiments as other studies using the Lagrangian dy-
namic model (Meneveau et al., 1996; Anderson and Meneveau, 1999) as shown in Fig. 5.4(b)
and Fig. 5.5(b). Probability density functions of c2

s plotted in Fig. 5.4(c) and Fig. 5.5(c) show
that in both cases the initial cs = 0.17 develops into smooth distributions with mean value
cs ≈ 0.18− 0.20. Clipping of the averaged quantities was found necessary in order to preserve
the stability of the Lagrangian averaging procedure, which impose a minimum constrain on the
model coefficient as c2

s ≈ 1× 10−5. This is reflected in the distributions as the peaks observed
close to cs = 0. The clipping occur for 3–5% of the field when using the sharp cut-off filter and
1–2% of the field when using the smooth filter. The flow is simulated for different mesh reso-
lutions, using a fixed filter width. The results in Fig. 5.4 and Fig. 5.5 demonstrate approximate
mesh convergence, although only explicitly filtered in case of the sharp filter. This indicates
that the results observed are consequences of the sgs stress model and not errors due to approx-
imation of partial derivatives and interpolation. The distribution of model coefficient, however
is seen to shifted toward higher cs for the coarser resolutions, which could be a consequence of
the low order interpolation used with the averaged quantities.
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Figure 5.3: LES simulations of forced isotropic turbulence: (a) Averaged energy spectrum for
sharp Fourier cut-off filter (kc = π/(αh), α = 1.5) ( ) , for Gaussian filter (m = 10, α = 1.5)
( ) and slope of -5/3 ( ) . (b) Averaged energy spectrum pre-multiplied k5/3 for sharp Fourier
cut-off filter (kc = π/(αh), α = 1.5) ( ) and for Gaussian filter (m = 10, α = 1.5) ( ) , (c)
Time history of model coefficient for sharp Fourier cut-off filter (kc = π/(αh), α = 1.5) ( )
and for Gaussian filter (m = 10, α = 1.5) ( ) .
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Figure 5.4: LES simulations of decaying isotropic turbulence using spectral velocity kernel and
sharp cut-off filter: (a) Spectrum of resolved energy from simulation and (filtered) experiment
by Comte-Bellot and Corrsin (1971) at times tU0/M = 42, 98 and 171 as ( ) , ( ) and ( ) .
(b) Time variation of resolved energy from compared to (filtered) experiment by Comte-Bellot
and Corrsin (1971) ( ) . (c) Distribution of model coefficient at time 171. Line colors indicate
different mesh resolutions and filter cut-off as L/h = 64 and ks = π/(1.5h) ( ) , L/h = 96
and ks = π/(2.25h) ( ) , L/h = 128 and ks = π/(3.0h) ( ) .
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Figure 5.5: LES simulations of decaying isotropic turbulence using spectral velocity kernel
and Gaussian filter (m = 10): (a) Spectrum of resolved energy from simulation and (filtered)
experiment by Comte-Bellot and Corrsin (1971) at times tU0/M = 42, 98 and 171 as ( ) ,
( ) and ( ) . (b) Time variation of resolved energy from compared to (filtered) experiment by
Comte-Bellot and Corrsin (1971) ( ) . (c) Distribution of model coefficient at time 171. Line
colors indicate different mesh resolutions and filter cut-off as L/h = 64 and α = 1.5 ( ) ,
L/h = 96 and α = 2.25 ( ) , L/h = 128 and α = 3.0 ( ) .
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5.4 Breakdown of counter rotating vortex pairs

We revisit the counter rotating vortex pairs simulated in Sec. 2.4. In case of vanishing vis-
cosity, the instability of the flow results in rapid transition from a 2D state in into a complex
turbulent state. It serves as a test of the sgs models performance in a transitional flow. This
was also studied by Cocle et al. (2007), who simulated inviscid vortex pair using both a pseudo-
spectral method and VPM method and compared various sgs models.

The simulation setup is the same as was used in Sec. 2.4 for mesh resolution is h/Lz = 128
and the Gaussian velocity kernel (m = 10, α = 1.5). The evolution of the total energy and
the mean transverse energy are plotted in Fig. 5.6. It may be seen that around time t/T =
0.6 the mean and total energy diverge, indicating that the flow becomes 3D, which is also
seen from the immediate vortex structures in Fig. 5.7. The ideal simulation would not have
dissipation until this point as viscosity is zero and the flow is laminar. This is also obtained using
a pseudo-spectral method and high order hyper-viscosity sgs model from Cocle et al. (2007),
which dissipates energy only in the high wavenumber range. Clearly the Smagorinsky models
do not conserve energy before transition. The dynamic model, for which cs = 0 at t/T = 0
is however less dissipative and it may be concluded that the dynamic model is an improvement
as compared to the simple model. It still does not compare as well as the multiscale models
reported in that study (not shown), which indicate that the Smagorinsky model, even if dynamic,
might not be the optimal choice for vortex flow simulation. The transverse energy spectrum has
been plotted in Fig. 5.6 for the two models at the final time of the simulation, which both
displays an inertial range and significant decay due to the filter for Lz

2π
kz > 10. The spectrum

obtained with the dynamic model has slightly more energy at high wave numbers.

5.5 Flow past a square cylinder at Re = 2.2× 104

5.5.1 Setup

A challenging case for turbulent bluff body flow simulation using the VPM method is the
case of the flow past a square cylinder at a moderate Reynolds number of Re = UD/ν =
2.2 × 104. The case has been thoroughly studied in the literature both experimentally e.g.
by Lyn et al. (1995) and numerically using various LES models e.g. by Rodi et al. (1997);
Sohankar et al. (2000) and by direct numerical simulation (DNS) by Trias et al. (2015). Here
the performance of both the simple Smagorinsky model (SSM) and the dynamic Smagorinsky
model (DSM) used with the VPM method is compared to these benchmarks.

The flow is simulated for CLCFL = 0.125 using a third-order Runge-Kutta time-step scheme.
The axial extent of the domain is Lz = 4D, which has been found sufficient for various simula-
tion configurations by Rodi et al. (1997).

The sharp edges of the body ensure that the points where the boundary layers separates are
fixed to the upstream corners of the cylinder, which relaxes the requirement of well-resolved
boundary layers in order to capture qualitatively well the large scale dynamics of the flow. This
is convenient as the current method does not support anisotropic grids to resolve steep gradients
in the wall normal direction. Using a multiresolution setup with a two level refinement region
close to the cylinder as sketched in Fig. 5.8, the size of the first cell next to the wall corresponds
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Figure 5.6: LES of inviscid break down of counter rotation vortex pairs. (a) The total resolved
energy from pseudo-spectral simulation with high order hyper-viscosity sgs model from Cocle
et al. (2007) ( ) , dynamic Smagorinsky model ( ) and standard Smagorinsky ( ) . The
resolved energy corresponding to kz = 0 from Cocle et al. (2007) ( ) , dynamic Smagorinsky
model ( ) and simple Smagorinsky ( ) . (b) Resolved energy spectrum at time t/T = 2.0
for dynamic Smagorinsky model ( ) , simple Smagorinsky ( ) , and -5/3 slope ( ) .
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t/T = 2.0
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t/T = 0.63t/T = 0.0

Figure 5.7: Isocontours of the vorticity magnitude from blue to red |ωb2
1/Γ0| = [4, 16, 24, 32]

at various times.
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Figure 5.8: Sketch of the computational domain used to simulate the flow past a square cylinder
at Re = 2.2× 104. The extent of the domain is fixed in the x, z-direction whereas it is adapted
to the immediate vorticity field in the y-direction. Resolutions are h0 = D/32, h1 = D/64 and
h2 = D/128. The domain length in the transverse direction is Lz = 4D. The coordinate system
is showed shifted from its origin at the center of the square.

to approximately ∆y+ = 5 to 10 viscous wall units (Choi and Moin, 2012). The number
of cells for the resulting mesh is approximately 7 × 107, for which half belongs to the mesh
on the finest patch. Achieving ∆y+ < 1, which is the typical requirement for DNS or wall-
resolved LES using refinement regions is therefore not realistic (Chapman (1978); Choi and
Moin (2012) suggest ∆y+ = 3 to 10 but typically ∆y+ < 1 is used in practice, see e.g. Cao
and Tamura (2016); Trias et al. (2015)). Near-wall modeling, based on the Reynolds-averaged
Navier-Stokes equations (RANS) is typically used with ∆y+ = 10–100, which is more realistic
with the current method. However to this authors knowledge, none has yet been tested for vortex
methods. Further, such modeling would involve manipulation of the velocity (and vorticity) in
the wall-normal directions, which is not in line with the penalization approach.

About 165 dimensionless time units was been resolved in both cases. On 192 cores of Intel
E5-2650 v4 (2.20GHz) a single time unit required about 1 hour. About 20 penalization iterations
were performed every time step.

5.5.2 Results

For tU/D > 50 the shedding is considered to have developed fully to a steady state, which is
used to the compute statistics presented in the following. This interval corresponds to about 15
shedding cycles. The force coefficients cf. Eq. 4.17, have been plotted in Fig. 5.9. Mean values,
root-mean-square (RMS) values and Strouhal numbers (St = fD/U ) for the two models are
given in Tab. 5.1. The results are compared to what may be found in the literature.

Both models captures the shedding frequency; a value of mathrmSt = 0.134–0.136 is
well within the range of the experiments and LES results and it compares excellently to that
obtained from the DNS simulation. In general it seems as if the simple Smagorinsky model
performs better than the dynamic model. The dynamic model under-predicts the mean drag
and root-mean-square values by 8%–50% as compared to the DNS data. One explanation of
this may be that the dynamic procedure is sensitive to distortion at the grid interfaces, which
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Figure 5.9: Evolution of drag and lift coefficients during approximately 15 shedding cycles in
the time interval tUD ∈ [50; 165] which has been considered as a steady harmonic state: CD
from SSM simulation ( ) , CL from SSM simulation ( ) , CD from DSM simulation ( )
and CL from DSM simulation ( ) .

C̄D C ′D C ′L St
Current SSM 2.2 0.15 1.3 0.134
Current DSM 2.0 0.10 1.1 0.136
Experiments 2.05–2.16 0.22 1.2 0.12-0.14
DNS 2.18 0.21 1.7 0.132
LES 2.02–2.77 0.14–0.27 1.2–1.8 0.09–0.15

Table 5.1: Results for flow past a square cylinder at Re = 2.2 × 104 compared to literature.
Experiments are reported for turbulence intensity in the inflow of up to 2%. The reference
data has been taken from Lee (1975); Norberg (1993); Lyn and Rodi (1994); Atsushi (1982)
(experiments), Trias et al. (2015) (DNS) and Sohankar et al. (2000); Rodi et al. (1997); Rodi
(1997) (LES).
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disturbs the formation of the vortices forming behind the cylinder.
Streamlines of the time-averaged field have been plotted in Fig. 5.10 for the two models and

for DNS results by Trias et al. (2015). It may be seen that both models result in one large re-
circulation region behind the cylinder and a significant secondary region in agreement with the
DNS profile. However, the elongation of the main recirculation region is for the current simu-
lations over-predicted by a factor of 1.5 for SSM and 1.7 for DSM. The formation of a tertiary
recirculation region near the leading edge, as may be observed from the DNS simulation, is
most significant for the DSM simulation. It may also be noticed that in the current simulations,
the streamlines penetrate the corners of the square cylinder, which are effectively rounded as
a consequence of the penalization method used. Rounded corners are known to be associated
with a decay in the mean and root-mean-square force coefficients and an increase in Strouhal
number obtained. Tamura and Miyagi (1999) observed that for Re = 3×104 the mean drag co-
efficient decrease by 50% and the Strouhal number increase by 15% for rounded corners and a
large rounding radius of r/B = 1/6, but reported nothing on the change in wake characteristics
hereby.

The time-averaged velocity profiles in the boundary layer compares well to the experiments
by Lyn et al. (1995) as shown in Fig. 5.11. From the profiles the inexact boundary condition is
also apparent especially at the leading and trailing edges, where a slip-velocity is observed.

The difference between the simulation with the two different sgs stress models obtained is
also clear from the phase averaged transverse vorticity plotted in Fig. 5.12. The SSM model
results in phase averaged shear layers on both sides of the cylinder which appear thin and
coherent, indicating a later break-up into a very turbulent wake as compared to the DSM results.
This indicates that the DSM model is not dissipative enough in this region or that artificial
disturbances are introduced with the dynamic formulation.

The time-average velocity and the velocity fluctuations along the centerline have been plotted
in Fig. 5.13. Compared to experimental, LES and DNS data it may be seen that the time-
averaged stream wise velocity on the centerline falls well within the range of the data, but that
for both models, agreement is better with the experimental results. The velocity-fluctuations
peak for x/D ∈ [1; 3] as the references. The peak value for the stream wise fluctuations with
the current SSM simulation is close to SSM simulation by Sohankar et al. (2000), whereas it
is significantly under-predicted with the DSM model. This may be related to a less coherent
near wake of the resolved field obtained with the current DSM formulation. In both cases the
intensity of the fluctuations fails to decay in the far wake. One explanation of this behavior
could be that numerical dissipation, e.g. from mesh level interfaces, obstructs the turbulent
cascade independent of the sgs stress model and prevents break-down into small-scale motion.
A visualization of the immediate vorticity field for a simulation with the simple Smagorinsky
model is given in Fig. 5.14.

5.6 Summary

In this chapter LES with sgs stress models based on the Smagorinsky eddy viscosity ansatz
were introduced and implemented in the VPM solver. A dynamic model with Lagrangian av-
eraging, which is formally more accurate than a fixed coefficient model, was verified for prob-
lems of homogeneous turbulence. Here, the dynamic model was found to produce results in
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Figure 5.10: Time averaged streamlines: (a) DNS by Trias et al. (2015). (b) Current SSM
simulation. (c) Current DSM simulation.
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Figure 5.11: Mean streamwise velocity profiles in the boundary layer at various positions for the
flow past a square cylinder at Re = 2.2× 104: Experiment by Lyn et al. (1995) ( ) , current
SSM simulation ( ) and current DSM simulation ( ) .
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Figure 5.13: Velocity profiles along the wake center line for the flow past a square cylinder at
Re = 2.24: (a) Mean velocity. (b) Streamwise fluctuations. (c) Vertical fluctuations. Lines indi-
cate results from SSM simulation by Sohankar et al. (2000) ( ) , SSM simulation by Sohankar
et al. (2000) ( ) , DNS simulation by Trias et al. (2015) ( ) , experiment by Lyn et al. (1995)
( ) , current SSM simulation ( ) and current DSM simulation ( ) .
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a)

b)

Figure 5.14: Isocontours of |ω|D/U = [4, 8, 12, 16] from blue to red from SSM simulation at
time tU/D = 64.0 at Re = 2.24 (a) xy-view. (b) xz-view.

good agreement with theory and experiments. However, for bluff body flow simulation with the
multiresolution formulation, the simple Smagorinsky model was seen to provide better results
than the dynamic when compared to results from the literature. This is believed to be caused
by artifacts from transitions between resolution levels and averaging of quantities along particle
trajectories across these. However, also the simple model displayed vertical velocity fluctua-
tions on the centerline in the far wake with a larger amplitude than reported in the references,
which may indicate that the mesh level transitions disrupt the energy cascade to some degree
here.
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Chapter 6

Application of the method for prediction of
aerodynamic flutter

Flutter is a type of aerodynamic instability which may be responsible for the structural fail-
ure of large scale structures subject wind loads if not suppressed. Flutter may be characterized
as either one degree-of-freedom (1-DOF) torsional flutter and two degree-of-freedom (2-DOF)
flutter. The later involves a coupling between the vertical and torsional motions. 1-DOF flut-
ter results in a diverging torsional motion, which may be explained by unsteady separation of
shear layers at the leading edge of the structure, which causes vortex motion along the length
of the structure. For sufficiently high oncoming velocity, the oscillating moment induced by
the detached vortices acts as a negative torsional damping of the dynamic system with cause
diverging structural response. A condition for 2-DOF flutter is that the frequencies of the tor-
sional and vertical motion of the dynamically loaded system become aligned. This is typically
seen for slender smooth sections that are not unstable to 1-DOF flutter and may be accessed
using inviscid theory by Theodorsen (1935) for the flat plate.

For a flexibly supported structure (with two degrees of freedom) subjected to oncoming flow
cf. Fig. 6.1, the aerodynamic loading expressed in terms of force and moment coefficients

CL =
L

1
2
ρU2B

, CM =
M

1
2
ρU2B2

, (6.1)

is sometimes parameterized using a linear expression (Simiu and Scanlan, 1986)

CL = 2

[
KH∗1

ḣ

U
+KH∗2

Bθ̇

U
+K2H∗3θ +K2H∗4

h

B

]
, (6.2)

CM = 2

[
KA∗1

ḣ

U
+KA∗2

Bθ̇

U
+K2A∗3θ +K2A∗4

h

B

]
. (6.3)

h(t)

B

U

θ(t)

Figure 6.1: The cross section of an infinite period structure oscillating in heave h(t) and θ(t)
pitch motion.
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Here, h is the vertical motion (heave), θ is the torsional motion about the center of mass (pitch)
and K = 2π fB

U
is circular reduced frequency, with f being the frequency of the oscillation.

The coefficients in the expressions cf. Eq. (6.2)–(6.3) are denoted the aerodynamic derivatives
and depend only on the reduced velocity Ur = U/fB and the shape of the structure. With
Eqs.(6.2)–(6.3) it is possible to establish whether a structure is stable under a given loading from
the equation of motion of a 2-DOF system using standard vibration analysis techniques. One
way to extract the aerodynamic derivatives is by experimentally or numerically measuring force
and moment coefficients when subjecting the structure to forced oscillations. Alternatively, the
flutter onset velocity may be found by traversing the reduced velocity for the flexibly supported
system. To be able to study flutter instability, rigid body motion is implemented into the present
solver. This is done without projecting the translated and rotated characteristic function of
the solid explicitly onto a mesh every time-step, which would require explicit smoothing of
this. In stead rigid body motion is achieved by translating and rotating the penalization sub-
mesh (Fig. 3.2) relative to the background mesh. Fields are then transferred back and forth by
interpolation using M ′

4 consistent with the particle-mesh interpolation.

6.1 Extraction of aerodynamic derivatives for a flat plate

A plate with sharpened edges and a length (B) to height (H) ratio of B/H = 51.2 is con-
sidered in a stationary configuration and in forced oscillations. This is done to establish the
ability of the VPM penalization method to (1) simulate a laminar boundary layer (2) to ver-
ify the support of rigid body motion by comparison of extracted aerodynamic derivatives to
those obtained with the inviscid theory of Theodorsen (1935). For this a computational setup
as sketched in Fig. 6.2 is used. The resulting mesh consists of 10 cells across the height of the
plate. Simulations are carried for adaptive time-stepping by third-order Runge-Kutta accord-
ing to the Lagrangian time-step criterion with CLCFL = 0.125. Further, to study whether 3D
structures are able to develop in the boundary layer, fluctuations in the free-stream velocity are
introduced by seeding vortex particles at the inlet corresponding to a turbulent intensity of 2%.
The simple Smagorinsky sgs stress model is used to preserve stability in the wake at the moder-
ate Reynolds numbers considered here. A re-projection of vorticity onto a divergence-free field
is done every time-step.

6.1.1 Boundary layer of the flat plate

The flow past an infinitely thin stationary flat plate at moderate Reynolds number is char-
acterized by a non-separated laminar boundary layer. In case of no perturbations such as
surface roughness or noise in the free stream, the flow typically transitions to turbulence at
Rex = Ux/ν ≈ 1 × 106, where x is the distance from the upstream edge of the plate. The
natural transition occurs through 2D Tollmien-Slichting waves, which develops three dimen-
sionality in terms of hairpin vortices that break down into fully developed turbulent boundary
layer (Kundu et al., 2012; White, 2011). For so-called by-pass transition due to perturbations,
such as fluctuations in oncoming free stream, the transition may occur already at Rex ≈ 105

(e.g. see numerical experiments by Zaki (2013)).
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Figure 6.2: Sketch of the computational domain used to simulate the flow past plate of finite
thickness. The extent of the domain is fixed in the x, z-direction whereas it is adapted to the
immediate vorticity field in the y-direction. Resolutions are h0 = B/128, h1 = B/256 and
h2 = B/512. The domain length in the transverse direction is Lz = 0.5D. The coordinate
system is shown shifted from its origin at the leading edge of the plate.

The laminar boundary layer solution was given by Blassius (see e.g. White (2011)) as a
self similar velocity profile from which we can compare computed boundary layer thickness
δ99% (defined as the thickness where the velocity reaches 99% of the free-stream), displacement
thickness δ1 and momentum thickness δ2

δ99%(x) = 5

√
νx

U
, (6.4)

δ1(x) =

∫ ∞

0

(
1− u(x)

U

)
dy = 1.7208

√
νx

U
, (6.5)

δ2(x) =

∫ ∞

0

u(x)

U

(
1− u(x)

U

)
dy = 0.664

√
νx

U
. (6.6)

The flow is simulated for two Reynolds numbers Re = 104 and Re = 105. Six dimensionless
time units are resolved and the first two are discarded before computing time averaged velocity
profiles in the boundary layer. Visualizations of the immediate vorticity fields at tU/B = 6
are given in Fig. 6.3 for the final time. It may be seen that the imposed perturbations of the
free-stream by a turbulent inlet intensity of 2% are insufficient to tricker a turbulent transition
in the boundary layers in both cases and the boundary layer remain primarily 2D except for the
presence of a 3D vortex wake forming behind the trailing edge. The boundary layer compares
well to that of Blassius in case of Re = 104 as seen in Fig. 6.4, whereas for Re = 105 the
thickness is highly over-predicted implying significant numerical diffusion (see Fig. 6.5). For
the case Re = 104 the boundary layer thickness at x/B = 1 is 20h2 and will thus be reasonably
resolved at this point. For Re = 105 it is only x/B = 1 is 8h2, implying that the mesh
would need to be refined one or two times more for a good resolution, especially at upstream
positions. The lack of resolution may also explain why significant 3D structures do not develop
in the boundary layer as the effective viscosity is increased due to numerical diffusion.
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a)

b)

Figure 6.3: Isocontours of |ω|B/U = [4, 8, 16, 32] from blue to red from simulation of flow
past stationary flat plate at time tU/B = 6.0: (a) Re = 104. (b) Re = 105.
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Figure 6.4: Flow past a stationary flat plate at Re = 104: (a) Time-averaged velocity profile at
x/B = 0.28 ( ) , x/B = 0.68 ( ) and Blassius’ solution ( ) . (b) Boundary layer thickness
( ) , displacement thickness ( ) , momentum thickness ( ) , and Blassius solution ( ) ,
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Figure 6.5: Flow past a stationary flat plate at Re = 105: (a) Time-averaged velocity profile at
x/B = 0.28 ( ) , x/B = 0.68 ( ) and Blassius’ solution ( ) . (b) Boundary layer thickness
( ) , displacement thickness ( ) , momentum thickness ( ) , and Blassius solution ( ) ,
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6.1.2 Aerodynamic derivatives extracted by forced oscillations

The aerodynamic derivatives are approximated by measuring the lift and moment of the
structure when subjected to harmonic oscillations cf. Eq. (6.7) with amplitudes (Ah, Aθ). For
every reduced velocity, and for a pure heave- and pitch motion respectively, the lift and moment
force coefficients are approximated. The force and moment are modeled as the harmonic func-
tions in Eq. (6.8) and the amplitudes (AM , AL) and phases (φM , φL) are fitted from the obtained
signal.

h = Ah sin
(

2π

Ur

Ut

B

)
, θ = Aθ sin

(
2π

Ur

Ut

B

)
, (6.7)

CL = AL sin
(

2π

Ur

Ut

B
+ φB

)
, CM = AM sin

(
2π

Ur

Ut

B
+ φM

)
. (6.8)

By inserting the motions Eq. (6.7) and the models Eq. (6.8) into the linear expressions Eqs. (6.2)–(6.3)
the aerodynamic derivatives are obtained as

H∗1 =
AL
Ah/B

sin (φB)

2K2
, H∗2 =

AL
Aθ

sin (φB)

2K2
, (6.9)

H∗3 =
AL
Aθ

cos (φB)

2K2
, H∗4 =

AL
Ah/B

cos (φB)

2K2
, (6.10)

A∗1 =
AM
Ah/B

sin (φM)

2K2
, A∗2 =

AM
Aθ

sin (φM)

2K2
, (6.11)

A∗3 =
AM
Aθ

cos (φM)

2K2
, A∗4 =

AM
Ah/B

cos (φM)

2K2
. (6.12)

The same setup as for the stationary flat plate is used to simulate forced oscillations for the
flat plate at a Reynolds number of Re = 104. The amplitudes of the forced motions are kept
small so that separation of the boundary layer is avoided (Ah/B = 0.05 andAθ = 3◦) as the aim
is to compare the results to inviscid theory. A range of reduced velocities is swept Ur ∈ [2; 12]
and signals are taken after 0.5U/(UrB) transients during two oscillation periods. The measured
and fitted signals for Ur = 4 are plotted in Fig. 6.6. The high frequency content may be related
to the small scale vortex shedding behind the plate due to the finite thickness of the plate.

The extracted derivatives are compared to those estimated using the inviscid theory by Theodorsen
(1935). An overall good agreement is obtained, except when considering the cross damping co-
efficient H∗2 , which seems to diverge for increasing reduced velocity, likely an artifact from
using a plate of finite thickness and a finite Reynolds number.

6.2 1-DOF flutter of H-shaped section

The sharp edges of a cylindrical structure with an H-shaped cross section similar to that of the
first Tacoma Narrows Bridge, implies a separating flow at the trailing edge, which cause the von
Karman vortex shedding. Additionally, flow separation at the leading edges and reattachment
at the along the length of the section leads to 1-DOF flutter instability. This is similar to that
of prismatic cylinders and channel shaped sections of moderate length (B) to height (H) ratios
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Figure 6.6: Comparison of measured force and moment coefficient with theoretical estimates
for flat plate in forced oscillations at Re = 104 and Ur = 4: (a) Heave. (b) Pitch. Lines indicate
simulated lift ( ) , simulated moment ( ) , best fit ( ) , and estimates based on inviscid
theory ( ) .

(B/H < 10) (Matsumoto, 1996). An explanation of the mechanism behind the phenomena
is given e.g. by Larsen and Larose (2015) and is related to the position of the vortex center in
relation to the center of mass of the structure. Whether a structure is unstable to 1-DOF flutter
may be established by considering the aerodynamic derivatives introduced in Sec. 6.1. If the
aerodynamic (negative) damping in torsion A∗2 exceeds the structural damping of the system,
the torsional motion will increase exponentially. For the case of the plate (a slender prism with
B/H = 50) A∗2 < 0 was obtained, hence it is not unstable to 1-DOF flutter. For small angles of
attack the boundary layer of the plate does not separate and reattach, hence vortex convection
along the length of the plate is avoided. It is reported for H-shaped sections that A∗2 becomes
positive at a reduced velocity, which is about constant for slenderness ratios (B/H < 10) as
Ur = 2 (Scanlan, 1978). In this section free torsional oscillations of an H-shaped section with
slenderness ratio B/H = 5 is carried out at various reduced velocities and compared to this
limit. Initially the stationary loads are obtained and compared to results from the literature.

6.2.1 Stationary loads

A simulation is carried out for Re = 104 and the stationary configuration sketched in Fig. 6.8
using time stepping by second order Runge-Kutta scheme with time-step size adapted according
to Lagrangian criteria with CLCFL = 0.5. As for the flat plate, the simple Smagorinsky subgrid
stress model is used for LES modeling and vorticity re-projection is done every time-step. The
simulated force coefficients defined as Eq. (6.1) are given in Fig. 6.9. Mean drag and dimen-
sionless shedding frequency St = fH/U are computed from the signals in the time interval
tU/B ∈ [20; 100], which is considered as a steady oscillatory phase of the flow. The values,
which have been listed in Tab. 6.1, compare well to those reported for wind tunnel experiments
in Larsen and Walther (1997). The separated shear layers disturb the von Karman shedding pat-
tern as seen from the immediate vorticity field at tU/B = 30 in Fig. 6.10, which may explain
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Figure 6.7: Aerodynamic derivatives of the flat plate as function of reduced velocity: Simulated
( ) and theoretical estimates by Theodorsen (1935) ( )

100



Application of the method for prediction of aerodynamic flutter

U

y

x

B h1

0.2B

2B

5B

h0

B

Figure 6.8: Sketch of the computational domain used to simulate the flow past H-shaped section.
The extent of the domain is fixed in the x, z-direction whereas it is adapted to the immediate
vorticity field in the y-direction. Resolutions are h0 = B/128, h1 = B/256. The domain
length in the transverse direction is Lz = 1L. The coordinate system is displayed shifted from
its origin being the center of section. The thickness of the center plate is 0.06B and the thickness
of the end plates is 0.02B.

Simulation Experiment
St 0.12 0.115
C̄D 0.28 0.24-0.30
C ′D 0.03 -
C ′L 0.19 -

Table 6.1: Mean and root-mean-square simulated force coefficients and Strouhal number St =
fH/U . Also experimental values presented in Larsen and Walther (1997).

the unsteadiness in the signals and presence of time scales slower the one associated with the
von Karman shedding.

6.2.2 Flexibly supported section

Free oscillations in pure torsion are simulated by solving the equation of motion of an un-
damped 1-DOF torsional oscillator along with the flow problem

Imθ̈ + kθθ = M, (6.13)

where Im is the mass moment-of-inertia and kθ is torsional stiffness. Eq. 6.13 is discretized
using forward Euler

θ̇n+1 = θ̇n + ∆t(Mn − kθθn)/Im, (6.14)

θn+1 = θn + ∆tθ̇n, (6.15)

where n is the time-step number. A sequential coupling between the flow problem and the
structural problem is applied, as the time scale of the structural dynamics is assumed to be
much slower than those of the smallest dynamics of the resolved flow.
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Figure 6.9: Flow past stationary H-shaped section: Evolution of drag ( ) and lift ( ) coef-
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Figure 6.10: Isocontours of |ω|B/U = [4, 8, 12, 16] from blue to red in simulated flow past
stationary H-Shaped section at time tU/B = 30.0 at Re = 104: (a) xy-view. (b) xz-view.
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For comparison with the first Tacoma Narrows Bridge, and model experiments of this, a
scaling criteria (Simiu and Scanlan, 1996) implies that a moment of inertia should be used,
which is estimated from values given by Larsen et al. (2000) as

Im/(ρB
2) = 7.143. (6.16)

To achieve a certain reduced velocity the stiffness coefficient is varied as

Ur =
U

fnB
⇒ kθ(Ur) =

(
2π

BUr

)2

Im, (6.17)

where fn = 1
2π

√
kθ
Im

is undamped natural frequency of the system.
The results of four simulations for reduced velocitiesUr = 2, 3, 4, 5 are presented in Fig. 6.11.

The solid is initialized with θ = −5◦ and θ̇ = 0. For reduced velocity Ur = 2 the motion is
dampened by aerodynamic moment, whereas for Ur = 3 the oscillation amplitude is approxi-
mately constant and it increase for Ur = 4, 5. The results imply that the onset reduced velocity
is 3 < Ur|crit < 4 which is above the experimental value Ur|crit = 2 but closer than the numer-
ical result that was also reported in Larsen and Walther (1997) as Ur|crit = 4. This could be a
Reynolds number effect, as the Reynolds number of experiments are one to two orders of mag-
nitude larger that the one used for the current simulations. The qualitative explanation of the
diverging oscillation amplitude at reduced velocity above the onset velocity may be obtained
by considering the motion of the detached vortices generated by the separated shear layer at the
leading edge as illustrated in Fig. 6.12. The axial vorticity averaged in z-direction is plotted
at six instances during an half an oscillation cycle. As the cross section goes from θ = 0 to
θ < 0 (from point 1 to point 2) a vortex is formed behind the leading edge above the section,
which travels along the length of the section and reaches a point approximately above its center
of mass a quarter period through the cycle (point 3). During this quarter cycle the vortex has
applied a negative aerodynamic moment as it has been traveling toward the center of the section.
Similarly as the vortex travels away from the center (point 1–6) during the second quarter cycle
it generates a positive moment. Below the section the motion of this vortex generates a moment
of the same sign, because the cycle is shifted half a period and it has circulation of opposite
sign. The reader is referred to Larsen and Larose (2015) for further details on this.

6.3 Summary

In this chapter the VPM method with Brinkman penalization and sgs stress modeling was
applied for numerical experiments regarding aerodynamic instability. Rigid body motion was
used with the penalization technique by translating and rotating the mesh of the penalization
subdomain relative to the background mesh. The approach was verified for a plate of finite
thickness which aerodynamic derivatives were extracted by the method of forced oscillations.
These compared well with theoretical estimates based on inviscid theory. Furthermore, an H-
shaped section was flexibly supported and subject to an oncoming flow. 1-DOF torsional flutter
was observed and the onset reduced velocity was identified to be in the range 3 < Ur|crit < 4.
Although this result deviates by 50%–100% from experimental findings (Ur|crit = 2), the studies
demonstrated the versatility of the presented method.
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Figure 6.11: Time history of pitch (a) and moment coefficient (b). Lines indicate simulation for
reduced velocities Ur = 2 ( ) , Ur = 3 ( ) , Ur = 4 ( ) and Ur = 5 ( ) .
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Figure 6.12: Simulated axial vorticity component (ωz) averaged in the z-direction and plotted
at 6 times during an oscillation cycle as indicated on the graph showing the rotation angle as
function of time for Ur = 4. Colors indicate 〈ωz〉zUB ∈ [−64 : 64] from blue to red.
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Conclusions

This dissertation has presented contributions to vortex-particle mesh methods in 3D. One
contribution is the derivation and implementation of a parallel, scalable Poisson solver based on
regularised Green’s functions for any mixture of free-space, periodic and homogeneous Dirich-
let or Neumann boundary conditions. This solver is relevant also in other branches of computa-
tional physics such as cosmology and molecular dynamics.

The application in this dissertation has been bluff body aerodynamics using Brinkman pe-
nalization and a variation of the Poisson solver enabling local mesh refinements, with an em-
phasize on periodic structures. The Brinkman penalization was used in an iterative formulation
for increased accuracy and was extended to handle rigid body motion. The consistency of the
combined method was demonstrated for low Reynolds number flows and the method was tested
in turbulent flow as well.

Problems at moderate Reynolds numbers was considered through large-eddy-simulation.
Here, the simple Smagorinsky model and dynamic variation of this were proposed as subgrid-
scale stress models. In the spirit a particle methods, the dynamic Smagorinsky model was used
with Lagrangian averaging and test filters were chosen consistently with the regularization used
for obtaining smooth Green’s function solutions to the Poisson equation. The consistency of
the dynamic model was demonstrated for benchmark problems of forced and decaying isotropic
turbulence.

Although the combined approach applied for bluff body aerodynamics at moderate Reynolds
number yielded results which compared qualitatively well with results found in the literature,
the numerical experiments also highlighted several challenges. Among these are: (1) The reso-
lution of turbulent boundary layers in wall-resolved LES is not possible since the vortex method
relies on locally isotropic meshes. (2) The poor adaptivity of the multiresolution method in its
present form and numerical diffusion at interfaces. (3) Inefficiency of the iterated Brinkman
penalization, which constitute a major part computational efforts of the combined solver.

The obvious way to overcome the first point would be to account for bodies through reduced
order models, thereby not resolving turbulent boundary layers, or to use wall modeling. Wall-
modeling however, is not in line with the simplicity of the Brinkman penalization technique,
which conveniently avoids manipulation of the solution near the solid interface, which may be
required when reconstructing the unresolved boundary layer.

For the second point, the use of the refinement patches in a block structured framework would
enhance the adaptivity. The accuracy at the mesh interfaces still needs to be addressed and
possibly more optimal interpolation schemes would need to be used for increased efficiency and
accuracy, when super-positioning solutions across levels. Further, the support of the refinement
patches must be kept sufficiently low for the sake of inter-processor communication.

Regarding the third point, the Brinkman method is easy to implement and use, however
other schemes based on immersed interfaces or domain decomposition methods may formally
be more accurate and efficient.
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Appendix A

Regularized Green’s functions in 1D

The 1D Poisson for the regularization function (ζm) being the inverse Fourier transform of
Eq. (1.21) is derived by radial integration of

d2Gm

dr2 = −ζm(r), (A.1)

as

Gm(r) = −σ

(
1

2
erf

(
ρ

√
2

2

)
ρ+ Pm

1√
2π

exp
(
−1

2
ρ2

))
, (A.2)

where erf is the error-function defined as

erf (x) =
2√
π

∫ x

0

exp
(
−t2
)

dt (A.3)

and Pm is a polynomial depending on the order of the regularization function

P2 = 1 (A.4)

P4 =
1

2
(A.5)

P6 =
1

8

(
ρ2 + 3

)
(A.6)

P8 = − 1

48

(
ρ4 − 12ρ2 − 15

)
(A.7)

P10 =
1

384

(
ρ6 − 23ρ4 + 141ρ2 + 105

)
. (A.8)

The regularized 1D kernel for various m was been plotted in Fig. 1.2(a).
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Appendix B

Discrete Transforms

B.1 The Discrete Fourier Transform

The discrete analogy to the continuous Fourier Transform pair cf. Eq. (1.9) and Eq. (1.10)
is formally derived by considering the expansion of a 2π-periodic function (f ) in a basis of
complex exponential functions (a Fourier series expansion)

f(x) =
∞∑

k=−∞

f̂ke
ιkx. (B.1)

Since the basis functions are orthogonal on the interval x ∈ [0; 2π], the coefficients in Eq. (B.1)
may be determined as

1

2π

∫ 2π

0

fe−ιkx dx = f̂k, (B.2)

which corresponds to the Fourier Transform of the continuous function. Approximation of
Eq. (B.2) using the trapezoidal rule applied for the function sampled at the equidistant grid
points xj = 2π

N
j, j = 0...N − 1 results in the discrete Fourier coefficients

f̃k =
1

N

N−1∑

j=0

fje
−ιkxj . (B.3)

Sampling in real-space implies periodicity in Fourier-space. E.g. a function a(x) sampled at
grid points xn = nh, for n ∈ Z

an = a(xj) = a(x)
∞∑

n=−∞

δ(x− nh). (B.4)

can be rewritten by substituting the impulse train for its Fourier series expansion as

an = a(x)
1

h

∞∑

n=−∞

eιn
2π
h
x. (B.5)

The continuous Fourier transform of this cf. Eq. Eq. (1.9) is

âs(k) =
1

h

∞∑

n=−∞

1

2π

∫ ∞

−∞
a(x)e−ι[k−n

2π
h ]x dx =

1

h

∞∑

n=−∞

â

(
k + n

2π

h

)
, (B.6)
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which implies replication of the Fourier transform about the wavenumber 2π/h. Similarly,
the sampling associated with the quadrature in Eq. (B.3) reflects this behavior in the discrete
coefficients. Using a result from Kopriva (2009)

1

N

N−1∑

j=0

eι(m−k)
2π
N
j = δm−k,±pN , for p ∈ Z (B.7)

a relation between the discrete Fourier coefficients and the true Fourier coefficients (for the
continuous function) are obtained upon inserting the expansion of f in Eq. (B.3)

f̃k =
1

N

N−1∑

j=0

[
∞∑

m=−∞

f̂me
ιmxj

]
e−ιkxj =

∞∑

m=−∞

f̂m

[
1

N

N−1∑

j=0

eι(m−k)
2π
N
j

]
(B.8)

=
∞∑

p=−∞

f̂k+pN . (B.9)

From Eq. (B.8) it is directly seen:

– The discrete coefficients are N -periodic (f̃k = fk+pN for p ∈ Z).

– The discrete coefficients are exact (f̃k = f̂k) if f(x) =
∑N/2

k=−N/2 f̂ke
ιkx, otherwise they

are aliased by higher order terms of the series.

It may be shown (Kopriva, 2009) that the function (N is even)

INf(x) =

N/2∑

j=−N/2

f̃k
ck
eιkx, ck =

{
1/2 for k = ±N/2
1 otherwise

(B.10)

interpolates f with the cardinal property (INf(xj) = f(xj) for j = 0, 1, ..., N − 1).
N -periodicity of the coefficients implies that (f̃−N/2 = f̃N/2). Hence Eq. (B.10) can be

written

INf(x) =

N/2−1∑

j=N/2

f̃ke
ιkx. (B.11)

The derivative of f may be approximated by differentiation of the interpolant (Eq. (B.10)) as
in Eq. (B.12)

dn

dxn
{INf(x)} =

N/2∑

j=−N/2

(ik)n
f̃k
ck
eιkx





∑N/2−1
j=−N/2+1(ik)nf̃ke

ιkx for n odd
∑N/2−1

j=−N/2(ik)nf̃ke
ιkx for n even.

(B.12)

Eq. (B.3) and Eq. (B.11) evaluated at the quadrature nodes correspond to the forward and
inverse DFT (often multiplied by a scaling factor):

f̃k =
N−1∑

j=0

fje
−ιk 2π

N
j, k = −N/2, ..., N/2− 1 (B.13)

fj =
1

N

N/2−1∑

k=N/2

f̃ke
ιk 2π
N
j, j = 0, ..., N − 1. (B.14)
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d)

c)

b)

a)

Figure B.1: The DTT of a sequence of length N (filled markers) is derived from the DFT of
a symmetrically extended sequence (filled and unfilled markers) of either 2N for transforms
of type 2 or 4N for transforms of type 4. By convolution with an radial symmetric Green’s
function the output has the same symmetry as implied by the transform of the input (Martucci,
1994), which impose boundary conditions at domain exterior ( ) : (a) DCT-2. (b) DST-2. (c)
DCT-4. (d) DST-4.

The discrete transforms may be used to evaluate the derivative as Eq. (B.12) at the quadrature
nodes by pre-multiplying the discrete coefficients with (ik)n and by zeroing the f̃−N/2+1 for n
odd before applying the IDFT .

For convenience f̂k will be used to denote both continuous Fourier coefficients and discrete
Fourier coefficients keeping in mind the principal difference between the two, as emphasized in
this section.

The summations in Eqs. (B.13)–(B.14) implies that O(N2) operations are required to com-
pute a DFT or an IDFT of anN -point sequence. A rapid evaluation procedure known as the Fast
Fourier Transform (FFT) reduces the operations to O(N log (N)), which is reason that Fourier
based methods are practical for numerical simulation. FFT algorithms are widely available in
various software-libraries; In this work the implementation relies on algorithms from the Intel
Math Kernel Library (MKL) through the library’s FFTW wrappers (Frigo and Johnson, 2005)
for compatibility with free open-source software.

B.2 The Discrete Trigonometric Transforms

In some cases it may be useful to assume a symmetry of the sequences transformed, e.g.
for imposing boundary conditions as illustrated in Fig. B.1. Such an implied symmetry leads
to the definition of real valued Discrete Trigonometric Transforms (DTTs). The DTTs used
in the current work are derived from the DFT in following. Each of the N -point DTTs has a
fast algorithm based on the FFT requiring computational efforts no worse than a 2N -point FFT
(Frigo and Johnson, 2005).
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B.2.1 DCT-2

Forward transform

Consider the special case of an even symmetric extension of the N -point real sequence xn as

yn =

{
xn 0 ≤ n ≤ N − 1

x2N−n−1 N ≤ n ≤ 2N − 1.
(B.15)

Taking the 2N -point DFT of the extended sequence yn cf. (B.13) gives

ŷk =
2N−1∑

j=0

yje
−ιk 2π

2N
j =

1

2N

[
N−1∑

j=0

yje
−ιk 2π

2N
j +

2N−1∑

j=N

y2N−j−1e
−ιk 2π

2N
j

]
, (B.16)

for k = −N, ..., N − 1.

For the second sum on the right-hand-side of Eq. (B.16), the summation index may be changed,
so that summation is over 0 < j < N . Further it may used that eιk2π = 1 for k ∈ Z to rewrite it

N−1∑

j=0

yje
−ιk 2π

2N
(2N−j−1) = eιk

2π
2N

N−1∑

j=0

yje
ιk 2π

2N
j. (B.17)

By substitution Eq. (B.16) then becomes

ŷk =
1

2N
eι
k
2

2π
2N

N−1∑

j=0

yj

[
e−ιk

2π
2N (j+ 1

2) + eιk
2π
2N (j+ 1

2)
]

= eι
k
2

2π
2NCk, (B.18)

where

Ck =
1

N

N−1∑

j=0

cos
(
π

N
k

[
j +

1

2

])
, for k = −N, ..., N − 1. (B.19)

Eq. (B.19) is the discrete Cosine Transform of type 2 (DCT2).

Inverse transform

The IDFT of the discrete Fourier coefficients of the 2N sequence is

yj =
N−1∑

k=−N

ŷke
ιk 2π

2N
j =

N−1∑

k=0

ŷke
ιk 2π

2N
j +

−1∑

k=−N

ŷ−ke
ιk 2π

2N
j (B.20)

for j = 0, ..., N − 1.

Using that the output of a DFT of a real sequence is Hermitian symmetric

ŷ−k = ŷ∗k (B.21)

116



Discrete Transforms

and from Eq. (B.19) that ŷ−N = 0, Eq. (B.20) may be rewritten as

yj = ŷ0 +
N−1∑

k=1

ŷke
ιk 2π

2N
j +

−1∑

k=−N

ŷ∗ke
−ιk 2π

2N
j = <

{
ŷ0 + 2
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k=1

ŷke
ιk 2π

2N
j

}
. (B.22)

Finally, the substitution of Eq. (B.18) into Eq. (B.22) yields the inverse discrete Cosine
Transform of type 2 (IDCT2)

yj =<

{
C0e

ι k
2

2π
2N

j + 2
N−1∑

k=1

Cke
ιk 2π

2N (j+ 1
2)

}
(B.23)

=2

[
1

2
C0 +

N−1∑

k=1

Ck cos
(
π

N
k

[
j +

1

2

])]
, (B.24)

for j =0, ..., N − 1.

B.2.2 DST-2

Forward transform

Similarly for the odd symmetric extension of the N -point real sequence xn

yn =

{
xn 0 ≤ n ≤ N − 1

−x2N−n−1 N ≤ n ≤ 2N − 1,
(B.25)

the 2N -point DFT is

ŷk =
1
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k
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2π
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k
2
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with Sk being the discrete Sine Transform of type 2 (DST2)

Sk =
1

N

N−1∑

j=0

sin
(
k

2π

2N
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1

2
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, for k = 0...N − 1. (B.27)

Inverse transform

The inverse transform corresponding to Eq. (B.26) is the IDFT of a 2N sequence Hermitian
symmetric sequence for which ŷ0 = 0 cf. Eq. (B.27)

yj =<

{
ŷ0 + 2
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2
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(B.29)

for j =0, ..., N − 1.
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B.2.3 DCT-4

Forward transform

DTTs of type 4 combines the even and odd extensions. E.g. symmetrical extension of the real
sequence xn evenly to the “left” (yn) and subsequently oddly to the “right” (zn) (see Fig. B.1)
may be written

yn =

{
xn 0 ≤ n ≤ N − 1

−x2N−n−1 N ≤ n ≤ 2N − 1
(B.30)

zn =

{
yn 0 ≤ n ≤ 2N − 1

y4N−n−1 2N ≤ n ≤ 4N − 1.
(B.31)

Taking the DFT of zn gives
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Again, by changing the summation index Eq. (B.32) becomes
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1
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=
1
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The term

1− e−ιkπ =

{
2 for n odd

0 for n even
(B.35)

in Eq. (B.34) implies that every other coefficient is zero. Hence the transform is computed for
non-zero coefficients only, by introducing a new index from the relation k = 2k′ + 1, as

ŷk′ = eι(k
′+ 1

2) 2π
4NCk′ . (B.36)

In Eq. (B.36) Ck′ is the discrete Cosine Transform of type 4 (DCT4)

Ck′ =
1

N

N−1∑

j=0

cos
(
π

N

(
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1

2

)(
j +

1

2

))
, for k′ = 0, 1, ..., N − 1. (B.37)
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Inverse transform

Using that ŷ0 = ŷ2N = 0 cf. Eq. (B.37), the IDFT of the discrete Fourier coefficients of the
4N sequence corresponding to Eq. (B.36) is

ŷj =
2N−1∑

k=−2N

ŷke
ιk 2π

4N
j = <

{
2
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Ck′ cos
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1

2
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, (B.39)

for j = 0, ..., N − 1.

Eq. (B.39) is the inverse discrete Cosine Transform of type 4 (IDCT4).

B.2.4 DST-4

Forward transform

Alternatively, the real sequence xn symmetrically extended oddly to the “left” (yn) and sub-
sequently evenly to the “right” (zn) (see Fig. B.1) is

yn =

{
xn 0 ≤ n ≤ N − 1

x2N−n−1 N ≤ n ≤ 2N − 1
(B.40)

zn =

{
−yn 0 ≤ n ≤ 2N − 1

−y4N−n−1 2N ≤ n ≤ 4N − 1.
(B.41)

The DFT of z(t) then becomes
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for k =− 2N, ..., 2N − 1.

Again, it may be seen that the coefficients associated with every other mode is zero. Hence
redundant modes are avoided by introducing a new index (k = 2k′ + 1). Using this, Eq. (B.42)
is rewritten as

ŷk′ = −ιeι(k′+
1
2) 2π

4N Sk′ , (B.44)

where the Sk′ is the discrete Sine Transform of type 4 (DST4)

Sk′ =
1
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j=0

sin
(
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N

(
k′ +

1

2

)(
j +

1

2

))
, for k′ = 0, 1, ..., N − 1. (B.45)
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Inverse transform

Analogous to the derivation of Eq. (B.39), by substituting Eq. (B.45) into the IDFT of the
discrete Fourier coefficients of the 4N sequence, the inverse discrete Cosine Transform of type
4 (IDST4) is

yj = 2
N−1∑

k′=0

Sk′ sin
(
π

N

(
k′ +

1

2

)(
j +

1

2

))
, (B.46)

for j = 0, ..., N − 1.

B.2.5 Derivatives

Approximation of the derivative using the discrete coefficients obtained from a DTT may
be derived from Eq. (B.12), but the appropriate inverse transform depends on the type of the
forward transform used.

As in Eq. (B.22), Hermitian symmetry is used to evaluate Eq. (B.12) at the grid points as

d

dx
{I2Ny}j =
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(ik)ŷke
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1
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2
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2N
j

}
. (B.47)

By of substitution of the discrete Fourier coefficients representation as either Eq. (B.22) or
Eq. (B.26) into Eq. (B.47), the inverse transform that restores the first order derivative is seen
to be

d

dx
{I2Ny}j =





2
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k=1 [−knCk] sin
(
k π
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[
j + 1

2
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Ck from (B.19)

2
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(
k π
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[
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2
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Sk from (B.24),

for j = 0, ..., N − 1. (B.48)

Similar for an 4N -point representation as either Eq. (B.36) or Eq. (B.44)

d
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2
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Sk′ from (B.45)

for j = 0, ..., N − 1. (B.49)
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Appendix C

Efficiency of the parallel Poisson solver in 3D

The efficiency of the Poisson solver for various boundary conditions has been tested for a
problem in a cubic domain of unit side length resolved withN mesh points in all axis directions.
The tests were carried out for Intel E5-2650 v4 (2.20GHz) processors. The time to solution has
been reported in Fig. C.1(a) and the speedup in Fig. C.1(b). A completely unbounded solution
is about 50% more expensive than when using a doubly-bounded condition in the first transform
direction due to domain doubling (N = 1024) and 80% more expensive than when using the
combination of doubly-bounded, unbounded and periodic conditions. The solver shows a good
speedup for sufficiently large problems and indicates that a good parallel scalability is obtained
with the parallel implementation outlined in Sec. 1.3. Fig. C.2 demonstrates that for a fixed
numbers of CPU’s (NCPU = 48) the time to solution for the unbounded problem complies with
an O(Ntot log (Ntot)) estimate, where Ntot = N3 is the total number of mesh points.
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Figure C.1: Efficiency of parallel Poisson solver: (a) Time to solution plotted against number
of CPU’s used for parallel computation. (b) Speedup with indication of ideal speedup ( ) .
Lines indicate test problem with various unit resolutions; N = 128 ( ) , N = 256 ( ) ,
N = 512 ( ) and N = 1024 ( ) . Markers indicate boundary condition in x, y, z-directions
as free-free-free ( ) , bounded-free-free ( ) and bounded-free-periodic ( )
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Figure C.2: Time to solution of completely unbounded Poisson solver for a test problem plotted
against total number of grid points for fixed number of CPU’s (NCPU = 48) ( ) . The dashed
lines from bottom to top indicate scaling as respectivelyO(Ntot),O(Ntot log (Ntot)) andO(N2

tot).

122



Bibliography

Anderson, R., Meneveau, C., 1999. Effects of the similarity model in finite-difference LES of
isotropic turbulence using a lagrangian dynamic mixed model. Flow Turbulence and Com-
bustion 62 (3), 201–225.

Angot, P., Bruneau, C.-H., Fabrie, P., 1999. A penalization method to take into account obstacles
in incompressible viscous flows. Numer. Math. 81, 497–520.

Atsushi, O., 1982. Strouhal numbers of rectangular cylinders. J. Fluid Mech. 123, 379–398.

Backaert, S., Chatelain, P., Winckelmans, G., 2015. Vortex particle-mesh with immersed lifting
lines for aerospace and wind engineering. IUTAM Symposium on Particle Methods in Fluid
Dynamics 18, 1–7.

Barkley, D., Henderson, R. D., 1996. Three-dimensional Floquet stability analysis of the wake
of a circular cylinder. J. Fluid Mech. 322, 215–241.

Batchelor, G. K., 1967. An Introduction To Fluid Dynamics, 1st Edition. Cambridge University
Press.

Beale, J. T., 1988. On the accuracy of vortex methods at lage time. In: et al., B. E. (Ed.),
Computational Fluid Dynamics and Reacting Gas Flows. Springer-Verlag, 19–32.

Bergdorf, M., 2007. Multiresolution particle methods for the simulation of growth and flow.
Ph.D. thesis, ETH Zürich.

Bergdorf, M., Cottet, G.-H., Koumoutsakos, P., 2005. Multilevel adaptive particle methods for
convection-diffusion equations. Multiscale Model. Simul. 4 (1), 328–357.

Berger, M. J., Colella, P., 1989. Local adaptive mesh refinement for shock hydrodynamics.
J. Comput. Phys. 82 (1), 64–84.

Brachet, M., Meiron, D. I., Orszag, S. A., Nickel, B. G., Morf, R. H., Frisch, U., 1983. Small-
scale structure of the Taylor-Green vortex. J. Fluid Mech. 130, 411–452.

Branlard, E., Papadakis, G., Gaunaa, M., Winckelmans, G., Larsen, T. J., 2015. Aeroelastic
large eddy simulations using vortex methods: unfrozen turbulent and sheared inflow. J. Phys.:
Conf. Ser. 625, 012019.

Bryan, G. L., et. al, 2014. ENZO: An adaptive mesh refinement code for astrophysics. Astro-
physical Journal Supplement Series 211 (2), 19.

Cao, Y., Tamura, T., 2016. Large-eddy simulations of flow past a square cylinder using struc-
tured and unstructured grids. Computers and Fluids 137, 36–54.

123



Bibliography

Carrier, J., Greengard, L., Rokhlin, V., 1988. A fast adaptive multipole algorithm for particle
simulations. SIAM J. Sci. Stat. Comput. 9 (4), 669–686.

Chapman, D. R., 1978. Computational aerodynamics development and outlook. Aiaa Journal
17 (12), 1293–1313.

Chasnov, J., 1991. Simulation of the Kolmogorov inertial subrange using an improved subgrid
model. Phys. Fluids 3 (1), 188–200.

Chatelain, P., Backaert, S., Winckelmans, G., Kern, S., 2013. Large eddy simulation of wind
turbine wakes. Flow, Turbul. Combust. 91, 587–605.

Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W., Koumoutsakos, P., 2008.
Billion vortex particle direct numerical simulations of aircraft wakes. Comp. Meth. Appl.
Mech. & Engng. 197, 1296–1304.

Chatelain, P., Koumoutsakos, P., 2010. A Fourier-based elliptic solver for vortical flows with
periodic and unbounded directions. J. Comput. Phys. 229, 2425–2431.

Choi, H., Moin, P., 2012. Grid-point requirements for large eddy simulation: Chapman’s esti-
mates revisited. Physics of Fluids 24 (1).

Cocle, R., Dufresne, L., Winckelmans, G., 2007. Investigation of multiscale subgrid models for
LES of instabilities and turbulence in wake vortex systems. Lecture Notes in Computational
Science and Engineering 56, 141–160.

Cocle, R., Winckelmans, G., Daeninck, G., 2008. Combining the vortex-in-cell and parallel fast
multipole methods for efficient domain decomposition simulations. J. Comput. Phys. 227,
9091–9120.

Comte-Bellot, G., Corrsin, S., 1971. Simple eulerian time correlation of full-and narrow-band
velocity signals in grid-generated, ’isotropic’ turbulence. J. Fluid Mech. 48 (2), 273–337.

Coquerelle, M., Cottet, G.-H., 2008. A vortex level set method for the two-way coupling of an
incompressible fluid with colliding rigid bodies. J. Comput. Phys. 227 (21), 9121–9137.

Cottet, G.-H., Koumoutsakos, P., 2000. Vortex Methods – Theory and Practice. Cambridge
University Press, New York.

Cottet, G.-H., Poncet, P., 2003. Advances in direct numerical simulation of 3D wall-bounded
flows by vortex-in-cell methods. J. Comput. Phys. 193, 136–158.

Couchman, H. M. P., 1991. Mesh-refined p3m: A fast adaptive n-body algorithm. The Astro-
physical Journal 368, L23–L26.

Crochiere, R. E., Rabiner, L. R., 1981. Interpolation and decimation of digital signals - a tutorial
review. Proc. IEEE 69 (3), 300–331.

El Ossmani, M., Poncet, P., 2010. Efficiency of multiscale hybrid grid-particle vortex methods.
Multiscale Model. Simul. 8 (5), 1671–1690.

124



Bibliography

Frigo, M., Johnson, S., 2005. The design and implementation of FFTW3. Proceedings of the
Ieee 93 (2), 216–231.

Gazolla, M., van Rees, W. M., Koumoutsakos, P., 2012. C-start: optimal start of larva fish. J.
Fluid Mech. 698, 5–18.

Gazzola, M., Chatelain, P., van Rees, W. M., Koumoutsakos, P., 2011a. Simulations of sin-
gle and multiple swimmers with non-divergence free deforming geometries. J. Phys. Chem.
230 (19), 7093–7114.

Gazzola, M., Chatelain, P., van Rees, W. M., Koumoutsakos, P., 2011b. Simulations of single
and multiple swimmers with non-divergence free deforming geometries. J. Comput. Phys.
230, 7093–7114.

Germano, M., Piomelli, U., Moin, P., Cabot, W. H., 1991. A dynamic subgrid-scale eddy vis-
cosity model. Phys. Fluids 3, 1760–1765.

Gholami, A., Malhotra, D., Sundar, H., Biros, G., 2016. FFT, FMM, or multigrid? a compar-
ative study of state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit
cube. SIAM J. Sci. Comput. 38 (3), C280–C306.

Ghosal, S., Lund, T. S., Moin, P., Akselvoll, K., 1995. A dynamic localization model for large-
eddy simulation of turbulent flows. J. Fluid Mech. 286, 229–255.

Gillis, T., Winckelmans, G., Chatelain, P., 2017. An efficient interative penalization method
recycled Krylov subspaces and its application to impulsively started flows. J. Comput. Phys.
347, 490–505.

Gillis, T., Winckelmans, G., Chatelain, P., 2018. Fast immersed interface poisson solver for 3d
unbounded problems around arbitrary geometries. J. Comput. Phys. 354, 403–416.

Goldstein, D., Handler, R., Sirovich, L., 1993. Modeling a no-slip flow boundary with an exter-
nal force field. J. Comput. Phys. 105, 354–366.

Greengard, L., Rokhlin, V., 1987. A fast algorithm for particle simulations. J. Comput. Phys.
73, 325–348.

Hejlesen, M. M., February 2016. A high order regularisation method for solving the Poisson
equation and selected applications using vortex methods. Ph.D. thesis, Technical University
of Denmark.

Hejlesen, M. M., Koumoutsakos, P., Leonard, A., Walther, J. H., 2015a. Iterative Brinkman
penalization for remeshed vortex methods. J. Comput. Phys. 280, 547–562.

Hejlesen, M. M., Rasmussen, J. T., Chatelain, P., Walther, J. H., 2013. A high order solver for
the unbounded Poisson equation. J. Comput. Phys. 252, 458–467.

Hejlesen, M. M., Rasmussen, J. T., Chatelain, P., Walther, J. H., 2015b. High order Poisson
solver for unbounded flows. Procedia IUTAM 18, 56–65.

125



Bibliography

Hejlesen, M. M., Rasmussen, J. T., Larsen, A., Walther, J. H., 2015c. On estimating the aero-
dynamic admittance of bridge sections by a mesh-free vortex method. J. Wind Eng. Ind.
Aerodyn. 146, 117–127.

Hejlesen, M. M., Walther, J. H., 2016. A multiresolution method for solving the Poisson equa-
tion using high order regularization. J. Comput. Phys. 326, 188–196.

Hejlesen, M. M., Winckelmans, G., Walther, J. H., 2017. Non-singular Green’s functions for
the unbounded Poisson equation in 2d and 3d derived using spectral cut-off regularization.
arXiv:1704.00704v1, 1–5.

Henderson, R. D., 1995. Details of the drag curve near the onset of vortex shedding. Phys.
Fluids 7, 2102–2104.

Hockney, R. W., Eastwood, J. W., 1988. Computer Simulation Using Particles, 2nd Edition.
Institute of Physics Publishing, Bristol, PA, USA.

Johnson, A. T., Patel, V. C., 1999. Flow past a sphere up to a Reynolds number of 300. J. Fluid
Mech. 378, 19–70.

Kabadshow, I., 2012. Periodic boundary conditions and the error-controlled fast multipole
method. Ias series volume 11, Forschungszentrum Jülich GmbH.

Kevlahan, N. K.-R., Ghidaglia, J.-M., 2001. Computation of turbulent flow past an array of
cylinders using a spectral method with Brinkman penalization. Eur. J. Mech., B 20, 333–350.

Khadra, K., Angot, P., Parneix, S., Caltagirone, J. P., 2000. Fictitious domain approach for
numerical modelling of Navier-Stokes equations. Int. J. Numer. Meth. Fluids 34, 651–684.

Kolomenskiy, D., Schneider, K., 2009. A fourier spectral method for the navier-stokes equations
with volume penalization for moving solid obstacles. J. Comput. Phys. 228 (16), 5687–5709.

Kopriva, D. A., 2009. Implementing spectral methods for partial differential equations.
Springer.

Koumoutsakos, P., 1997. Inviscid axisymmetrization of an elliptical vortex ring. J. Comput.
Phys. 138, 821–857.

Koumoutsakos, P., Leonard, A., 1995. High-resolution simulation of the flow around an impul-
sively started cylinder using vortex methods. J. Fluid Mech. 296, 1–38.

Koumoutsakos, P., Leonard, A., Pépin, F., 1994. Boundary conditions for viscous vortex meth-
ods. J. Comput. Phys. 113 (1), 52–61.

Kundu, P. K., Cohen, I. M., Dowling, D. R., 2012. Fluid Mechanics, 5th Edition. Academic
Press.

Langston, H., Greengard, L., Zorin, D., 2011. A free-space adaptive FMM-based PDE solver in
three dimensions. Commun. Appl. Math. Comput. Sci. 6 (1), 79–122.

126



Bibliography

Larsen, A., Esdahl, S., Andersen, J. E., Vejrum, T., 2000. Storebælt suspension bridge - vortex
shedding excitation and mitigation by guide vanes. J. Wind Eng. Ind. Aerodyn. 88, 283–296.

Larsen, A., Larose, G. L., 2015. Dynamic wind effects on suspension and cable-stayed bridges.
J. Sound Vibration 334, 2–28.

Larsen, A., Walther, J. H., 1997. Aeroelastic analysis of bridge girder sections based on discrete
vortex simulations. J. Wind Eng. Ind. Aerodyn. 67–68, 253–265.

Larsen, A., Walther, J. H., 1998. Discrete vortex simulation of flow around five generic bridge
deck sections. J. Wind Eng. Ind. Aerodyn. 77–78, 591–602.

Lee, B., 1975. Effect of turbulence on surface pressure field of a square prism. J. Fluid Mech.
69 (MAY27), 263–282.

Leweke, T., Williamson, C. H. K., 1998. Cooperative elliptic instability of a vortex pair. J. Fluid
Mech. 360, 85–119.

Lilly, D. K., 1967. The representation of small-scale turbulence in numerical simulation exper-
iments,. IBM Scientific Computing Symposium on Environmental Sciences, –.

Luke, Y., 1962. Integrals of Bessel functions. McGraw Hill, Inc.

Lund, T., 2003. The use of explicit filters in large eddy simulation. Computers and Mathematics
With Applications 46 (4), 603–616.

Luo, S., Chew, Y. T., Ng, Y. T., 2003. Characteristics of square cylinder wake transition flows.
Phys. Fluids 15 (9), 2549–2559.

Lyn, D. A., Einav, S., Rodi, W., Park, J.-H., 1995. A laser-Doppler velocimetry study of
ensemble-averaged characteristics of the turbulent near wake of a square cylinder. J. Fluid
Mech. 304, 285–319.

Lyn, D. A., Rodi, W., 1994. The flapping shear layer formed by flow separation from the forward
corner of a square cylinder. J. Fluid Mech. 267, 353–376.

Malhotra, D., Biros, G., 2015. PVFMM: A parallel kernel independent FMM for particle and
volume potentials. Communications in Computational Physics 18 (3), 808–830.

Mansfield, J. R., Knio, O. M., Meneveau, C., 1998. A dynamic LES scheme for the vorticity
transport equation: Formulation and a Priori tests. J. Comput. Phys. 145, 693–730.

Marichal, Y., Chatelain, P., Winckelmans, G., 2016. Immersed interface interpolation schemes
for particle-mesh methods. Journal of Computational Physics 326, 947–972.

Martucci, S. A., 1994. Symmetrical convolution and the discrete sine and cosine transforms.
IEEE Transactions on Signal Processing 42 (5), 1038–1051.

Matsumoto, M., 1996. Aerodynamic damping of prisms. Journal of Wind Engineering and In-
dustrial Aerodynamics 59 (2–3), 159–175.

127



Bibliography

Meneveau, C., Lund, T. S., Cabot, W., 1996. A Lagrangian dynamic subgrid-scale model of
turbulence. J. Fluid Mech. 319, 353–385.

Mimeau, C., Cottet, G. H., Mortazavi, I., 2016. Direct numerical simulations of three-
dimensional flows past obstacles with a vortex penalization method. Computers & Fluids
136, 331–347.

Mimeau, C., Gallizio, F., Cottet, G. H., Mortazavi, I., 2015. Vortex penalization method for
bluff body flows. Int. J. Numer. Meth. Fluids 79 (2), 55–83.

Monaghan, J. J., 1985. Extrapolating B splines for interpolation. J. Comput. Phys. 60 (2), 253–
262.

Murakami, S., Iizuka, S., Ooka, R., 1999. Cfd analysis of turbulent flow past square cylinder
using dynamic LES. Journal of Fluids and Structures 13 (7–8), 1097–1112.

Noca, F., Shiels, D., D., J., 1999. A comparison of methods for evaluating time-dependent
fluid dynamic forces on bodies using only velocity fields and their derivatives. J. Fluids and
Structures 13, 551–578.

Noca, F., Shiels, D., Jeon, D., 1997. Measuring instantaneous fluid dynamic forces on bodies,
using only velocity fields and their derivatives. J. Fluids and Structures 11, 345–350, special
brief note.

Norberg, C., 1993. Flow around rectangular cylinders: pressure forces and wake frequencies. J.
Wind Eng. Ind. Aerodyn. 49, 187–196.

Passy, J.-C., Bryan, G. L., 2014. An adaptive particle-mesh gravity solver for ENZO. Astro-
physical Journal Supplement Series 215 (1), 8.

Peskin, C., 1972. Flow patterns around heart valves: A numerical study. J. Comput. Phys. 10,
252–271.

Ploumhans, P., Winckelmans, G. S., 2000. Vortex methods for high-resolution simulations of
viscous flow past bluff bodies of general geometry. J. Comput. Phys. 165, 354–406.

Ploumhans, P., Winckelmans, G. S., Salmon, J. K., Leonard, A., Warren, M. S., 2002. Vortex
methods for direct numerical simulation of three-dimensional bluff body flows: Applications
to the sphere at Re = 300, 500 and 1000. J. Comput. Phys. 178, 427–463.

Poncet, P., 2004. Topological aspects of the three-dimensional wake behind rotary oscillating
circular cylinder. J. Fluid Mech., accepted.

Poncet, P., 2009. Analysis of an immersed boundary method for three-dimensional flow in
vorticity formulation. J. Comput. Phys. 228, 7268–7288.

Porte-Agel, F., Meneveau, C., Parlange, M., 2000. A scale-dependent dynamic model for large-
eddy simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech. 415,
261–284.

128



Bibliography

Ramos-García, N., Spietz, H. J., Sørensen, J. N., Walther, J. H., 2018. Vortex simulations
of wind turbines operating in atmospheric conditions using a prescribed velocity-vorticity
boundary layer model. Wind Energy 21 (11), 1216–1231.

Rasmussen, J. T., Cottet, G.-H., Walther, J. H., 2011. A multiresolution remeshed vortex-in-cell
algorithm using patches. J. Comput. Phys. 230 (17), 6742–6755.

Rasmussen, J. T., Hejlesen, M. M., Larsen, A., Walther, J. H., 2010. Discrete vortex method
simulations of the aerodynamic admittance in bridge aerodynamics. J. Wind Eng. Ind. Aero-
dyn. 98, 754–766.

Rodi, W., 1997. Comparison of LES and RANS calculations of the flow around bluff bodies. J.
Wind Eng. Ind. Aerodyn. 69, 55–75.

Rodi, W., Ferziger, J., Breuer, M., Pourquie, M., 1997. Status of large eddy simulation: Results
of a workshop. Journal of Fluids Engineering-transactions of the Asme 119 (2), 248–262.

Rogallo, R. S., Moin, P., 1984. Numerical simulation of turbulent flows. Annu. Rev. Fluid Mech.
16, 99–137.

Rossinelli, D., Bergdorf, M., Cottet, G.-H., Koumoutsakos, P., 2010. GPU accelerated simula-
tions of bluff body flows using vortex particle methods. J. Comput. Phys. 229 (89), 3316–
3333.

Rossinelli, D., Hejazialhosseini, B., Sampinato, Daniele, G., Petros, K., 2011. Multicore/multi-
GPU accelerated simulations of multiphase compressible flows using wavelets adapted grids.
SIAM J. Sci. Comput. 33 (2), 512–540.

Saffman, P. G., 1992. Vortex Dynamics. Cambridge University Press.

Sagaut, P., 1998. Large Eddy Simulation for Incompressible Flows. Springer.

Scanlan, R. H., 1978. The action of flexible bridges under wind, I: Flutter theory. J. Sound
Vibration 60 (2), 187–199.

Simiu, E., Scanlan, R. H., 1986. Wind Effects On Structures, 2nd Edition. John Wiley & Sons.

Simiu, E., Scanlan, R. H., 1996. Wind Effects on Structures: Fundamentals and Applications to
Design. John Wiley & Sons.

Smagorinsky, J., 1963. General circulation experiments with the primitive equations, part I: the
basic experiment. Monthly Weather Rev. 91 (3), 99–164.

Sohankar, A., Davidson, L., Norberg, C., 2000. Large eddy simulation of flow past a square
cylinder: comparison of different subgrid scale models. J. Fluids Engng. 122, 39–47.

Sohankar, A., Norberg, C., Davidson, L., 1999. Simulation of three-dimensional flow around a
square cylinder at moderate Reynolds numbers. Phys. Fluids 11 (2), 288–306.

129



Bibliography

Spietz, H. J., Hejlesen, M. M., Walther, J. H., June 2016. Simulation of bluff-body flows us-
ing iterative penalization in a multiresolution particle-mesh vortex method. In: ECCOMAS
Congress 2016.

Spietz, H. J., Hejlesen, M. M., Walther, J. H., 2017a. Iterative Brinkman penalization for sim-
ulation of impulsively started flow past a sphere and a circular disk. J. Comput. Phys. 336,
261–274.

Spietz, H. J., Hejlesen, M. M., Walther, J. H., 2018. A regularization method for solving the
Poisson equation for mixed unbounded-periodic domains. J. Comput. Phys. 356, 439–447.

Spietz, H. J., Walther, J. H., Hejlesen, M. M., November 2017b. A regularized vortex-particle
mesh method for large eddy simulation. In: American Physical Society, 70th Annual Meeting
of the Division of Fluid Dynamics. American Physical Society, Denver, Colorado.

Stolz, S., Adams, N. A., 1999. An approximate deconvolution procedure for large-eddy simu-
lation. Phys. Fluids 11 (7), 1699–1701.

Stolz, S., Adams, N. A., Kleiser, L., 2001. An approximate deconvolution model for large-
eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13 (4),
997–1015.

Tamura, T., Miyagi, T., 1999. The effect of turbulence on aerodynamic forces on a square cylin-
der with various corner shapes. Journal of Wind Engineering and Industrial Aerodynamics
83 (1–3), 135–145.

Tan, B., Thompson, M., Hourigan, K., 2005. Evaluating fluid forces on bluff bodies using partial
velocity data. Journal of Fluids and Structures 20 (1), 5–24.

Theodorsen, T., 1935. General theory of aerodynamic instability and the mechanism of flutter.
TR 496, NACA.

Tomboulides, A., Orszag, S., 2000. Numerical investigation of transitional and weak turbulent
flow past a sphere. J. Fluid Mech. 416, 45–73.

Trias, F. X., Gorobets, A., Oliva, A., 2015. Turbulent flow around a square cylinder at reynolds
number 22,000: A DNS study. Computers and Fluids 123, 87–98.

van Rees, W. M., Leonard, A., Pullin, D. I., Koumoutsakos, P., 2011. A comparison of vortex
and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds
numbers. J. Comput. Phys. 230, 2794–2805.

Vasilyev, O. V., De Stefano, G., Goldstein, D. E., Kevlahand, N. K. R., 2008. Lagrangian dy-
namic sgs model for stochastic coherent adaptive large eddy simulation. Journal of Turbu-
lence 9 (11), 1–14.

Verma, A., Mahesh, K., 2012. A lagrangian subgrid-scale model with dynamic estimation of
lagrangian time scale for large eddy simulation of complex flows. Physics of Fluids 24 (8).

130



Bibliography

Vico, F., Greengard, L., Ferrando, M., 2016. Fast convolution with free-space Green’s functions.
J. Comput. Phys. 323, 191–203.

Walther, J. H., Larsen, A., 1997. Two dimensional discrete vortex method for application to
bluff body aerodynamics. J. Wind Eng. Ind. Aerodyn. 67–68, 183–193.

Wang, E. e. a., 2014. High-performance computing on the intel R© xeon phiTM. Springer Inter-
national Publishing, Ch. 7, pp. 167–188.

White, F. M., 2011. Fluid Mechanics, 7th Edition. McGraw Hill, Inc.

Winckelmans, G., Cocle, R., Dufresne, L., Capart, R., 2005. Vortex methods and their applica-
tion to trailing wake vortex simulations. C. R. Physique 6, 467–486.

Wray, A. A., Moin, P., Hunt, J. C. R., 1988. Eddies, streams, and convergence zones in turbulent
flows. Center for Turbulence Research.

Wu, J. C., September 1978. A theory for aerodynamic forces and moments. Technical report,
Georgia Institute of Technology.

Zaki, T. A., 2013. From streaks to spots and on to turbulence: Exploring the dynamics of
boundary layer transition. Flow Turbulence and Combustion 91 (3), 451–473.

131







DCAMM

Danish Center for Applied Mathematics and Mechanics

Nils Koppels Allé, Bld. 404

DK-2800 Kgs. Lyngby

Denmark

Phone (+45) 4525 4250

Fax (+45) 4593 1475

www.dcamm.dk

ISSN: 0903-1685

DTU Mechanical Engineering

Section of Fluid Mechanics, Coastal and Maritime Engineering

Technical University of Denmark 

Nils Koppels Allé, Bld. 403

DK-2800 Kgs. Lyngby 

Denmark

Phone (+45) 4525 1360

Fax  (+45) 4588 4325

www.mek.dtu.dk

ISBN: 978-87-7475-536-4


	Blank Page
	Blank Page
	Blank Page

