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Abstract 18 

Investigating the biogeochemistry of dissolved 19 
organic matter (DOM) requires the synthesis of data 20 
from several complementary analytical techniques. In 21 
contrast to subjective post-hoc correlation analysis, a 22 
robust integration requires data fusion, capable of 23 
simultaneously decomposing data from multiple 24 
instruments while identifying linked and unrelated 25 
signals. Here, Advanced Coupled Matrix and Tensor 26 
Factorization (ACMTF) was used to identify the 27 
molecular fingerprint of DOM fluorescence fractions 28 
in Arctic fjords. ACMTF explained 99.84 % of the 29 
variability with six fully shared components. Individual molecular formulas were linked to multiple 30 
fluorescence components and vice versa. Molecular fingerprints differed in diversity and oceanographic 31 
patterns, suggesting a link to the biogeochemical sources and diagenetic state of DOM. The fingerprints 32 
obtained through ACMTF were more specific compared to traditional correlation analysis and yielded greater 33 
compositional insight. Multivariate data fusion aligns extremely complex, heterogeneous DOM datasets, and 34 
thus facilitates a more holistic understanding of DOM biogeochemistry.  35 
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Introduction 36 

The complex multifaceted interactions between dissolved organic matter (DOM) and biological1 and physical 37 
processes2 cements its central role in aquatic ecosystems and is intrinsically linked to its chemical 38 
composition.3 The wide variety of environmental processes involved results in an extremely complex pool of 39 
organic compounds that spans nearly all possibilities defined by the laws of chemical bonding.4–6 In order to 40 
understand the biogeochemical role of DOM in natural waters, it is essential to reduce the complexity of 41 
analytical data and to trace and characterize various underlying fractions. Owing to its molecular complexity, 42 
the simultaneous quantification and characterization of DOM presents a formidable analytical challenge. Users 43 
often have to choose between techniques with different strengths and limitations.7,8 The insight gained from 44 
independent analytical techniques strongly depends on the experimental design and data analysis approach, 45 
and is ultimately limited by the intrinsic constraints of the individual approach. 46 

The determination of ultraviolet-visible (UV-Vis) spectroscopic properties (targeting chromophoric and 47 
fluorescent DOM, CDOM and FDOM, respectively) represents a rapid method to follow DOM dynamics.9,10 48 
An ever-increasing number of studies focus on FDOM, since its measurement is cost-efficient, highly sensitive 49 
and suitable for field deployment.11 Fluorescence excitation emission matrices (EEMs) are frequently 50 
decomposed into the underlying independently fluorescing components using multiway techniques such as 51 
Parallel Factor Analysis (PARAFAC).12 However, since fluorescence and absorbance require optically-active 52 
compounds, they can only target a fraction of the DOM pool. The chemical structures responsible for the UV-53 
Vis spectroscopic properties of DOM have yet to be uncovered.10 Moreover, the chemical interpretation of 54 
PARAFAC spectra is inherently difficult and often results in the ambiguous labeling of components that 55 
suggests representation of molecular species (e.g. proteins or humic substances).13 56 

Another analytical approach to DOM characterization is ultrahigh-resolution mass spectrometry,14 which 57 
determines the exact masses, and thus molecular formulas, of organic substances present.5 Importantly, while 58 
DOM can be mass-resolved, ultrahigh-resolution mass spectrometry cannot routinely distinguish structural 59 
isomers for a given mass peak and thus still produces convoluted analytical signals that can be challenging to 60 
interpret in complex mixtures. To date, this has mainly been addressed by multivariate analysis with Principal 61 
Component Analysis (PCA) or Hierarchical Cluster Analysis.15 PCA in particular is a powerful approach to 62 
reduce complexity and isolate factor loadings that correspond to the chemical imprint of environmental 63 
processes. However, the properties of the decomposition might hinder the discovery of true chemical signals. 64 
For example, in PCA components are orthogonal, i.e. all factors have a loading similarity of zero. However, 65 
many properties of DOM can be expected to be correlated (non-orthogonal). A more flexible multivariate 66 
approach to distinguish underlying factors of molecular formula matrices is therefore needed. 67 

The comparison of fluorescence spectroscopy and ultrahigh-resolution mass spectrometry makes apparent that 68 
the strengths and limitations of both approaches are diametrically opposite: The former approach, when 69 
coupled with PARAFAC allows meaningful statistical description, but offers only limited insight into DOM 70 
chemical composition, while the latter offers a wealth of qualitative chemical information with limited means 71 
to systematically elucidate the primary factors responsible for observed dynamics. Experience in other 72 
disciplines, such as metabolomics, shows that considerable analytical advances are achieved when two or more 73 
complementary datasets are jointly analyzed.16 For DOM, recent studies have employed post-hoc rank-74 
correlation analysis to establish links between optical and chemical properties of DOM.17,18 However, 75 
considering that thousands of signals are compared, the risk of false positive correlations is significant. 76 
Moreover, correlations may sometimes be hard to interpret, e.g. when negative correlations are reported while 77 
both signals in principle correspond to analyte concentrations. A promising approach is to jointly decompose 78 
these datasets into multiple underlying factors using advanced data fusion that can account for their convoluted 79 
character. However, no such models have been tested for DOM. 80 

The heterogeneous nature of DOM datasets requires an approach that can handle the different types of datasets 81 
while accounting for the partial overlap of detector signals. A data fusion model based on simultaneous 82 
factorization of multiple datasets, called Advanced Coupled Matrix and Tensor Factorization (ACMTF) model 83 
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has been developed specifically for such scenarios.19 In recent years, ACMTF has been used in metabolomics20 84 
and medical applications.21 Here, we applied ACMTF to simultaneously analyze and decompose data from 85 
two popular DOM characterization techniques, fluorescence EEMs and Fourier transform ultrahigh-resolution 86 
mass spectrometry (FT-ICR-MS) molecular formulas (N = 527) for samples (N = 174) originating from three 87 
Arctic Fjords. The associations reported by the statistical components identified by ACMTF are subsequently 88 
compared to those suggested by post-hoc correlation analysis. We propose that data fusion represents a vital 89 
step towards a more holistic data analysis that can help to better elucidate the complex dynamics of DOM.  90 
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Materials and Methods 91 

Sample Collection 92 

In July 2016, 174 water samples were collected onboard R/V Maria S Merian (cruise MSM56, Ecological 93 
Chemistry in Arctic Fjords) over a three-week period (see Fig. S1 and Table S1 for an overview of sampling 94 
regions, salinity-, temperature-, DOC-, and depth ranges). The transect encompassed three fjords 95 
(Kongsfjorden [Longyearbyen], Scoresby Sound [East Greenland], and Arnarfjörður [West Iceland]) spanning 96 
from 79 °N to 65 °N and 28 °W to 12 °E. Kongsfjorden and Scoresby Sound both have marine terminating 97 
glaciers, while Arnarfjörður further south in Iceland does not. All fjords receive limited DOM input from rivers 98 
in their catchments and the flux of marine DOM from the shelf and production of DOM associated with 99 
plankton productivity dominate. Scoresby Sound, similar to many East Greenland fjords, receives terrestrial 100 
organic matter from the Arctic transported in the East Greenland Current (EGC) and has low productivity. 101 
Kongsfjorden and Arnarfjörður are not influenced by the EGC and are primarily supplied with Atlantic water 102 
with little or no terrestrial DOM. Water samples were collected at depths ranging from 1.7 to 1397 m with a 103 
24-bottle CTD Rosette, equipped with Niskin bottles and immediately filtered using pre-combusted GF/F 104 
filters (0.7 µm, Whatman) by applying a vacuum of < 200 mbar. After filtration, DOM was immediately solid-105 
phase extracted using 200 mg PPL-resins as described previously.22 Cartridges were desalted and dried 106 
onboard and stored dark and frozen at -20°C. In the home laboratory, DOM was eluted with 1000 µL methanol; 107 
the final extract volume was determined by weight and samples were stored at -18°C until analysis. 108 

Spectroscopic measurements 109 

Fifty µL DOM extract (in methanol) were dried using a gentle stream of N2 at room temperature, reconstituted 110 
in 4 mL of 150 mM ammonium acetate (pH 7) in pre-combusted, amber glass vials, and equilibrated at room 111 
temperature for 30 minutes. Fluorescence and absorbance measurements were obtained using a HORIBA 112 
AquaLog fluorometer using a 10 mm quartz cuvette (Helma Analytics). Fluorescence emission was detected 113 
in the range of 240 – 600 nm (increment ~3.3 nm) at excitation wavelengths between 240 nm and 450 nm 114 
(increment 3 nm between 240 and 360 nm, 9 nm between 360 and 450 nm). A separate absorbance 115 
measurement was carried out to measure absorbance between 240 and 600 nm at increments matching the 116 
fluorescence excitation. The fluorescence data was processed using the drEEM toolbox.12 Data were corrected 117 
for inner filter effects using the absorbance-based method (absorbance between 0.014 and 0.07 cm-1 at 118 
260 nm).23 First and 2nd order physical scatter was removed and not interpolated. A fluorescence EEM of 119 
150 mM ammonium acetate was subtracted as the spectroscopic blank. Average EEMs for the three fjords are 120 
depicted in Fig. S2. 121 

Spectrometric measurements 122 

Fourier transform ion cyclotron resonance mass spectra were collected with a 12 T Bruker Solarix mass 123 
spectrometer (Bruker Daltonics, Bremen, Germany) using an Apollo II electrospray ionization (ESI) source in 124 
negative ionization mode. Samples were diluted in 50 / 50 (v/v) methanol / water to a concentration of 1.5 125 
nmol DOC mL-1, and injected into electrospray source at a flow rate of 0.12 mL h-1 with a nebulizer gas 126 
pressure of 2.2 bar and a drying gas flow rate of 4 L min-1. Spectra were externally calibrated using arginine 127 
clusters, and then internally calibrated using marine DOM molecular formulas.24 The spectra were acquired at 128 
4 Mega words over a mass range of m/z 100 - 1000, and 300 scans were accumulated for each spectrum. The 129 
average mass resolution of all signals at 400 m/z was 375,000. The formula assignment was carried out as 130 
detailed in the SI. Briefly, molecular formulas were calculated from m/z values allowing for elemental 131 
combinations 12C0-∞ 13C0−1 1H0-∞ 14N0−2 16O0-∞ 32S0−1, a mass accuracy threshold of |Δm| ≤ 0.2 ppm, and a relative 132 
abundance of > 1%. Formulas which were either detected in process blanks (PPL extraction of ultrapure water) 133 
or contained in the list of potential surfactants were removed from the entire data set.25 It should be considered 134 
that every assigned molecular formula most likely implies an immense structural diversity of isomers.6 Since 135 
FT-ICR-MS alone is unable to distinguish between such structural isomers, we reserve the term component 136 
for statistical components, and use the term molecular formula in the context of spectrometric signals.  137 
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Data processing 138 

In order to describe optical and chemical properties of DOM using statistical models, data were pre-processed 139 
as follows: (1) EEM data were normalized to reduce concentration effects and match the character of relative 140 
formula abundances (using “normeem” function in drEEM); (2) signals in EEMs and the molecular formula 141 
matrix were scaled with their Euclidean norm to equalize their numerical leverage; (3) FT-ICR-MS formula 142 
abundances were scaled by division with the square root of the standard deviation to reduce modeling leverage 143 
of highly abundant formulas; (4) Undetected FT-ICR-MS formulas in a given sample were assigned as 144 
“missing” and formulas with more than 3.6 % missing detections (i.e. more than 10 samples without formula 145 
observation) were excluded from further analysis (81 % of the 2776 formulas in the original data set). While 146 
this represents a significant reduction in molecular formula data, a linkage between fluorescence signals 147 
present in all samples with molecular formulas only present in a small fraction of samples is unlikely. 148 
Preliminary ACMTF models indicated high residuals below m/z 300 and above m/z 500, therefore these 149 
formulas were removed to mitigate disturbances. The resulting datasets had the following structure and 150 
dimensions: sample x emission x excitation (174 x 91 x 44), and sample x formula abundance (174 x 527) for 151 
fluorescence EEMs and FT-ICR-MS formula abundances, respectively. Based on the original relative 152 
molecular formula abundances, the subset of 527 modeled molecular formulas represented 38 ± 5 % of the 153 
ESI-MS molecular formula abundance (Fig. S3). 154 

Advanced Coupled Matrix and Tensor Factorization 155 

A detailed description of the fundamental principle of the ACMTF model is presented in the SI (section S1). 156 
Briefly, ACMTF jointly decomposes fluorescence EEMs and molecular formula matrices into a set of trilinear 157 
fluorescence components and bilinear molecular formula components by fitting a PARAFAC model to the 158 
fluorescence EEMs and factorizing the molecular formula matrix in a way that the component scores are 159 
identical. Component weights (λ for EEMs and σ for formula matrices) are used to evaluate whether a 160 
particular component is shared between both analytical datasets. ACMTF modeling was carried out using the 161 
Matlab CMTF toolbox19,26 in conjunction with the Tensor toolbox27 and the SNOPT toolbox.28 ACMTF 162 
factorization is computationally intense and calculations were therefore carried out using a set of IBM 163 
NeXtScale nx360 M4 nodes, with 100 models being fit simultaneously (reducing the analysis time for 100 164 
models from 6 days on a single-core computer to 3 h with parallel computing). 165 

Nonnegativity constraints in all modes of both datasets were applied during the modeling. Furthermore, 166 
angular constraints in the excitation mode were applied to prevent the algorithm from converging on solutions 167 
with highly similar factors (violating model assumptions): Model components were constrained to have Tucker 168 
Congruence Coefficient (TCC) values between all excitation spectra of less than 0.93 (limit set by maximum 169 
similarity between PARAFAC excitation spectra). ACMTF models were evaluated by (1) an assessment of 170 
the fluorescence spectra (chemical coherence); (2) a variability-assessment of the component weights λ and σ 171 
(model uniqueness); (3) split-half validation. ACMTF component scores were converted to Fmax-values by 172 
multiplying component scores with the spectral maximum of fluorescence excitation and emission, which 173 
returns scores in the unit of the modeled data. Here, Fmax-values represent unitless, relative values, since both 174 
datasets were scaled and normalized prior to analysis. Contrary to similar procedures during PARAFAC 175 
analysis, these pre-processing steps are currently irreversible. 176 

The chemodiversity of ACMTF components was estimated as the richness estimator Chao 1 using the R 177 
software package vegan (R v3.5.1) with molecular formulas as species and component loadings as species 178 
counts.29,30 To mimic species counts, the loadings of all components were normalized by the maximum loading 179 
across all components, multiplied by 100 and rounded in order to represent integer species counts. 180 

Parallel Factor Analysis, Principal Component Analysis, and Pearson Rank Correlation 181 

The underlying components of fluorescent DOM in 191 samples (data set contained a small number of samples 182 
for which no mass spectra were collected) were isolated using Parallel Factor Analysis using the drEEM 183 
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toolbox.12 To do so, models with different numbers of components with nonnegative loadings and scores were 184 
explored (four to seven components). Ultimately, a six-component PARAFAC model with a core consistency 185 
of 1.5 % and an explained variance of 99.9 % was found to best represent the dataset.31 This model was 186 
validated using a split-half validation, for which the whole dataset (N = 191) was split into six separate 187 
randomly split halves (94 > N < 97). 188 

PCA was performed on the molecular formula matrix exclusively to determine the explanatory power of this 189 
technique in comparison to ACMTF and to compare the extent of autocorrelation between component loadings. 190 
A six component PCA model was calculated for auto-scaled and mean-centered molecular formula abundances 191 
(in addition to the preprocessing detailed above). PCA models were calculated using PLS_toolbox in Matlab 192 
(Eigenvector Research Inc. v.8.52). Factor similarities between ACMTF and PCA components was quantified 193 
using Tucker congruence coefficients for all unique combinations of components (N = 15).32 194 

Pearson rank correlation was performed on the processed data set described above. Molecular formula relative 195 
abundances were correlated to the Fmax-values of a split-half validated six component PARAFAC model using 196 
only pair-wise complete comparisons. A Holm-Bonferroni correction for multiple comparisons was applied to 197 
address the possibility of type I errors,33 eliminating 19.5 % of correlations that would have otherwise been 198 
reported as significant. The matrix of correlation coefficients (r) was subsequently restricted to comparisons 199 
satisfying the significance threshold of α = 0.01; correlation coefficients with p > α (based on Holm-200 
Bonferroni corrected p-values) were ignored in subsequent analyses.  201 
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Results & Discussion 202 

Model validation  203 

Similar to other multivariate models such as PARAFAC, the validity of ACMTF models primarily depends 204 
upon the applicability of the underlying model to explain the data set variability, as well as choosing the right 205 
number of components. The application of data fusion furthermore depends on a stable, reproducible 206 
relationship between signals obtained on different instruments. ACMTF was applied under the assumption that 207 
the statistically identifiable signals in fluorescence EEMs and molecular formulas respond linearly to the 208 
presence of the corresponding (unknown) analytes. The adherence to this assumption was investigated by 209 
judging the robustness and representativeness of the model.. This validation of the selected ACMTF model 210 
was carried out by analyzing the overall degree of explained variance, the randomness of residuals, the 211 
chemical coherence of component loadings, and the ability of reproducing the overall model from fully 212 
independent subsets of the overall data set. 213 

After the initial data exploration, a six-component ACMTF model was found to best explain the variability in 214 
fluorescence EEMs and the molecular formula matrix. With six components, ACMTF explained 99.84 % of 215 
variance in both datasets and featured mostly random, low model residuals (example shown in Fig. 1, Fig. S4). 216 
Fluorescence spectra (Fig. 2, top row) were generally consistent with those expected from pure fluorophores 217 
(single emission peak, Stokes’ shift between 0.55 and 1.13 eV, Table 1). Further investigations, described in 218 
the supplementary information (SI, Figs. S4-8, Table S2), indicated the suitability of ACMTF for the 219 
simultaneous decomposition of fluorescence EEMs and molecular formulas. The split-half validation indicated 220 
that a relatively low number of the modeled formulas did not produce the same component loadings in both 221 
independent data set halves (Fig. S6). This indicates that the dynamics of this small subset of modeled formulas 222 
deviated from the ideal, linear behavior to some degree. It is possible that these molecular formulas were either 223 
not detected reproducibly by ESI-MS, or that they represented independent molecular structures that were not 224 
represented by a statistical component (molecular fingerprint) present across a range of samples. Overall, the 225 
majority of analytical signals were represented by the ACMTF model in a robust fashion and our results thus 226 
indicate that the analytical signals identified by ACMTF scaled linearly with analyte abundance. 227 

Chemical properties of fluorescence spectra 228 

The six-component ACMTF model featured fluorescence components with emission maxima at 310, 350, 410, 229 
420, 460, and 510 nm (Fig. 2, panel A, henceforth referred to by these emission maxima) and molecular 230 
formula components with distinctly different molecular weight distributions, elemental composition and 231 
overall varying degree of chemodiversity (Fig. 2, panel B-C, Table 1). A comparison with the OpenFluor 232 
database34 revealed similarities of all ACMTF fluorescence components with previously identified PARAFAC 233 
components (TCCex,em > 0.98). Specifically, C310, C350, and C510 were similar to components identified in the 234 
coastal Canadian Arctic.35 However, matches were also observed across other aquatic environments, such as 235 
the Baltic Sea (C310 with C5 in Stedmon et al. [2007]), small streams (C350 with C5 in Yamashita et al. [2011], 236 
or C410 with C1 in Graeber et al. [2012]), or drinking water (C420 with C3 in Shutova et al. [2014]).36–39 237 

The component weights λ and σ (see SI section S1 for further details) indicated that components were generally 238 
shared between both data sets. For C410, C420, C460, and C510 λ (weights for fluorescence components) and σ 239 
(weights for molecular formula components) deviated less than 15 % between each other, indicating shared 240 
components (Table 1). In contrast, weights differed by almost 80 % for C310 and C350. While this represents a 241 
significant difference, factors other than unshared signals may have contributed to this observation. In addition 242 
to “sharedness” of components in both data sets, weights in the ACMTF model also reflect contributions of a 243 
given component to the overall variability in each dataset. The weights λ and σ are thus influenced by detector 244 
response. Furthermore, differences in component complexity may lead to different weights of shared 245 
components in separate data sets. In our application, the ionization efficiencies of molecular formulas 246 
associated with C310 and C350 compared to their fluorescence quantum yields may have been partly responsible 247 
for different component weights. However, further investigations are necessary to investigate this hypothesis 248 
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and the response of component weights to analytical factors. Overall, despite C310 and C330’s different 249 
component weights, these findings indicate that all modeled components were shared between both datasets 250 
and therefore represented interpretable, chemically meaningful components that allow the investigation of 251 
molecular formulas associated with fluorescence spectra. 252 

ACMTF addresses the multivariate character of molecular formulas by dissecting the abundance of one 253 
formula into multiple components (Fig. S9), and the identification of the most prominent links between formula 254 
and fluorescence described in a specific component is therefore complicated. Here, we propose an approach 255 
to simplify the interpretation of ACMTF mass spectra for the purpose of initial investigations: The molecular 256 
formula loadings (Fig. 2B-C) can be simplified by identifying the component with the highest relative loading 257 
for every molecular formula while disregarding the remaining components. In the resulting modified 258 
component mass spectra, every molecular formula is only represented once and the interpretation is simplified 259 
(Fig. S9 depicts several examples).  260 

When plotting modified mass spectra in the van Krevelen space (Fig. 3), the chemical properties associated 261 
with fluorescence spectra clustered in specific regions. The modified component loadings tracked a continuum 262 
of chemical properties along a diagonal line in the van Krevelen space from the most saturated formulas (high 263 
H/C, low O/C) to the most oxygenated, unsaturated formulas (high O/C, low H/C) where oxygenation and 264 
unsaturation increased in the order C460 < C310 < C350 < C410 < C420 < C510. This shift of elemental composition 265 
between components observed in the modified component spectra accurately reflected the properties of the 266 
unmodified components revealing identical shifts in the weighted averages of O/C and H/C (Table 1). This 267 
indicates that the shift is an inherent pattern and not an artefact of the simplification of the molecular fingerprint 268 
of each component to modified loadings. However, as would be expected, there was a large discrepancy 269 
between the chemodiversity of molecular formula components (Table 1) and the number of formulas 270 
represented in modified mass spectra (148 > N > 42, Fig. 3). Despite considerable data reduction, modified 271 
mass spectra appear to offer adequate insight into the compositional differences between components, but 272 
further in-depth investigations of chemical properties require the consideration of the complete component 273 
molecular fingerprint and thus all further model interpretation refer to the loadings depicted in Fig. 2C. 274 

Because ACMTF indicated that all identified fluorescence components were linked (i.e. shared) with distinctly 275 
different mass spectra, our study allowed the first multivariate estimate of the molecular fingerprint of 276 
fluorescent organic matter. As can be seen in Fig. 2C, the chemodiversity and elemental composition of 277 
components differed significantly, but fluorescence properties such as emission maximum or Stokes Shift did 278 
not correlate with molecular properties such as chemodiversity, weighted average elemental composition, or 279 
weighted average molecular weight. This suggests that while EEM fluorescence was possibly caused by the 280 
excitation of chemical moieties summarized in the molecular fingerprint of ACMTF components, these 281 
fluorescing moieties do not dominate the molecular fingerprint to an extent that would allow the usage of 282 
fluorescence properties as indicator for, or predictor of, associated molecular fractions (and vice versa). 283 
Moreover, it should not be assumed that the molecular formulas summarized in ACMTF components 284 
predominantly consist moieties that fluoresce, but rather that their dynamics are indistinguishable from the 285 
moieties that do. However, if further studies should reveal consistent trends in the molecular fingerprint of 286 
fluorescent DOM, the stable, albeit non-causal relationship could be utilized routinely to expand the analytical 287 
window of UV-Vis spectroscopic analyses. 288 

Comparison of data fusion and traditional approaches 289 

Since the present study is the first application of ACMTF to analytical DOM data sets, it is important to 290 
compare the results obtained with ACMTF to existing approaches employed in previous studies. First, the 291 
factorization of molecular formulas with ACMTF was compared to PCA, a widely used method to decompose 292 
molecular formula tables.15 The first significant difference between PCA and ACMTF is the ability to impose 293 
non-negativity constraints in ACMTF. Our analysis indicated that loadings and scores of PC1-PC6 in PCA 294 
were both positive and negative (Fig. S10), while ACMTF component loadings were exclusively positive (Fig. 295 
2, panel C). In ACMTF, component loadings and scores therefore directly correspond to analytical signals, 296 
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while in the case of PCA, the interpretation of components is less intuitive since combination of negative and 297 
positive scores and loadings must be considered. The option to constrain models to nonnegative loadings and 298 
scores in ACMTF represents an improvement in the characterization of complex mixtures such as DOM with 299 
mass spectrometry. 300 

Compared to the strict orthogonality of components in PCA, ACMTF allows some degree of similarity 301 
between molecular formula loadings. A congruence analysis between all unique combination of the six 302 
ACMTF components showed that ACMTF loadings of molecular formula components were autocorrelated to 303 
some degree (between 0.21 and 0.85, on a scale from zero to one, Fig. S11). The similarity between ACMTF 304 
components highlights that environmental processes or independent chemical fractions may overlap in their 305 
spectral properties. Models with strictly orthogonal components (such as PCA) would ultimately be unable to 306 
recover these spectra. Together, our comparison indicated that ACMTF provides more chemically intuitive 307 
results making it a more appropriate model for the decomposition of molecular formula matrices of DOM. 308 
However, it is important to stress that ACMTF models are primarily driven by the variability of the tensor 309 
(fluorescence EEMs). The description of variability beyond EEMs depends on fitting unshared components 310 
that can describe variability independent of fluorescence. Future efforts should also include the comparison of 311 
components derived from data fusion using ACMTF and those derived from factorizations based solely on 312 
molecular formulas to investigate how data fusion models relate to models describing only molecular formulas. 313 
However, this is pending the validation of non-negative matrix factorizations applicable to molecular formula 314 
data sets of DOM, and a comparison is thus not yet possible. 315 

Since ACMTF is based on PARAFAC, there should be a basic agreement between loadings and scores of a 316 
PARAFAC model fit to the EEM data exclusively, and the ACMTF model describing both EEMs and 317 
molecular formulas. A detailed comparison between ACMTF and PARAFAC is given in the SI (SI S2, Fig. 318 
S8). In short, ACMTF loadings were highly congruent with corresponding PARAFAC components, while the 319 
scores of some components (C420, C460) diverged from the PARAFAC solution despite clearly showing a 320 
positive correlation. These discrepancies are most likely attributable to the occurrence of mass spectrometry-321 
specific disturbances. Amongst other possibilities, matrix effects in ESI-MS affecting certain groups of 322 
samples could have caused deviations in component scores of shared components. Despite this, the 323 
simultaneous factorization of fluorescence EEMs and the molecular formula table resulted in a model that 324 
generally agreed with PARAFAC. 325 

Finally, we compared associations between fluorescence EEMs and molecular formulas identified by ACMTF 326 
with the correlations identified by the post-hoc Pearson rank correlation of PARAFAC Fmax-values and 327 
molecular formula abundances (Fig. 2, panel D). Although, there was a degree of overlap between associations 328 
identified by each approach (Fig. 2, panel C-D), there was also substantial disagreement between the findings. 329 
The correlation-weighted mass spectra (showing correlation coefficient in place of abundances) were 330 
compared to ACMTF component mass spectra, using the Tucker congruence coefficient. For all comparisons, 331 
TCCs were smaller than 0.45, indicating poor agreement. In extreme cases, such as C310, C350, and C460, 332 
correlations were found to be inverse in areas of the van Krevelen space that showed relatively low, but positive 333 
loadings in corresponding ACMTF components. In the case of C510 was inversely correlated with highly 334 
oxygenated, highly unsaturated molecular formulas in the rank analysis, while ACMTF indicated a strong 335 
positive correlation in that compositional space. 336 

Comparisons between data fusion and rank correlation are hindered by some key differences between the 337 
correlation and data fusion approaches. Rank correlations in their simplest interpretation provide a binary 338 
indication of direct or inverse association between fluorescence and molecular formulas. This approach does 339 
not decompose a multivariate signal and often returns multiple possible correlations between variables. This 340 
leaves users to decide which of the significant correlations are valid, and which can (or should) be ignored. On 341 
the other hand, data fusion readily addresses this issue by dissecting a particular molecular formula abundance 342 
into multiple components. This multivariate decomposition represents a more objective approach that is far 343 
less vulnerable to false positive errors, and thus provides more robust estimates of the molecular fingerprint of 344 
fluorescent DOM. 345 
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Biogeochemical sources, chemical fractions, or diagenetic state? 346 

DOM is a highly complex mixture of organic compounds with contrasting chemical properties, varying 347 
biogeochemical sources and sinks, and different degradation potential. It is striking that more than 99 % of the 348 
modeled mass spectral variability (~38% of the mass spectra) was described by only six statistical components. 349 
This represents a significant reduction in complexity that facilitates a far easier interpretation of DOM data 350 
sets. However, the partitioning of DOM fluorescence and molecular formulas into statistical components poses 351 
the question: Do ACMTF components indicate biogeochemical source materials (e.g. terrestrial substances), 352 
reflect its diagenetic state (e.g. recalcitrant material), or represent distinct chemical fractions (e.g. high 353 
molecular weight DOM)? 354 

To assign an interpretation to the six ACMTF components, across-fjord patterns (Fig. 4) and depth-dependent 355 
trends in Scoresby Sound (Fig. 5) were investigated whilst bearing in mind the molecular fingerprint of 356 
respective components (Fig. 2C). The most distinct oceanographic pattern was observed for C420, which was 357 
most prevalent in Scoresby Sound (Fig. 4). In Scoresby Sound, Fmax-values of C420 also exhibited a distinct 358 
surface maximum, followed by a decrease in its relative abundance with depth and a subsurface peak at all 359 
stations in the polar waters (S < 34, T < 0) was observed (Fig. 5). Since Scoresby Sound receives terrestrial 360 
material from the EGC, terrestrial material is most likely a major source of this component. However, because 361 
a recent study identified a component highly similar to C420 as ubiquitous across a wide range of 362 
environments,40 C420 is likely not a highly selective proxy for terrestrial material, but rather represents a 363 
fluorescence fraction that is particularly abundant in terrestrially influenced waters. Interestingly, C420 had the 364 
lowest average molecular weight, was strongly associated with the most oxygenated, unsaturated molecular 365 
formulas, and showed the highest chemodiversity, suggesting that terrestrially derived substances represent a 366 
distinguishable chemical fraction. The identification of this terrestrially dominated component provides targets 367 
for further experiments, for example via MS/MS to explore molecular structures. 368 

Components fluorescing in the spectral range of C350 are commonly termed “protein-like”; a term which is 369 
derived from the apparent spectral similarity with amino acid fluorescence that has been shown to correlate 370 
with amino acid concentration.41 The presence of an UV-A fluorescence signature has often been used as a 371 
proxy for surface water biological activity and recent studies have demonstrated that such processes impact 372 
DOM mass spectra with high selectivity.42 In agreement with these findings, ACMTF indicated a low 373 
chemodiversity of the molecular fingerprint associated with C350, which can be interpreted as representing 374 
fresh organic material closely linked to planktonic productivity in the surface layer (Fig. 5). Similar to C350, 375 
C310 also exhibited a subsurface decrease in Scoresby Sound (10 – 30 m), but slightly increased again at 45 m. 376 
The higher chemodiversity of C310 compared to C350 suggests that C310 may encompass degradation products 377 
related to lateral terrestrial inputs, plankton productivity, or (photo-)degradation in the surface layer. A more 378 
constrained assignment is not possible at present and would require further experiments. 379 

For the remaining components, across-fjord differences were subtle, while depth profiles differed between 380 
components. The composition in Arnarfjörður and Kongsfjorden was relatively stable with depth (Figs. S12-381 
13), whereas distinct changes were observed in Scoresby Sound (Fig. 5). C410 and C510 increased with depth, 382 
suggesting that this moderately complex fingerprint was generated by the processing of sinking organic matter. 383 
In contrast, C460 was invariant with water depth in all three systems, which suggests it may represent a 384 
recalcitrant component of high molecular complexity (Fig. 5, also see Figure S12-13). These systematic trends 385 
provide confidence in the components identified by this data fusion approach. 386 

Challenges and future directions 387 

Multivariate data fusion simultaneously decomposes multiple analytical datasets and provides a tool to link 388 
heterogeneous datasets, such as fluorescence spectroscopy and mass spectrometry. The methodological 389 
similarities with PARAFAC provide the opportunity to integrate data fusion algorithms into popular existing 390 
software toolboxes (such as drEEM), as well as related public databases (such as OpenFluor). With the 391 
continuous development of multi-core processors and improvements in modeling algorithms, the 392 
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computational expense of data fusion will greatly decrease in the future, making it widely applicable for the 393 
scientific community. While multivariate data fusion may not be able to identify the chemical compounds 394 
responsible for the optical properties of complex environmental DOM datasets, it greatly improves the 395 
chemical interpretability of fluorescence data sets and offers potential for future developments. With data 396 
fusion as central interface, future studies will be able to leverage the superior analytical depth of mass 397 
spectrometry while utilizing the spatio-temporal resolution of ultraviolet-visible spectroscopy.  398 

Assigning an interpretation to ACMTF components is confounded by the increased information content of 399 
components, particularly the high complexity of molecular fingerprints. Whereas fluorescence components are 400 
continuous, and their chemical interpretation may generally be assessed by comparison to pure fluorophore 401 
spectra, the complex and discontinuous nature of component mass spectra constitutes a significant challenge 402 
in this regard. In light of their generally high diversity, it appears reasonable to assume that ACMTF component 403 
mass spectra represent multiple, currently unresolvable chemical fractions. The ability to further separate 404 
chemical fractions may be improved by integrating additional DOM analyses, such as absorbance, 13C, or 1H 405 
nuclear magnetic resonance (NMR) spectroscopy. ACMTF is theoretically able to link one trilinear data set 406 
(fluorescence EEMs) with multiple matrices (such as 13C and 1H NMR). However, ACMTF requires that one 407 
of the data structures is trilinear. The fusion of bilinear data sets, such as FT-ICR-MS and 13C NMR requires 408 
other data fusion strategies.43  409 

There are a number of methodological challenges that remain to be solved in regard to the applicability of 410 
ACMTF to DOM data sets. For example, it is very likely that FDOM EEMs and FT-ICR-MS formula matrices 411 
do not share the same number of underlying components. While ACMTF is able to address this disparity 412 
between two datasets with dataset- and component-specific weights, it is currently unknown how well this 413 
approach can cope with the potentially large discrepancy between the number of components in fluorescence 414 
vs. molecular formula datasets of DOM. An expanded analysis of this is warranted and this topic needs 415 
consideration in future efforts. Furthermore, our study put focus on the 527 most conserved molecular formulas 416 
since the primary goal was to identify the molecular fingerprint of quasi-ubiquitous fluorescence signals. 417 
Relaxing the data pre-processing criteria by including more unique (uncommon) molecular formulas would be 418 
desirable from a biogeochemical point-of-view. However, this presents a challenge for model validation and 419 
considerably increases computation time. In order to include sparsely observed molecular formulas, further 420 
developments to the analysis approach are necessary. 421 

The scientific community utilizing FDOM EEMs has converged towards a standard methodology for 422 
measuring samples and analyzing resulting data sets with PARAFAC, achieved through a substantial number 423 
of efforts including inter-laboratory comparisons.12,23,44 This was driven mostly by the fact that multivariate 424 
analysis demands a stringent and standardized sample and data processing routine, to provide globally 425 
consistent data. The measurement and data analysis of FT-ICR-MS mass spectra is in the process of being 426 
standardized and this is essential if advanced data analysis techniques are to be employed.45 For the time being, 427 
however, different guidelines for formula assignment, peak identification, and signal normalization exist 428 
across the community and no central, open database has been developed to our knowledge. If data fusion 429 
should become a viable tool for community-wide DOM characterization, these discrepancies must be 430 
addressed to provide reproducible results that enable replication. 431 

Key differences between fluorescence spectroscopy and FT-ICR-MS currently complicate joint description of 432 
fluorescence and ESI-MS data sets. Fluorescence quantum yields and ESI efficiencies of analytes are 433 
unknown; therefore, peak intensities and proportions between peaks reflect a combination of actual 434 
concentrations and differences in fluorescence and ionization efficiencies, respectively. However, ESI-MS 435 
peak intensities differ from fluorescence, because carbon concentrations of samples are typically adjusted 436 
before injection, and signals are normalized to the sum of peaks (or the highest peak) during post-processing. 437 
These steps are designed to improve data robustness, but peak abundances subsequently depend on: (1) 438 
ionization efficiencies; and (2) the abundance of the remaining peaks in relation to the total carbon 439 
concentration. To ensure the compatibility of the two data sets during data fusion, fluorescence signals must 440 
be normalized to the total fluorescence per sample. As a result, ACMTF scores represent proportions. 441 
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Obtaining more quantitative ACMTF component scores hinges on developing approaches that yield robust 442 
mass spectra without a carbon- and peak-normalization step. 443 

Beyond issues related to sample and data treatment, practical issues related to the ion source may further 444 
compromise the ability to quantify analytes with ESI-MS. The ionization of DOM constituents with ESI is 445 
inherently selective and matrix effects introduce artefacts.3,46 However, the extent to which matrix effects 446 
impact DOM mass spectra remains poorly quantified as the molecular structures of DOM remain largely 447 
uncharacterized. Nonetheless, matrix effects have been documented for isolated marine metabolites.47 The 448 
application of models assuming linear relationships between analyte concentration and detector signal thus 449 
requires careful investigation. Here, we observed that the majority of the 527 modeled formulas could be 450 
described using a model that assumes a linear relationship between fluorescence signals and molecular formula 451 
abundances. The reproducibility of our efforts should be investigated in future studies carried out across a wide 452 
variety of aquatic environments.  453 
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Tables 603 

Table 1: Properties of ACMTF components. Component weights (λ and σ) indicate the contribution of a component to the overall 604 
variability and indicate their sharedness across EEMs and FT-ICR-MS. Weighted averages (subscript wa) refer to the weighted average 605 
chemical composition of specific components. O/C: Oxygen-to-carbon ratio, H/C: Hydrogen-to-carbon ratio. m/z: mass-to-charge ratio. 606 
DBE: Double bond equivalent. N/C: Nitrogen-to-carbon-ratio. Ci: Chemodiversity index. 607 

Comp. λ (EEMs) σ (FT-ICR-MS) Stoke’s shift (eV) O/Cwa H/Cwa m/zwa DBEwa N/Cwa Ci 
C310 0.22 ± 0.005 0.12 ± 0.002 0.56 0.5 1.23 399.7 8.44 0.04 422 
C350 0.24 ± 0.003 0.13 ± 0.007 0.8 0.52 1.24 382.6 7.8 0.02 314 
C410 0.46 ± 0.007 0.40 ± 0.005 0.94 0.55 1.21 400 8.36 0.03 400 
C420 0.15 ± 0.002 0.15 ± 0.002 1.13 0.56 1.16 382 8.27 0.01 459 
C460 0.27 ± 0.003 0.32 ±0.004 0.72 0.45 1.27 388.2 8.01 0.03 422 
C510 0.19 ± 0.002 0.17 ±0.003 0.61 0.6 1.15 390.2 8.35 0.02 355 

 608 
  609 
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Figure legends 610 

 611 

Figure 1: Example of measured vs. modeled data. (A-C): Fluorescence EEMs (scaled and therefore unitless). (D-F): FT-ICR-MS 612 
mass spectra scaled by the maximum peak intensity. First column: Examples of raw data. Second column: Examples of corresponding 613 
modeled data. Third column: Model residuals, scaled by the maximum peak intensity in the sample. The depicted sample was taken in 614 
Kongsfjorden, Norwegian monitoring station Kb5 (78.9 °N, 12.4 °E) at a depth of 30 m.  615 
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 616 

Figure 2: The molecular fingerprint of fluorescent DOM as identified by ACMTF and post-hoc correlation. Panel (A) depicts 617 
fluorescence loadings as a function of excitation (dashed line) and emission (solid line), panel (B) and (C) show molecular formula 618 
loadings as function of mass-to-charge ratio and molecular composition in the van Krevelen space. For comparison, the correlation 619 
between PARAFAC component scores (spectrally congruent with components in top row, also provided in Figure S7) are shown in 620 
panel (D). Linear correlation coefficients were restricted to p<0.01 prior to visualization and are corrected for false-positives using a 621 
Holm-Bonferroni correction.  622 
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 623 

Figure 3: Modified component mass spectra of ACMTF components. For the purpose of simplification, every formula is only 624 
represented when it dominates the loading of a particular component (i.e. has the highest loading). Panel (A): Modified component 625 
molecular weight distributions. Panel (B): Modified component van Krevelen plots, where the size of dots represents the component 626 
loadings.  627 



23 

 

 628 
Figure 4: Average distribution of ACTMF components across three Arctic fjords. Average scores are shown in (A-C) and colored 629 
according to the respective fjord in the map (D). Error bars indicate the standard deviation of the mean. For oceanographic context, a 630 
temperature-salinity plot is shown in (E). Sampling stations outside of the fjords are marked in grey and not shown in other plots.  631 
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 632 

Figure 5: Depth variation of physical and environmental parameters in Scoresby Sound. Panel (A): Salinity, temperature, and 633 
chlorophyll a, along with a station map. Panel (B): Depth profiles of the six ACMTF component Fmax-values. Dots represent Fmax-634 
values, black lines the binned average along with the standard deviation of the mean (grey).  635 
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