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canid, related to the dhole, into the

ancestor of the gray wolf and coyote.

Further, they suggest that the African

golden wolf is a species of hybrid origin.
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SUMMARY

The evolutionary history of the wolf-like canids of the
genus Canis has been heavily debated, especially
regarding the number of distinct species and their re-
lationships at the population and species level [1–6].
We assembled a dataset of 48 resequenced ge-
nomes spanning all members of the genus Canis
except the black-backed and side-striped jackals,
encompassing the global diversity of seven extant
canid lineages. This includes eight new genomes,
including the first resequenced Ethiopian wolf (Canis
simensis), one dhole (Cuon alpinus), two East African
hunting dogs (Lycaon pictus), two Eurasian golden
jackals (Canis aureus), and two Middle Eastern gray
wolves (Canis lupus). The relationships between the
Ethiopian wolf, African golden wolf, and golden
jackal were resolved. We highlight the role of inter-
Current Biology 28, 3441–3449, Nove
This is an open access article under the CC BY-N
specific hybridization in the evolution of this charis-
matic group. Specifically, we find gene flow between
the ancestors of the dhole and African hunting dog
and admixture between the gray wolf, coyote (Canis
latrans), golden jackal, and African golden wolf.
Additionally, we report gene flow from gray and
Ethiopianwolves to the African goldenwolf, suggest-
ing that the African golden wolf originated through
hybridization between these species. Finally, we
hypothesize that coyotes and gray wolves carry
genetic material derived from a ‘‘ghost’’ basal canid
lineage.

RESULTS AND DISCUSSION

The genome dataset analyzed in this study contains 12 gray

wolves and 14 dogs, chosen from regions overlapping the

current ranges of the other basal canids included in this study,
mber 5, 2018 ª 2018 The Authors. Published by Elsevier Ltd. 3441
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Map Showing the IUCN Ranges, Range Overlaps, and Sampling Locations of the Canids Included in This Study

The overlaps in ranges are shown in blended colors (orange, dark purple, dark olive green, light teal, etc.). Since IUCN does not have range information for African

golden wolf, the IUCN range of golden jackal has been split in two; the Eurasian part is shown as the range of golden jackal, and the African part is shown as the

range of African golden wolf. Further details on the samples, including their sampling location and source, can be found in Data S1, and their estimated

heterozygosities—which are inversely proportional to their population sizes—are shown in Figure S1.
five coyotes, one Ethiopian wolf, three golden jackals, six African

golden wolves (originally Canis anthus, but recently reclassified

as Canis lupaster [1]), two dholes, four African hunting dogs,

and one Andean fox (Lycalopex culpaeus) (Figure 1). Short-

read sequencing of the samples and subsequent alignment to

the recently published wolf genome assembly [7] resulted in

genome-wide coverages ranging from 0.6–26.63 (for details,

see Data S1). The genome-wide heterozygosity estimates

(Figure S1) clearly show reduced levels in the Ethiopian wolf,

African hunting dog, and dhole, an observation that is consistent

with their small population sizes. The reconstructed phyloge-

netic relationships within this group of canids (Figure 2B) are of

considerable relevance in light of extensive prior debate on the

relationships between the Ethiopian wolf, golden jackal, and

African golden wolf [2–5]. Our results corroborate the recent

proposition based on both mitochondrial [2, 3] and nuclear

[4, 6] data that the African golden wolf is evolutionarily distinct

from the golden jackal (Figure 2C, panel labeled 16), but also

that the Ethiopian wolf falls basal to both (Figure 2C, panel

labeled 12) [5]. For convenience, we henceforth refer to five canid

species, viz. the Ethiopian wolf, African golden wolf, golden

jackal, gray wolf, and coyote, as ‘‘the crown group’’ in order to

distinguish them from the more basal dholes and African hunting

dogs. The placement of the Ethiopian wolf as the basal group in

this clade is consistent with tree topologies obtained in previous

phylogenetic analyses based on concatenated gene sequences

[5] andmore recent multispecies coalescent analyses [4] of data-

sets consisting of a subset of exonic and intronic sequences, but

differs from the topology based on concatenated analyses in the

latter study. We note that this nuclear-DNA-based phylogeny

also places dogs as a sister clade to European gray wolves.

However, we caution that this placement has only moderate
3442 Current Biology 28, 3441–3449, November 5, 2018
support (0.86 mean local posterior probability); moreover, the

gene tree quartet frequencies of alternate resolutions within the

dog-gray wolf branches are comparable to that recovered in

the main tree (Figure 2B, panel labeled 20–22), and thus no

conclusion can be drawn about which wolf population gave

rise to dogs. Indeed, our findings are not incompatible with pre-

viously suggested hypotheses [9] that either (1) the dog was

domesticated from a now-extinct wolf population and/or (2)

Eurasian gray wolf population genomic diversity has been

reduced since the domestication event.

Mitochondrial genomes were de novo assembled from all

species studied, using MtArchitect [10], which accounts for

presence of numts in the reference genome. A maximum-likeli-

hood phylogeny based on these mitochondrial genomes (Fig-

ure 2A) is largely consistent with that obtained from the nuclear

genome analysis, with one obvious exception—the coyote mito-

chondrial genomes fall basal to all the other crown canids. This is

consistent with Koepfli and colleagues’ [4] results on near-com-

plete mitochondrial genomes and thus contradicts the findings

of numerous previous studies that used partial mitochondrial

DNA sequences and placed coyotes (1) as sister to gray wolves

[11], (2) in an unresolved clade with African golden wolves and

Ethiopian wolves [2, 3], (3) as sister to Ethiopian wolves [1, 2,

12, 13], or, finally, (4) as sister to a clade containing Ethiopian

wolves and golden jackals [14].

We subsequently explored the degree of interspecific gene

flow between the various species. Many publications have re-

ported interspecies gene flow between members of the canid

crown group (dog-gray wolf complex, coyotes, Ethiopian

wolves, golden jackals, and African golden wolves) [4, 5, 9, 13,

15–19]—something perhaps unsurprising, given the large

geographic overlap of many of the populations. Initial analyses
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Figure 2. Nuclear and Mitochondrial Phylogeny of Basal Canids

(A) The maximum-likelihood estimate of the mitochondrial phylogeny for a subset of the samples, using de novo mitochondrial assemblies obtained with

MtArchitect. The node labels show the bootstrap support for the node.

(B) The phylogeny estimated from nuclear DNA by ASTRAL-II, where monophyletic clusters have been collapsed into a single leaf node. The tip labeled ‘‘African

golden wolf-hybrid’’ represents a single known hybrid from the Sinai Peninsula—labeled ‘‘African golden wolf Egypt’’ in the mtDNA phylogeny—as described in

the main text. The mean local posterior probabilities are shown for branches where this value is less than 1. The full nuclear phylogeny containing the sample

relationships, branch supports, branch lengths proportional to divergence times, and estimated split times can be found in Figures S2A and S2B and Table S2.

(C) For a subset of the internal branches in the nuclear phylogeny, the quartet frequencies of the three possible configurations around each branch in the un-

derlying unrooted tree are shown. The red bar represents the configuration shown in the phylogeny, and the two blue bars represent the two alternative

(legend continued on next page)
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of genetic structure among these canids using NGSadmix [20]

(Figure S3A) revealed that the individuals partition according to

expected species structure. However, more details became

apparent as the number of estimated clusters (K) was increased.

For example, at higher values of K, gray wolves form five prin-

cipal groups (Mexico, Ellesmere-Greenland, East Asia, the

Middle East, and the remaining Eurasia), whereas African golden

wolves are split into an Eastern and a Northwestern clade, as

previously shown [4, 6, 16]. We note that similar east-west

population differentiation is observed for several other African

mammalian species [21], thus pointing to a general trend that

the African golden wolves follow. The NGSadmix analyses also

suggest the presence of admixture between the different

species. For example, we detected not only dog introgression

in the gray wolves from Spain and Israel, but also, perhaps of

greater interest, gene flow between African golden wolves,

golden jackals, and gray wolves. One example is a highly ad-

mixed African golden wolf from the Egyptian Sinai Peninsula,

whose genome contains contributions from both Middle Eastern

gray wolves and dogs (Figure S3A).

Previous studies that have reported admixture between canid

species [9] and mitochondrial evidence for overlap of the gray

wolf, African golden wolf, and golden jackal in eastern Egypt

[4]. This points to the importance of the Sinai Peninsula and

the Southwest Levant in canid evolution [4, 9], presumably due

to its role as the land bridge between the African and Eurasian

continents. We used TreeMix [22], D statistics [23], and admix-

ture graphs [23] to examine signals of admixture between these

species. The results confirmed that, in general terms, the level of

gene flow between the three species is high, although varying

across space in a manner consistent with their natural ranges

(Figures 3B and S3A–S3E). For example, gene flow between

golden jackals and gray wolves and between African golden

wolves and gray wolves is lowest when North American gray

wolves are considered, somewhat higher for Asian and

European gray wolves, and highest with the gray wolves from

the Middle East (e.g., Israel, Syria, and Saudi Arabia) (Fig-

ure S3E). Although the latter is not surprising in light of the natural

ranges of the species, the evidence of golden jackal ancestry in

North American wolves is intriguing. One possible explanation

could be that gene flow happened before the divergence of the

North American and Eurasian gray wolves. The fact that inter-

specific gene flow is considerably higher in Middle Eastern

than in other gray wolves may also explain the distinctness of

this population. The structure between Northwestern and

Eastern African golden wolves can be explained using a similar

argument—the former have highest levels of golden jackal and

gray wolf admixture (Figures 3B, S3A, and S3B), whereas the

latter show higher levels of gene flow from Ethiopian wolves.

Overall, it is clear that individuals sampled in this land bridge re-

gion will be particularly informative for future studies that wish to

study canid admixture in greater detail.

Furthermore, D statistics were used to test for gene flow be-

tween the dhole and African hunting dog, using members of
configurations. For every quartet, the frequency of the true bipartition has previous

alternative configuration is labeled by the bipartition it creates, with labels corres

swaps the positions of golden jackal (6) and Ethiopian wolf (5), whereas the thi

incongruence around examined branches.
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the crown group as ingroup and the Andean fox as outgroup.

Although no gene flow was detected between species of the

crown group and the African hunting dogs, the analyses pro-

vided strong evidence of gene flow between the African hunting

dog and dhole (Figure S3C). This is a surprising finding, since the

ranges of the two species do not overlap. However, it is well

documented that the dhole existed as far west as Europe during

the Pleistocene [24]. Thus, one possible explanation could be the

presence of dholes in the Middle East in the past, from where

they could have encountered and mixed with African hunting

dogs in North Africa. It must, however, be stressed that given

that there has never been any reported evidence of dholes in

either the Middle East or North Africa, our hypothesis is purely

speculative. The timing and location of this admixture event

remain unresolved.

Although there have been several reports of hybridization be-

tween dogs and Ethiopian wolves [13, 15], the genetic history of

the Ethiopian wolf has not previously been investigated using nu-

clear genomic data. The D-statistics-based analyses provided

evidence for gene flow between Ethiopian wolves and not only

African golden wolves, but also golden jackals, gray wolves,

and coyotes (Figure S3). The finding of considerable gene flow

between the Ethiopian and Eastern African golden wolf lineages

is not surprising, given their geographical co-occurrence in

Africa. We consistently also observed a Northwestern-Eastern

split in the African golden wolves and note that this correlates

with our finding that the Ethiopian wolf contributes a higher

amount to the Eastern African golden wolves. This suggests

that admixture from the Ethiopian wolf may be a key factor

contributing to African golden wolf population structure.

The presence of gene flow between the Ethiopian wolf and the

other crown canid species is more surprising, given their lack of

range overlap. However, this might be explained through the

previously reported extensive evidence of admixture between

African golden wolves and gray wolves, coyotes, and golden

jackals [4, 9]. In short, we hypothesize that the signal of Ethiopian

wolf admixture into the other crown canid species is mediated by

African golden wolves. A summary of all the admixture events

inferred in this study is shown in Figure 3A.

The uncertain placement of the African golden wolf (Figure 2C,

panel labeled 17), combined with evidence of gene flow from the

Ethiopian wolf, led us to investigate whether the African golden

wolf is a species of hybrid origin, derived from amixture between

gray and Ethiopian wolves or close relatives. The current distri-

bution ranges of Ethiopian and gray wolves do not overlap,

and indeed, the known historical distribution of Ethiopian wolves

is restricted to the Ethiopian highlands [15]. However, extensive

gene flow with other canids, combined with the two distinct

levels of Ethiopian wolf gene flow into the two distinct popula-

tions of African golden wolves, suggests that either Ethiopian

wolves or a close (now extinct) relative had, in the past, a

much larger range within Africa and thus greater opportunity to

admix with other canid species. Additionally, mitochondrial

analyses of African golden wolves, in this and previous studies,
ly been shown to be at least one-third [8], indicated here by a dotted line. Each

ponding to those in (A). For example, the second bar of the panel labeled 12

rd bar puts them as sister to each other. This plot summarizes the gene tree
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Figure 3. Gene Flow among the Crown Canid Species

(A) This figure summarizes the relationships among the species (phylogeny) and the various gene flow events inferred from the samples included in this study.

Gene flow events are indicated with red arrows, and dotted red arrows show possible gene flow events that have been inferred in this study but have not been

previously reported.

(B–D) These figures show the gene flow among the different crown canid species using D statistics. These D statistics show significant gene flow between the

gray wolf, African golden wolf, golden jackal, and Ethiopian wolf. One principal new finding is structure within the African golden wolves, splitting into North-

western and Eastern clades, which show genetic affinity to gray wolves and Ethiopian wolves, respectively. A second principal finding is inferred gene flow from

an unknown canid lineage, related to the dhole, into the ancestor of the coyote and the gray wolves. We hypothesize this may explain the unexpected basal

placement of the coyote in the mitochondrial tree. Further evidence of gene flow in the crown canids is shown in Figure S3.
find them to be most closely related to gray wolves [2–4, 25].

Further, African golden wolves are a sister clade to gray wolves

and coyotes in the nuclear phylogeny, whereas they are a sister

group to the Middle Eastern gray wolves in the mitochondrial
phylogeny. We explored the relationships between the golden

jackal, Ethiopian wolf, and African golden wolf using G-PhoCS

[26] (Table S1), which supported the finding of gene flow into

the Ethiopian wolf from the African golden wolf. To further
Current Biology 28, 3441–3449, November 5, 2018 3445
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Figure 4. Modeling the Ancestry of African Golden Wolves

(A) TreeMix tree with all samples, estimated using the pairwise correlation of allele frequencies between all groups of samples. This tree is fit with three migration

edges. The first three migration edges all indicate extensive gene flow from the gray and Ethiopian wolves into the African golden wolves, suggesting a hybrid

origin for this species.

(B and C) The QP graph is an admixture graph estimated using all pairwise D statistics between samples. Estimated genetic drift is shown along the solid lines in

units of f2 distance (parts per thousand), and estimated mixture proportions are given along the dotted lines. Names of specific modern populations are shown in

full, whereas hypothetical ancestral individuals are represented by letters.

(B) This tree shows all the possible placements—highlighted in red—for the Northwestern African golden wolf, chosen due to their low levels of gene flowwith the

Ethiopian wolf. These were modeled as possible internal and external nodes and as an admixed group from all possible node pairs.

(C) The best fitting graph with a Z value closest to 0, modeling the Ethiopian wolf-like and gray wolf-like ancestry of Northwestern and Eastern African golden

wolves, as well as gene flow into modern Ethiopian wolves from the Eastern African golden wolves. This admixture graph suggests that the African golden wolves

are probably a species of hybrid origin, derived from the gray wolf and Ethiopian wolf as the parental species. Further, Figure S4 shows admixture graphs showing

potential gene flow from a ‘‘ghost’’ basal canid lineage into the ancestor of wolves and dogs.
explore the relationship between these species and the gray

wolf, we used TreeMix [22] and admixture graphs [23] to obtain

trees, which were used to assess whether the African golden

wolf is a hybrid species (Figures 4B and 4C). We initially con-

structed a graph including the coyote, Ethiopian wolf, gray
3446 Current Biology 28, 3441–3449, November 5, 2018
wolf, and Andean fox and assessed the most likely position for

the African golden wolf in this graph. The placement of the two

African golden wolf populations in this tree was further investi-

gated by modeling them as sister to all possible nodes and as

admixed populations deriving ancestry from two possible nodes.



Finally, the model was extended to account for African golden

wolf admixture into the Ethiopian wolf. We found that the com-

mon ancestor of the African golden wolf populations is best

modeled as admixed between a component related to the

Ethiopian wolf (�28%) and another related to the gray wolf

(�72%) (worst-fitting f statistic Z value = �1.086; Figure 4C).

Finally, the northwestern African golden wolf population is

more closely related to the gray wolf, which is best explained

in our model through admixture from gray wolves.

Lastly, our attention was drawn to the curious result of poten-

tial gene flow between the lineage representing the ancestor of

the coyote and gray wolves and that representing all other canid

species, excluding the African hunting dog (Figure S4), in all

D statistics analyses computed with the coyote or gray wolf in

the ingroup, namely position H2. Notably, these signals disap-

peared when the sister clade—H3—was replaced with the Afri-

can hunting dog, leading us to hypothesize that the coyote and

gray wolf genomes may contain a basal ancestral component

derived from an as-yet-unidentified species that evolved after

the divergence of the African hunting dog branch from the other

canid species and that the signal of gene flow can be attributed

to outgroup attraction of the coyote and gray wolf lineage. Note

that such a hypothetical ancient admixture event would also

explain the unexpectedly basal position of the coyote mitochon-

drial genome—the coyote may simply have retained the mitoge-

nome from this unidentified ancestor. We acknowledge that the

existence of an unknown ancestral component would be contro-

versial—previous analyses of coyotes and the fossil records

from their direct ancestors argue that they have been strictly

restricted to North America for over a million years [27, 28]. How-

ever, within North America, the coyote has coexisted alongside

several now extinct canids, including the American dhole

(Cuon sp.) and dire wolf (Canis dirus) [29]. Although the unknown

ancestral component to cannot be attributed to any of the known

fossil species at this time, future paleogenomic analyses on such

materials (if any can be found with surviving DNA) may provide

exciting possibilities to test our hypothesis.

In conclusion, our results highlight how interspecific gene flow

has played an important role in shaping the species and popula-

tion structure of gray wolves, coyotes, African golden wolves,

golden jackals, and Ethiopian wolves and that African golden

wolves, coyotes, and gray wolves may have been greatly

affected by hybridization events. In particular, we conclude not

only that African golden wolves arose through hybridization be-

tween a Ethiopian-wolf-like and gray-wolf-like ancestral popula-

tion, but that subsequently the resulting northwestern and

eastern African golden wolf populations underwent continuous

admixture with modern gray and Ethiopian wolves, respectively.

We furthermore argue that the common ancestor of gray wolves

and coyotes differentiated from the lineage leading to golden

jackals, in part by admixing with a dhole-like canid. Finally, the

robust signal of gene flow observed between African hunting

dogs and dholes testifies to an as-yet-undiscovered prehistoric

overlap between the two lineages. This underscores how much

remains to be discovered about the history of thewolf-like canids

and how paleogenomic approachesmay be required to advance

our understanding of this group. Lastly, our study adds to the

growing evidence for the importance of gene flow and hybridiza-

tion in the evolution of mammalian species in general [23, 30–32]
and that rather than being isolated entities that evolve along tree-

like phylogenies, they are interlinked and evolve through interac-

tions in network-like topologies.
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RAxML [46] https://sco.h-its.org/exelixis/software.html;

RRID:SCR_006086
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

The current study uses short read sequencing data from the full genomes of 47 canids spanning 8 different species (when the

domestic dog is considered a different species from the gray wolf) from Africa, Eurasia and North America, to address questions

about the genetic affinities of these species to each other, and the role of interspecific gene flow in shaping the evolution of the genus

Canis. All known information on the context and sequencing coverage of the samples is provided in Data S1.

METHOD DETAILS

Whole-genome sequencing
DNAwas extracted from 10modern samples of fresh blood or tissue using theDNeasyBlood & Tissue Kit (QIAGEN, Hilden, Germany)

following the manufacturer’s protocol. Three samples (‘African hunting dog Kenya 1’, ‘African hunting dog Somalia’ and ‘Golden

jackal Calcutta’) are from historical museum hides and were digested in a proteinase K-containing buffer following [54]; these digests

were subsequently treated in a phenol chloroform step following [55]. The supernatant was then mixed 1:10 with a binding buffer

following [56] in a binding apparatus following [57], including a Minelute column (QIAGEN, Hilden, Germany) that was then washed

and DNA was eluted according to the manufacturer’s guidelines. All extracts were incorporated into double-stranded DNA libraries

build using the NEBNext DNA Sample Prep Master Mix Set 2 (E6070 - New England Biolabs, Beverly, MA, USA) following the

manufacturer’s protocol and Illumina-compatible adapters [38]. Libraries were sequenced using 50 base pair single (Golden jackal

Calcutta, Hunting dog Kenya 1 and Hunting dog Somalia) or 100 base pair paired end (remaining samples) read chemistry on Illumina

HiSeq 2000 and 2500 (Illumina, San Diego, CA, USA) platforms.

Read mapping
The short-read data from each sample, including samples from previous publications, was processed using the PALEOMIX pipeline

[39]. As the first stepof thepipeline, lowquality andmissing baseswere trimmed from the reads, followedby removal of adapters using
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AdapterRemoval2 [40]. Additionally, all paired end readswhere the two readsoverlappedbymore than10basepairsweremerged into

a single read. Subsequently, the reads from each sample were mapped to the wolf reference genome [7] using bwa (v0.7.10; aln al-

gorithm) [41]. The mapped reads were filtered for PCR and optical duplicates using Picard (v1.128, https://broadinstitute.github.io/

picard), and reads that mapped to multiple locations in the genome were excluded. GATK (v3.3.0) [42, 43] was used to perform an

indel realignment step to adjust for increased error rates at the end of short reads in the presence of indels. In the absence of a curated

dataset of indels in wolves, this step relied on a set of indels identified in the specific sample being processed. After the initial mapping

and quality control, the coverages of the samples ranged from 0.6 to 26.6x (for details see Data S1).

Genotype calling
The samples in this study span a wide range of genomic coverages. To avoid introducing biases in various analyses resulting from

genotype calling in low coverage samples [58], the uncertainty in genotypes was instead propagated through to downstream

analyses using genotype likelihoods. The genotype likelihoods at variant sites were computed in ANGSD [44] using the mapped

reads, with the model for reads used by samtools (v1.2) [41]. Bases with base qualities lower than 20 and reads with mapping quality

lower than 20were discarded. Only sites with data present in at least 46 out of the 48 samples were retained. All sites withminor allele

frequencies below 0.1 were excluded.

QUANTIFICATION AND STATISTICAL ANALYSIS

Heterozygosity
The heterozygosity for each sample was calculated using ANGSD, by estimating the per-sample folded site frequency spectrum

(SFS) and using the fraction of singletons in the sample as a measure of heterozygosity. The variance of the estimate was obtained

by bootstrapping the sites 100 times to obtain 100 bootstrapped estimates of the SFS. Briefly, for each sample, the site allele

frequency for every site was estimated (‘‘-doSaf 1 -fold 1’’) using the reference genome as ancestral, while keeping all other

parameters as above. Afterward, the SFS and their corresponding bootstraps was estimated for each sample using realSFS and,

for each case, the fraction of singletons was calculated. The sample heterozygosities are shown in Figure S1.

Admixture
Using the genotype likelihoods obtained from the ANGSD pipeline, the ancestry clusters and admixture proportions for 48 samples

representing all species (for details see Data S1) were estimated using NGSadmix [20] based on 5.7million SNPs. Admixture analyses

were performed using only markers with minor allele frequency greater than 0.1. We used a range of values for the number of clusters

(2-15), to explore the structure in the dataset. To avoid convergence to local optima, the admixture analysis was repeated at least

200 times with different random initial parameter values, and the replicate with the highest likelihood was chosen.

Nuclear genome phylogeny
Using 28 individuals representing all species in this study (for details see Data S1), nuclear genome phylogenetic reconstruction

based on coalescence of gene trees was performed using 100 ASTRAL-II trees [45], and an extended majority rule consensus

tree was made with RAxML [46] using default parameters. Each tree was based on gene trees inferred from 5000 regions, each

roughly 10 kb long sampled from a consensus genome sequence per individuals generated in ANGSD [44] using the ‘‘-doFasta 1’’

option. Regions with missing data were excluded using trimal [47] under the parameters ‘‘-gappyout -resoverlap 0.60 -seqoverlap

60.’’ Each gene tree was generated in FastTree2 [48] using a generalized time-reversible model for sequence evolution. A cut-off

at a minimum of four samples per tree was selected, before generation of individual ASTRAL-II trees. Local posterior probabilities

and quartet frequencies for the three possible unrooted resolutions around each internal branch were computed using ASTRAL

[59] and visualized using DiscoVista [49]. Two support values are computed on the consensus ASTRAL tree: i) frequency of each

branch in the 100 replicates and ii) means of local posterior probability across the 100 replicates. The local posterior probability is

computed as the probability that the proportion of gene trees consistent with the bipartition shown in the full phylogeny is greater

than 0.33, under a multinomial model with three possible outcomes, each representing a bipartition at the interior branch.

Since the branch lengths in the ASTRAL-II analysis are in terms of coalescent time units, another phylogeny was generated to get

branch lengths proportional to evolutionary distances, from 1000 randomly sampled 1 kb regions across the genome using a

concatenated analysis in RaxML [46], using a GTR-GAMMA model of sequence evolution.

Species split times
The divergence times between the different species were computed using the two plus two (TT) method [60], which uses a pair of

samples, and the distribution of derived alleles at all sites, to compute the split time for a focal population from a contrast population.

Specifically, the method uses the counts of sites in the genome where the samples fit into one of 9 configurations, i.e., both samples

carry 0 derived alleles, one sample carries 1 derived allele and the other carries 0, and so on, to get an estimate of the time of either

sample from themost recent common ancestor of the pair of samples. Themethod provides two estimates of split times for each pair
e3 Current Biology 28, 3441–3449.e1–e5, November 5, 2018
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of samples, with one sample treated as the focal population and the other as the contrast population. One of the main advantages of

this method is that it is not affected by the population size dynamics of the two populations after the split, but it does assume no

migration and constant population size in the ancestor of the two populations (before the split).

In order to reduce the number of comparisons in this model, we chose one representative of each population for this analysis,

viz., dhole – Beijing Zoo, African hunting dog – Kenya 1, golden jackal – Syria, African golden wolf Northwestern – Morocco, African

golden wolf Eastern – Kenya, Ethiopian wolf – Ethiopia, coyote – California, gray wolf European – Spain, gray wolf Asian – Altai, gray

wolf American – Greenland and Mexico 1, dog – India 1 and Qatar 2. The TT statistic was computed for each pair of samples, using

only scaffolds longer than 1 Mb (705 in all), excluding sites with less than 5x coverage in either sample. The bootstrap estimate of the

statistic and its variance was obtained treating each scaffold as a single block [61].

Mitochondrial reconstruction using de novo assembly
We used MtArchitect [10] to reconstruct de novo the mitochondrial genomes for 17 canids representing all species (for details see

Data S1). The genomes were aligned using MAFFT [50] and curated with Jalview [51]. MtArchitect is designed to deal with the

presence of numts, by aligning the reads to themitochondrial and nuclear genome seperately, and including only read pairs (or single

end reads), where both reads of the pair map unambiguously and with high mapping quality to the mitochondria. We tested a total

of 56 phylogenetic models with jmodeltest2 [52] and chose HKY85 with gamma-distributed variation in the substitution rate and a

fixed proportion of invariable sites as the most suitable model, which finally was used to construct maximum-likelihood tree using

phyML [53]. We generally observed a small amount of undetermined sites, but the two African hunting dogs analyzed displayed

poorer alignments and smaller genomes. This ismost likely due to the reconstruction biases associated with using a distant reference

and a lack of paired-end data to exploit the maximum potential of MtArchitect. Alignment visualization and tree inspection of the

reconstructions confirmed that the phylogenetic clustering complied with previously reported data [4]. We observed, however,

that the D-loop was particularly enriched in undetermined sites, and aligned notably worse than the remaining sequence. Given

its potentially confounding nature and its small contribution to the phylogeny reconstruction when the rest of the sequence is well

resolved [10], the D-loop, as well as minor positions containing the majority of the gaps, were manually discarded, resulting in a final

15.435 bp alignment.

D statistics
We used allele frequency-based D statistics as implemented in ADMIXTOOLS [23] to evaluate possible gene flow between the

different lineages. D statistics are based on the observation that, if the given topology (((H1,H2), H3), Outgroup) is correct, then under

the null hypothesis of no gene flow between any of the two lineages in the ingroup (H1, H2) and the lineage H3, the number of sites

across the genomewhere the segregation patterns ABBA and BABA occur should be equal in number, as they can arise solely due to

incomplete lineage sorting. But the presence of gene flow between H1 and H3 would lead to an increase in the number of BABA sites

(H1 and H3 share the same allele B), while gene flow between H2 and H3 would lead to an increase in the number of ABBA sites

(H2 and H3 share the same allele B). The D statistic measures the disparity between the number of ABBA and BABA sites across

the genome to infer gene flow.

To account for the varying depth of coverage of the samples, we used a randomly sampled allele per site instead of called

genotypes. Reads with mapping quality lower than 30, bases with quality lower than 20 and sites with coverage lower

than 3 were discarded from the analysis. The significance of each test was estimated using a weighted block jackknife procedure

over 1 Mb blocks. Deviations from D = 0 were presumed significant when the observed Z-score was above or below 3.3 (jZj>3.3).
To avoid inflating significance of the tests, only scaffolds 1 Mb or longer (�70% of the genome) were used in the analysis. Tests

were performed with combinations of samples as individuals and samples were grouped into categories representing the main

genetic clusters (for details see Data S1).

TreeMix
TreeMix [22] was used to infer potential admixture edges in the phylogeny. TreeMix models the correlation of allele frequencies at

variable positions across the genome. The correlations that do not fit well under the modeled tree are then corrected for using

migration events. We used a randomly sampled allele for each sample and a similar filtering approach as the one described for

the D statistics tests. Tests were with combinations of samples as individuals and samples grouped into categories representing

the main genetic clusters (for details see Data S1). Sites with at least one individual with coverage per group were kept. The final

dataset consisted of a total of 834,537 segregating sites. We ran TreeMix on the final dataset assuming 0 to 4 migration edges

(m = 0-4). For each value of m, we ran 100 replicates starting in different seed values and evaluated the replicate with the highest

likelihood. Figure S3B shows the best replicate obtained for the graph modeled with four migration edges.

qpGraph
We used qpGraph from the ADMIXTOOLS package [23] to evaluate the relationships between the different species in our samples. In

particular, we addressed the question of whether the African golden wolf can be modeled as a hybrid species. qpGraph uses the

correlation on all possible f statistic tests in a given admixture graph to evaluate its overall fit. The same dataset and filtering

parameters used for the D statistics tests were used in this analysis. Samples were grouped into clusters representing the main

lineages in the admixture graph as indicated in Data S1. First, we started with a tree including the coyote, Ethiopian wolf, gray
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wolf and Andean fox and evaluated the most likely branching point for the African golden wolf. Then, we modeled the African golden

wolf as a sister clade to all possible internal and external nodes and as an admixed group from all possible node pairs. Finally, we

extended our model with an admixture event to account for African golden wolf admixture in the Ethiopian wolf (Figure 4).

DATA AND SOFTWARE AVAILABILITY

The BioProject accession number for the short read sequences used in this paper is available at the NCBI short read archive under

the accession PRJNA494815.
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