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Abstract:  Nonlinear rheological behavior under uniaxial elongation was examined for unentangled 

melts of polystyrene (PS27; M = 27k) and poly(p-tert-butyl styrene) (PtBS53; M = 53k) having 

nearly the same number of Kuhn segments per chain, nK = 30 and 35 for PS27 and PtBS53, 

respectively. For both materials, the steady state elongational viscosity ηE exhibited 

strain-rate-hardening and then strain-rate-softening on an increase of the Weissenberg number Wi ≥ 

0.3 (Wi = 

€ 

˙ ε τ1
eq , with 

€ 

τ1
eq  and 

€ 

˙ ε  being the longest relaxation time in the linear viscoelastic regime 

and the Hencky strain rate, respectively).  For the unentangled melts, the hardening and softening 

were free from any entanglement nonlinearity, so that the hardening was unequivocally related to the 

finite extensible nonlinear elasticity (FENE) of the chain, and the softening, to suppression of the 

FENE effect due to reduction of the segmental friction ζ occurring for the highly stretched and 

oriented chain.  Thus, the ζ-reduction, speculatively discussed for entangled melts so far, was 

experimentally confirmed, to the first time, for unentangled melts.  Quantitatively, the hardening at 

intermediate Wi was stronger and the softening at higher Wi was weaker for PtBS53 than for PS27 

despite the similarity of their nK values, which suggested that the magnitude of ζ-reduction depends 

on the chemical structure of the chains.  For estimation of this magnitude, the FENE-PM model (a 

FENE bead-spring model with a pre-averaged FENE-spring constant) was modified for the 

ζ-reduction in an empirical way with an assumption that ζ at a given time is fully determined by the 

chain stretch/orientation and thus by the elongational stress σE at that time.  This modified model 

was able to mimic the steady state ηE data excellently, and the ζ-reduction utilized in the 

modification was weaker for PtBS53 than for PS27k to confirm the dependence of the ζ-reduction 

on the chemical structure of the chain.  Nevertheless, the same modified model failed to mimic the 

transient stress growth and relaxation data on start-up and cessation of fast flow (at Wi ≥ 4), despite 

its success for the steady state ηE data in the entire range of Wi.  Specifically, changes of ζ in the 

unentangled melts with time during the relaxation for large Wi were delayed compared to the model 

calculation.  This result suggests, as one possibility, that ζ in those melts is determined not only by 

the chain stretch/orientation (i.e., by σE) at respective times but also by the transient changes of the 

stretch/orientation (by 

€ 

˙ σ E ), with those changes vanishing in the steady state thereby allowing the 

model to mimic the ηE data.  The origin of this change of ζ with the transient changes of the 

stretch/orientation is discussed in relation to the local motion of the chain necessary for adjusting its 

friction to the changes of the stretch/orientation environment.     
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1. INTRODUCTION 

   Rheological properties of flexible polymers are one of the central subjects in polymer physics.  

Experimental data so far accumulated1-15 indicate that those properties of linear polymers are 

uniquely determined just by a few parameters such as the chain molecular weight M (and its 

distribution), the high-frequency glassy modulus 

€ 

G∞, the entanglement plateau modulus GN and/or 

the entanglement molecular weight Me (not relevant for low-M chains), and the friction ζ of the 

Rouse segment (stress-sustaining unit in the rubbery relaxation process).  For example, for melts of 

chemically different species such as polystyrene (PS), poly(p-tert-butyl styrene) (PtBS), and 

poly(vinyl biphenyl) (PVPh), Inoue and coworkers11 showed that the complex Young’s modulus E* 

exhibit almost identical ω dependence separately in the glassy and rubbery relaxation regimes (at 

high and low angular frequencies ω) when normalized by the characteristic moduli, 

€ 

3G∞ and 3GN 

for respective regimes, and plotted against the frequency scaled by respective relaxation times.  

Nevertheless, for species with a significant chemical difference such as PS and polyisobutylene 

(PiB), considerable differences were noted for E* in the glassy relaxation regime, possibly because 

of multiple origins of a glassy component of the stress, e.g., anisotropies in the torsional orientation 

of individual chains and in the segmental packing.10   In contrast, in the rubbery relaxation regime, 

the ω dependence of E* is almost identical for chemically different species having the same M/Me 

ratio because the stress in this regime has a single origin (axial orientational anisotropy of the Rouse 

segments), although a delicate difference attributable to a difference in the thermal constraint release 

time (entanglement loosening time) is still noted for polymers having significantly different 

chemical structures such as PS and polyisoprene (PI); see Supporting Information of Ref. 12.  

   This universality in the rubbery relaxation has been most clearly noted for entangled melts and 

solutions of the same chemical species under shear. For example, for entangled PS melts and 

solutions having the same M/Me ratio, Hassager and coworkers13,14 showed that the data of the 

complex shear modulus G* normalized by respective GN are indistinguishable to each other when 

plotted against the angular frequency ω scaled by the relaxation time of the entanglement segment 

€ 

(~ ζne
2  with ne being the number of Rouse segments per entanglement segment) and that those data 

are well described by the Baumgaertel-Schausberger-Winter spectrum.7 The corresponding 

universality is noted also under shear flow in the nonlinear regime:2-6,14 The melt and solutions 

commonly exhibit a stress overshoot peak at a constant strain (

€ 

˙ γ t  ≅ 2 with 

€ 

˙ γ  being the shear rate) 
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under relatively slow shear flow, and their steady state shear viscosity η normalized by the 

zero-shear viscosity η0 exhibits universal thinning behavior as a function of the scaled shear rate 

€ 

˙ γ τ1
eq , with 

€ 

τ1
eq  being the terminal relaxation time in the linear viscoelastic (LVE) regime. These 

universal features have encouraged development of molecular models2-6 describing the linear and 

nonlinear rheological behavior of the entangled polymers (in the rubbery relaxation regime) in terms 

of just a few parameters mentioned above.  For example, the tube model for linear polymers, 

considering reptation, contour length fluctuation (CLF), thermal constraint release (TCR), and 

convective constraint release (CCR) mechanisms, describes the linear and nonlinear rheological data 

considerably well,2-6 although several problems (such as changes of the CLF path due to TCR12,15) 

still remain unsettled. 

   The universality is also noted for entangled melts and solutions under slow elongational flow in 

the LVE regime, obviously because E* = 3G* in this regime.  However, under fast elongational 

flow in the nonlinear regime, the universality completely vanishes for the melt and solutions.  For 

example, Sridhar and coworkers16,17 found that the steady state elongational viscosity ηE of entangled 

semidilute solutions of linear PS exhibits strain-rate-softening followed by strain-rate-hardening on 

an increase of the Hencky strain rate 

€ 

˙ ε  above the terminal relaxation frequency and further above 

the Rouse relaxation frequency of the chain as a whole.  In contrast, Hassager and 

coworkers13,14,18-20 revealed that ηE of entangled linear PS melt just softens (without the hardening) on 

the corresponding increase of 

€ 

˙ ε .  This essential difference between the entangled solutions and 

melts has been attributed to reduction of the segmental friction ζ occurring in the melt but not in the 

semidilute solutions.13,14,21-23  The ζ-reduction is related to enhanced mobility of a segment in the 

stretched/oriented environment, as discussed first by Ianniruberto and coworkers:21  The ζ-reduction 

can occur in highly stretched melts wherein a segment of a given chain is surrounded by 

stretched/oriented chains, but not in semidilute solutions because the very rapidly relaxing solvent 

molecules offer an isotropic environment for the segment.  Yaoita and coworkers22 examined the 

stress relaxation data of entangled PS melt from Hassager’s group20 to find acceleration of the initial 

relaxation attributable to the stretch/orientation-induced ζ-reduction and the finite-extensible 

nonlinear elasticity (FENE) effect, estimated the magnitude of ζ-reduction from this acceleration, 

and demonstrated that the primitive chain network (PCN) simulation with and without the 

ζ-reduction describes the steady state ηE data of PS melt20 and solution17 considerably well.  They 
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also suggested that the ζ-reduction can occur also under fast shear but the shear rate necessary to 

observe this ζ-reduction is too high to be realized in ordinary experiments (because of edge fracture 

or other instabilities).22  Huang, Hassager, and coworkers13,14,23,24 examined ηE of PS solutions in 

oligomeric styrene (OS) to demonstrate that the strain-rate-hardening at high 

€ 

˙ ε , characteristic to 

solutions in low-M solvent, is progressively suppressed with increasing molecular weight of OS and 

that the nematic interaction between PS and OS strongly affects ηE.  Masubuchi and coworkers25 

examined the elongational data of entangled polyisoprene (PI) and poly(n-butyl acrylate) (PnBA) 

melts reported by Sridhar and coworkers26 with the aid of PCN simulation and compared the results 

with those for PS melt, thereby suggesting that the magnitude of stretch/orientation-induced 

ζ-reduction changes with the chemical structure of the chain and has a non-universal character. 

   Thus, the ζ-reduction is very important in the nonlinear elongational rheology of polymer melts.  

Nevertheless, for entangled melts so far examined, the elongational behavior should be also affected 

by the nonlinear mechanisms related to entanglement that include CCR27 and the interchain tube 

pressure (ICP) proposed by Marrucci and Ianniruberto.28  The effect of CCR might be rather minor 

under the elongational deformation involving no rotational component of motion. In contrast, ICP 

formulated in the molecular stress function model by Wagner and coworkers29 may contribute to the 

elongational behavior significantly, but the importance of ICP was not found in recent analysis by 

Desai and Larson.30  Interestingly, the tube model phenomenologically modified for the ζ-reduction 

can mimic the elongational data of entangled melts, as shown by Desai and Larson30 and by 

Masubuchi and coworkers.31 Nevertheless, in this modified model, the ζ-reduction is strongly 

coupled with nonlinearities of entanglement relaxation assumed in the model, so that the details of 

the ζ-reduction have not been fully elucidated. 

   Concerning this problem, we note that the ζ-reduction due to the chain stretch and orientation is 

a local phenomenon essentially irrelevant to the entanglement.  (Entanglement just enhances the 

stretch and orientation.)  From this point of view, it is strongly desired to investigate the ζ-reduction 

under elongational flow for unentangled melts free from the entanglement nonlinearities.  Indeed, 

Masubuchi and coworkers32 made the Kremer-Grest-type bead-spring simulation to suggest that the 

stress relaxation on cessation of elongational flow is accelerated also for unentangled melts but the 

ζ-reduction underlying this acceleration is a little weaker, for some reason, than that in entangled 

melts reported in Ref. 22.  Thus, it is strongly desired to examine, in the clearest way, the 
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ζ-reduction under elongational flow from unambiguous experiments for unentangled melts.  To the 

best of our knowledge, no such experiment has been reported for unentangled PS, the most 

extensively investigated polymer having no specific chemical interaction between the segments.  

(Very recently, López-Barrón and coworkers examined the elongational behavior of unentangled 

poly(vinyl biphenyl) melt.33 However, the elongational data of this polymer is strongly affected by 

the π-π interaction between the segments, and the feature of ζ-reduction cannot be straightforwardly 

extracted from those data.) 

   Thus, we have conducted elongational measurements for PS27 melt (M = 27k, number of Kuhn 

segments per chain nK = 30).  For comparison, the measurements were made also for PtBS53 melt 

(M = 53k, nK = 35) having nearly the same nK as PS27.  These low-M melts were in the negligibly 

(or very weakly) entangled state, and are hereafter referred to as unentangled melts for simplicity.  

It turned out that the unentangled PS27 and PtBS53 melts commonly exhibit strain-rate-hardening of 

the steady state elongational viscosity ηE followed by the strain-rate-softening with increasing strain 

rate 

€ 

˙ ε .  The hardening of unentangled melts is unequivocally attributable to the FENE effect 

(weakened by the ζ-reduction), and the softening, to the ζ-reduction overwhelming the FENE effect. 

The hardening was weaker and the softening was stronger for PS27 than for PtBS53, demonstrating 

that the magnitude of ζ-reduction is dependent on the chemical structure of polymers and thus 

non-universal. (This finding should serve as a firm base for improving the discussion of ζ-reduction 

in entangled melts explained earlier).  Furthermore, the ηE data as well as the transient stress data 

on start-up and cessation of elongational flow were analyzed with the aid of the well established 

FENE bead-spring model34,35 to suggest, as one possibility, that the segmental friction ζ at a given 

time depends not only on the chain stretch/orientation at that time but also on the transient changes 

of the stretch/orientation (being absent in the steady state).  These results are presented and 

discussed in this paper. 

 
 

2. EXPERIMENTAL 

2-1. Materials. 

   Narrow molecular weight distribution linear polystyrene (PS27), synthesized/characterized by 

Prof. Atsushi Takano of Nagoya University36 and kindly supplied for this study, and linear 

poly(p-tert-butyl styrene) (PtBS53) synthesized/characterized in our previous study37 were utilized.  
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Their molecular characteristics are summarized in Table 1.  No detectable entanglement effect 

emerged for the PS27 and PtBS53 samples, as expected from their molecular weights being smaller 

than the characteristic molecular weight for appearance of the entanglement effect on viscosity, Mc ≅ 

2Me (with the entanglement molecular weight Me being 18.1

€ 

×103  for PS38 and 37.6

€ 

×103  for PtBS38), 

and confirmed from their linear viscoelastic data (shown later in Figures 1 and 2). 
 
    Table 1. Characteristics of PS and PtBS samples. 

sample codea 10-3Mw Mw/Mn nK
b 

PS27c 27.1 1.02 30 
PtBS53d 53.4 1.03 35 

    a: sample code indicates molecular weight in unit of 1000.  
    b: number of Kuhn segments per chain 
    c: synthesized/characterized in ref. 36; PS27 is a precursor of a tadpole sample examined therein. 
    d: synthesized/characterized in ref. 37 
 

   The number of Kuhn segments per chain, nK = M/MK shown in Table 1, was calculated from the 

chain molecular weight M (Mw) and the molecular weight of the Kuhn segment MK: MK ≅ 900 for PS 

and MK ≅ 1500 for PtBS. 39  These MK values, characterizing the chain conformation, are very close 

to the molecular weight of the Rouse segment that serves as the smallest stress-sustaining unit in the 

rubbery relaxation process: MR ≅ 850 and 1500 for PS and PtBS, as obtained from rheo-optical 

analysis by Inoue and coworkers. 40  Thus, the number of Rouse segments per chain, nR = M/MR, is 

almost indistinguishable from nK. 

   The PS27 and PtBS53 samples have similar nK values and thus their maximum chain stretch 

ratios, λmax = 

€ 

nK  (≅ 6), are very close to each other.  In fact, this study chose these samples with 

a specific motivation of testing the elongational behavior of chemically different unentangled melts 

that were supposed to exhibit the FENE effect to a similar magnitude (as determined by λmax) but 

possibly show different magnitudes of the stretch/orientation-induced reduction of the friction ζ of 

the Rouse segment.  
 

2-2. Measurement. 

   The PS27 and PtBS53 samples were vacuum-molded into disks at temperatures well above their 

glass transition temperatures Tg and subjected to rheological measurements.  The disk diameter, 

either 7.9 mm or 5.0 mm, matched the measuring geometry explained below.  After each 

measurement, lack of degradation of the samples was confirmed from measurements of refractive 



 8 

index increment and low-angle laser light scattering intensity utilizing RI-8020 (Tosoh) and 

Viscotek 270 (Malvern) connected in series to GPC instrument (CO-8020 and DP-8020; Tosoh). 

   For the PS27 and PtBS53 samples, linear viscoelastic (LVE) oscillatory shear measurement was 

conducted with a laboratory rheometer, ARES-G2 (TA Instruments), at several temperatures above 

Tg.  A cone-and-plate fixture of the diameter of 7.9 mm and the gap angle of 0.1 rad was used. The 

data of the storage and loss moduli, 

€ 

G'(ω) and 

€ 

G"(ω), were summarized as the master curve 

reduced at a reference temperature, Tr = 115˚C for PS27 and Tr = 170˚C for PtBS53, to confirm lack 

of entanglement for the PS27 and PtBS53 samples. Shear flow experiments were also conducted at 

those Tr to measure the shear stress growth coefficient η+(t) and the zero-shear viscosity η0 (= 

€ 

[η+]t→∞ ) in the LVE regime.  This η+(t) was utilized as the reference data for the elongational stress 

growth explained below.  

   For the PS27 and PtBS53 samples at respective Tr mentioned above, elongational measurements 

were conducted with a filament-stretch rheometer, VADER1000 (Rheo Filament ApS; developed and 

commercialized by Hassager’s group).  The parallel plate geometry of the diameter of 6 mm was 

used. The samples, pre-molded in vacuum into disks of a diameter of 5 mm, were gripped by the 

plates and uniaxially stretched into filaments at constant Hencky strain rates 

€ 

˙ ε  up to the maximum 

strain of ε = 2.5 or higher (up to the sample rupture).  The relaxation measurement was also 

conducted by stopping the flow at a pre-set strain, ε = 2.5.  The constant rate elongation (for the 

stress growth) and time-independent strain (for the stress relaxation) were achieved through 

measurement of the filament diameter and feedback to the plate displacement, both being automated 

in VADER 1000.   

   The tensile stress σE measured on start-up of the constant-rate flow, in the steady flow state, and 

after cessation of the flow at ε = 2.5, respectively, were summarized as the elongational stress 

growth coefficient 

€ 

ηE
+(t, ˙ ε )  (=

€ 

σE
+(t, ˙ ε ) / ˙ ε ), the steady state elongational viscosity 

€ 

ηE( ˙ ε ), and the 

relaxing stress ratio 

€ 

σE
−(t)/

€ 

σE
−(tr )  with tr (= 0.4 s) being a time required for accurate feedback of the 

plate position for keeping the constant strain (ε = 2.5) after the flow cessation.   

     
  

3. RESULTS 

3-1. Linear Viscoelastic Behavior. 

   Figures 1 and 2, respectively, show master curves of the 

€ 

G'(ω) and 

€ 

G"(ω) data of PS27 and 
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PtBS 53 reduced at Tr = 115˚C and 170˚C, respectively.  Data measured at different temperatures 

are shown with different symbols (see Figure caption), and the shift factor aT utilized to construct the 

master curves is shown in inset. 

   
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Storage and loss moduli of PS27 reduced at Tr = 115˚C. The data measured at different 
temperatures are shown with different symbols, circle (115˚C = Tr), plus (120˚C), triangle (130˚C), and 
square (130˚C), and the shift factor aT for those data is shown in the inset. Green curves indicate glassy 
contribution to the modulus evaluated from literature data. 9 

 
Figure 2. Storage and loss moduli of PtBS53 reduced at Tr = 170˚C.  The data measured at different 
temperatures are shown with different symbols, triangle (165˚C), circle (170˚C = Tr), plus (175˚C), and 
square (180˚C), and the shift factor aT for those data is shown in the inset. Green curves indicate glassy 
contribution to the modulus evaluated from literature data.11 
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   As noted in Figures 1 and 2, the time-temperature superposition (tTS) does not work well in the 

rubber-to-glass transition regime (as can be noted more clearly for PS27 because of a wider range of 

ω covered for PS27), because the glassy and rubbery relaxation processes having different activation 

energies contribute to the data at high ω to a comparable extent, as demonstrated by Inoue and 

coworkers.9-11,40  Nevertheless, the unentangled Rouse-like character of PS27 and PtBS53 (having 

M < Mc ≅ 2Me) is clearly noted at low ω where the data are dominantly contributed from the rubbery 

relaxation process and tTS works well.  The terminal relaxation time of the samples are evaluated 

from those data as 
 

 

€ 

τ =
G'
ωG"
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ ω→ 0
= 30 s (for PS27 at 115˚C),  28 s (for PtBS53 at 170˚C)  (1) 

 
This 

€ 

τ , being defined as the second-moment average relaxation time2,5 (= 

€ 

Σp 
hpτ p

2 /Σp 
hpτ p  with 

hp and τp being the intensity and characteristic time of p-th viscoelastic relaxation mode), is a little 

shorter than the longest relaxation time 

€ 

τ1
eq  evaluated from the stress relaxation data after cessation 

of flow in the LVE regime (shown later in Figures 6 and 7),    
 
 

€ 

τ1
eq  = 43 s (for PS27 at 115˚C),  40 s (for PtBS53 at 170˚C)   (2) 

 

The 

€ 

τ /

€ 

τ1
eq  ratios of PS27 and PtBS53 are close to the ratio expected for Rouse chains5 (= π2/15 in 

the absence of molecular weight distribution), confirming the unentangled character of these 

samples. The 

€ 

τ1
eq  values (eq 2) are later utilized to evaluate the Weissenberg number of 

elongational flow. 

   Inoue and coworkers conducted rheo-optical measurements for high-M PS9 and high-M PtBS11 

to separate the complex Young’s modulus (E*) data into glassy and rubber contributions with the 

aid of the modified stress-optical rule.  This glassy contribution, being converted to the shear 

modulus Gg*(ω) = Eg*(ω)/3 and shifted to Tr of our PS27 and PtBS53 (with the aid of the aT data 

for the glassy Eg* reported by Inoue and coworkers), is shown in Figures 1 and 2 with the green 

curves.  The data of PS27 and PtBS53 approach this glassy modulus with increasing ω, which 

allows us to estimate the characteristic time of the glassy relaxation τg of these samples at Tr as 

reciprocal of the angular frequency at the crossing point of the 

€ 

Gg '  and 

€ 

Gg"  curves:    
 
 τg = 

€ 

1.3 ×10−3  s (for PS27 at 115˚C),  

€ 

0.32 ×10−3  s  (PtBS53 at 170˚C)  (3) 
 

These τg values are utilized later in discussion of the elongational behavior. 
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   In Figures 1 and 2, black dashed lines indicate the low-ω asymptote of 

€ 

G" (= ωη0), with the 

zero-shear viscosity η0 being determined directly from the steady shear experiments at 

€ 

˙ γ  = 0.01 s-1 

(in the LVE regime).  This asymptote agrees well with the 

€ 

G" data at low ω, as required from the 

phenomenological framework of LVE.  Comparing these black dashed lines with the green curves 

at low ω, we note that the glassy contribution (green curves) to η0 of the PS27 and PtBS53 samples 

is ~5 %.  This glassy contribution is later incorporated in the calculation of the elongational 

viscosity based on the bead-spring model considering the FENE effect (FENE-PM model).34 

 

3-2. Nonlinear Elongational Behavior. 

   In Figures 3 and 4, respectively, the elongational stress growth coefficient 

€ 

ηE
+ (t, ˙ ε ) measured 

for PS27 and PtBS53 at various Hencky strain rates 

€ 

˙ ε  is plotted double-logarithmically against the 

time t after start-up of flow; see unfilled circles with the color specifying the 

€ 

˙ ε  value.  The flow 

was not well stabilized immediately after the start-up, mainly because of limitation of the feedback 

in the instrument for starting the plate displacement from the quiescent state.  Thus, the plots of the 

€ 

ηE
+ (t, ˙ ε ) data are shown at t > 1 s where this feedback worked well. Bright green squares indicate 

the growth coefficient 

€ 

ηE0
+ (t) ≡  3η+(t) in the LVE regime, with η+(t) being the shear stress growth 

coefficient measured at 

€ 

˙ γ  = 0.01 s-1.  At sufficiently short t where the strain remains small and no 

significant nonlinearity emerges, all data points (circles and squares) agree with each other within 

the experimental uncertainty.  This feature is indicative of satisfactory accuracy of those data. 

   In Figures 3 and 4, the colored solid curves and asterisks (

€ 

∗) indicate 

€ 

ηE
+ calculated from 

FENE-PM model32 modified for the ζ-reduction, as explained later in detail.  The thick black 

curve shows 

€ 

ηE0
+ (t)  in the LVE regime calculated from that model.  This black curve agrees with 

the measured 

€ 

ηE0
+ (t)  (bright green squares) in the entire range of t within the experimental 

uncertainty.  We also note that all colored curves converge to the black LVE curve at sufficiently 

short t where the strain remains small and no significant nonlinearity emerges in the calculation, as 

similar to the behavior of the data. 
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Figure 3.  Elongational stress growth coefficient 

€ 

ηE
+ (t, ˙ ε )  of PS27 at 115˚C (colored circles).  Bright green 

squares show the linear viscoelastic elongational behavior, 

€ 

ηE0
+ (t) ≡  3η+(t) with η+(t) being the shear stress 

growth coefficient of PS27 in the LVE regime measured at 115˚C. Colored asterisks (

€ 

∗) and curves show 

€ 

ηE
+ (t, ˙ ε )  

calculated from FENE-PM model modified for anisotropic and isotropic ζ-reduction, respectively. Black solid and 
dashed curves, respectively, show the FENE-PM calculation in LVE regime with and without the glassy 
contribution.  For further details of calculation, see text.  

 
Figure 4.  Elongational stress growth coefficient 

€ 

ηE
+ (t, ˙ ε )  of PtBS53 at 170˚C (colored circles). Bright green 

squares show the linear viscoelastic elongational behavior, 

€ 

ηE0
+ (t) ≡  3η+(t) with η+(t) being the shear stress 

growth coefficient of PtBS53 in the LVE regime measured at 170˚C.  Colored asterisks (

€ 

∗) and curves show 

€ 

ηE
+ (t, ˙ ε )  calculated from FENE-PM model modified for anisotropic and isotropic ζ-reduction, respectively.  

Black solid and dashed curves, respectively, show the FENE-PM calculation in LVE regime with and without the 
glassy contribution.  For further details of calculation, see text.   
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   For both PS27 and PtBS53, the 

€ 

ηE
+ (t, ˙ ε ) data at low 

€ 

˙ ε  = 0.01 s-1 (gray circles in Figures 3 and 

4) are close to the 

€ 

ηE0
+ (t)  data (bright green squares) in the entire range of t, confirming that the 

elongational behavior at such low 

€ 

˙ ε  (≅ 0.4/

€ 

τ1
eq  with 

€ 

τ1
eq  being the longest relaxation time in the 

LVE regime; cf. eq 2) is not significantly different from the LVE behavior.  This almost linear 

response vanishes and the transient hardening behavior prevails at higher 

€ 

˙ ε .  Those 

€ 

ηE
+ (t, ˙ ε ) data 

become stationary at long t, and the steady state elongational viscosity 

€ 

ηE( ˙ ε ) is evaluated as 

€ 

ηE
+ (t, ˙ ε ) at such long t.   

   In Figure 5, this 

€ 

ηE( ˙ ε ) is normalized by the “zero-elongation” viscosity 

€ 

ηE0  = 3η0 (with η0 

being the zero-shear viscosity explained for Figures 1 and 2) and double-logarithmically plotted 

against the Weissenberg number (normalized strain rate) Wi = 

€ 

˙ ε τ1
eq  defined with respect to 

€ 

τ1
eq  

(eq 2); see large blue circles.  The curves and small circles indicate the ηE/ηE0 ratio calculated with 

the FENE-PM model34 modified for ζ-reduction, as explained later in detail.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 5.  Steady state elongational viscosity ηE of (a) PS27 at 115˚C and (b) PtBS53 at 170˚C.  The ηE data 
are normalized by ηE0 = 3η0 (η0 = zero-shear viscosity) and plotted against the Weissenberg number Wi = 

€ 

˙ ε τ1
eq , 

with 

€ 

τ1
eq  being the longest relaxation time in the LVE regime measured after cessation of elongational flow.  

The small red circle and red curve indicate the ηE/ηE0 ratio calculated from FENE-PM model modified for 
anisotropic and isotropic ζ-reduction, respectively.  Black curve shows the FENE-PM calculation without 
ζ-reduction.  For further details of calculation, see text.  
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   As clearly noted in Figure 5, both PS27 and PtBS samples exhibit an increase of the ηE/ηE0 ratio 

(strain-rate-hardening) on an increase of Wi from ~0.4 up to 2-3 and then a decrease of this ratio 

(strain-rate-softening) on a further increase of Wi.  For the unentangled PS27 and PtBS53 chains, 

the longest relaxation time 

€ 

τ1
eq  corresponds to the Rouse motion of the chain as a whole.  For 

such unentangled chains, the established molecular theories3,34,35,41-43 suggest that the hardening 

under elongational flow emerging at Wi ~ 0.5 is almost exclusively related to the FENE effect due 

to the chain stretch, and experiments3,41-43 (mostly conducted for dilute/semidilute solutions) support 

this assignment.  Consequently, the softening (not occurring in those solutions) can be related to 

the ζ-reduction in melts that tends to suppress the chain stretch.  Thus, the hardening seen for the 

PS27 and PtBS53 samples is attributed to the FENE effect weakened by the ζ-reduction of the 

Rouse segment, and the softening, to the ζ-reduction that overwhelms the FENE effect at high Wi.  

It should be emphasized that lack of entanglement nonlinearities in the PS27 and PtBS53 samples 

allows us to make this simple assignment without any ambiguity. (For entangled chains, the longest 

viscoelastic relaxation time 

€ 

τ1
eq  is longer than the Rouse relaxation time of the chain and thus the 

entanglement nonlinearity is always superimposed on the nonlinearities due to the FENE effect and 

ζ-reduction, which often disturbs simple experimental assignment of the latter nonlinearities.) 

   Both FENE effect and ζ-reduction accelerate the stress relaxation just after cessation of 

elongational flow, as demonstrated by Yaoita and coworkers22 (for entangled PS).  We examined if 

this acceleration occurs also for our unentangled melts after cessation of the flow at the strain ε = 

2.5.  The results are summarized in Figures 6 and 7 where the relaxing tensile stress 

€ 

σE
−(t), 

normalized by the stress 

€ 

σE
−(tr )  at a reference time tr = 0.4 s, is semi-logarithmically plotted 

against the time after cessation of the flow; see circles with the color specifying the 

€ 

˙ ε  value of the 

flow.  (In the relaxation experiment, the plate displacement at t < 0 is stopped once and then 

immediately re-started at t = 0 to keep the constant strain (ε = 2.5) at t > 0.  Because of the 

instrumental limitation in the feedback for this re-start, the data were accurately measured only at t 

≥ tr.)  The asterisks (

€ 

∗) and curves indicate the 

€ 

σE
−(t)/

€ 

σE
−(tr ) ratio calculated from FENE-PM 

model34 modified for the ζ-reduction, as explained later in detail. 
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Figure 6.  Tensile stress 

€ 

σ E
− (t)  after cessation of flow at ε = 2.5 measured for PS27 at 115˚C. The 

€ 

σ E
− (t)  data 

are normalized by the stress at the reference time during the relaxation, tr = 0.4 s, and plotted semi-logarithmically 
against t.  Asterisks (

€ 

∗) and curves indicate the 

€ 

σ E
− (t) /

€ 

σ E
− (tr )  ratio calculated from the FENE-PM model 

modified for anisotropic and isotropic ζ-reduction, respectively.  The color of the asterisk and curve is the same as 
that of data (circle), except for the black asterisks and curves that are overlapping with the data (and not clearly 
visible if they have the same color as the data).  For further details of calculation, see text. 

 
Figure 7.  Tensile stress 

€ 

σ E
− (t)  after cessation of flow at ε = 2.5 measured for PtBS53 at 170˚C. The 

€ 

σ E
− (t)  data 

are normalized by the stress at the reference time during the relaxation, tr = 0.4 s, and plotted semi-logarithmically 
against t.  Asterisks (

€ 

∗) and curves indicate the 

€ 

σ E
− (t) /

€ 

σ E
− (tr )  ratio calculated from the FENE-PM model modified 

for anisotropic and isotropic ζ-reduction, respectively.  The color of the asterisk and curve is the same as that of data 
(circle), except for the black asterisks and curves that are overlapping with the data (and not clearly visible if they 
have the same color as the data).  For further details of calculation, see text. 
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   As clearly noted in Figures 6 and 7, the stress relaxation just after the flow cessation is 

accelerated and this acceleration is stronger for cessation of faster flow, which confirms the effects 

of FENE and ζ-reduction on the initial relaxation.  The strong, initial acceleration just after 

cessation of fast flow appears to be mostly due to the ζ-reduction, as suggested from a model 

analysis explained later. For example, for the highest 

€ 

˙ ε  (= 0.5 s-1) examined, the initial 

acceleration due to the ζ-reduction deduced from the analysis is stronger than that due to the FENE 

effect by a factor of ~30 and ~20 for PS27 and PtBS53, respectively, as shown later in Figure 17.   

   In Figures 6 and 7, we also note that the relaxation rate at long t (> 

€ 

τ1
eq  ≅ 40 s) becomes 

independent of 

€ 

˙ ε  because these effects due to the chain stretch fade out on relaxation of the stretch.  

From the slope of the 

€ 

σE
−(t)/

€ 

σE
−(tr )  plots at such long t, the longest relaxation time 

€ 

τ1
eq  being 

insensitive to 

€ 

˙ ε  (and identical to that in the LVE regime) was evaluated.  The 

€ 

τ1
eq  values thus 

obtained for PS27 and PtBS53 have been summarized in eq 2. 

   Here, it is informative to compare the nonlinearities observed for PS27 and PtBS53 samples.  

These samples have a similar number of Kuhn segments per chain, nK (cf. Table 1), and a very 

similar value of the maximum stretch ratio of the chain, λmax = 

€ 

nK  (≅ 6).  Thus, the magnitude 

of the FENE effect determined by this λmax should be similar for the PS27 and PtBS53 chains.  

Nevertheless, on start-up of flow and in the steady state, the hardening at intermediate Wi is weaker 

and the softening at higher Wi is stronger for PS27 than for PtBS53, as clearly noted in Figures 3-5.  

(The maximum ηE/ηE0 ratio observed for PS27 and PtBS53 is ~2 and ~3; cf. Figure 5.)  This fact 

strongly suggests that the ζ-reduction (of the Rouse segment) at large Wi is stronger for PS27 

thereby giving a smaller ηE/ηE0 ratio (Figure 5) and a smaller 

€ 

ηE
+(t, ˙ ε ) /ηE0

+ (t)  ratio (Figures 3 and 4) 

as compared to PtBS53.  The corresponding difference in the stress relaxation is not so clearly 

noted in Figures 6 and 7 but is confirmed in the analysis presented in the following sections.   

   The above observation strongly suggests that the magnitude of ζ-reduction is dependent on the 

chemical structure of the chain.  The side group of the PtBS chain, p-tert-butyl phenyl group, is 

much more bulky compared to the phenyl group of the PS chain, which would have resulted in 

screening of the interaction between the chain backbones to disturb the local packing of the chain 

segments.  In other words, the bulky side group of PtBS appears to behave more or less similar to 

a solvent thereby suppressing the ζ-reduction.  This argument is consistent with the observation 

for entangled PS solutions in oligomeric solvents13,14,44 and with the difference noted between 
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entangled melts of PS and PnBA (the ζ-reduction being weaker for the latter having a larger side 

group).25 

   In summary from a purely experimental point of view, the data presented in Figures 3-7 are not 

infected by the entanglement nonlinearities and thus have allowed us to confirm, to the first time, 

the FENE effect and ζ-reduction for unentangled melts as well as the non-universality of 

ζ-reduction (changes of the magnitude of ζ-reduction with the chemical structure of the chain).  

These results should serve as a firm base for improving the discussion of ζ-reduction in entangled 

melts (and of the non-universality of the relaxation therein) explained in Introduction.   

   However, the above experimental results themselves do not allow us to resolve quantitative 

details of ζ-reduction, for example, a quantitative difference in the magnitudes of ζ-reduction in 

PS27 and PtBS53 melts.  For investigation of such details, we need to utilize a reliable molecular 

model describing the FENE effect and modify it for ζ-reduction. This modification and the 

corresponding model calculation are presented in the following DISCUSSION section.   

 

4. DISCUSSION 

   For the unentangled PS27 and PtBS53 melts, we may start with a FENE bead-spring model, 

modify it for ζ-reduction, and analyze the data with the aid of this modified model to extract 

quantitative details of ζ-reduction.  There are several FENE bead-spring models that treat the 

FENE spring stiffness differently.34,35,45  Among those models, this study adopts the FENE-PM 

bead-spring model formulated by Wedgewood, Ostrov, and Bird34 for the following reasons.  This 

model includes an approximation of pre-averaging the FENE spring strength for all springs in the 

chain. However, its prediction for the tensile stress in the steady state is close to that obtained from 

the more rigorous FENE-P model without this pre-averaging.34  More importantly for our current 

purpose, the FENE-PM model allows the orientation function of the chain to be decomposed into 

eigenmodes because of the pre-averaging approximation (whereas the FENE-P model does not), 

and the FENE-PM constitutive equations for the stress of respective eigenmodes explicitly include 

the segmental friction ζ so that the ζ-reduction can be easily incorporated in those equations. 

   Thus, in the followings, we modify the FENE-PM constitutive equation for the ζ-reduction and 

analyze the modified equation, firstly for the steady elongational flow and then for start-up and 

cessation of the flow, to examine if the modified FENE-PM model can consistently mimic the data 
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of the unentangled melts in the steady and transient states shown in Figures 3-7.  It should be 

emphasized that we are attempting to extract, through this analysis, some quantitative details of 

ζ-reduction such as the relative ratio of the magnitude of ζ-reduction in the PS27 and PtBS53 melts.  

No attempt is made for formulating a complete molecular model that fully describes the data. 

Obviously, our analysis starts with a particular model (FENE-PM model) and does not necessarily 

resolve all details of the ζ-reduction, as discussed later in more detail.  Nevertheless, we believe 

that our analysis is meaningful as a milestone for better understanding of the ζ-reduction.   

   Before proceeding to the analysis of the modified FENE-PM model, we need to explain the 

symbols utilized in the analysis.  The symbols in our analysis are chosen to be identical to those in 

our recent papers22,46 and are not necessarily identical to those utilized in the original paper34 for the 

FENE-PM model: For example, we prefer to use the symbols κ, σ, and τ  for the FENE spring 

strength, the stress, and the relaxation time, respectively, whereas the original paper34 used these 

symbols for the velocity gradient tensor, the dyadic of end-to-end vector of the spring, and the stress.  

To avoid confusion, a reference table of those symbols is given in Appendix A. 
 

4-1. Constitutive Equation of Modified FENE-PM Model. 

   Following Ref.34, we consider a system of unentangled bead-spring chains each being 

composed of N beads and N−1 FENE springs. Each spring is composed of g Kuhn segments, and 

the number of Kuhn segments per chain, nK, is related to g and N as nK = (N−1)g.  Then, the 

stretchability parameter of the spring is given by  
 

 

€ 

b ≡
κH{glK}

2

kBT
= 3g =

3nK
N −1

      (4) 

where kB and T denote the Boltzmann constant and absolute temperature, 

€ 

lK  is the step length of 

the Kuhn segment, the factor 

€ 

glK  represents the full-stretch length of the FENE spring, and κH = 

€ 

3kBT /glK
2  is the strength of a Hookean spring that has the mean-square end-to-end distance 

€ 

glK
2  at 

equilibrium.  In the FENE-PM model,34 all FENE springs are approximated to have the same 

strength κ = fFENEκH and the FENE factor fFENE, expressing the enhancement of the chain tension due 

to the FENE effect, is given by 
 

 

€ 

fFENE =
1

1− u2 /{glK}
2        (5) 

Here, 

€ 

u2  is the mean-square end-to-end distance averaged for all FENE springs under 
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flow/deformation.  The rheological behavior in the steady flow state calculated with the above 

approximation is satisfactorily close to the behavior obtained from the more rigorous FENE-P 

model (because the conformation deduced from the FENE-P model is more or less similar for all 

springs).34 

   The FENE-PM model gives the constitutive equation that describes time evolution of the stress 

tensor σ j associating to j-th eigenmode of orientation function of the chain (j = 1, 2, .., N−1).  

According to the definition of the stress given in Ref.34 for the case of uniaxial elongation in z 

direction, the zz components of this σ j have negative values, and the xx and yy components, positive 

values. These signs of the stress components are just opposite to those used in the other definition,4-6 

but the following calculation is consistent with the definition in Ref.34 to give correct results.   

   Under the elongation involving no rotational component of motion, the constitutive equation of 

σ j is expressed in terms of just a few parameters, the strain rate 

€ 

˙ ε , fFENE (eq 5), and the relaxation 

time 

€ 

τ j
[R] of j-th Rouse eigenmode being given by 

 

 

€ 

τ j
[R] =

ζ
2κHa j

= τ1
[R] sin2(π /2N)

sin2( jπ /2N)
 with 

€ 

a j = 4sin2( jπ /2N)    (6) 

In eq 6, the factor aj denotes the Rouse eigenvalue of j-th mode.  In the original FENE-PM 

model,34 the friction coefficient ζ is a constant identical to ζeq at equilibrium.  However, we can 

treat ζ as a variable that is the same for all segments (which is consistent with the pre-averaging 

approximation for the spring constant in the model) but changes its value with the chain 

stretch/orientation, or, with the stress.  Adopting this treatment of ζ, we can re-formulate the 

constitutive equation (through a formal integration in the configurational space explained in Ref.34) 

for the normalized stress tensor, 

€ 

˜ σ j  = σ j /νkBT with ν being the number density of the chains.  

Specifically, for the elongation in z direction, the constitutive equations for the xx, yy, and zz 

components (diagonal components) of the stress tensor, 

€ 

˜ σ j,xx ,  ˜ σ j,yy , and 

€ 

˜ σ j,zz , are written as  
  
 FENE-PM plus anisotropic ζ-reduction: 
 

 

€ 

˜ ˙ σ j,ξξ = −
X

rξτ j
eq + ˙ ε −

˙ X 
X

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

˜ σ j ,ξξ + ˙ ε −
˙ X 
X

  (ξ = x, y)    (7) 

 

 

€ 

˜ ˙ σ j,zz = −
X

rzτ j
eq − 2 ˙ ε −

˙ X 
X

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

˜ σ j ,zz − 2 ˙ ε −
˙ X 
X

     (8) 
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with   

 

€ 

X(t, ˙ ε ) =
fFENE(t, ˙ ε )
fFENE

eq  with 

€ 

fFENE
eq =

b + 3
b

     (9) 

 

€ 

τ j
eq =

ζeq
2ƒFENE

eq κHa j

=
1

ƒFENE
eq τ j

[R]      (10) 

 

 

€ 

rξ (t, ˙ ε ) =
ζξ (t, ˙ ε )
ζeq

 (≤1);   ξ = x,y,z       (11) 

 

The factor X (eq 9) is a normalized FENE factor defined on the basis of eq 5, and 

€ 

τ j
eq  (eq 10) is the 

equilibrium relaxation time of j-th eigenmode of the FENE-PM model that is directly related to the 

Rouse relaxation time 

€ 

τ j
[R]  (eq 6). Finally, 

€ 

rξ  (eq 11) denotes the ζ-reduction ratio for the 

segmental motion in ξ direction: Simulations by Hunt and Todd47 and by Ianniruberto and 

coworkers21 suggest that the ζ-reduction under elongational flow occurs anisotropically in z and 

other two directions.  Considering their simulation results, we have assumed the anisotropic 

ζ-reduction in eqs 7, 8 and 11.  The x and y directions are equivalent under the uniaxial elongation, 

and we have considered this equivalence in the constitutive equation (eq 7). 

   Here, a comment needs to be made for this anisotropy in ζ-reduction.  Under the elongation, 

the segmental motion should occur differently in z direction and other two directions (as also 

suggested from the simulation21,47) and thus we have considered this difference in eqs 7, 8, and 11.  

Nevertheless, for our PS27 and PtBS53 melts, it turned out that the calculation based on eqs 7, 8, 

and 11 (explained later) give almost identical elongational behavior for the two cases of presence 

and absence of the anisotropy in the ζ-reduction, as explained later in more detail.  Thus, the 

magnitude of anisotropy is unknown for the PS27 and PtBS53 melts but this uncertainty introduces 

no ambiguity in our discussion presented later.  At the same time, unfortunately, this lack of 

ambiguity means that the anisotropy, quite possibly emerging in our melts, cannot be resolved from 

comparison of the elongational data and the anisotropy-insensitive calculation. 

   The FENE factor defined by eq 5 can be related to the normalized stress components as34 

€ 

fFENE = (b + 3) /b −{b(N −1)}−1Σ j=1
N −1{2 ˜ σ j,xx + ˜ σ j ,zz} (where a relationship 

€ 

˜ σ j,xx = ˜ σ j,yy  reflecting the 

equivalence of x and y directions has been utilized). Consequently, eq 9 can be rewritten in terms of 

those stress components, the number of beads per chain N, and the stretchability parameter b (eq 4):   
 

 

€ 

X =1− 1
(b + 3)(N −1) j=1

N −1

∑ 2 ˜ σ j,xx + ˜ σ j ,zz( )       (12)    
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From eqs 7 and 8 combined with eq 12, we can calculate a consistent set of X, 

€ 

˜ σ j,zz , and 

€ 

˜ σ j,xx  (=  ˜ σ j,yy )  according to the flow condition, i.e., in the steady state, or, on start-up/cessation of 

flow.  Then, the normalized tensile stress, that can be directly compared with the experimental data, 

is obtained from 

€ 

˜ σ j,zz  and 

€ 

˜ σ j,xx  as34 
 

 

€ 

˜ σ E ≡
σE

νkBT
=

j=1

N −1

∑ ˜ σ j ,xx − ˜ σ j,zz( )         (13) 

 

   The following two sections, sections 4-2 and 4-3, explain some details of this calculation.  

Readers who prefer to immediately see the message extracted from the calculation can skip those 

details and directly proceed to section 4-4. 

 

4-2. Steady State Elongational Viscosity. 

4-2-1. formulation of normalized FENE factor and elongational viscosity.   

   In the steady state, the time derivatives 

€ 

˜ ˙ σ j,xx , 

€ 

˜ ˙ σ j,zz , and 

€ 

˙ X  vanish and eqs 7 and 8 reduce to 

 

€ 

˜ σ j,xx =
rx
Wi
X

rx
Wi
X

+
a j

a1

  (1 ≤ j ≤ N−1)      (14) 

 

€ 

˜ σ j,zz =
2rz

Wi
X

2rz
Wi
X
−
a j

a1

  (1 ≤ j ≤ N−1)     (15) 

Here, 

€ 

Wi = ˙ ε τ1
eq  is the Weissenberg number defined in terms of the longest relaxation time 

€ 

τ1
eq  of 

the FENE-PM chain in the LVE regime.  In the LVE regime (at equilibrium), the ζ-reduction does 

not occur, i.e., 

€ 

rξ  = 1, but 

€ 

τ1
eq  of the FENE-PM model differs from 

€ 

τ1
[R] of the Rouse model by 

the factor of 

€ 

fFENE
eq  (cf. eq 10), because the Rouse model utilizes the Hookean spring, not the FENE 

spring.  Wi defined as above (not 

€ 

Wi[R] = ˙ ε τ1
[R] defined for the Rouse model) corresponds to the 

Weissenberg number in experiments. 

   Substituting eqs 14 and 15 in eq 12, we find an equation that self-consistently determines the 

normalized FENE factor (elasticity enhancement factor) X,  
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€ 

X =1− 2
(b + 3)(N −1)

Wi
j=1

N −1

∑ rx

rxWi +
a j

a1
X

+
j=1

N −1

∑ rz

2rzWi −
a j

a1
X

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

    (16)    

 
In eq 16, X is included in the left-hand side and also in the right-hand-side in two places (in the 

summation terms).  Thus, for a given set of known parameters, N, Wi, and b (cf. eq 4), we can 

numerically solve eq 16 to determine X given that we know the ζ-reduction ratios, rx and rz.  

Actually, for the given set of parameters, eq 16 has multiple solutions of X (because rhs of eq 16 

oscillates with an infinitely large amplitude on an increase of Wi), as explained in Appendix B in 

more detail.  We should choose the minimum value of the solutions of X satisfying a physical 

requirement that X never decreases with increasing Wi (namely, the chain is more stretched and 

stiffened under faster flow). 

   The X value obtained as above is substituted in eqs 14 and 15 to give the values of 

€ 

˜ σ j,xx  and 

€ 

˜ σ j,zz . The elongational viscosity 

€ 

ηE( ˙ ε ), normalized by 

€ 

ηE0  in the LVE regime, is calculated from 

these 

€ 

˜ σ j,ξξ  values as34 
 

 

€ 

ηE( ˙ ε )
ηE0

=
F
Wi j=1

N −1

∑ ˜ σ j ,xx − ˜ σ j,zz{ } with F =
1

2(N 2 −1)sin2(π /2N)
    (17) 

 

The factor F is obtained from the calculation in the LVE limit34 (

€ 

ηE /ηE0 →1 for 

€ 

Wi→0 ). 
 

4-2-2. assumption for ζ-reduction ratio.    

   Now we focus on the anisotropic ζ-reduction ratio 

€ 

rξ  that appears in eq 16 to determine X. 

Neither reliable experimental result nor a quantitative molecular theory is currently available for 

€ 

rξ .  

Thus, at this moment, we cannot compare, in a predictive sense, the model calculation explained 

above and the 

€ 

ηE ( ˙ ε ) /ηE (0)  data of PS27k and PtBS53k melts shown in Figure 5.  Considering 

this situation, we here test if the FENE-PM model modified for the anisotropic ζ-reduction can 

mimic the data, given that the functional form of 

€ 

rξ  is adequately assumed.  The ζ-reduction is 

expected to be stronger in z direction (elongational direction) than in the other two directions, as 

also suggested from simulations.21,47  Thus, we consider an extreme case specified as 
  

 Fully anisotropic ζ-reduction: rz < 1 and rx = 1 (no reduction in x direction) (18a) 
  

For completeness, we also consider a hypothetical, opposite extreme case,  
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 Fully isotropic ζ-reduction: rz = rx ≤ 1     (18b) 
  

The situation in our melt samples would/should be between these two extreme cases. 

   For both cases, the ζ-reduction ratio rz (and rx for the isotropic reduction case) is believed to be 

determined by the chain orientation S and the chain stretch ratio λ and thus to be a function of the 

normalized tensile stress 

€ 

˜ σ E =σE /νkBT  (~ Sλ2 with the decoupling approximation).22,25,44  

Nevertheless, for a given material in the steady flow state, 

€ 

˜ σ E  can be regarded as a function of the 

Weissenberg number Wi.  Thus, for comparison of the modified FENE-PM model with the steady 

state ηE/ηE0 data, we may assume a supposedly reasonable form of rz(Wi) as a function of Wi that 

describes monotonic decrease of 

€ 

ζz  with Wi to examine if an adequate choice of parameters in this 

function allows the modified model to mimic the 

€ 

ηE /ηE0 data.  (This rz(Wi) is later shown in 

Figure 8a as a function of 

€ 

˜ σ E .) 

    We tested several functional forms of rz(Wi) but could not find a simple analytic form being 

defined in the entire range of Wi and allowing the modified FENE-PM model to mimic the data.  

For this reason, we focused on rz(Wi) defined separately in low- and high-Wi zones,  
 
  

€ 

exp(−AWiα ) for 

€ 

Wi <Wic 
 

€ 

rz =         (19) 

  

€ 

B /Wiβ  for 

€ 

Wi >Wic   
 

€ 

Wic  is the Wi value at the boundary between the two zones, and the exponential form of rz for 

€ 

Wi <Wic guarantees 

€ 

rz →1 for 

€ 

Wi→0  as required from the definition of rz (eq 11).  Because of 

the continuity of rz and its derivative 

€ 

drz /dWi  at the zone boundary, some parameters appearing in 

eq 19 are determined by the other parameters.  Specifically, we chose A, α, and Wic as independent 

parameters that determine the remaining parameters: 
 
 

€ 

β = AαWc
α ,    B =Wc

β exp(−AWc
α )     (20) 

 
Table 2 summarizes the values of the independent parameters utilized in the following calculation.   
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Table 2. Values of parameters for rz utilized in model calculation 

  A α Wic 
fully anisotropic case 

a (eq 18a) 0.750 0.88 1.46 PS27 

fully isotropic case 
b (eq 18b) 0.734 0.89 1.46 

fully anisotropic case 
a (eq 18a) 0.760 1.21 0.86 PtBS53 

fully isotropic case 
b (eq 18b) 0.750 1.21 0.86 

a: rx = 1 (>> rz for Wi >> Wic) 
b: rx = rz (in the entire range of Wi) 
 
 

4-2-3. other parameters.    

   The calculation with the modified FENE-PM model requires the model parameters shown in 

Table 2 as well as the following parameters related to the chain structure.  The number of Kuhn 

segments per chain is experimentally known to be nK = 30 and 35 for PS27k and PtBS53k, 

respectively (cf. Table 1).  The number of the beads per chain, N, should be an integer by 

definition (N specifies the upper bound of summation over the mode index in eqs 16 and 17), and its 

value needs to be large enough to describe the relaxation mode distribution of the PS27k and 

PtBS53k chains occurring over several decades of time scale (cf. Figures 1 and 2 for the mode 

distribution in the LVE regime: This mode distribution in turn reflects the flexible character of these 

chains). Considering this point, we chose N = 16 for both PS27k and PtBS53k, which automatically 

gave the stretchability parameter b = 3nK/(N−1) = 6 and 7 (cf. eq 4) for PS27k and PtBS53k, 

respectively.  In fact, moderate changes in our choice of N does not significantly affect the ηE/ηE0 

ratio calculated from the FENE-PM model with no ζ-reduction, as demonstrated in Appendix C.  

This insensitivity to the choice of N was noted also for the model modified for ζ-reduction. Namely, 

the characteristic feature of bead-spring models in general, the slow relaxation behavior of the 

model being not too much affected by the choice of N, is noted also for the FENE-PM model 

with/without ζ-reduction.  Of course, the model has a coarse-grained character to have a sound 

meaning only in a time scale longer the characteristic time 

€ 

τN −1 of the fastest (N−1 th) relaxation 

mode considered in the model.  The choice of N = 16 explained above allows the model to have 

the sound meaning at 

€ 

t > τ15
eq = τ1

eq sin2(π /2N) /sin2( jπ /2N){ } ≅ 0.4 s (cf. eqs 6 and 10; 

€ 

τ1
eq≅ 40 s 

in the LVE regime), thereby covering the whole range of time of our interest for the stress evolution 

and relaxation of PS27 and PtBS53 melts. 
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4-2-4. glassy contribution.    

   The above model calculation, based on eqs 14-20, does not include the glassy contribution to 

the elongational viscosity ηE.  This contribution is minor (~ 5%) in the LVE flow regime at low ω 

as explained for Figures 1 and 2, but not necessarily negligible at high ω and/or short t (in both LVE 

and nonlinear regimes).  Thus, we added this glassy contribution to the viscosity calculated from 

the modified FENE-PM model.  Inoue and coworkers48,49 conducted rheo-optical analysis for PS 

melts to demonstrate that the glassy stress component exhibits significant strain-softening under 

elongation and the critical strain rate at the onset of this nonlinearity is 

€ 

˙ ε c,g  ≅ 10-3/τg, with τg being 

the glassy relaxation time in the LVE regime.  This strongly nonlinear character of the glassy 

relaxation was confirmed also from dielectric measurements under shear.50 Nevertheless, the strain 

rates examined for our PS27 and PtBS53 melts, 

€ 

˙ ε /s−1 = 0.01− 0.5 (cf. Figures 3-7), were in the 

range of 

€ 

˙ ε ≤ 6 ×10−4 /τ g (with τg being the glassy relaxation time summarized in eq 3) and thus 

below 

€ 

˙ ε c,g .  For this reason, we did not consider the nonlinearity of the glassy relaxation of those 

samples and evaluated the steady state elongational viscosity as 

€ 

ηE =ηE,FENE-ζ + 3η0,g , where 

€ 

ηE,FENE-ζ  is the viscosity calculated from the modified FENE-PM model (eqs 14-20) and 

€ 

η0,g  is the 

contribution of the glassy relaxation to the zero-shear viscosity (evaluated from the green curves in 

Figures 1 and 2). 
 

4-2-5. comparison with data.    

   For the extreme cases of fully anisotropic and isotropic ζ-reduction specified by eqs 18a and 

18b, the 

€ 

ηE /ηE0 ratio of unentangled melt samples thus calculated from the modified FENE-PM 

model and the 

€ 

η0,g  data are shown in Figure 5 with the small red circles and red curves, 

respectively.  For comparison, the 

€ 

ηE /ηE0 ratio calculated from the FENE-PM model with no 

ζ-reduction (rx = rz = 1 in eqs 14-16) is shown with the black curves.  Significant hardening due to 

the FENE effect (black curves) is largely suppressed by the ζ-reduction incorporated in the 

modified model (red circle and red curve), and this model can excellently mimic the 

€ 

ηE /ηE0 data 

in the entire range of Wi.  In fact, the parameters summarized in Table 2 were chosen so as to 

achieve this quality of agreement between the modified FENE-PM calculation utilizing eq 19 and 

the data.  (Of course, we should not assume too much molecular meaning for the functional form 

of the ζ-reduction ratio specified by eq 19 and the values of the associating parameters A, α, and 
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Wic: The quality of agreement is determined only by the rz values (not its functional form) at 

respective Wi.)  The excellent agreement between the model calculation and data in turn lends 

support to our empirical assignment explained earlier, the hardening at intermediate Wi due to the 

FENE effect weakened by the ζ-reduction and the softening at high Wi due to the ζ-reduction 

overwhelming the FENE effect. 

   In Figure 5, we also note that the model calculations for the extreme cases of fully anisotropic 

and isotropic ζ-reduction (red circle and red curve) are indistinguishable and commonly fit the data 

very well. Namely, in the extreme cases, the ζ-reduction ratio rx is quite different but the ratio rz 

giving the excellent fit is almost identical (as noted from the close coincidence of the parameter 

values for those cases; cf. Table 2). This behavior of rz reflects the following feature of eq 16: In rhs 

of eq 16, rx and rz are included only in the first and second summations, respectively. For large Wi, 

the second summation overwhelms the first summation and consequently the normalized FENE 

factor X is mostly determined by rz, so that the good fit in the two extreme cases is achieved with 

almost identical rz, as explained in more detail in Appendix B. In fact, for general cases of 

anisotropic ζ-reduction (rz < rx < 1), the same quality of fit was achieved with the same rz as utilized 

for the two extreme cases.  Furthermore, the calculated results were insensitive to the anisotropy of 

ζ-reduction also in the transient states after start-up/cessation of flow, as explained later.  These 

results indicate that the lack of information for the anisotropy in actual PS27 and PtBS53 melts 

introduces no ambiguity in our discussion of the magnitude of ζ-reduction presented below.  (At 

the same time, unfortunately, this lack of ambiguity means that the anisotropy in those melts cannot 

be resolved from comparison of our model calculation and the data.) 

   In the modified FENE-PM calculation explained above, the ζ-reduction ratio rz (and rx in the 

isotropic case; eq 18b) was treated as functions of Wi (eq 19).  Nevertheless, for each value of Wi, 

the calculation gave the normalized tensile stress per chain, 

€ 

˜ σ E =σE /νkBT  (that was converted to 

the ηE/ηE0 ratio in Figure 5), which allows us to plot rz against 

€ 

˜ σ E  and re-define rz in the steady 

flow state as a function of 

€ 

˜ σ E .  This plot, shown in Figure 8a, quantifies the magnitude of 

ζ-reduction as a function of 

€ 

˜ σ E  reflecting the chain conformation, and is utilized later in the 

transient state calculation as a reference converting 

€ 

˜ σ E  into rz.   

   For direct comparison between PS27 and PtBS53 having similar but not identical nK values (30 

and 35; cf. Table 1), Figure 8b re-plots rz against the normalized stress per Kuhn segment, 
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€ 

˜ ˜ σ E =σE /nKνkBT (= ˜ σ E /nK ).  For 

€ 

˜ ˜ σ E  < 0.3, the ζ-reduction occurs gradually for PS27 and PtBS53 

to a very similar extent for both cases of anisotropic and isotropic ζ-reduction shown with the small 

circles and curves, respectively.  The calculation based on eqs 14-20 in turn indicated that the Wi 

values are smaller than 0.94 for both PS27 and PtBS53 in the range of 

€ 

˜ ˜ σ E  < 0.3.  For Wi < 0.94, 

Figure 5 demonstrates no significant difference of the ηE/ηE0 ratio for PS27 and PtBS53.  In 

contrast, for 

€ 

˜ ˜ σ E  > 0.3, the ζ-reduction becomes considerably stronger for PS27 than for PtBS53 

(by a factor of ~5 for 

€ 

˜ ˜ σ E  = 2, for example), thereby giving smaller ηE/ηE0 ratio for PS27 for Wi > 

0.94 (Figure 5).  This quantitative difference, being pursued through the model analysis, confirms 

the changes of the magnitude of ζ-reduction with the chemical structure of the chain discussed for 

Figures 3-5. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Here, a comment needs to be made for the isotropic ζ-reduction ratio of entangled PS melts 

reported by Yaoita and coworkers22 and Ianniruberto and coworkers.21 Because their methods of 

evaluating this ratio are different from our method giving the plots in Figure 8, direct comparison 

between their and our results might introduce some artifact.  Nevertheless, it is still informative to 

 
Figure 8.  Friction reduction ratio ζz/ζeq (= rz) utilized in the modified FENE-PM calculation in the steady flow 
state. Small circles indicate the ratio for the extreme case of anisotropic ζ-reduction (rz < 1, rx = 1), and the 
curves, the ratio for isotropic ζ-reduction (rz = rx < 1).  In panel (a), the ζz/ζeq ratio is double-logarithmically 
plotted against the normalized tensile stress per chain, 

€ 

˜ σ E  = 

€ 

σ E /νkBT .  In panel (b), the ratio is plotted 
against the normalized tensile stress per Kuhn segment, 

€ 

˜ ˜ σ E  = 

€ 

σ E /nKνkBT , for direct comparison between 
PS27 and PtBS53. 
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compare the results for entangled and unentangled PS melts.  This comparison is presented in 

Appendix D.  It turned out that the isotropic ζ-reduction ratio reported by Yaoita and coworkers22 

and by Ianniruberto and coworkers21 was moderately larger (ζ-reduction was weaker), by a factor of 

2-3, compared to the ratio rz shown in Figure 8.  This result might indicate that the isotropic 

ζ-reduction ratio evaluated for entangled PS melts was a sort of average between the ratios rx and rz 

in x and z directions in the realistic case of anisotropic reduction.  However, we cannot rule out, at 

this moment, a possibility that the ratio reported for entangled PS was not of purely frictional nature 

due to the methods of evaluating the ratio, as explained in Appendix D in more detail.  The other 

possibility is related to distributions of the spring stiffness and the friction coefficient among the 

segments of a chain.  In the modified FENE-PM model, these distribution are pre-averaged, and 

the average might weigh more heavily on less frictional segments connected to more stretched 

springs than treated in literature21,22 (cf. Appendix D).  These possibilities deserve further attention. 
 

4-3. Calculation of Stress Growth and Relaxation on Start-up and Cessation of Flow. 

   The FENE-PM model modified for the ζ-reduction can satisfactorily mimic the steady state ηE 

data of the unentangled PS27 and PtBS53 samples given that the parameters (cf. Table 2) are 

adequately chosen, as explained for Figure 5.  Nevertheless, this result does not mean that the 

feature of ζ-reduction has been fully elucidated, because no transient change of ζ occurs in the 

steady flow state.  From this point of view, it is important to examine the behavior of the modified 

FENE-PM model for the stress growth and relaxation on start-up and cessation of flow.  

   For this purpose, we firstly need to specify how the ζ-reduction ratios rx and rz (eq 11) change 

with t in the transient state. In general, the segmental friction ζ is believed to be determined by the 

orientational anisotropy S and the stretch ratio λ of the chain and behave as a function of the 

normalized tensile stress 

€ 

˜ σ E  (that scales as Sλ2 within the decoupling approximation).22,25,42  Thus, 

in the simplest treatment, we can utilize the plots of rx and rz shown in Figure 8a to convert the 

time-dependent 

€ 

˜ σ E  value in the transient state into the time-dependent rx and rz values, i.e., rx = 

€ 

rx{ ˜ σ E(t)} and rz = 

€ 

rz{ ˜ σ E(t)} .  The time-dependent changes of 

€ 

˜ σ E(t) are in turn calculated from 

eqs 7 and 8 that include rx and ry.  Namely, in this treatment, eqs 7 and 8 combined with this 

“converter” (Figure 8a) are solved to give a consistent set of 

€ 

˜ σ E(t), 

€ 

rx{ ˜ σ E(t)}, and 

€ 

rz{ ˜ σ E(t)}  on 

start-up and cessation of flow.  Details of this consistent calculation are explained in Supporting 
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Information, and a brief summary is given below. 
 

4-3-1. stress growth on start-up of flow.  

   We first focus on start-up of elongational flow.  For this case, eqs 7, 8, 12, and 13 hold without 

any modification, and the initial conditions for the variables therein (just before the start-up of flow) 

are specified as 

€ 

˜ σ j,xx (0) = ˜ σ j ,zz(0) = 0, rx(0) = rz(0) = 1, and X(0) = 1.  As explained in Section A of 

Supporting Information, eqs 7, 8, and 12 allow us to express the increments of the normalized 

FENE factor, ΔX, and of the normalized stress components, 

€ 

Δ ˜ σ j ,ξξ , in a very short interval of time 

from t to t+Δt (with Δt <<

€ 

τN −1
eq ) in terms of X, 

€ 

˜ σ j,ξξ , and the normalized tensile stress 

€ 

˜ σ E  at time t.  

The results are summarized below.   

 

€ 

ΔX =
X
A

1− X − B( )           (21) 

with 

 

€ 

A = X +
2 ˙ ε Δt −1( )Sx1 + Sx2{ }

(b + 3)(N −1)
exp −˙ ε Δt{ }

         −
2˙ ε Δt +1( )Sz1 − Sz2{ }

(b + 3)(N −1)
exp 2˙ ε Δt{ }

         (22) 

  

 

€ 

B =
2 ˙ ε ΔtSx1 + Sx2{ }
(b + 3)(N −1)

exp −˙ ε Δt{ }

     −
2˙ ε ΔtSz1 − Sz2{ }
(b + 3)(N −1)

exp 2˙ ε Δt{ }

      (23) 

  

 

€ 

Sξ1 =
j=1

N −1

∑ exp −
1
τ j

eq
X

rξ{ ˜ σ E}
Δt

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
    (ξ = x,z)      (24) 

  

 

€ 

Sξ 2 =
j=1

N −1

∑ ˜ σ j ,ξξ exp −
1
τ j

eq
X

rξ{ ˜ σ E}
Δt

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
    (ξ = x,z)     (25) 

and  

 

€ 

Δ ˜ σ j ,xx = − ˜ σ j,xx +  ΔX
X

˜ σ j ,xx + ˙ ε Δt −1( ) + ( ˜ σ j,xx + ˙ ε Δt)
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
×

                           exp −
1
τ j

eq
X

rx{ ˜ σ E}
Δt

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

exp − ˙ ε Δt{ }
     (26) 
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€ 

Δ ˜ σ j ,zz = − ˜ σ j,zz +  ΔX
X

˜ σ j ,zz − 2 ˙ ε Δt −1( ) + ( ˜ σ j ,zz − 2 ˙ ε Δt)
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
×

                           exp −
1
τ j

eq
X

rz{ ˜ σ E}
Δt

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
exp 2 ˙ ε Δt{ }

    (27) 

  

The ζ-reduction ratios appearing in eqs 24-27, 

€ 

rx{ ˜ σ E} and 

€ 

rz{ ˜ σ E} at time t, are determined from 

€ 

˜ σ E  at that time with the aid of the “converter” (Figure 8a).  

   The normalized tensile stress increment in the interval Δt, 

€ 

Δ ˜ σ E = Σ j=1
N −1{Δ ˜ σ j,xx − Δ ˜ σ j ,zz} (cf. eq 

13), is evaluated from 

€ 

Δ ˜ σ j ,xx  and 

€ 

Δ ˜ σ j ,zz given by eqs 26 and 27. Accumulating this 

€ 

Δ ˜ σ E  from 

time 0 to t, we evaluated a contribution of the rubbery relaxation to 

€ 

˜ σ E  at time t (and calculated 

€ 

rx{ ˜ σ E} and 

€ 

rz{ ˜ σ E} from this 

€ 

˜ σ E , as explained above).  The glassy contribution was evaluated 

from the Gg* data in the LVE regime, because the strain rates 

€ 

˙ ε  examined in our experiments were 

below the critical rate 

€ 

˙ ε c,g  (≅ 10-3/τg) at the onset of glassy nonlinearity, as explained in the 

previous section.  Dividing a sum of these contributions by the strain rate 

€ 

˙ ε , we finally obtained 

the elongational stress growth coefficient, 

€ 

ηE
+(t, ˙ ε ) = νkBT ˜ σ E / ˙ ε , deduced from the modified 

FENE-PM model on the basis of the simplest treatment of transient changes of the ζ-reduction ratio 

€ 

rξ  (assuming that the ratio at a given time is fully determined by the stress value at that time).  

   For the PS27 and PtBS53 samples, 

€ 

ηE
+(t, ˙ ε )  thus calculated has been shown in Figures 3 and 4 

with the colored asterisk (

€ 

∗) and thick solid curve for the two extreme cases of fully anisotropic and 

isotropic ζ-reduction.  The calculated results are almost indistinguishable for these cases, because 

the normalized FENE factor X is mostly determined by the second summation in eq 16 that involves 

only rz, as explained in more detail in Appendix C. This result indicates that the uncertainty of the 

anisotropy in the ζ-reduction in PS27 and PtBS53 melts does not disturb our discussion of 

ζ-reduction, as explained earlier for Figure 5.  This discussion, made for the transient 

€ 

ηE
+(t, ˙ ε )  

data, is presented later together with that for the stress relaxation. 

   Here, a comment needs to be made for the modified FENE-PM calculation in the LVE regime.  

In Figures 3 and 4, black solid and dashed curves indicate this LVE behavior with and without the 

contribution from the glassy relaxation.  In the range of t > 1 s examined therein, this glassy 

contribution has fully grown to its steady state to have a value of ~ 0.05

€ 

ηE0 , with 

€ 

ηE0  being the 

steady state elongational viscosity of the sample in the LVE regime.  This glassy contribution is 

minor for the steady state ηE but non-negligibly contributes to the transient 

€ 

ηE
+(t)  at short times 
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(where the rubbery contribution has not largely grown), as clearly noted from the difference 

between the black solid and dashed curves in Figures 3 and 4 at t < 10 s. Considering this point, we 

have added the glassy contribution to all modified FENE-PM calculations presented in this article.  
 

4-3-2. stress relaxation after cessation of flow. 

   Now, we turn our attention to stress relaxation after cessation of flow imposed over a period of 

time t* (that corresponds to the Hencky strain ε = 2.5 in our experiments for PS27 and PtBS53).  

For this relaxation process, eqs 12 and 13 hold as they are, but eqs 7 and 8 are modified by setting 

€ 

˙ ε  

therein to be zero. The initial values of the variables therein (just before the flow cessation) are 

specified by  
 
 

€ 

˜ σ E(0) = ˜ σ E
start−up(t*),    ˜ σ j,ξξ (0) = ˜ σ j ,ξξ

start−up(t*)         (28a) 
 
 

€ 

rξ{ ˜ σ E(0)} =  rξ{ ˜ σ E
start−up(t*)},    X(0) = X start−up(t*)    (28b) 

 

Here, the superscript “start-up” stands for the variables for the start-up of flow (with the flow time  

t*).  Those initial values are calculated by accumulating ΔX and 

€ 

Δ ˜ σ j ,ξξ  specified by eqs 21-27. 

   As explained in Section B of Supporting Information, eqs 7 and 8 (with 

€ 

˙ ε  = 0) being combined 

with eq 12 give the increment of the normalized FENE factor, ΔX, in a very short interval of time 

from t to t+Δt (Δt <<

€ 

τN −1
eq ): 

 

 

€ 

ΔX =
1
A'
1− X − B'( )          (29) 

with 

 

€ 

A'=1+
B'
X

 −  1
X(b + 3)(N −1)

×

                       
j=1

N −1

∑ 2exp −
1
τ j

eq
X

rx{ ˜ σ E}
Δt

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

+  exp −
1
τ j

eq
X

rz{ ˜ σ E}
Δt

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

   (30) 

 

 

€ 

B'= 1
(b + 3)(N −1)

×

       
j=1

N −1

∑ 2σ j,xxexp −
1
τ j

eq
X

rx{ ˜ σ E}
Δt

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

+σ j,zzexp −
1
τ j

eq
X

rz{ ˜ σ E}
Δt

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

    (31) 

 
The corresponding expression of the increments of the normalized stress components, 

€ 

Δ ˜ σ j ,ξξ , is 

given by (cf. Section B of Supporting Information) 
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€ 

Δσ j ,ξξ = −σ j,ξξ +  σ j,ξξ +
ΔX
X

(σ j,ξξ −1)
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
×

                             exp −
1
τ j

eq
X

rξ{ ˜ σ E}
Δt

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
       (ξ = x,z)

      (32) 

 
Following the simplest treatment explained earlier, we determined the ζ-reduction ratios appearing 

in eqs 30-32, 

€ 

rx{ ˜ σ E} and 

€ 

rz{ ˜ σ E} at time t, from 

€ 

˜ σ E  at that time with the aid of the “converter” 

(Figure 8a).  

   The increment of the normalized tensile stress in the interval Δt, 

€ 

Δ ˜ σ E = Σ j=1
N −1{Δ ˜ σ j,xx − Δ ˜ σ j ,zz}, is 

obtained from 

€ 

Δ ˜ σ j ,xx  and 

€ 

Δ ˜ σ j ,zz given by eq 32.  Accumulating this 

€ 

Δ ˜ σ E  from time 0 to t, we 

evaluated a contribution of the rubbery relaxation to 

€ 

˜ σ E  (that determined 

€ 

rx{ ˜ σ E} and 

€ 

rz{ ˜ σ E}, as 

explained above). The glassy contribution was evaluated from the Gg* data in the LVE regime 

(because the flow in our experiments was slow enough for the glassy relaxation, as explained in the 

previous sections). Adding these contributions, we finally obtained the relaxing stress 

€ 

˜ σ E
 −(t) 

deduced from the modified FENE-PM model on the basis of the simplest treatment of the transient 

change of the ζ-reduction ratio.  (The superscript “−” explicitly shows that 

€ 

˜ σ E
 −(t)  is the stress 

relaxing after the flow cessation.)   This 

€ 

˜ σ E
 −(t) , being reduced by 

€ 

˜ σ E
 −(tr )  at the reference time 

€ 

tr  = 0.4 s, has been shown in Figures 6 and 7 with the colored asterisk (

€ 

∗) and thick solid curve for 

the two extreme cases of fully anisotropic and isotropic ζ-reduction.  The calculated result is 

almost indistinguishable for these cases because X determined by eq 16 is rather insensitive to rx, as 

briefly mentioned for Figures 3-5 and explained in more detail in Appendix C.  Thus, the 

uncertainty of the anisotropy in the ζ-reduction in PS27 and PtBS53 melts introduces no ambiguity 

in our discussion of the transient changes of the ζ-reduction presented in the following section. 

   Here, it is informative to compare the contributions of the FENE effect and ζ-reduction to the 

acceleration of relaxation immediately after cessation of flow.  For this purpose, we focus on the 

rubbery component of the tensile stress 

€ 

˜ σ E-r
 − (t) (without the glassy contribution) calculated from 

the modified FENE-PM model.  Both FENE effect and ζ-reduction accelerate the relaxation of this 

€ 

˜ σ E-r
 − (t) . As a reference, we calculate 

€ 

˜ σ E-r
 − (t)  from the original FENE-PM model without 

ζ-reduction but for the initial condition (eq 28) identical to that for the modified model.  This 

reference specifies the acceleration due only to the FENE effect in the modified model.  

Comparison of the relaxation behavior of the modified and original models is presented in 
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Appendix E.  It turned out that the initial relaxation after cessation of fast flow is much faster in 

the modified model than in the original model and thus the acceleration due to ζ-reduction is much 

more significant than that due to the FENE effect.  For example, for the highest 

€ 

˙ ε  (= 0.5 s-1) 

examined, the acceleration due to the ζ-reduction is stronger than the acceleration due to the FENE 

effect by a factor of ~30 and ~20 for PS27 and PtBS53, respectively; see Appendix E for further 

details.  The acceleration in actual PS27 and PtBS53 melts on cessation of fast flow would have 

been similarly dominated by the ζ-reduction. 
  
4-4. Transient Changes of ζ-Reduction Ratio. 

   As noted in Figures 3 and 4, the elongational stress growth coefficient 

€ 

ηE
+(t, ˙ ε )  calculated from 

the modified FENE-PM model (colored asterisks and thick curves for the cases of fully anisotropic 

and isotropic ζ-reduction) agrees with the data (circles) almost within 20%, and the calculation 

works reasonably in this sense. In particular, for the highest 

€ 

˙ ε  examined (= 0.5 s-1), the calculation 

without the ζ-reduction (thin red curve) gives too fast growth compared to the data (red circles), and 

the ζ-reduction significantly retards the growth (thick red curve) to reduce the difference between 

the calculation and data. From these results together with the close agreement between the model 

calculation and the steady state 

€ 

ηE( ˙ ε ) data (Figure 5), one might consider that the modified 

FENE-PM model works well for the unentangled PS27 and PtBS53 melts. However, this is not the 

case.  The stress growth for large Wi calculated for PS27 is considerably slower than observed; see 

the thick red curve calculated for 

€ 

˙ ε  = 0.5 s-1 in Figure 3. The corresponding difference between the 

modified FENE-PM calculation and the data is more clearly noted for the stress relaxation after 

cessation of flow, as explained below in more detail. 

   In Figures 6 and 7, we note that the calculated terminal relaxation rate, seen as the slope of the 

curves at long t ≥ 

€ 

τ1
eq  (~ 40 s; cf. eq 2), agrees well with the data.  In fact, for small 

€ 

˙ ε , the 

agreement between the calculation and data is noted in the entire range of t (because the 

nonlinearities due to the FENE effect and ζ-reduction are minor for small 

€ 

˙ ε ).  However, for large 

€ 

˙ ε , the 

€ 

˜ σ E
 −(t) /

€ 

˜ σ E
 −(tr )  ratio at long t is considerably larger for the calculation, for example, by a 

factor of ~2 (200 %) for 

€ 

˙ ε  = 0.5 s-1 in Figure 6. This difference is mostly attributed to a difference 

in the fast relaxation behavior shown in Figures 9 and 10 (that magnify the plots and curves in 

Figures 6 and 7 in the range of t < 5 s).  



 34 

  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Magnified plot of the 

€ 

σ E
− (t) /

€ 

σ E
− (tr )  ratio for PS27 at short t (< 5 s).  (The plot covering the entire range 

of t is shown in Figure 6.)  Asterisks (

€ 

∗) and curves indicate the 

€ 

σ E
− (t) /

€ 

σ E
− (tr )  ratio calculated from the FENE-PM 

model modified for anisotropic and isotropic ζ-reduction, respectively.  The color of the asterisk and curve is the 
same as that of data (circle), except for the black asterisks and curves that are overlapping with the data (and not 
clearly visible if they have the same color as the data). For clarity of the plot, data and calculation for different strain 
rates are shifted vertically by adequate amount A.  

 
Figure 10. Magnified plot of the 

€ 

σ E
− (t) /

€ 

σ E
− (tr )  ratio for PtBS53 at short t (< 5 s).  (The plot covering the entire 

range of t is shown in Figure 7.)  Asterisks (

€ 

∗) and curves indicate the 

€ 

σ E
− (t) /

€ 

σ E
− (tr )  ratio calculated from the 

FENE-PM model modified for anisotropic and isotropic ζ-reduction, respectively.  The color of the asterisk and curve 
is the same as that of data (circle), except for the black asterisks and curves that are overlapping with the data (and not 
clearly visible if they have the same color as the data). For clarity of the plot, data and calculation for different strain 
rates are shifted vertically by adequate amount A. 
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   As noted in Figures 9 and 10, the model calculation agrees well with the data at very short t (< 1 

s).  Nevertheless, for large 

€ 

˙ ε , the calculated relaxation slows down at intermediate t (up to 5 s) 

whereas this slowing down is much less significant for the data, which results in a considerable 

difference in the magnitude of the 

€ 

˜ σ E
 −(t)/

€ 

˜ σ E
 −(tr )  ratio emerging already at t = 5 s.  For example, 

for 

€ 

˙ ε  = 0.5 s-1 in Figure 9, the magnitude difference by a factor of ~2 (200 %) is noted at t = 5 s, 

and this difference survives up to the terminal relaxation zone at t > 

€ 

τ1
eq  (cf. Figure 6). 

   The above results strongly suggest failure of the simplest treatment adopted in the calculation 

that assumes 

€ 

rξ  at a time t to be fully determined by 

€ 

˜ σ E  at that t.  Namely, in actual PS27 and 

PtBS53 melts, the friction ζ of a given segment does not seem to immediately adjust itself to the 

transient change in the oriented/stretched environment: This environment is an average contributed 

from many surrounding segments, and its transient change is unequivocally reflected in the change 

of 

€ 

˜ σ E  with t. The given segment adjusts itself to this transient change of the environment, but this 

adjustment requires motion of that segment for exploring all configurations allowed by the change 

in the environment, and would occur with a delay.  Because of this delay, the change of ζ of the 

given segment could be slower than the change of 

€ 

˜ σ E  (~ Sλ2, with S and λ being the orientational 

anisotropy and stretch ratio averaged for many surrounding segments), thereby leading to the failure 

of the simplest treatment considering no delay.   

   This argument is consistent with the observed stress growth and relaxation behavior: On start-up 

of flow, ζ decreases from ζeq at equilibrium in both experiment and modified FENE-PM calculation.  

However, in the calculation adopting the simplest treatment of ζ, this decrease occurs more quickly 

compared to the experiment, which would have led to the slower growth of the calculated 

€ 

ηE
+(t, ˙ ε )  

at large 

€ 

˙ ε  compared to the experiment; cf. Figures 3 and 4.  (The faster ζ-reduction in the 

modified FENE-PM calculation tends to stretch the chain less efficiently in the transient state to 

result in this slower growth.)  Correspondingly, after the flow cessation, ζ increases from ζflow 

under flow toward ζeq but this increase is faster in the modified FENE-PM calculation than in the 

experiment, which led to the slower relaxation of the calculated 

€ 

˜ σ E
 −(t) /

€ 

˜ σ E
 −(tr )  ratio at intermediate 

t for large 

€ 

˙ ε ; cf. Figures 9 and 10.  (At sufficiently long t where ζ coincides with ζeq in both 

calculation and experiment, the calculated relaxation rate agrees with the observed terminal 

relaxation rate, 

€ 

1/τ1
eq ; cf. Figures 6 and 7) 

   This argument suggests that the description of the ζ-reduction and of the corresponding 
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nonlinear stress growth/relaxation can be improved if the delay in the change of ζ (reflecting the 

segment motion required for adjustment of ζ) is properly accounted in the molecular model(s) 

and/or simulation.  This improvement, possibly achieved through a partially non-mean-field 

treatment of the segment friction in the model/simulation, is considered as an important subject of 

future work.  

   At the same time, we also note that the above argument is totally based on the starting model in 

our analysis, the FENE-PM model with the pre-averaging approximation for the spring stiffness. If 

this approximation severely fails in the actual PS27 and PtBS53 melts, we need to consider a 

distribution of the spring stiffness in the chain according to the stretch of respective springs. This 

distribution leads to a distribution of the local stress of the springs and consequently to a 

distribution of the friction coefficient ζ along the chain backbone.  These distributions might allow 

less stretched (less stiffened) springs and more frictional segments to dominate the transient 

rheological responses to reduce the difference between the calculation and the data in the transient 

state.  This possibility is to be also examined in future work together with the possibility of the 

delay in the change of ζ explained above. 

 

4. CONCLUDING REMARKS 

   In this study, we have examined nonlinear elongational rheology of unentangled PS27 and 

PtBS53 melts having nearly the same number of Kuhn segments per chain, nK = 30 and 35.  For 

both PS27 and PtBS53, the steady state elongational viscosity ηE exhibited the strain-rate-hardening 

followed by strain-rate-softening on an increase of the Weissenberg number Wi ≥ 0.3.  For these 

unentangled melts, the hardening was unequivocally related to the FENE effect weakened by the 

orientation/stretch-induced ζ-reduction, and the softening, to the ζ-reduction overwhelming the 

FENE effect.  Thus, the ζ-reduction, speculatively discussed for entangled melts so far, was 

experimentally confirmed, to the first time, for unentangled melts.   

   Quantitatively, the strain-rate-hardening at intermediate Wi was weaker and the 

strain-rate-softening at higher Wi was stronger for PS27 than for PtBS53, despite the similarity of 

their nK values.  This result suggested that the magnitude of ζ-reduction depends on the chemical 

structure of the chains.  For a further test of this dependence on the chemical structure, the 

FENE-PM bead-spring model was modified for the ζ-reduction in an empirical way, with an 
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assumption that ζ at a given time is fully determined by the chain orientation S and the stretch λ at 

that time and thus by the tensile stress 

€ 

˜ σ E  (~ Sλ2).  This modified model was able to excellently 

mimic the steady state ηE data (given that the parameters describing the ζ-reduction were properly 

chosen). The ζ-reduction utilized in this modification was stronger for PS27 than for PtBS53, which 

lends support to the argument that the bulky side group of PtBS serves as a “solvent” to screen the 

packing interaction between the chain backbones thereby weakening the ζ reduction.   

   Nevertheless, the same modified model failed to describe the stress growth and relaxation data 

on start-up and cessation of fast elongational flow, despite its success in fitting the steady state ηE 

data.  This failure suggests a possibility that transient changes of ζ in the real materials (PS27 and 

PtBS53) during the stress growth and relaxation are delayed compared to the stress evolution.  

Namely, the segmental friction ζ in PS27 and PtBS53 melts at a given time appears to be not fully 

determined by the chain stretch/orientation (reflected in 

€ 

˜ σ E ) at that time but affected by the transient 

changes of the stretch/orientation, with the latter effect vanishing in the steady state (thereby 

allowing the model to mimic the steady state ηE data). This effect of the transient changes in the 

chain stretch/orientation on ζ can be related to the local chain motion (segment motion) necessary 

for adjusting ζ to the transient changes of the orientation/stretch in the environment: The time 

necessary for this motion would/should result in the delay in the change of ζ.  The friction is 

defined only when the segment moves, so that the ζ-reduction appears to be linked, by definition, to 

the local chain motion for achieving this adjustment.  Thus, the description of the ζ-reduction and 

the corresponding nonlinear rheology could be improved if the delay in the change of ζ due to the 

local chain motion is properly accounted in the molecular model(s) and/or simulation.  This 

improvement is an interesting and important subject of future work. 

   At the same time, we also note another possibility that the difference between the modified 

FENE-PM calculation and the transient state data could have partly resulted from the pre-averaging 

approximation for the spring stiffness and friction coefficient in the calculation.  These 

distributions might allow less stretched (less stiffened) springs and more frictional segments to 

govern the transient rheological responses to reduce the difference between the calculation and the 

transient state data.  This possibility is to be examined in future work together with the possibility 

of the delay in the change of ζ explained above. 
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Appendix A. Symbols utilized in analysis with modified FENE-PM model. 
 

   We prefer the symbols utilized in our analysis to be identical to those in our recent papers.22,46 

Our symbols are not necessarily identical to those in Ref. 34 (the original paper for the FENE-PM 

model).  To avoid confusion, a reference table of those symbols is given below. 

 
Table 3. List of symbols used in this study and in Ref.34. 

 This study Ref.34 
number of Kuhn segments per FENE spring g --- 
full-stretch length of FENE spring glK Q0 

strength of Hookean spring  κH H 
strength of FENE spring κ (= κH fFENE) HZ 

elasticity enhancement factor due to FENE fFENE Z 

stress tensor of j-th relaxation mode σ j τ j 

normalized stress tensor of j-th relaxation mode 

€ 

˜ σ j  (= σ j /νkBT) Tj  (= τ j /νkBT) 
Rouse relaxation time of j-th mode (at equilibrium) 

€ 

τ j
[R]  λj 

equilibrium relaxation time of j-th mode in FENE-PM model 

€ 

τ j
eq  --- 

anisotropic friction coefficients ζx, ζy (= ζx), ζz --- 
anisotropic friction reduction ratio 

€ 

rξ  (= ζξ /ζeq ) --- 
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Appendix B. Features of Eqs 14-16. 
 

B-1. Feature of eq 16: Equation 16, the key in our analysis, gives multiple solutions of the 

normalized FENE factor (elasticity enhancement factor) X.  This feature of eq 16 can be easily 

understood if we consider the limit of N >> 1. In this limit, the factor 

€ 

a j /a1 appearing in eq 16 can 

be replaced by j2 (see eq 6 for the expression of aj). Then, with the aid of mathematical identities,51 

€ 

Σ j=1
∞ ( j 2 −θ 2)−1  = 

€ 

1/(2θ 2) −π cot(πθ) /2θ  and 

€ 

Σ j=1
∞ ( j 2 +θ 2)−1 = 

€ 

−1/(2θ 2) +π coth(πθ ) /2θ , eq 16 

(or eq 12) can be rewritten as 
 

 

€ 

X =1− 1
(b + 3)(N −1)

2 ˜ σ xx + ˜ σ zz( )     (33) 

with 

 

€ 

˜ σ xx ≡
j≥1
∑ ˜ σ j ,xx = −

1
2

+
1
2
π

rxWi
X

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ coth π

rxWi
X

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟     (34) 

  

 

€ 

˜ σ zz ≡
j≥1
∑ ˜ σ j ,zz = −

1
2

+
1
2
π

2rzWi
X

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ cot π

2rzWi
X

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟     (35) 

 

where rx and rz indicate the ζ-reduction ratios in x and z directions. Because the 

€ 

π 2rzWi /X( )cot π 2rzWi /X( ) factor included in 

€ 

˜ σ zz  (eq 35) oscillates with an infinitely large 

amplitude on an increase of Wi, eq 33 (eq 16) gives multiple solutions of X.  In the analysis 

presented in the main text, we numerically solved eq 16 and chose the minimum value of the 

solutions of X satisfying a physical requirement that X never decreases with increasing Wi (namely, 

the chain is always stretched and stiffened more significantly under faster flow). 

   This feature of eq 33 (eq 16) in turn means that X for large Wi is essentially determined by the 

€ 

˜ σ zz term that includes rz but not rx.  (For large Wi, this term overwhelms the 

€ 

˜ σ xx  term in eq 33.)  

Namely, for large Wi, X is insensitive to rx and mostly determined by rz (or, by the product rzWi). 
  

B-2. Feature of eqs 14 and 15: As explained in the main text, our analysis gave almost 

indistinguishable normalized tensile stress 

€ 

˜ σ E  for the two extreme cases of fully anisotropic and 

isotropic ζ-reduction.  This result, reflecting the features of eqs 14 and 15, can be qualitatively 

understood again by considering the limit of N >> 1.  In this limit, 

€ 

˜ σ E  is expressed as 

€ 

˜ σ E

€ 

= ˜ σ xx − ˜ σ zz  (eq 13) with 

€ 

˜ σ xx  and 

€ 

˜ σ zz being given by eqs 34 and 35, respectively.  As explained 

above, 

€ 

˜ σ zz  overwhelms 

€ 

˜ σ xx  for large Wi, so that 

€ 

˜ σ E  almost coincides with 

€ 

− ˜ σ zz  being 
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insensitive to rx (note that X appearing in eq 35 is insensitive to rx for large Wi).  In contrast, for 

small Wi, 

€ 

˜ σ xx ~ rx (π
2 /4X)Wi  and 

€ 

− ˜ σ zz ~ rz(π
2 /2X)Wi (cf. eqs 34 and 35) so that 

€ 

˜ σ E  depends on 

both rx and rz.  Nevertheless, rx and rz are close to unity for small Wi, and this dependence of 

€ 

˜ σ E  is 

minor in any case.   

   Thus, eqs 14 and 15 combined with eq 16 (eqs 34 and 35 with eq 33) give 

€ 

˜ σ E  being insensitive 

to rx and mostly determined by rz in the entire range of Wi.  This feature of eqs 14 and 15 resulted 

in almost indistinguishable 

€ 

˜ σ E  obtained from our analysis for the two extreme cases of fully 

anisotropic and isotropic ζ-reduction with the parameter values shown in Table 2.   

   The coincidence for the two extreme cases is not limited to the steady flow state (where eqs 

14-16 are valid and the coincidence is noted in Figure 5) but is confirmed also in the transient state.  

As an example, Figure 11 shows growth of the normalized FENE factor X and decay of the 

ζ-reduction ratio rz (= ζz/ζeq) with time for the two extreme cases calculated for PS27 on start-up 

flow at Wi = 21.5 (

€ 

˙ ε  = 0.5 s-1).  The corresponding growth of the normalized stress components, 

€ 

˜ σ xx  and 

€ 

− ˜ σ zz , is shown in Figure 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 11.  Growth of X and decay of rz (= 

€ 

ζ z /ζ eq of PS27 
calculated for start-up flow (Wi = 21.5) for two extreme cases 
of anisotropic and isotropic ζ-reduction.  
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   For the parameters given in Table 2, Figure 11 demonstrates that X grows (the chain is 

stretched) with time a little less significantly in the anisotropic case (rz < rx = 1) than in the isotropic 

case (rz = rx < 1) but rz is almost indistinguishable for the two cases (despite the moderate difference 

of X).  Correspondingly, 

€ 

˜ σ xx  exhibits a clear difference at long t > 

€ 

τ1
eq /100 (significant overshoot 

observed only for the case of isotropic ζ-reduction), as noted in Figure 12.  Nevertheless, 

€ 

− ˜ σ zz  is 

almost identical for the two cases and overwhelms 

€ 

˜ σ xx .  Consequently, the normalized tensile 

stress 

€ 

˜ σ E  

€ 

(= ˜ σ xx − ˜ σ zz) is almost the same in those cases (as explained for Figure 3), which allows 

us to examine the magnitudes of ζ-reduction in PS27 and PtBS53 melts with no ambiguity, despite 

the lack of information for the anisotropy of ζ-reduction.  (At the same time, this lack of ambiguity 

means that the anisotropy cannot be resolved from comparison of the current calculation and data.) 

 

 
Figure 12.  Growth of normalized stress components of PS27 
calculated for start-up flow (Wi = 21.5) for two extreme cases 
of anisotropic and isotropic ζ-reduction. 
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Appendix C. Elongational viscosity calculated from FENE-PM model for various N values. 
 

     Figure 13 shows the ηE/ηE0 ratio calculated from the FENE-PM model without ζ-reduction. 

The calculation was conducted in a way explained for eqs 14-17 but by setting rx and rz therein to 

be unity (i.e., no ζ-reduction).  The number of Kuhn segments per chain is fixed at nK = 30, and 

the number of beads per chain, N, is varied from 2 to 30.  (N = 2 corresponds to the 

FENE-dumbbell model.35,42,46)  The calculated ηE/ηE0 ratio does not significantly change with our 

choice of N, in particular in the range of 3 ≤ N ≤ 16.  This insensitivity to the choice of N was 

noted also for the FENE-PM model modified for the ζ-reduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13.  Normalized steady state elongational viscosity (ηE/ηE0 ratio) calculated 
from the FENE-PM model without ζ-reduction.  The ηE/ηE0 ratio is plotted against 
the Weissenberg number.  The number of Kuhn segments per chain is fixed at nK = 
30, and the number of beads per chain, N, is varied from 2 to 30.  
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 Appendix D. Comparison with ζ-Reduction of Entangled Melts Reported in Literature: 
 

   It is informative to compare the ζ-reduction ratio rz (= ζz/ζeq) that excellently mimicked the 

ηE/ηE0 data of our unentangled PS27 melt (Figure 5) with the ratio for entangled PS melts reported 

in literature.21,22  This Appendix is devoted for this comparison. 

   Hassager and coworkers20 reported elongational stress relaxation behavior of entangled PS145 

melt (M = 145k) on cessation of flow at several 

€ 

˙ ε .  Yaoita and coworkers22 decomposed those 

data into exponentially decaying modes from long t to short t (via so-called procedure X52) to 

evaluate the decay time (t-independent constant) of those modes, 

€ 

τ j
[X] for j = 1-5.  This 

€ 

τ j
[X] 

differs from 

€ 

τ j  of the relaxation modes analyzed in the FENE-PM model with/without 

ζ-reduction: 

€ 

τ j  changes with t (for example, during the stress relaxation process, 

€ 

τ j  increases 

with t because of the decrease of chain stretch and the increase of ζ with t).  Nevertheless, a 

decrease of 

€ 

τ j
[X]  for fast modes (for large j) with 

€ 

˙ ε , found for PS145k,22 characterizes the 

acceleration of the relaxation just after the flow cessation thereby reflecting the FENE effect and 

ζ-reduction for entangled PS145 under the flow.  Thus, it is informative to analyze the stress 

relaxation data of our unentangled PS27 melt (Figure 6) with the method of Yaoita and coworkers.22   

   We made this analysis, and compared 

€ 

τ j
[X] /τ1

eq  ratios for the PS27 and PS145 melts because the 

longest Rouse (or FENE-PM) relaxation times measured for those melts at equilibrium, 

€ 

τ1
eq , were 

different due to the differences in their molecular weights and measurement temperatures.  The 

results of comparison are presented in Figure 14 where the 

€ 

τ j
[X] /τ1

eq  ratio is double-logarithmically 

plotted against the index j of the exponentially decaying mode.      

 

 

  

 

 

 

 

 

 

 

 
Figure 14.  Comparison of 

€ 

τ j
[X] /τ1

eq  ratio obtained for unentangled PS27 melt (this work; left panel) and 
entangled PS145 reported by Yaoita and coworkers22 (right panel). The ratios obtained for several values of 
Rouse-based (or FENE-PM-based) Weissenberg number Wi are plotted against index j of the exponentially 
decaying mode of stress. 
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   As noted in Figure 14, the relaxation of both PS27 and PS145 is more strongly accelerated on 

cessation of faster flow.  Comparing the 

€ 

τ j
[X] /τ1

eq  ratios in left and right panels for similar values 

of the Rouse-based (or FENE-PM-based) Weissenberg numbers Wi, we note that the magnitude of 

acceleration is similar for PS27 and PS145; see green diamonds, for example.  This similarity 

suggests that the 

€ 

τ j
[X] /τ1

eq  ratios of the unentangled PS27 and entangled PS145 melts reflect the 

same type of fast nonlinear dynamics just after the flow cessation.  However, the acceleration 

reflects not only the ζ-reduction but also the FENE effect.  Yaoita and coworkers22 formulated an 

empirical equation describing the observed acceleration (data in the right panel of Figure 14) as a 

function of the tensile stress σE, incorporated this equation in primitive chain (PCN) simulation for 

entangled chains adopting the pre-averaged FENE effect described by eq 5, and evaluated the 

isotropic ζ-reduction ratio r = ζ/ζeq (= rx = rz in the definition in this study) that was consistent with 

σE and the FENE factor deduced from the simulation.  This method of evaluation cannot be 

applied to our unentangled PS27 melt.  Nevertheless, it is interesting to compare the ratio r 

reported by Yaoita and coworkers22 with the ratio rz for PS27 obtained in this study. 

   Ianniruberto and coworkers21 analyzed literature data of σE and the birefringence Δn of 

entangled PS206 melt (M = 206k) reported by Luap and coworkers53 to evaluate the isotropic 

ζ-reduction ratio, r = ζ/ζeq, under strong elongational flow giving large σE (> 1 MPa).  For such 

large σE, the PS chains are highly oriented and stretched.  Thus, Ianniruberto and coworkers21 

assumed that the entanglement segments in the chain are fully oriented, and evaluated the ratio r 

from analysis of σE and Δn for such a fully oriented chain.  This method of evaluation cannot be 

applied to our PS27 melt (because of lack of the Δn data), but it is again interesting to compare the 

reported r with our rz for PS27.  

   Figure 15 compares the isotropic ζ/ζeq ratios of entangled PS melts reported by Yaoita and 

coworkers22 and by Ianniruberto and coworkers21 with the ζz/ζeq ratio of unentangled PS27 melt 

obtained in this study.  The double-linear format of the plots of ζ/ζeq against σE, presented in 

Figure 2 of Ref.21 in the range of σE ≥ 1.5 MPa, is converted to the double-logarithmic format in 

our Figure 15 (thick blue curve).  In Figure 11 of Ref. 22, the ζ/ζeq ratio is plotted against a 

stretch/orientation parameter Fso = 

€ 

˜ λ 2S , where 

€ 

˜ λ  represents the stretch ratio of entanglement 

strand reduced by its maximum stretch ratio and 

€ 

S  denotes the orientational anisotropy of the 

strand (averaged with a solvent, if any).  This Fso is related to σE as 

€ 

Fso =σEφp /{3Gen0 fFENE} with 
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€ 

φp , 

€ 

n0 , and 

€ 

Ge being the volume fraction of the polymer (= 1 in melt), number of Kuhn segments 

per entanglement strand at equilibrium, and the entanglement plateau modulus, respectively.  

Utilizing this relationship, we converted Figure 11 of Ref. 22 into our ζ/ζeq vs σE plots in Figure 15 

(thick orange curve).  The ζz/ζeq ratio of unentangled PS27, giving the modified FENE-PM 

calculation that excellently mimicked the ηE/ηE0 data (Figure 5), is shown with small circle and thin 

curve for the two extreme cases of fully anisotropic and isotropic ζ-reduction, respectively. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 15 demonstrates that the ζ/ζeq ratio of entangled PS reported in literature21,22 (thick curves) 

is moderately larger (ζ-reduction is weaker), by a factor of 2-3, than the ζz/ζeq ratio of PS27 shown 

with the small circle and thin curve.  This difference is a little puzzling because the ζ-reduction is 

believed to be a local event irrelevant to the entanglement.  The reported isotropic ζ/ζeq ratio21,22 

could be a sort of average between ζz/ζeq and ζx/ζeq in the realistic case of anisotropic ζ-reduction for 

which ζz/ζeq is smaller than ζx/ζeq in general.  This averaging feature of the ζ/ζeq ratio could have 

resulted in the moderate difference explained above.  At the same time, we cannot rule out a 

possibility that some entanglement effect was missing in the literature analysis21,22 of the Δn and/or 

σE data and the resulting ζ/ζeq ratio was not of purely frictional nature but contributed from 

entanglement nonlinearities. This potentially remaining entanglement contribution might have 

resulted in the above difference.  Thus, the difference seen in Figure 15 deserves further attention 

in future work. 

   Finally, we also note the other possibility that is related to pre-averaging approximation for the 

 
Figure 15.  Comparison of friction reduction ratios for unentangled PS 27 melt (evaluated in this work) 
and the ratios for entangled PS melts reported in literatures.21,22   The ratios are double-logarithmically 
plotted against the tensile stress σE.  
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spring stiffness and the segment friction in our modified PENE-PM analysis.  In actual melts, each 

chain should have distributions of the stiffness and friction along its backbone.  If this distribution 

is very broad and the pre-averaging in our analysis weighs too heavily on less frictional segments 

connected to more stretched springs than treated in literature,21,22 the resulting friction coefficient 

could be smaller (friction reduction could be stronger) in our analysis than in literature analyses, as 

seen in Figure 15.  This possibility is to be also examined in future work.  
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Appendix E. Acceleration of Stress Relaxation in Modified FENE-PM Model  

due to FENE Effect and Friction Reduction 
 

   It is informative to compare contributions of the FENE effect and ζ-reduction to the 

acceleration of the stress relaxation after cessation of flow.  For this purpose, we utilized the 

modified FENE-PM model (eqs 28-32 with the parameters specified in Table 2) to calculate the 

rubbery component of the normalized tensile stress, 

€ 

˜ σ E,r
 − (t)

€ 

=σE,r
 − (t) /νkBT , after cessation of flow 

at a strain of ε = 2.5 (the experimental protocol for PS27 and PtBS53 melts).  For the fastest flow 

examined (

€ 

˙ ε  = 0.5 s-1), the results are shown in Figure 16 with the red asterisk and red curve for the 

cases of fully anisotropic and isotropic ζ-reduction.  As a reference specifying the acceleration due 

only to the FENE effect in the modified FENE-PM model, we calculated 

€ 

˜ σ E,r
 − (t)  from the original 

FENE-PM model without ζ-reduction but for the initial condition (eq 28) identical to that for the 

modified model; black asterisk and black curve show the results obtained from the initial condition 

identical to that for the red asterisk and red curve.  For both modified and original FENE-PM 

calculations, 

€ 

˜ σ E,r
 − (t)  is normalized by its initial value 

€ 

˜ σ E,r
 − (0)  and plotted against time t after the 

flow cessation. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Figure 16.  Relaxation after cessation of flow at 

€ 

˙ ε  = 0.5 s-1 calculated from modified FENE-PM model for 
PS27 and PtBS53; red asterisk and red curve show the results for the extreme cases of fully anisotropic and 
isotropic ζ-reduction.  The relaxation calculated from the original FENE-PM model without ζ-reduction but for 
the initial condition (eq 28) identical to that for the modified model are shown with black asterisk and black 
curve.   
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   Figure 16 clearly demonstrates that the stress relaxation after flow at 

€ 

˙ ε  = 0.5 s-1 is much faster 

for the modified FENE-PM model than for the original FENE-PM model, both starting from the 

same initial condition.  Thus, after cessation of such fast flow, the ζ-reduction accelerates the 

relaxation much more strongly compared to the FENE effect.  This difference in the acceleration 

due to the ζ-reduction and FENE effect can be most clearly examined for the normalized initial 

relaxation rate of the rubbery stress component (NIRR) defined by    
 

  NIRR = 

€ 

−
d ˜ σ E,r

 − (t) /dt
˜ σ E,r

 − (t)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
t→ 0

      (36) 

 

As shown in Figure 17, NIRR of the modified FENE-PM model (red circle and curve) is close to 

NIRR of the original model (black circle and curve) at the Weissenberg number Wi < 1, indicating 

that the acceleration in the modified model after cessation of slow flow is mostly due to the FENE 

effect.  However, NIRR becomes much larger for the modified model on an increase of Wi > 1: In 

particular, for the highest Wi examined (that corresponds to 

€ 

˙ ε  = 0.5 s-1), the acceleration due to 

ζ-reduction is stronger than that due to the FENE effect by a factor of ~30 and ~20 for PS27 and 

PtBS53, respectively. Thus, in the modified FENE-PM model, the initial acceleration of relaxation 

after cessation of fast flow is dominated by ζ-reduction. The acceleration in actual PS27 and 

PtBS53 melts on cessation of fast flow would have been similarly dominated by ζ-reduction.   

 

 
Figure 17.  Changes of the normalized initial relaxation rate of the rubbery stress component with Weissenberg 
number Wi calculated for PS27 and PtBS53.  Circle and curve indicate the rate obtained from the initial condition after 
stress growth with fully anisotropic and isotropic ζ-reduction, and their color specifies the condition during the 
relaxation, red and black with and without the ζ-reduction (modified and original FENE-PM calculations). 
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