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Abstract

In an effort to design according to the true behaviour of structures focus is on increasing the
accuracy of the individual aspects of the structural models. The present thesis addresses
cyclic plasticity models and is organised in five parts; the first four parts focus on different
aspects of computational cyclic plasticity models. The fifth part focuses on the effects of
using improved cyclic plasticity models. The sum of the parts will support the ability to
design according to the true behaviour of a structure.

The first part addresses the development of a cyclic plasticity model. A cyclic plasticity
model with parameter evolution is presented based on three potentials; a specific energy
defining the constitutive relations, a yield function defining the size and shape of the
elastic domain in the form of a yield surface, and a plastic flow potential defining the
evolution of the plastic strains. The cyclic plasticity model exhibits kinematic hardening
and the translation of the center of the yield surface is limited by a surface similar to the
yield surface defining an ultimate capacity. The parameter evolution enables modelling of
effects as cyclic hardening/softening.

The second part focuses on developing a generic first-order yield surface format usable
for e.g. anisotropic materials and plastic hinges in beam members and joints. The format
is defined as a sum of square roots of quadratic terms that individually would represent
ellipsoids and the surface is thereby convex. The format will be homogeneous for most
yield surfaces of interest resulting in improved algorithmic properties. It is shown to be
possible to locally reduce the curvature of the yield surface while still having a single-
equation format.

The third part describes how a frame element can include the four most important
effects in analysis of tubular structures with cyclic plasticity: an elastic initially imperfect
member, elastic local joint flexibility and plastic mechanisms at the member ends and
in the joints. The frame element is based on an equilibrium format, splitting element
displacements into a set of deformations and a set of rigid body motions. The deformations
and thereby the flexibilities are additive. The element has an explicit stiffness matrix that
only requires inversion of a matrix of maximum size 4×4. A standard full format element
including rigid body motions is obtained by use of the equilibrium conditions.

In the fourth part a robust return algorithm is developed. The return algorithm is based
on satisfying the generalized strain evolution equations in the final state in combination
with ensuring the final stress state is located on the yield surface. The robustness is
increased by making a second order approximation of the generalized stress increment
leading to a two-step return algorithm. First a mid-step is made to obtain information
and subsequently a full step is made with the information obtained at the mid-step.

In the final part the effects of cyclic plasticity are discussed including the effects of
elasto-plastic buckling and plastic deformation for complex structures. The permanent
change of the geometry reduces characteristic stiffness and capacities of the structure.
The previously developed models have been used to update a recognized computer code
making it more robust and increasing the ability to represent the true behaviour of frame
structures.
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Resumé

Med en ambition om at designe konstruktioner i forhold til deres reelle opførsel fokuseres
p̊a at øge præcisionen af de individuelle dele af strukturelle modeller. Denne afhandling be-
handler cykliske plasticitetsmodeller og er organiseret i fem dele; de første fire fokuserer p̊a
forskellige aspekter af beregninger med cykliske plasticitetsmodeller. Den femte fokuserer
p̊a effekterne af at bruge en forbedret cyklisk plasticitetsmodel. Summen af de fem dele
understøtter udviklingen mod at kunne designe i forhold til en konstruktions reelle opførsel.

Den første del adresserer udviklingen af en cyklisk plasticitetsmodel og en cyklisk plas-
ticitetsmodel med parameterudviking præsenteres. Modellen er baseret p̊a tre poten-
tialer; en specifik indre energi der definerer de konstitutive relationer, en flydefunktion
der definerer størrelse og form af det elastiske domæne i form af en flydeflade, samt et
plastisk flowpotential der definerer udviklingen af de plastiske tøjninger. Den cykliske
plasticitetsmodel udviser kinematisk hærdning og flytningen af flydefladens centrum er
begrænset af en flade ensartet med flydefladen, hvilket definerer en ultimativ kapacitet.
Parameterudviklingen muliggør modellering af effekter som cyklisk hærdning/relaksation.

Den anden del fokuserer p̊a udviklingen af et generisk førsteordens flydefladeformat,
der kan bruges ifm. fx anistrope materialer og plastiske hængsler i bjælker og samlinger.
Formatet er pr. definition konvekst, da det er defineret som en sum af kvadratrodsled af
kvadratiske former, som individuelt repræsenterer ellipsoider. Formatet vil for de fleste
flydeflader af interesse være homogent, hvilket resulterer i forbedrede algoritmiske egen-
skaber. Det vises hvordan det med formatet er muligt lokalt at reducere krumningen af
flydefladen og samtidig beholde et enkeltligningsformat.

Den tredje del beskriver hvordan et rammeelement kan inkludere de fire vigtigste effek-
ter ifm. analyse af tubulære konstruktioner med cyklisk plasticitet: en elastisk bjælke med
initielle imperfektioner, elastisk lokal samlingsfleksibilitet og plastiske mekanismer i bjæl-
keenderne og samlingerne. Rammeelementet er baseret p̊a et ligevægtsformat, der opdeler
elementflytnignerne i et sæt deformationer og et sæt fastlegemebevægelser. Deformation-
erne og dermed fleksibiliteterne er additive. Elementet har en eksplicit stivhedsmatrix, som
kun kræver invertering af en matrix med en maksimal størrelse p̊a 4×4. Et element i stan-
dardformat inkluderende fastlegemebevægelser opn̊as ved brug af ligevægtsbetingelser.

I den fjerde del udvikles en robust returalgoritme. Returalgoritmen er baseret p̊a til-
fredsstillelse af de generaliserede tøjningsudviklingsligninger i den endelige tilstand. Desu-
den kræves det at den endelige spændingstilstand er lokaliseret p̊a flydefladen. Robusthe-
den er øget ved at lave en andenordens approksimation af inkrementet i den generaliserede
spændingstilstand, hvilket leder til en to-skridts-returalgoritme. Først laves et mellem-
skridt hvor der hentes information og dernæst laves et fuldt skridt vha. informationen
opn̊aet i mellemskridtet.

Til sidst diskuteres effekterne af cyklisk plasticitet inklusiv effekterne af elasto-plastisk
buling og plastisk deformation af komplekse konstruktioner. Den permanente ændring
af geometrien reducerer karakteristiske stivheder og kapaciteter af konstruktionen. De
tidligere udviklede modeller benyttes til at opdatere et anset computerprogram, en opda-
tering der gør programmet mere robust og øger dets evne til at repræsentere den reelle
opførsel af rammekonstruktioner.
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1. Introduction

Cyclic plastic deformation is an important failure mechanism in severely loaded structures
with variable loading history, e.g. pressure vessels, nuclear piping, steel frame structures
subjected to earthquakes and offshore tubular structures in large waves. In problems
involving monotonic plastic deformation the maximum load is typically the limiting factor,
whereas for problems governed by cyclic plastic deformation it is the difference in maximum
and minimum load that is the limiting factor. In the case of offshore tubular structures
located in areas with gas production, subsidence is a common phenomenon. Subsidence
in combination with large waves may lead to so-called wave-in-deck events, where a wave
is sufficiently tall to hit the topside of the structure that has a substantially larger wave
impact area than the foundation structure. Once the wave passes, the loading is much
smaller than the maximum loading. A wave-in-deck event may thus satisfy the two criteria
for cyclic plastic deformation: sufficiently large loading to introduce plasticity and a very
large difference in maximum and minimum loading. A wave-in-deck event is illustrated in
Fig. 1.1.

Figure 1.1. Wave-in-deck event at Ekofisk.1

An accurate model representing the structural behaviour in a realistic manner is para-
mount when analysing cyclic plastic deformation. This is illustrated in the conceptual
sketch in Fig. 1.2.

1Source: http://www.moisund.com/Eldre%20Arkiv/Arkiv%202007/Ekofisk.htm
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Figure 1.2. Conceptual sketch of prediction of cyclic plastic deformation.

Fig. 1.2 illustrates two simple models subjected to the same load history representing
realistic ratios between maximum and minimum loading used in the design of offshore
tubular structures. The loading history corresponds to three small waves followed by four
large waves and subsequently eight small waves. The two models have the same elastic
stiffness, yield capacity and ultimate capacity. The model represented by the solid blue
line includes degradation of the yield capacity during plastic deformation, whereas the
model represented by the dashed black line has constant capacity. Capacity degradation
can originate from global phenomena such as elasto-plastic buckling that permanently
changes the geometry of the structure, or from local phenomena as ovalisation or fracture
in individual members or joints. The dashed black line indicates that some plastic defor-
mation will be present after the passing of the large waves. After the passing of the large
waves the structure will exhibit purely elastic deformation, experiencing so-called elastic
shakedown. The blue solid line indicates that the degradation of the yield capacity leads
to continued plastic deformation after the passing of the large waves, so-called ratcheting.
Fig. 1.2 illustrates the importance of realistic modelling: if elastic shakedown with the
given loading is a design requirement, the design is acceptable if the dashed black line rep-
resents the actual behaviour and unacceptable if the solid blue line represents the actual
behaviour.

To model the behaviour of a full structure it is important to understand the behaviour
of the individual structural elements. While it may be easier to develop simple models
on a material scale it is computationally inefficient to model full offshore frame structures
using solid or shell elements. A representation using beam-column elements is potentially
preferable, if the plastic mechanisms can be modelled accurately. An example of a plastic
mechanism is illustrated in Fig. 1.3.

The cyclically deformed beam and the corresponding hysteresis curve shown in Fig. 1.3
illustrate the characteristics of cyclic plastic mechanisms in beams; the localized defor-
mation in the form of a plastic hinge and a hysteresis curve characterized by an elastic
stiffness, a yield limit and a gradual change of stiffness until an ultimate capacity is
reached. In addition, Fig. 1.3 illustrates that ovalisation affects the hysteresis curve by
gradually reducing the parameters mentioned. On a material scale the cyclic deformation
response has similar characteristics. The yield criteria on a material scale are often simpler
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Figure 1.3. Ovalisation of tubular beam, [37].

than the yield criteria for plastic mechanisms in beams and it may be easier to develop
a multi-axial cyclic plasticity model on a material scale and subsequently extend it to a
generalized formulation usable in beam models. Aside from the cyclic plastic deformation
in the members as illustrated in Fig. 1.3, local joint effects are also important phenomena.
The effects include local joint flexibility and plastic mechanisms in the joints, illustrated
in Fig. 1.4.

Analysing cyclic plasticity in tubular structures effectively requires a representative,
accurate and robust formulation of the beam elements used and the ability to make large
load/deformation increments. The beam elements must represent the four basic types of
mechanisms relevant to the problem: elastic member deformation, plastic hinges at the
member ends, joint elastic deformation and joint plastic deformation. As the latter three
mechanisms are located at the beam ends they can all be implemented in a single element
via an equilibrium formulation. In the case of a plastic hinge at the center of the member
experienced in e.g. elasto-plastic buckling, the member is modelled using two elements,
introducing the displacements and rotations of the center point as additional degrees of
freedom. With an equilibrium formulation a global analysis is made and based on global
displacements the local beam element deformations are found along with the corresponding
element forces. The element forces are found in a separate return algorithm ensuring that
the yield criteria for the different plastic mechanisms are not violated. The yield criteria
for the different mechanisms may differ significantly and a generic formulation of a yield

Figure 1.4. Local joint deformation, [44].
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criterion is desirable. The use of large increments of deformation puts a strict demand
on the robustness of the return algorithm and the different types of plastic mechanisms
introduce a need for a very general formulation of the algorithm.

The objective of the present work is to develop a plasticity model with non-linear
hardening to represent monotonic and cyclic plasticity accurately. The parameters of the
model have a clear link to physical characteristics, enabling an intuitive understanding of
the role of the model parameters. The plasticity model is sufficiently general to represent
plastic hinges in beams, and a generic yield criterion is introduced to describe these.
The plasticity model with a generic yield criterion lays the foundation for an updated
formulation of the elasto-plastic frame element presented in [66], where local joint flexibility
and plastic mechanisms in joints can be introduced as well. A robust return algorithm
is developed to ensure analyses with plastic deformation are computationally efficient.
The present thesis combines an introductory summary with three attached journal papers
[P1]–[P3] and two conference papers [C1]–[C2]. The summary is organised in six chapters.
First the developed plasticity model is presented. The format of the plasticity model is
introduced on a material scale as developed in [P1] and generalizations to plastic hinge
formulations of the types presented in [P2] and [P3] are discussed. The applicability of
the plasticity model is illustrated by comparison with experiments on a material scale.
The second chapter introduces the generic yield surface format developed in [P2] and
further discussed in [P3]. The generic yield surface is based on the first-order homogeneous
representation of ellipsoids guaranteeing convexity and the benefits of the homogeneous
property is discussed in relation to plasticity theory. The third chapter summarizes how
the plasticity model is included in a frame element as described in [P2] and how elastic and
plastic joint effects can be included by utilizing an equilibrium format as described in [P3]
and [C1]. The equilibrium format in combination with the local mechanisms ensures an
additive flexibility format defining the elasto-plastic stiffness matrix explicitly. The frame
element is used to model simple structures and results from [P2] and [C1] are discussed.
The fourth chapter summarizes the steps of defining a return algorithm and identifying
the algorithmic tangent stiffness as presented in [P2]. The robustness of the numerical
procedure is increased by making a second-order approximation of the return step as
proposed in [P3] and [C2]. The return algorithm is sufficiently general to be valid for
multiple types of plasticity models and element formulations. The fifth chapter presents
analyses of tubular offshore structures where comparisons with experimental data was
presented in [P2] and effects of using the proposed models and algorithms are highlighted in
[P3]. The summary is rounded off with concluding remarks summarising the contributions
of the present work and potential further work.



2. Cyclic plasticity model

The basic characteristics of cyclic plastic deformation can be identified by a hysteresis
curve of the type illustrated in Fig. 2.1 representing uni-axial cyclic deformation. From
A to B the material is in the elastic domain. The elastic domain is limited by a yield
surface with a given shape and size. The size of the yield surface is here represented by
the uni-axial yield stress σy. Within the elastic domain, i.e. for stress states located inside
the yield surface, there is an elastic flexibility, here represented by 1/Ee. Once the yield
surface is reached elasto-plastic deformation takes place from B to C. The elasto-plastic
domain is characterised by additional flexibility in comparison with the elastic domain,
here represented by 1/H in terms of a hardening parameter H. The plastic flexibility
increases gradually from 1/HB at B and asymptotically approaches an infinite value at C ′

corresponding to ideal plasticity. Approaching the state of ideal plasticity corresponds to
approaching the maximum stress state, here represented by the ultimate capacity σy+σm.
When the load is reversed the material will deform elastically from C to D and it appears
that the reversed loading branch is stretched by a factor of two, i.e. twice the elastic
deformation is necessary to once again reach a state of elasto-plastic deformation at D.
Here the additional flexibility 1/HD is typically about half the additional flexibility 1/HB

at the point of first yield B.

σy

σy

σ

ε

2σy

σm

σm

A

B

C
C′

D

J
J ′

1

Ee

+
1

HB

1

Ee

1

HD

+
1

Ee

Figure 2.1. Characteristics of uni-axial cyclic plastic deformation.

The apparent stretch of the elastic domain by a factor of two suggests the use of a repre-
sentation in terms of kinematic hardening, controlling the movement of the yield surface.
The kinematic hardening model must represent three basic things: the movement of the
yield surface, the shape and size of the yield surface and possible change of characteristics,
e.g. evolution of the characteristic stress σm as a result of cyclic hardening/softening. The

5



6 Cyclic plasticity model

movement of the yield surface and inclusion of parameter evolution is addressed in the
present chapter and [P1], and the modelling of the yield surface is addressed in Chapter 3,
[P2] and [P3].

2.1 Plasticity model with parameter evolution

Different approaches have been used to model the characteristics of elasto-plastic defor-
mation including use of kinematic hardening [88, 110], nested yield surfaces [76] and two-
surface models [27, 28, 67]. Common to these models is that they are defined with use of
external variables that are observable and internal variables that are not observable. The
external variables will typically be the generalized elastic strains γe being the traditional
strain measures γe = [ε11, ε22, ...]

T
e on a material scale and the generalized strains and cur-

vatures γe = [ε, κ, ...]Te for beams. While the generalized strains γe are observable, different
sets of strain-like non-observable internal variables can be introduced. The constitutive
relations are defined via a specific energy and it may be desirable to decouple some of the
internal variables from the external variables as discussed in [62]. The internal variables γi

are basic model parameters not directly coupled to the observable generalized strains γe.
The internal variables γd may be directly coupled to the observable generalized strains γe

to represent evolution of the model parameters caused by e.g. cyclic hardening/softening,
damage etc. A specific energy that allows for such partial coupling is

ϕ(γe,γi,γd) = ϕe(γe,γd) + ϕi(γi,γd) + ϕd(γd) . (2.1)

To account for e.g. non-linear elasticity or different types of parameter evolution the
individual energy terms may have different formulations as discussed in [P1]–[P3]. The
constitutive relations are defined by partial derivatives ensuring that the external gener-
alized stresses τe and the internal stress-like variables τi and τd are energy conjugate to
the external generalized strains γe and the internal strain-like variables γi and γd. The
energy conjugate generalized variables take the generic form

τe = ∂γe
ϕ = ∂γe

ϕe (2.2)

τi = ∂γi
ϕ = ∂γi

ϕi (2.3)

τd = ∂γd
ϕ = ∂γd

ϕe + ∂γd
ϕi + ∂γd

ϕd , (2.4)

where by convention the partial derivatives ∂γϕ are in column format. τe are the observable
generalized stresses, i.e. τe = [σ11, σ22, ...]

T on a material scale and τe = [N,M, ...]T

for beams. The internal stress-like variables τi and τd can be used to represent various
mechanisms. In the present model τi is used to model kinematic hardening and τd is used
to model parameter evolution. Evolution of the elastic stiffness can be modelled by γd via
the definition of ϕe, see [P1] and [P3] for a detailed discussion.

The incremental relations needed in a non-linear analysis are found by partial differen-
tiation corresponding to use of ‘the chain rule’, giving

˙̃τ =







τ̇e

τ̇i

τ̇d






=







∂T
γe
τe 0 ∂T

γd
τe

0 ∂T
γi
τi ∂T

γd
τi

(

∂T
γd
τe
)T (

∂T
γd
τi
)T

∂T
γd
τd













γ̇e

γ̇i

γ̇d






= Keid

˙̃γ , (2.5)
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where the notation τ̃ and γ̃ is introduced for compactness. The tangent stiffness matrix
Keid has three column blocks as illustrated in (2.5), where the first column block denoted
Kec couples an increment of the elastic generalized strains γ̇e with an increment of all
the energy conjugate variables ˙̃τ . Similar relations hold for the two other column blocks
denoted Kic and Kdc and the increments γ̇i and γ̇d respectively. The tangent stiffness
matrix Keid contains the double derivatives of the energy, and as ϕe and ϕi may both
depend on γd the stiffness may change during loading via proper definition of the two
energy terms. The above format thereby includes traditional damage theory [69] in the
elasto-plastic constitutive model.

In case of elasto-plastic deformation as illustrated in Fig. 2.1 the observable generalized
strains γe are identified via the observable generalized stresses τe by e.g. the inverse of
the constitutive relation (2.2) because parts of the total observable generalized strains
are plastic. In contrast the total generalized strains can be observed directly making
it desirable to formulate a plasticity model in terms of the total observable generalized
strains γt rather than the elastic part of the observable generalized strains γe. In small
deformation theory the strains are additive and it is assumed that the total observable
generalized strains γt are the sum of the elastic observable generalized strains γe and the
plastic observable generalized strains γp

γt = γe + γp . (2.6)

An extension of the additive format to finite strains is possible by the so-called operator
split as discussed by [77, 92, 91, 107], and similar formats may be used in the case of
generalized strains. The plastic generalized strains γp and the strain-like internal variables
γi and γd must have separate evolution equations. In previous works [3, 18, 15] the strain
evolution equations are postulated directly whereas in the present format the evolution
equations are obtained by use of a plastic flow potential G. The evolution equations are
obtained by maximizing the dissipation rate as described in detail in [P1]. The resulting
evolution equations are





γ̇e

γ̇i

γ̇d



 =





γ̇t

0

0



−





∂τeG
∂τiG
∂τdG



 λ̇ =





γ̇t

0

0



− ∂τ̃Gλ̇ , λ̇ ≥ 0 , (2.7)

where λ̇ is the so-called plastic multiplier that originates from the maximization of the
dissipation rate. It is noted that the increment in the observable elastic generalized strains
γ̇e depends on both the increment in total observable strains γ̇t and the gradient of the
plastic flow potential ∂τeG. The increments in the internal strain-like variables γ̇i and
γ̇d depend solely on the gradient of the flow potential via ∂τiG and ∂τdG, respectively,
highlighting that they are internal non-observable variables. The direction of the increment
of the plastic generalized strains γ̇p is controlled by the gradient of the plastic flow potential
∂τeG and the magnitude is controlled by the plastic multiplier λ̇.

The plastic multiplier is found by ensuring that the stress state is located on the yield
surface during elasto-plastic loading. The yield surface is defined as an isosurface of a yield
function F and thus it must have a constant value during elasto-plastic loading, leading
to a plastic multiplier

λ̇ =
(∂τ̃F )T Kec

(∂τ̃F )T Keid (∂τ̃G)
γ̇t . (2.8)
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Here Kec is the first block column of Keid defined in (2.5). Combining the incremental
constitutive equations (2.5) with the generalized strain evolution equation (2.7) and the
definition of the plastic multiplier (2.8) gives the incremental elasto-plastic constitutive
relation

˙̃τ =
(

Kec −
Keid (∂τ̃G) (∂τ̃F )T Kec

(∂τ̃F )T Keid (∂τ̃G)

)

γ̇t = K
ep
eidγ̇t . (2.9)

It is noted that the second term is symmetric only when ϕe = ϕe(γe) is independent of
the internal variables, see [P3] and [62] for discussions on coupling between internal and
external variables. With the above format a plasticity model with possible non-linear
kinematic hardening and parameter evolution is defined by the three potential functions
ϕ, F and G. The specific energy ϕ defines the constitutive relations in the elastic domain,
while the yield function F defines the shape and size of the elastic domain, and the plastic
flow potential G defines the generalized strain evolution during elasto-plastic loading.

2.2 Non-linear kinematic hardening

There are various ways of defining the two plastic potentials that characterize the model,
namely the yield function F and the plastic flow potential G, to represent non-linear
kinematic hardening. On a material scale a kinematic hardening yield function F is

F (τ̃ ) = ‖τe − τi‖ − σy , (2.10)

where ‖ ‖ is a suitable first-order norm and F = 0 defines the yield surface. In the case
of steel the norm may be the von Mises first-order homogeneous norm. The von Mises
norm was used in [P1] to define the format of the kinematic hardening model and in
the following chapter a generic yield function is presented, enabling use of the plasticity
model for plastic hinges. The format of the plastic flow potential G has been addressed
by several authors [3, 18, 15, 78] and is the key to a representative cyclic plasticity model,
as it defines the plastic strain evolution via its gradient according to (2.7).

For von Mises materials Armstrong and Frederick [3] proposed a plastic flow potential
where the definition of the gradient ∂τiG led to a gradual decrease in the increment of
the internal stress-like variables τ̇i, ultimately limiting the magnitude of the kinematic
hardening. The limit on the kinematic hardening in combination with the yield surface
poses a natural bound on the observable generalized stresses τe identifying the ultimate
capacity. Chaboche [17] showed that a non-linear modification of the representation of the
gradient ∂τiG improved the ability to reproduce the gradual reduction of stiffness. Several
authors [18, 16, 78, 24] have proposed different ways of representing the center of the yield
surface by a sum of internal stress-like variables τi where the evolution of each term in the
sum is similar to the evolution equation proposed by Armstrong and Frederick [3]. The
specific form of the format of the gradient ∂τiG was investigated in the case of negligible
parameter evolution in [P1] in an effort to reduce the number of model parameters, leading
to the uni-axial definition

∂τiG = −sign(τe − τi) +
τi

(1− α)σm + α|τi|
, α < 1 . (2.11)

The first term originates from the uni-axial definition of the yield function where the
norm ‖ ‖ simply becomes the absolute function | |. The yield function is introduced in
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Figure 2.2. Influence of parameters on stress-strain relation: (a) relative internal stiffness ∂γi
τi =

(−)∂γe
τe, (b) modification of flow potential G via the shape parameter α.

the plastic flow potential to have an associated formulation for the generalized plastic
strain i.e. ∂τeG = ∂τeF . It is seen that when τe − τi = σy the gradient ∂τiG is equal
to zero when τi = σm and according to the strain evolution equation (2.7) the kinematic
hardening stops at this state. Note that at this state ∂τeG 6= 0 and the plastic strain
γp will increase continuously. The parameter α is a weighting parameter between ideal-
plasticity represented by α ≃ 1 and bi-linear hardening represented when α ≪ 0 and
the original Armstrong-Frederick model [3] is recovered when α = 0. Typical values of
α are in the range of 0.7 − 0.95 for metals, representing a substantial difference from the
Armstrong-Frederick model [P1]. The form of the gradient (2.11) leads to the possibility
of modification of the gradual reduction of the stiffness without affecting the ultimate
capacity defined by σy +σm. Fig. 2.2 illustrates the effects of the basic model parameters.

Fig. 2.2 shows that the magnitude of the internal stiffness ∂γiτi relative to the observable
external stiffness ∂γeτe, here represented by Ee, controls the size of the kink once the
yield criterion is met. The parameter σm represents the capacity in addition to the yield
capacity, and in principle the kink and σm control the curve between initial yield and ul-
timate capacity along which the observable elasto-plastic stiffness Eep gradually changes.
The ability to control the shape between initial yield and the ultimate capacity is intro-
duced via the parameter α and controlling the shape via a single parameter ultimately
reduces the total number of parameters needed to model cyclic plasticity. Furthermore,
each model parameter represents a key characteristic of the response by the introduction
of the parameter α.

Based on the gradient defined in (2.11) the corresponding plastic flow potential can be
found by integration and including parameter evolution it takes the form

G(τ̃ ) = F (τ̃ ) +
σm
α

{ |τi| − σm
σm

−
1− α

α
ln

[

1 + α
( |τi| − σm

σm

)]}

+Gd(τd) , (2.12)

for uni-axial stress states. When parameter evolution is included the model parameters
σy = σy(τd), σm = σm(τd) and α = α(τd) depend on the stress-like internal variables
τd. The ultimate capacity is reached when |τi| = σm and τi has the same sign as the
relative stress τe−τi, and for this value it is noted that G = 0 when parameter evolution is
neglected. Thereby the formulation of the plastic flow potential (2.12) becomes the plastic
equivalent of the yield function F . When the yield function (2.10) equals zero, the elastic
capacity is fully utilized and when the plastic flow potential is equal to zero, the ultimate
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(plastic) capacity is fully utilized. The plastic flow potential (2.12) can be extended to a
multi-axial format and for a von Mises material the absolute value | | is simply replaced by
the von Mises norm ‖ ‖ as described in [P1], and ‖τi‖ = σm effectively defines a limiting
surface for the internal stress-like variables τi. For anisotropic materials and plastic hinges
in beams there may be different capacities for different generalized stress components and
the shape of the hysteresis curves may differ for different uni-axial loadings. This implies
that σy, σm and α may not be representative for all the generalized stress components and
a normalized format must be made. In [P2] a normalized format was proposed where each
of the internal stress-like variables τi entered the plastic flow potential via a term similar
to the one presented in (2.12) creating a sum of such terms. In [P3] the flow potential
has the same format as (2.12). The absolute value sign | | is replaced by a representative
norm ‖ ‖, and the generalized stresses τe and stress-like internal variables τi appear in
normalized form. Representative values of σm and α are introduced via a weighting of the
values relating to each generalized stress component by use of the norm ‖ ‖.

2.3 Examples

The potential ability of a model to represent cyclic plasticity can be illustrated with use
of simple experiments. Calibration procedures based on direct interpretation of the pa-
rameters from the characteristics of the response illustrated in Figs. 2.1 and 2.2 has been
developed in [P1] and typical intervals for the model parameters have been estimated. For
a more general discussion of material characterisation and general parameter estimation
including determination of parameter evolution see e.g. [83]. On a material scale the
cyclic plasticity model developed in [P1] has been shown to represent simple experiments
accurately without introducing parameter evolution. The model compares well with mul-
tiple other common models developed for steels, alloys, viscoplasticity and hot working
tool steels [86, 49, 59, 102]. For many materials the first loading branch is less rounded
in comparison to the subsequent loading branches. That effect may be modelled by in-
troduction of parameter evolution. Parameter evolution may also effectively be used for
representing cyclic hardening or softening materials as illustrated in Fig. 2.3.
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Figure 2.3. (a) Cyclic softening. (b) Cyclic hardening. Experiment, [50] (—). Present model
(– –). From [P1].

The parameter evolution format introduced to model the experimental results shown in
Fig. 2.3 is of an exponential type similar to the format proposed by [24] for evolution of
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Table 2.1. Biaxial ratcheting: Experiment characteristics.

Marker σ11 [MPa] ∆(2ε12)/
√
3 [%] Λ · 103

▽ 100 0.8 8.84

× 50 1.0 1.37

◦ 50 0.8 2.24

• 50 0.6 4.10

the yield stress. The exponential format goes asymptotically towards a prescribed relative
level for each model parameter. It is observed in Fig. 2.3 that in both the cyclic hardening
and softening case the roundedness of the first loading branch of the hysteresis curve
differs from the remaining branches. This is accounted for mainly by use of evolution of
the shape parameter α, see [P1] for details of the model parameters used. In addition to
the evolution of the shape parameter evolution of the elastic stiffness, the internal stiffness,
the yield capacity and the capacity in addition to yield was introduced to account for the
relevant changes in the response during loading.

For multi-axial loading the cyclic hardening/softening is influenced by non-propor-
tionality of the strain path [13, 97], and for strain-controlled cycling the ratio of one
strain component amplitude to another is a dominant factor as well. The phenomenon
has been discussed in detail in [6] for bi-axial strain cycling and solutions with memory
surfaces were introduced as a possible solution [56]. In bi-axial elasto-plastic loading with
one stress component constant and the other cycled either via strain or stress cycling, the
strain component conjugate to the constant stress component may gradually increase as
a result of the plasticity, so-called ratcheting. For uni-axial loadings ratcheting is experi-
enced as an increase in the mean strain, e.g. when the stress is cycled between constant
minimum and maximum levels as illustrated in Fig. 1.2. In [P1] bi-axial ratcheting ex-
periments presented by Ohno and Wang [79] were used to illustrate the capabilities of
the developed model. The material was initially brought to a state of constant tension
stress σ11 with an initial axial strain ε11 and subsequently the material was subjected to
cyclic shear strain 2ε12 varied between states of ±∆(2ε12)/2. The cycling resulted in axial
strain ratcheting, i.e. gradual increase of the axial strain despite constant axial stress.
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Figure 2.4. Biaxial cycling. Experiment, [96] (▽,×,◦,•). Model, [79] (– · –). Present model (– –).
From [P1].
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The plasticity model was calibrated using an interpolation scheme proposed by Benallal
and Marquis [6]. The scheme makes use of the parameter Λ representing the degree of pro-
portionality between the incremental plastic strain and the incremental deviatoric stress.
The parameter Λ is thereby a measure of the non-proportionality of the strain path, and Λ
is used for interpolation of the model parameters between two experimentally established
parameter sets. In theory Λ may take any value between zero and one but for the present
experiment a very small interval is sufficient to cover all the tested combinations of axial
stress σ11 and cycled shear strain ∆(2ε12). The details of the calibration procedure are
found in [P1]. The four bi-axial ratcheting experiments are characterised in Table 2.1 and
the results are illustrated in Fig. 2.4, showing a good agreement of the four experiments,
of which only two are calibrated.



3. Generic yield surface format

The yield surface and its gradient are key ingredients in the cyclic plasticity model as
illustrated in the previous chapter. The yield surface limiting the elastic domain is char-
acterized by a shape and a size. Yield surfaces for materials and plastic hinges in beams
may be determined by analytical considerations [98, 75, 22], numerical computations [73]
or experimental results [80, 34]. Whether based on analytical considerations or numerical
estimates the determined yield surface is an estimate of the actual yield surface. For plas-
tic hinges in beams the underlying assumption when determining the yield surface is often
an ideal-plastic behaviour of the material [22] that may not represent the experimental
behaviour [80]. An approximate representation of a theoretical yield surface is often suffi-
cient for yield hinges in beams. Yield surfaces may be anisotropic for both plastic hinges in
beams [80, 22] and at the material level [5], and may have regions with undefined gradients
[73]. A generic and flexible yield surface format capable of representing anisotropic yield
surfaces is desirable, especially for plastic hinges in beams where multiple different beam
types may be used in a single analysis. A simple elliptic format capable of representing
anisotropic yield surfaces at the material level was proposed by Hill [52].

A piecewise linear yield surface can model most yield surfaces for both materials and
plastic hinges in beams. However, it introduces multiple checks for violation of the yield
criterion and special measures have to be taken when defining the gradient at intersections
between planes [65]. Single-equation yield criteria eliminate the need for multiple checks
and will often have defined gradients everywhere. The format of a single-equation yield
criterion may vary from combinations of polynomial and trigonometric functions [61] to
mixed-order polynomials [80], strictly cubic polynomials [72], NURBS-formulations [26]
and Fourier series [95]. Most of such formulations have defined gradients everywhere
although they may be difficult to determine. Ensuring convexity of the yield surface can
be cumbersome, either because of the order of the polynomial or the location of the control
points for NURBS-formulations. The difficulty of ensuring convexity can be overcome by
use of convex shapes. Bleyer and de Buhan [7, 8] proposed a yield surface format to be
used in plastic limit analysis based on a Minkowski sum of the guaranteed convex shape of
an ellipsoid. The actual formation of the Minkowski sum may be difficult but the format
has proved convenient in relation to the optimization routines in plastic limit analysis.
A generic yield surface format for plastic hinges in beams must be sufficiently flexible
to model yield surfaces for different cross section types and it must ensure convexity. In
addition the type of cyclic plasticity model developed in [P1] and discussed in the previous
chapter is based on a first-order yield function. The formulation of a flexible generic yield
surface format that is convex by definition is addressed in the present chapter and [P2],
[P3] and [C1]. The benefits of having a homogeneous first-order formulation are described
in the present chapter and detailed in [P2] and [C1].

13
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3.1 Ellipsoidal concept

For metals first-order single-equation yield surfaces that exploit the convexity of ellipsoids
include the von Mises and the Hill yield criteria [75, 52] where a single ellipsoid can
represent the yield surface. Similarly the convexity of ellipsoids has been exploited to
represent yield surfaces for concrete although not using a first-order formulation [105, 43].
For plastic hinges in beams representation of the yield surface using a single ellipsoid
was investigated by [94]. The overall shape of analytically or numerically determined
yield surfaces is not well-represented by a single ellipsoid [94], but the possible first-order
formulation is desirable. An ellipsoid can be defined in a first-order format via the equation

√

x′TAx′ = 1 , (3.1)

where x′ is the local coordinate system that may be translated and rotated relative to the
global coordinate system x and A is a symmetric, positive definite matrix. In relation to
yield surfaces the coordinates x correspond to stress components. The left-hand side of
(3.1) defines the relative sizes of the semi-axes and hence the shape of the ellipsoid via
the ratios of the eigenvalues of A and the right-hand side defines the size of the ellipsoid.
Inspired by Bleyer and de Buhan [7, 8] a type of sum of ellipsoids may be used to represent
multiple types of yield surfaces sufficiently accurate. Instead of forming the Minkowski
sum, the sum

√

x′

1
T
A1x

′

1 +

√

x′

2
T
A2x

′

2 + · · · = 1 (3.2)

is formed, where x′

1 and x′

2 may have different locations and orientations relative to the
global coordinate system. Each of the terms on the left hand size represents an ellipsoidal
shape and the size of each ellipsoid is defined by assigning a proportion of the 1 on the
right hand side to the corresponding term. If the sum consists of two terms, the proportion
of the 1 assigned to the first term defines the remaining proportion of the 1 assigned to
the second term. In the case of three terms, the proportions assigned to the first and
second term defines the remaining proportion assigned to the third term and so on when
more terms are applied. Once the proportions of the 1 have been assigned any intersection
between the resulting ellipsoids will be a point on the surface that is defined by making
all the possible combinations of proportion assignments. The resulting surface will not
necessarily be an ellipsoid, but it is guaranteed to be convex because each of the ellipsoids
are convex. The concept is illustrated in Fig. 3.1.

In Fig. 3.1(a) two ellipsoidal terms with coincident local coordinate systems have been
used and they form a symmetric surface. In Fig. 3.1(b) the ellipsoids have different local
coordinate systems resulting in a non-symmetric surface. The fact that both symmetric
and non-symmetric surfaces can be modelled while the format is still first order with
gradients defined everywhere suggests that it is a useful format for representation of yield
surfaces.

When the ellipsoids have the same center, the form (3.2) will be homogeneous whereby
larger surfaces, generated by replacing the 1 on the right hand side with a larger number,
will simply be scaled versions of the original surface. This is a useful property in computa-
tional plasticity and it is often utilized in connection with return to von Mises yield surface
[33]. As most yield surfaces for plastic mechanisms in tubular structures are symmetric,
ellipsoids with coinciding centres are deemed sufficient to represent the yield surfaces of
interest with the benefit that the yield surface becomes homogeneous of degree 1. The
yield surface of anisotropic materials and plastic hinges in beams are often normalized
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Figure 3.1. Intersections of finite ellipsoids, (– · –) and (– –), are points, (•), on the resulting
surface, (—). From [P2].

[52, 5, 94, 7], and a generic normalized kinematic hardening yield surface can be defined
by use of the norm

‖τ̄e − τ̄i‖ =
√

(τ̄e − τ̄i)TA1(τ̄e − τ̄i) +
√

(τ̄e − τ̄i)TA2(τ̄e − τ̄i) + · · · . (3.3)

Here τ̄e are the normalized generalized stresses and τ̄i are the normalized stress-like internal
variables. Both are normalized with the current uni-axial yield capacities of each stress
component, and hence for a von Mises material all stress components may be normalized
by σy. The von Mises yield criterion (2.10) is then a special case obtained by multiplication
with σy.

3.2 Applications

The challenges of the yield surface with a norm in the format of (3.3) is to determine the
coefficients in the matrices A1, A2, ..., and to decide how many terms are necessary to
get a proper representation of the yield surface. For simple yield surfaces a direct process
of determining the coefficients is described in detail in [P2]. The process is based on
identifying a plane in which only two stress components are non-zero. In the given plane
two characteristics of the shape of the yield surface are used to determine the coefficients
of A1, A2, ..., and hence the shape of the individual ellipsoids. The first characteristic
is the shape of the yield surface for stress states where none of the stress components
are close to zero. The other characteristic is the shape of the yield surface for stress
states where one of the stress components is close to zero. Different possibilities of using
optimization methods to determine a representative norm are discussed in [P3]. For most
plastic mechanisms related to tubular structures it is sufficient to make use of two terms,
where both A1 and A2 are diagonal matrices. Fig. 3.2 illustrates how such a format can
represent yield surfaces common in tubular structures accurately.

The representation of the yield surfaces in Fig. 3.2 are very accurate and it is practically
impossible to distinguish the yield surface representation from the theoretical yield surface
when observing the contour lines. While the representations are very accurate they have
the downside of regions with very large curvature. In Fig. 3.2(a) the regions are concen-
trated in the areas with my = mz ≃ 0 and n = ±1 and in Fig. 3.2(b) around the curve
of the surface where n ≃ 0. However, with the present format the gradient is defined in
these regions in contrast to the theoretical yield surfaces.
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Figure 3.2. Theoretical yield surface for (a) tubular steel beam and (b) tubular joint (MSL surface)
and representations, (—). Contour lines are plotted in various planes.

Because the yield surfaces for plastic mechanisms in frame elements typically are (best)
estimates of the true yield surface, small local modifications of the shape of the yield
surface can be made without compromising the accuracy of the model. Modifications
to the theoretical yield surface have been made to increase the accuracy of models for
anisotropic materials [11, 74]. The modification was made by a simple weighting of different
yield surfaces, and an extension to local modifications using the present format is discussed
in [P3]. Small local modifications may both increase the accuracy of the model as well as
improve the algorithmic properties, e.g. by reduction of the curvature in certain regions.
Reducing the curvature in certain regions generally decreases the sensitivity of the elasto-
plastic stiffness with respect to the stress state creating a more robust model. Furthermore
it eases return to the yield surface as discussed in [66], [P2] and [P3]. In return to the
yield surface the gradients of outer surfaces are typically used [66, 33], and the first-order
homogeneous property of the von Mises yield surface therefore eases the return. The yield
surface format is first-order homogeneous as well and outer surfaces are always scaled
versions of the original yield surface in contrast to outer surfaces for typical theoretical
yield surfaces. The scalability is illustrated in Fig. 3.3. The yield surface representation
in Fig. 3.3 has a small local rounding that hardly affects the overall shape of the yield
surface. It is observed that the gradients of the outer surfaces are much more similar to
the gradients of the yield surface for the present format in comparison with the theoretical
format.
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Figure 3.3. Outer surfaces for theoretical yield surface for a tubular steel beam, (—), and for a
rounded representation, (—).



4. Frame element with cyclic plastic

hinges and joint effects

For tubular frame structures it is important to be able to model plastic mechanisms in
the members as well as in the local tubular joints [9]. The additional elastic local joint
flexibility and the effect of the normal force in imperfect members must be modelled as
well [23, 53, 29, 30]. The plastic mechanisms in the members can be modelled including
spread of plasticity over the cross section and over the length of the beam using a so-called
fibre model, where the cross sections of the beam are discretized by uni-axial fibres [58].
Alternatively the plastic mechanisms can be modelled as local effects located at the ends
of the member in the form of plastic hinges [66]. It has been found that the predicted
angle between the plastic strain components are similar for the two analysis types [36]
and the plastic hinge approach demands less computations [1]. The plastic mechanisms in
both members [39] and local joints [81] have been thoroughly investigated experimentally
and joints are typically characterised with the use of parametric equations [68]. The
hysteresis curves of plastic mechanisms in both members and joints have characteristics
similar to those presented in Chapter 2 suggesting that the plasticity model is applicable
to plastic mechanisms in beams as well. A frame element capable of modelling tubular
frame structures must include four phenomena: an imperfect elastic member with effects
of the normal force, plastic mechanisms in the member at each end, additional elastic
flexibility at the local joints, and plastic mechanisms in the local joints. The inclusion of
the different mechanisms in a single element is addressed in the present chapter and in
[P2], [P3] and [C1]. The formulation of a representative plasticity model and yield surface
format was addressed in Chapter 2 and Chapter 3 respectively and discussed in detail in
[P1]–[P3] and [C1].

4.1 Equilibrium format

The inclusion of plastic hinges in members is typically modelled with use of an equilibrium
format where the flexibilities become additive [100, 99, 66] but other approaches including
static condensation have also been applied [71, 89, 32, 2]. A comparison of different
approaches [1] found that the equilibrium format has a very high accuracy compared to
the low order of modelling. The equilibrium format lends itself easily to a co-rotational
formulation as it splits the displacement of an element into a set of deformations and a
set of rigid body translations and rotations [66, 62]. The deformations of the individual
element mechanisms are assumed small and become additive, even when the structure
experiences large deformations. The additive format enables direct use of the plasticity
model presented in Chapter 2. The equilibrium format is discussed in [P2], [P3] and [C1]

17
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Figure 4.1. Equilibrium format of beam element. (a) Element deformations, (b) section forces.
From [P3].

is defined via the generalized strains and stresses

γt = [u, ϕx, ϕz1, ϕz2, ϕy1, ϕy2]
T
t , (4.1)

τe = [N,T,Mz1,Mz2,My1,My2]
T , (4.2)

that represent the deformations and section forces respectively as illustrated in Fig. 4.1.
The subscript ’t’ indicates that the element deformations illustrated in Fig. 4.1 are the total
deformations including all mechanism deformations while the subscript ’e’ indicates that
the section forces are energy conjugate to the elastic deformations. The elastic local joint
deformations are often included by use of special elements [101, 57, 48, 4] or by introduction
of a separate node and use of static condensation. The need for special elements and static
condensation can be eliminated by introduction of the local mechanisms at the end of the
elastic member as illustrated in Fig. 4.2. The total deformations γt then consist of the
elastic and the plastic member deformations γM

e and γM
p , and the elastic and plastic local

joint deformations γJ
e and γJ

p.

At the material level plasticity models are typically defined with a single plastic mecha-
nism [15, 102, 49], while the present element has four possible plastic mechanism; one for
each member end and one for each local joint connection. The presence of multiple plastic
mechanisms imposes a need to extend the evolution equations (2.7) and the constitutive
format (2.9). To do so the four plastic flow potentials and the four yield functions are
arranged in the vectors

g = [G1(τ̃ ), ... , G4(τ̃ )]
T , fy = [F1(τ̃ ), ... , F4(τ̃ )]

T . (4.3)

In the plasticity model presented in Chapter 2 the stress-like internal variables τi repre-
sented the center of the yield surface of the plastic mechanism. For elements with multiple
plastic mechanisms there are typically more stress-like internal variables τi than observable
generalized stresses τe to ensure the mechanisms are independent. Subsets of the stress-
like internal variables are therefore related to each plastic mechanism to ensure they are
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Figure 4.2. Frame element with non-linear elastic and plastic mechanisms. From [P3].

independent of each other. The subsequent steps of deriving the elasto-plastic stiffness
matrix including all four plastic mechanisms are explained in detail in [P2]. Conceptually
the steps are the same as those needed for determining the elasto-plastic stiffness with
a single plastic mechanism but because of the multiple mechanisms the gradients of the
four individual plastic flow potentials and yield functions are needed simultaneously. The
vector gradients ∂T

τ̃
G and ∂T

τ̃
F become matrices ∂T

τ̃
g and ∂T

τ̃
fy and the hardening is no

longer described by a scalar H but by the matrix

H = (∂T
τ̃
fy)Keid(∂

T
τ̃
g)T , (4.4)

where Keid is the tangent stiffness matrix defined in (2.5). Kec is the column block of
the stiffness matrix Keid coupling increments in τ̃ with an elastic generalized strain incre-
ment γ̇e as described in Chapter 2. The hardening matrix is symmetric when parameter
evolution of the elastic stiffness is neglected. The hardening matrix provides the coupling
between the different plastic mechanisms created by the common generalized stresses τe.
The size of the hardening matrix depends on the number of active plastic mechanisms.
When all four plastic mechanisms are active the size of H is 4×4, and for most load com-
binations it will be smaller, as not all plastic mechanisms will be active simultaneously.
In the limit when only one plastic mechanism is active it reduces to a scalar. Because of
the relatively small size it is most often possible to invert the hardening matrix analyti-
cally. The hardening matrix is used to determine the four plastic multipliers that describe
the magnitude of the plastic deformations originating from each plastic mechanism. The
incremental constitutive equations for the element take the form

˙̃τ =
[

Kec −Keid(∂
T
τ̃
g)TH−1(∂T

τ̃
fy)Kec

]

γ̇t . (4.5)

The incremental constitutive format (4.5) provides a clear link with the single-mechanism
plasticity formulation (2.9) and holds for general multiple plastic mechanism models, not
only the present element formulation.
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4.2 Full format implementation

In the global equilibrium iterations of finite element calculations only the part of the
stiffness matrix relating to the increment in the observable generalized stresses τ̇e is needed.
In the case of elastic deformation it is simply ∂T

γe
τe and for elasto-plastic deformation it

can be extracted from (4.5) as

Kep = ∂T
γe
τe −KT

ec(∂
T
τ̃
g)TH−1(∂T

τ̃
fy)Kec . (4.6)

The elasto-plastic tangent stiffness matrix Kep relates an increment in the total observable
generalized stresses γ̇t to an increment in the observable generalized stresses τ̇e. With the
present equilibrium format the elastic stiffness matrix ∂T

γe
τe accounting for both elastic

local joint flexibility and the effect of the normal force in imperfect members is defined
via the additive flexibilities. While the elastic local joint flexibility matrix is typically
readily available via parametric equations [42, 21, 12, 46, 47, 45], the flexibility matrix of
an imperfect member is typically found by inversion of the stiffness matrix. The inversion
of the stiffness matrix is only possible because of equilibrium format; in a traditional full
format that includes the rigid body translations and rotations the stiffness matrix cannot
be inverted. A stiffness matrix of an imperfect elastic member in the form of a parabola
or a sine shape has been proposed by [20, 19] when the shear flexibility can be neglected.
A stiffness matrix was derived for a parabolic shaped shear flexible elastic member in an
explicit format in [66]. Determining the resulting elastic stiffness via additive flexibilities
is described in detail in [P3] with the result

∂T
γe
τe = Ke =

(

(KM
e )−1 + (KJ

e)
−1

)

−1
, (4.7)

where (KM
e )−1 is the member tangent flexibility and (KJ

e)
−1 is the local joint tangent

flexibility. The corresponding energy potential ϕe can be defined subsequently if needed.
The derivation in [P3] includes a short algorithm for determining the correct distribution of
deformations for a given total elastic deformation. While the elastic stiffness ∂T

γe
τe = Ke

may be non-linear e.g. due to the effect of the normal force, bowing etc. it is most
convenient to have a constant internal stiffness ∂T

γi
τi when parameter evolution is neglected.

A constant internal stiffness separates the non-linearity in the evolution of the stress-like
internal variables τi to the gradient of the plastic flow potential. A constant internal
stiffness can be obtained by defining a quadratic energy of the form

ϕi(γi,γd) = 1
2
γT
i Ki(γd)γi , (4.8)

and by double differentiation it determines the internal stiffness as ∂T
γi
τi = Ki(γd). The

internal stiffness matrix implemented is diagonal ensuring that any coupling of the indi-
vidual terms in τi originates solely from the gradient of the plastic flow potential.

The equilibrium format of the beam element shown in Fig. 4.1 refers to the deformations
only, and does not initially include rigid body motions. As described in [66], [P2], [P3]
and [C1] the rigid body motions are added by transformation to a traditional full format
element with 12 degrees of freedom in the form of three translational and three rotational
degrees of freedom at each end of the beam. The equilibrium format is extended to the full
format by use of the equilibrium conditions as the element nodal forces q can be expressed
in terms of the element section forces τe from the equilibrium format. The element nodal
forces are found by the equilibrium relations

q =

[

q1

q2

]

=

[

S1

S2

]

τe = S τe , (4.9)
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where q contains the element nodal forces and q1 and q2 are the nodal forces at node
1 and node 2 respectively. The matrix S is defined from the equilibrium conditions and
may include effects of axial shortening, bowing etc. [66]. The tangent stiffness matrix of
the full format is derived by requiring the virtual work to be the same for the equilibrium
format and the full format establishing a relation similar to (4.9) where the increment of
the deformations γ̇t are defined in terms of the increment of the nodal displacements u̇.
The increment of the relation (4.9) generates the incremental relation

q̇ =
(

SKepS
T +Kg

)

u̇ , (4.10)

where the elasto-plastic tangent stiffness matrix Kep is replaced by the elastic tangent
stiffness matrix Ke when no plastic mechanisms are active. The second term Kg is a
geometric stiffness matrix originating from the increment in the transformation matrix S

and it contributes to the symmetry of the formulation [66, 62].

4.3 Examples

For simple structures, e.g. cantilevered beams, the response may be dominated by degra-
dation effects for the individual members as a result of cyclic plasticity [31]. For more
complex structures the degradation effects will typically be dominated by the cyclic de-
formation of the full structure rather than that of the individual members [108]. In [P2]
bending of cantilevered I-beams was modelled taking into account degradation effects
from local plastic buckling in an approximate but representative way. The effects of local
buckling phenomena were identified and represented via the parameter evolution format.
Instead of using the exponential format described in Chapter 2 a modified format of the
parameter evolution was introduced. The format represents a relative modification of a
given parameter with a modification curve in the shape of a hyperbola rather than an
exponential curve. The format allows choice of the final value and the stretch of the hy-
perbola, i.e. how fast the final value is reached. A cantilevered IPE300 beam was cyclically
bent via displacement control of the free end. The results are illustrated in Fig. 4.3.

Fig. 4.3 illustrates the ability of the frame element to model the complex response of
the slender IPE300 beam that is evidently dominated by the degradation effects caused
primarily by local buckling. The local plastic buckling influences all the model character-
istics, namely the elastic stiffness, the yield capacity, the additional flexibility at yield, the
ultimate capacity and the curvature of the hysteresis curve. The first effect is clearly ob-
served as the elastic part of the hysteresis curve becomes less steep and the second effect is
observed as the part of the hysteresis curve that is linear-elastic is reduced. The additional
flexibility at yield is seen to increase and the ultimate capacity is seen to decrease along
with the curvature of the hysteresis curve. The main difference between the model and
the experiment is observed in the last few cycles, where torsional buckling was observed
experimentally - a mechanism not included in the model and hence not well-represented.
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Figure 4.3. Cyclic bending of cantilevered IPE 300 beam: Experiment, [31] (—). Present model
(– –). (a) First 38 cycles. (b) All 40 cycles. From [P2].

For cantilevered beams the joint plastic mechanisms are often negligible whereas they
are important in other simple structures, e.g. tubular X-joints subjected to out-of-plane
bending [104]. An analysis of a tubular X-joint is included in [C1] and it is found that
the effect of the local joint plastic mechanism is non-negligible as plastic deformation is
observed at load levels far below the load causing plastic deformation in the member.
Degradation effects are negligible and therefore not included in the model. The X-joint
and the response is illustrated in Fig. 4.4. For details of the geometry see [C1].
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Figure 4.4. X-joint: (a) Geometry. (b) Experiment, [104] (—). Present model (– –). From [C1].

The cyclic deformation of the X-joint is well-represented by the model as illustrated in
Fig. 4.4. At the load level Pyb plastic mechanisms form in the members of the connecting
braces. It is clear that both local joint plasticity and member plasticity is present at the
same time and that a frame element used for analysis of tubular structures must be able
to represent this.



5. Robust return algorithm

The constitutive relations presented in Chapters 2 and 4 are defined in a differential
format and need to be integrated to obtain the finite increments needed in computations.
In general the elasto-plastic tangent stiffness matrix Kep is not constant as it depends
on the gradients of the yield surface and the plastic flow potential and thereby on the
generalized stress state. The non-constant tangent stiffness matrix implies that explicit
integration of the constitutive equations will lead to drift away from the yield surface
unless special measures are taken [111, 33, 62]. As an alternative to explicit integration
various implicit methods exist, typically based on satisfying a set of evolution equations,
e.g. the generalized strain evolution equations, at a certain point [111, 33, 62]. Implicit
methods are often called return algorithms because they typically involve an initial elastic
estimate of the final stress state that is located outside the yield surface. Satisfying the set
of evolution equations will lead to a generalized stress state located on the yield surface
and the generalized stress state will thereby be ‘returned’ to the yield surface. The return
algorithm should be as robust and efficient as possible and for specific problems, e.g.
plane stress at the material level, very specific return algorithms with simple results may
be derived [93]. At the material level transformation to invariant space is also applied to
increase the effectiveness [82], even for materials with non-smooth yield surfaces [25]. For
coupled elasto-plasticity and damage models separate algorithms have also been developed
[51]. The present type of problem involves multiple plastic mechanisms that may have
different yield surfaces and different elasto-plastic behaviour. In addition, the plastic
mechanisms may not always be active at the same time, making it difficult to formulate a
highly specified return algorithm that increases the efficiency. Instead it is important to
have a robust return algorithm that is independent of the yield surface and plasticity model
of each individual mechanism. The algorithm should work in the same way independent of
how many plastic mechanisms are active at the same time. The development of a robust
return algorithm is addressed in the present chapter, and derived in [P3] and [C2].

5.1 Satisfying the strain evolution equation

In order to develop a general and robust return algorithm that works with multiple plastic
mechanisms, the set of generalized strain evolution equations is the chosen starting point
for deriving the algorithm [62]. In a differential format with a single plastic mechanism the
set of generalized strain evolution equations has the form (2.7). In a finite increment setting
a ˙ is replaced by a ∆ to indicate a finite increment. With multiple plastic mechanisms
the finite increment version of the generalized strain evolution equations take the form

∆γ̃ =





∆γt

0

0



−
∑

j

∂τ̃Gj ∆λj =





∆γt

0

0



−
(

∂T
τ̃
g
)T

∆λ . (5.1)
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In the differential setting the equation must be satisfied at all times, whereas the finite
increment format (5.1) does not initially specify what values of the gradients ∂T

τ̃
g and

the plastic multipliers ∆λ are to be used. An explicit algorithm is obtained if the initial
values are used and a fully implicit algorithm is obtained if the final values are used. In
general a representative set of gradients and plastic multipliers must be used and different
possibilities exist, including weighting of the values at the initial and final states, values
found at mid-points etc. [93, 111, 33]. With multiple possible plastic mechanisms there
is no guarantee that the mechanisms become active at the same time. The generalized
strain evolution equations (5.1) are only meaningful for active plastic mechanisms and
use of anything but the values of the gradients and the plastic multipliers in the final
state will impose a need for finding the state at which a mechanism becomes active. The
generalized strain evolution equations are therefore required to be satisfied in the final
state. It is worth noting that for offshore tubular structures an important contribution
to the increment in the total observable generalized strains ∆γt comes from the local
distributed load. Waves, wind and current loads are the main contributors to the global
load and act distributed over the elements. In the equilibrium format local distributed
loads can be handled consistently even for beams with non-homogeneous cross sections
[64].

The finite increment form of the generalized strain evolution equations (5.1) is generally
not satisfied with the initial estimates of the gradients of the flow potentials and the plastic
multipliers, and a residual is formed

rγ̃ =





∆γt

0

0



−∆γ̃ −
(

∂T
τ̃
g
)T

∆λ . (5.2)

Traditional return algorithms are derived by making a first-order Taylor expansion of the
residual rγ̃ and setting it equal to zero [62]. The Taylor expansion can be formulated in
terms of the sub-increment δτ̃ by inversion of the constitutive relations (2.5). Note, that for
beams the inversion of the constitutive relations are only possible in an equilibrium format
where the rigid body motions are removed. While the Taylor expansion provides equations
to solve for the sub-increment δτ̃ additional equations are needed to determine the sub-
increment δλ. Ensuring that the final generalized stress state is located on the yield
surface corresponding to fy = 0 provides the remaining equations making the equation
system solvable. A traditional return algorithm is defined by the first-order equation
system

[
(

KA
eid

)

−1 (

∂T
τ̃
g
)T

∂T
τ̃
fy 0

] [

δτ̃

δλ

]

=

[

rγ̃

−fy

]

, (5.3)

defining the sub-increments δτ̃ and δλ that update the state in each iteration. The
algorithmic tangent stiffness KA

eid is a generalized version of the standard algorithmic
tangent stiffness [93] accounting for changes in the gradient of the plastic flow potential
∂τ̃Gj of the different plastic mechanisms. The equation system (5.3) can in principle be
solved directly but a sequential solution is desirable as limitations on δλ can be enforced
to ensure that all the plastic multipliers ∆λ are non-negative. The sequential solution
is obtained by isolating the generalized stress increment δτ̃ in the first row of equations
and substituting the result into the second row whereby δλ is found. The generalized
stress increment δτ̃ is then found by substituting δλ into the solution of the first row of
equations.
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5.2 Increasing the robustness

The initial gradient of the individual plastic mechanism ∂τ̃Gj may not be representative
of the final state, leading to lack of convergence in traditional return algorithms. The
misrepresentation of the gradient originates primarily from two things: the anisotropic
form of the yield surface discussed in Chapter 3 and the gradual change of the hardening
parameters, gradually changing the gradient relating to τi. Thus, return algorithms used
in relation to analysis of cyclic plasticity in tubular structures need to be extra robust. The
robustness of different return algorithms has been increased by use of e.g. sub-stepping
techniques [70], bisection methods [55], multi-stage returns [10] and relaxation techniques
[54]. A second-order correction of the Taylor expansion (5.3) resulting in a two-step return
algorithm has shown to increase the robustness significantly in [P3] and [C2]. The second
order correction is obtained determining the sub-increment δτ from (5.3). Because (5.3)
is a first order approximation the sub-increment δτ̃ = δτ̃ (ξ) = δτ̃ (ξrγ̃ , ξfy) is a linear
function of ξ. The coefficients in the function δτ̃ (ξrγ̃ , ξfy) depend on the initial values of
the gradients ∂τ̃ fy and ∂τ̃g and the algorithmic tangent stiffness matrix KA

eid. However,
∂τ̃ fy, ∂τ̃g and KA

eid are all non-linear, and assuming they depend on ξ rather than being
constant, makes the sub-increment δτ̃ (ξrγ̃ , ξfy) a non-linear function of ξ. If ξ = 0 then
δτ̃ = 0 and a second order approximation becomes

δτ̃ (ξ) = ξ
∂(δτ̃ )

∂ξ

∣

∣

∣

ξ=0
+ 1

2
ξ2

∂2(δτ̃ )

∂ξ2

∣

∣

∣

ξ=0
. (5.4)

The second order approximation (5.4) is the key to the increased robustness found in [P3]
and [C2]. The method of determining the first and second order derivatives is explained
in detail in [P3] and [C2] and resembles methods used for higher-order time integration of
non-linear dynamic problems [63]. If only the first order term is included the format (5.3)
is retained. The second order correction needs more information than what is readily
available at the initial estimate of the final state and makes use of mid-step to obtain
information. A consistent second order step is made from the initial estimate of the
final state by setting up the equation system (5.3) using the gradients ∂T

τ̃
fy and ∂τ̃g and

the algorithmic tangent stiffness matrix KA
eid determined at the mid-step and solving it

sequentially. The use of the mid-step values of gradients and stiffness resembles the format
used for explicit stress integration proposed by Zienkiewicz [111]. The return algorithm
can be used with any type of plasticity model defined by a specific energy, a yield function
and a plastic flow potential. In case of the plasticity model presented in Chapter 2 special
limitations are put on δτi to ensure consistency of the gradient calculation, see [P3] for
details.

5.3 Examples

The difference between the two-step return algorithm with increased robustness and the
standard single-step return algorithm is illustrated in Fig. 5.1

Fig. 5.1 illustrates return to the yield surface for a single active plastic mechanism with
ideal plastic behaviour using the two-step return algorithm as well as a traditional single-
step return algorithm. The plastic mechanism is formulated in terms of the normalized
normal force n = N/Ny and the normalized bending moment m = M/My where Ny and

My are the yield capacities. From the initial state τ̄ 0
e a mid-step to the state τ̄

1/2
e is made
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Figure 5.1. Comparison between single step return (blue) and the proposed return algorithm
(magenta). From [P3].

and the relevant information is obtained at this state. With the information from the
mid-step a full step from the initial state τ̄ 0

e to the state τ̄ 1
e is made. It is seen that the

state τ̄ 1
e is fairly close to the final converged state τ̄∞

e . The direction of return is changed
dramatically with the updated gradients and algorithmic tangent stiffness resulting in a
better correction δτ̄e. With a traditional single-step return algorithm the steps marked
in blue are taken and it is observed that the state determined in the second iteration τ̄ 2

e

is about as far away from the yield surface as the initial state τ̄ 0
e . In the present case a

traditional single-step return algorithm does not converge and after 99 iterations the state
τ̄ 99
e is reached - a state located at the same isosurface as the initial state.

Applying the two-step return algorithm to a more complex problem highlights the ro-
bustness of the algorithm. A tubular steel beam initially unloaded is subjected to defor-
mation corresponding to an elastically estimated stress state of n = 14 and m = −4 at
one end and n = 14 and m = 0 at the other end. The plastic mechanisms are modelled in
two different ways: as ideal plastic and with non-linear kinematic hardening.

Fig. 5.2(a) and (b) illustrates the return in case of ideal plasticity. In the final state both
mechanisms are active. It is observed that the first estimate of the final stress state is
located fairly close to the converged state, however two iterations later it is located far
away. At the end of the second iteration the mechanism shown in Fig. 5.2(a) is inactive
because the stress state is located inside the yield surface and the plastic multiplier for
the mechanism is zero. The mechanism shown in Fig. 5.2(b) is active although the stress
state is located inside the yield surface, because the plastic multiplier of the mechanism is
positive. At the end of the third iteration the stress state is located far away from the yield
surface of the mechanism shown in Fig. 5.2(a) and the mechanism is active again. The
stress state is located far away from the final state because the mechanism was initially
inactive in the iteration step, resulting in a poor prediction of the increment. After the
third iteration the algorithm converges towards fast towards in a few iterations. A single-
step return algorithm does not convergence in the present case. It may seem advantageous
to use traditional a single-step return algorithm once the state is ‘sufficiently close’ to the
yield surface, in an effort to reduce the amount of computations. However, Fig. 5.2(a)
illustrates that it is difficult to quantify a measure of what would be ‘sufficiently close’.
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Figure 5.2. Return for ideal plasticity (top) and non-linear kinematic hardening plasticity (bottom).
Left: Mechanism 1. Right: Mechanism 2. From [C2].

In Fig. 5.2(c) and (d) the non-linear kinematic hardening case is illustrated and it is ob-
served that the algorithm converges faster. Despite the fact that return is often easier
for hardening plastic mechanisms, a traditional single-step return algorithm does not con-
verge in this case either. It is found that the ease of return with the two-step algorithm
depends on the shape parameter of the hysteresis curve α, justifying the need for a general
formulation of the return algorithm even for the specialized use in connection with frame
elements.
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6. Effects of cyclic plasticity in

tubular structures

The effects of cyclic plasticity in tubular structures have been investigated extensively in
experimental work ranging from pure bending of simple members [41, 39, 37, 38] to axial
loading of beam-columns where buckling is a substantial part of the problem [40, 87, 109]
to cyclic loading of tubular joints [44, 103, 106, 104, 90, 60]. In the case of cyclic bending
the hysteresis loops are typically symmetric about the mean deformation and have a
shape similar to what is illustrated in Figs. 1.3 and 2.1. For axial loading the hysteresis
loops are symmetric only if the deformations are sufficiently small for column buckling
not to occur as illustrated in Fig. 6.1(a). When column buckling occurs the geometric
non-linearity becomes dominant typically introducing limit points where the column will
experience elasto-plastic buckling typically forming a plastic hinge at mid-span. The
effect of the elasto-plastic buckling is evident when the load is reversed as the column will
gradually straighten creating a stiffening effect as illustrated in Fig. 6.1(a). The transverse
displacement will mainly be in one direction as illustrated in Fig. 6.1(b) and the shape
of the response curve changes with increased cycling. If the cycling is increased local
degradation effects as local buckling, ovalisation and fracture will have an impact on the
response as well [109].

(a) (b)

Figure 6.1. Elasto-plastic buckling of simple supported beam-column. (a) Axial displacement vs.
axial load. (b) Transverse displacement vs. axial load, [109].

In simple members the permanent change of geometry is mainly a degradation mechanism
when buckling is present, whereas for more complex structures the permanent change of
geometry from plastic deformation without buckling may act as degradation mechanisms
as well. The complex response of a full structure is often a combination of plastic de-
formation and elasto-plastic buckling [85, 84, 108] that for redundant structures leads to

29
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load shedding. Load shedding may lead to cyclic plasticity in the individual elements even
without unloading of the global structure i.e. for monotonic global loading. The ability of
the developed frame element in combination with the cyclic plasticity model to model the
behaviour of real structures in a representative way is addressed in the present chapter
and discussed in detail in [P2] and [P3].

6.1 Verification of model

Zayas et al. [108] tested a 1:6 scale model of an offshore tubular structure representative
of structures located in the Gulf of Mexico. The plane frame structure shown in Fig. 6.2
is used to verify the ability of the model to represent the response of an experimentally
tested structure. For details of the geometry see [P2]. Zayas et al. [108] tested a plane
frame in order to simplify the production and the number of activated mechanisms. The
frame is loaded only by a horizontal compressive point load P at the upper right corner.

Figure 6.2. Plane offshore frame structure geometry. From [P2].

From monotonic pushover analysis of similar structures [66] it is known that failure typ-
ically occurs in the compression braces of the upper X-brace and the lower part of the
compression brace is modelled with an initial imperfection. Different ways of representing
the member imperfection effect was investigated by D’Aniello et al. [29, 30] for simple
column elements as well as for full structures subjected to earthquakes. In the analysis
made in [P2] the imperfection is modelled by an offset of the center of the compression
brace. The offset is fairly large compared to standard imperfections, see [P2]. Both the
effects of local joint flexibility and initial curvature imperfection of the individual members
are neglected in the model and including these effects may reduce the representative offset
to a value closer to standard values.

The response of the structure in the form of the (P −∆u) curves for the top right corner
is illustrated in Fig. 6.3 where each figure contains five cycles. Fig. 6.3 illustrates that the
simple model without local degradation mechanisms and local joint effects represents the
behaviour of the experimentally tested structure rather well. In the first five cycles, shown
in Fig. 6.3(a), the shapes of the hysteresis loops as well as the characteristic load levels are
very similar. In the following five cycles, shown in Fig. 6.3(b), the correspondence between
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the experimental and the modelled results are very similar as well and the response is
dominated by plastic deformation. In the final five cycles, shown in Fig. 6.3(c), the
discrepancy between the experimental and the modelled results becomes larger but the
shape of most of the hysteresis loops are still well-represented just as the characteristic
load levels. Note, how the model is able to capture the degradation of the response in the
form of reduced yield and ultimate capacity of the structure as a whole in Fig. 6.3(c). The
degradation is a result of the permanent plastic deformation changing the geometry and
thereby the way the load is carried through the structure down to the supports.
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Figure 6.3. Plane offshore frame: Experiment, [108] (—). Present model (– –). (a) Cycle 1–5, (b)
Cycle 6–10, (c) Cycle 11–15. From [P2].

6.2 Typical North Sea structures

The computer code RONJA (Rambøll Offshore Non-linear Jacket Analysis) is currently
used by several engineering companies including Maersk Oil and Rambøll to analyse ex-
isting and to-be-built offshore structures. The computer code can include piles supported
by soil, weight of topsides and connected bridges, wave impact areas of appurtenances,
distributed loading from waves, current and buoyancy, etc. RONJA is based on an equilib-
rium format frame element with initial imperfections and two possible plastic hinges with
linear hardening including a slight rounding by accounting for the length of the plastic
hinge [66]. The code uses linear plastic hardening, and therefore a fairly low hardening has
to be used to avoid predicting section forces larger than the capacity of the members and
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joints. Elastic local joint flexibility is included by use of static condensation. A bench-
mark study [9] classified RONJA as one of the best computer codes for collapse analysis
of offshore structures. The main improvement point was to increase the hardening after
initial yielding, a natural consequence of the intended low hardening. With the plasticity
model presented in Chapter 2 the need for an initial low hardening vanishes as there is
a defined ultimate capacity that limits the section forces. Because the code is based on
equilibrium format frame elements the models and algorithms presented in the previous
chapters can be implemented fairly easily and realistic structural models can be analysed.

Two typical structures, representative of the structures located in the North Sea, are
analysed and discussed in [P3]. One represents monopile structures with little structural
redundancy and the other represents jacket structures with typically fairly large structural
redundancy. The loading applied to the structures are according to Ultiguide [35]. The
horizontal loading history starts by applying a scaled version of a wave with a recurrence
period of 10.000 years, followed by complete unloading of the structure. Subsequently, a
wave with a recurrence period of 100 years is applied in the opposite direction of the first
wave, followed by complete unloading. Finally, a wave with a recurrence period of 100 years
is applied in the same direction as the first wave. The joint capacities are determined based
on the ISO 19902 standard [14] with a rounded version of the yield surface illustrated in
Fig. 3.2(b). The elastic local joint flexibility is modelled according to [12]. The structures
are located at water depths of 47.9 meters and 45.0 meters, respectively. The waves with
a recurrence period of 10.000 years have a height of 27.7 meters, while the smaller waves
with a recurrence period of 100 years have a wave height of 21.9 meters. Both structures
are analysed using the original RONJA code as well as the code updated with the models
presented in the previous chapters.

Monopile structure

The monopile structure is illustrated in Fig. 6.4. The monopile structure has very little
redundancy and very few tubular joints are present. The horizontal loading is applied in
the plane shown in Fig. 6.4, with the largest wave coming from the left.

Figure 6.4. Geometry of monopile structure. From [P3].
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The response history is shown in Fig. 6.5 where Fig. 6.5(a) represents the models being
loaded to similar load levels and Fig. 6.5(b) represents similar deformation levels using
the updated and the original RONJA code respectively. The results of the updated code
are represented by the solid blue line and those of the original code are represented by the
dashed black line. The load has been normalized with the horizontal load of a wave with
a 10.000 year recurrence period P10.000y = 14.5MN.
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Figure 6.5. Extreme response of monopile structure. Total horizontal load vs. top displacement.
(a) Load control. (b) Displacement control. Original code (– –), updated code (—). From [P3].

Fig. 6.5 illustrates that the elastic part of the response is the same for the two codes as
expected, because the only difference between the codes in the elastic regime is the method
of including the elastic local joint flexibility. The first plastic mechanism that activates is
in the single brace at the intersection with the main column, and subsequently the plastic
mechanisms in the two other braces at the intersection with the main column activate. The
low hardening used in the original code implies that once a plastic mechanism activates
in the main column it is essentially free to rotate illustrated in Fig. 6.5 by the almost
horizontal response curve. The original code predicts a limit point almost coincident
with the activation of the first plastic mechanism. The updated code includes substantial
hardening and load reversal at the limit point of the original code corresponds to almost
no plastic deformation, illustrated in Fig. 6.5(a). To have a similar deformation level the
load must be increased substantially as illustrated in Fig. 6.5(b). Comparing Fig. 6.5(a)
and (b) it is noted that elastic unloading is predicted by the original code and the updated
code in the case of similar load levels (Fig. 6.5(a)). For the updated code the unloading
is initially plastic for similar deformation levels and subsequently elastic. The reason for
this is that the bending moment in the main column is so large that the bending capacity
of the local joint plastic mechanism in the connecting tension brace is virtually zero. The
mechanism is active until the bending moment in the main column is decreased sufficiently,
whereby the bending capacity of the joint plastic mechanisms in the brace is increased.
The deformed structure is illustrated in Fig. 6.6 for the three load levels indicated in
Fig. 6.5. The displacements are scaled by a factor of 5.

Fig. 6.6(a)–(c) illustrate the structure at the state of maximum load (×). The critical
plastic mechanisms can be observed and comparing the deformed structure at the same
load levels indicates that the original code predicts much larger deformations than the
updated code. When comparing the original code with the updated code at similar de-
formation levels it is clear that plasticity is more widespread in the main column with
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.6. Deformation of monopile structure. Top: State ×. Center: State ◦. Bottom: State ∗.
Left: Original code. Middle: Updated code with load control. Right: Updated code with displace-
ment control. From [P3].

the present model. Fig. 6.6(d)–(f) show the deformed structure at the unloaded state (◦)
where it is clear that the updated code predicts almost no permanent deformation when
loaded to the ultimate capacity of the original code. Fig. 6.6(g)–(i) illustrate the structure
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loaded by maximum load in the opposite direction (∗) and it is seen that the most severely
loaded section is in the original tension brace (now in compression) that almost becomes
plastic. The structure experiences elastic shakedown in all three analysed cases.

Jacket structure

The jacket type structure is illustrated in Fig. 6.7. The jacket structure has a high degree
of redundancy and many tubular joints. Typical failure mechanisms are expected to be
elasto-plastic buckling of the compression braces, most likely occurring in the top X-brace
initially [66]. The horizontal loading is applied in the plane shown in Fig. 6.9, with the
largest wave coming from the right.

Figure 6.7. Geometry of jacket structure. From [P3].

The response history is shown in Fig. 6.8 where Fig. 6.8(a) represents an analysis in
which the two codes have been used to apply similar load levels and Fig. 6.8(b) represents
an analysis in which similar deformation levels are reached. The updated code is repre-
sented by the solid blue line and the original code is represented by the dashed black line.
The horizontal load is normalized with the load of a wave with a 10.000 year recurrence
period P10.000y = 36.1MN.

Similar to Fig. 6.5 the response in Fig. 6.8 illustrates that the elastic response is the same
independent of the code used. The initial plastic mechanism is elasto-plastic buckling of the
compression braces in the upper X-braces and because of the redundancy of the structure
both codes predict some hardening behaviour in contrast to the monopile analysis. For
the original code with linear hardening the buckling of the compression braces leads to
a redistribution of load in the braces as they buckle sufficiently to carry the load by
bending rather than as axial load. With the updated code the buckling is observable but
the braces keep on carrying the load primarily as axial force because of the substantial
hardening of the hinges. Carrying the load by bending significantly reduces the stiffness of
the structure as illustrated in Fig. 6.8(a). Fig. 6.8(b) shows the response of the structure
loaded to similar deformation levels using the two different codes and the shape of the two
response curves are similar except for the more pronounced hardening in the case of the
updated code. In both cases plastic unloading is observed caused by the redistribution
of the loading when some elements unload elastically and thereby shed the load to other
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Figure 6.8. Extreme response of jacket structure. Total horizontal load vs. top displacement. (a)
Load control. (b) Displacement control. Original code (– –), updated code (—). From [P3].

members. The structure unloads elastically at a load level of approximately 2 for both
models. The deformed jacket structure is illustrated in Fig. 6.9 for the three different load
levels with displacements scaled by a factor of 5.

Similar to Fig. 6.6 the left column of Fig. 6.9 represents the response of structure mod-
elled using the original code. The middle and right columns represent the updated code
with the structure subjected to similar load and deformations levels as with the original
code respectively. In the top row representing the maximum load (×) the redistribution
of the load is illustrated and it is seen that there is a clear difference in the load redistri-
bution because of the difference in the behaviour of the buckled compression braces. The
updated code predicts far less loading in the jacket legs and a larger distribution to the
lower X-brace instead. In Fig. 6.9(d)–(f) the deformed structure at zero horizontal load
(◦) is shown and the permanent deformation at the buckled braces and the permanent
deformation is far greater for the original code. In Fig. 6.9(g)–(i) the deformed structure
at maximum load in the opposite direction (∗) is illustrated. It is seen that plastic mech-
anisms develop in the buckled braces with the original code essentially straightening the
braces creating a stiffer response of the structure. When the structure is modelled with the
updated code and subjected to a similar deformation level the buckled braces are loaded
most heavily as well slightly straightening the braces. The deformation is still less than
that predicted with the original model.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.9. Deformation of jacket structure. Top: State ×. Center: State ◦. Bottom: State ∗. Left:
Original code. Middle: Updated code with load control. Right: Updated code with displacement
control. From [P3].
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6.3 Effects of updated code

The updated code is more robust than the original code. The robustness is increased partly
because the elastic local joint flexibility is included in the equilibrium format instead
of being introduced via static condensation and partly because of the improved return
algorithm. In the analysis of the jacket structure with the original RONJA code a restart
of the iteration step has to be made 46 times in need of applying a smaller load step. The
restarts are necessary because of lack of convergence in either the static condensation of
the elastic local joint flexibility or in the return algorithm. With the updated code no
restarts are necessary enabling the use of larger load steps and faster and more robust
computations. The benchmark study [9] rated RONJA among the best structural codes
because of its ability to predict the sequence of failure mechanisms, e.g. elasto-plastic
buckling of X-braces followed by plastic deformation in local joints. The main improvement
point of increasing the hardening to a more representative level is inherently solved with
the updated plasticity model. A more representative hardening will lead to an increased
accuracy of predicting the ultimate capacity of the structure. The updated code does
not only improve the ability to represent cyclic plasticity, the improved representation of
the hardening behaviour also improves the ability to represent monotonic plasticity. In
total the updated code is expected to represent a more realistic prediction of elasto-plastic
behaviour of tubular structures. The expected increase in correspondence between model
and reality may benefit both safety and undesirably large conservatism in the design of
tubular structures as discussed in the introduction.



7. Conclusions

The main purpose of the present thesis is to develop a cyclic plasticity model that accu-
rately represents non-linear hardening behaviour in materials and plastic hinges in beam
members and joints. The plasticity model is implemented in a frame element including the
four most important effects in analysis of tubular structures: an elastic initially imperfect
beam member, plastic mechanisms at the member ends, elastic local joint flexibility and
plastic mechanisms in the joints. The implementation makes use of a generic yield surface
format and a return algorithm with increased robustness. The frame element implemen-
tation enhances the abilities of a recognized structural computer code, making it more
robust and more representative in analysis of severely loaded frame structures.

A plasticity model with parameter evolution was presented in [P1]. The plasticity model
makes use of external and internal variables. The external variables represent the observ-
able stresses and strains, while the internal variables represent mechanisms in the model.
Three potentials define the model: a specific energy defining the constitutive relations,
a yield surface describing the shape and size of the elastic domain, and a plastic flow
potential defining the evolution of the plastic strain and the internal variables. The model
enables a coupling between traditional plasticity theory and damage theory. By definition
of the three potentials a cyclic plasticity model at the material level is developed in [P1]
and extended to representation of plastic mechanisms in beam members and joints in [P2],
[P3] and [C1]. The yield surface has a movable center, with the movement controlled by
the internal variables. The movement is analogous to extending a hardening spring, ul-
timately limiting the movement of the yield surface. The cyclic plasticity model has five
basic model parameters, each representing a characteristic of the hysteresis curve. Because
of the clear relation between model parameters, the effects of cyclic hardening/softening,
fracture, local buckling etc. are representable via evolution of the model parameters as
demonstrated [P1] and [P2]. The applicability of the model is illustrated in [P1] by cali-
bration against and subsequent comparison with numerous experimental data for different
materials and loadings.

The cyclic plasticity model is made applicable to plastic mechanisms in beams and joints
by introduction of a generic yield surface format proposed in [P2]. The versatility of the
format is further discussed in [P3] and [C1]. The yield surface format is defined by a func-
tion that is homogeneous of degree one for most plastic mechanisms in tubular structures.
The homogeneous format ensures that the gradients of outer surfaces are similar to the
gradients of the yield surface, easing return to the yield surface in return algorithms. By
definition the yield surface format is convex and in addition it is flexible, enabling the rep-
resentation of different types of yield surfaces. In [P2], [P3] and [C1] the flexibility of the
format is illustrated by application to multiple different yield surfaces. With the format
local modifications of the yield surface are possible, improving the algorithmic properties
of the plasticity model.

39
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In order to effectively model tubular structures a frame element with plastic hinges in
the beam member is developed in [P2] and extended to include plastic mechanisms in
joints in [C1] and additionally elastic local joint flexibility in [P3]. The frame element is
formulated in an equilibrium format, separating the displacements of the element into a
set of deformations and a set of rigid body motions. The equilibrium format makes the
deformations and thereby the flexibilities additive, enabling a direct representation of the
plastic deformations and elastic local joint deformation in the total deformation measure
of the element. The additive deformations enable the use of the developed cyclic plasticity
model. The additive flexibilities result in an explicitly defined stiffness matrix even with
multiple active plastic mechanisms. The equilibrium format is extended to a standard full
format element by use of the equilibrium conditions and the format is very suitable for a co-
rotational formulation [66]. The ability of the frame element to represent simple structures
accurately is illustrated in [P2] and [C1]. Currently there is no experimental or theoretical
quantification of the parameter evolution of tubular beams and joints. To increase the
knowledge about the impact of phenomena as ovalisation, fracture, local buckling etc.
experimental work is required. A potential non-costly method would be detailed finite
element models using the implementation of a representative cyclic plasticity model.

The implementation of the frame element developed in [P2], [P3] and [C1] requires the
development of a return algorithm. To ensure convergence of the algorithm even with large
load steps, a robust return algorithm is developed in [C2] and [P3]. Special measures to
increase the robustness in relation to the specific cyclic plasticity model used are discussed
in [P3]. The return algorithm is based on satisfying the finite increment version of the
generalized strain evolution equations in the final state. The use of the final state removes
the need for obtaining information at intermediate points of the load step, a requirement
that may be cumbersome with multiple active plastic mechanisms. The derivation of the
return algorithm includes identification of the consistent algorithmic tangent stiffness ma-
trix, enabling a second order convergence rate of the equilibrium iterations. The return
algorithm is enhanced by a second-order correction of the stress increment resulting in a
two-step procedure. The two-step procedure uses information obtained at a mid-step to
improve the accuracy of the return direction. The second order correction highly increases
the robustness in comparison with traditional single-step return algorithms. While the
return algorithm exhibits increased robustness, the time integration methods used in dy-
namic analysis have not been investigated in the present work. Standard Newmark time
integration schemes are inherently incapable of preserving energy for non-linear problems
[62]. The robustness may be increased in dynamic analysis by use of an improved time
integration scheme.

The effects of cyclic plasticity in materials are illustrated in [P1] while the effects of
cyclic plasticity in structures are demonstrated in [P2] and [C1]. The developed models
and algorithms are used to update the structural computer code RONJA used by several
engineering companies. The differences between the orginal and the updated code are
highlighted by analysis of representative North Sea structures in [P3]. A good agreement
between experimental observations for complex structures and the developed models is
found as discussed in [P2]. The update of the code RONJA increases the robustness and
improves the representation of monotonic as well as cyclic plasticity in structures. The
cyclic plasticity model improves the representation of the response in the areas with room
for improvement as highlighted in the benchmark study [9]. It may be useful to carry out a
detailed study of a series of built and to-be-built offshore tubular platforms to investigate
the safety of current platforms and identify the degree of conservatism in current design
standards.
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The paper presents a compact model for cyclic plasticity based on energy in terms of external and in- 

ternal variables, and plastic yielding described by kinematic hardening and a flow potential with an ad- 

ditive term controlling the nonlinear cyclic hardening. The model is basically described by five parame- 

ters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter 

controlling the gradual development of plastic deformation. Calibration against numerous experimental 

results indicates that typically larger plastic strains develop than predicted by the Armstrong–Frederick 

model, contained as a special case of the present model for a particular choice of the shape parame- 

ter. In contrast to previous work, where shaping the stress-strain loops is derived from multiple internal 

stress states, this effect is here represented by a single parameter, and it is demonstrated that this sim- 

ple formulation enables very accurate representation of experimental results. An extension of the theory 

to account for model parameter evolution effects, e.g. in the form of changing yield level, is included in 

the form of extended evolution equations for the model parameters. Finally, it is demonstrated that the 

model in combination with a simple parameter interpolation scheme enables representation of ratcheting 

effects. 
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. Introduction 

A central feature of cyclic plasticity is the representation of

he Bauschinger effect, in which the original elasto-plastic stress

train relation is stretched upon stress reversal, leading to nested

oops, Masing (1927) . Typically, full stress reversal leads to approx-

mate doubling of the elastic stress range, suggesting representa-

ion in terms of a translating yield surface in the form of kinematic

ardening, Prager (1956) and Ziegler (1959) . The classic hardening

ules do not lend themselves easily to the stretching of the stress-

train curve in the reversed yielding. This problem was resolved

y Mroz (1967) by introducing a set of nested yield surfaces, each

ontrolled by linear kinematic hardening. For circular/cylindrical

ield surfaces this model is simple in principle, but it leads to a

ather large number of parameters to keep track of all yield sur-

aces. For proportional loading the model leads to stretched and

ested loops, and there is a close analogy to the method of ‘rain-

ow counting’ used in fatigue life evaluation for irregular load his-

ories. 
∗ Corresponding author. 

E-mail address: sk@mek.dtu.dk (S. Krenk). 
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167-6636/© 2017 Published by Elsevier Ltd. 
An alternative to the multi-surface model is the two surface

oncept developed by Dafalias and Popov (1975, 1976) and Krieg

1975) . In this concept the inner surface acts as a yield surface,

hile the relation to the bounding surface controls the hardening

ia translation of the yield surface. The hardening is derived us-

ng the relation between the current stress state on the yield sur-

ace and an equivalent point, characterized by a common direction

f the normal on the bounding surface. When using a common

omogeneous function for describing the yield surface as well as

he bounding surface the intermediate steps can be eliminated, see

.g. Ottosen and Ristinmaa (2005) . However, the model retains two

ariables, describing distances in stress space and varying in a dis-

ontinuous fashion. 

A shift of focus from yield and bounding surfaces to a reference

tress state within the yield surface was central in the model pro-

osed by Armstrong and Frederick (1966) . The key characteristic

f the Armstrong–Frederick formulation based on the von Mises

ield surface is the assumption of kinematic hardening, in which

he center of the yield surface α evolves according to a relation of

he form 

˙ = c 

(
˙ ε p −

˙ ε ∗p 
α∗

α
)
, (1) 

http://dx.doi.org/10.1016/j.mechmat.2017.07.012
http://www.ScienceDirect.com
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where c is a characteristic parameter, ˙ ε p is the plastic strain rate,

and the asterisk symbol indicates a normalized scalar form of the

corresponding symbol. As the value of the center stress α increases

the rate of increase diminishes, eventually leading to asymptotic

approach of the center stress α to a limiting surface generated

by the format of the model. A central point is that the bound

in this model is on the internal stress state α, and not a tan-

gent condition on the yield surface, thereby avoiding the construc-

tion of rules for the relative motion of two surfaces. This theory

has been extended to several internal stress states, Chaboche and

Rousselier (1983) , and presented in terms of internal energy and

flow potential by Chaboche (1986) , and the thermodynamic consis-

tency of multi-mechanism models was investigated by Wolff and

Taleb (2008) . Multi-surface, two-surface and Armstrong–Frederick

models have been discussed in the extensive review by Chaboche

(2008) , also including visco-plastic models. An attractive feature of

the Armstrong–Frederick type of model is the possibility of a fairly

free selection of yield surfaces to account e.g. for anisotropy, Chun

et al. (2002) or yield hinges in structural members, Tidemann and

Krenk (2017) . 

One of the challenges of cyclic plasticity theories is the phe-

nomenon of ratcheting, in which a non-zero mean stress leads to

continuously increasing mean strain upon superposition of a cyclic

stress component. The mean and cyclic components may be of the

same type, e.g. uniaxial tension, or different components, e.g. axial

and circumferential stresses in a tube. The modeling problem was

considered by Ohno and Wang (1993a, 1993b ), who found that the

lack of closure of the cycles in the original model by Armstrong

and Frederick (1966) leads to excessive accumulated ratcheting

strain. They proposed a modified model consisting of several inter-

nal stress states αj , each bounded to a constant surface. This leads

to a modification of the form of the basic Armstrong–Frederick

evolution relation (1) , changing the last term to a projection of the

plastic strain rate tensor onto the tangent plane of the correspond-

ing surface. It was subsequently demonstrated by Chaboche (1994) ,

that the improved representation of ratcheting is mainly due to the

non-linear representation of the second term in the evolution Eq.

(1) following from the use of multiple intervals, rather than from

the projection property. Thus, a suitable non-linear form of the

second term may be a key to an improved theory, as demonstrated

in the present paper. An extensive series of experiments on ratch-

eting of metals were reported in Hassan and Kyriakides (1992) , and

Hassan et al. (1992) . It was found that in order to model the ratch-

eting behavior the two-surface model of Dafalias and Popov (1975,

1976) needed a modification relating motion of the bounding sur-

face to the development of plastic mean strain, while the model

of Armstrong and Frederick (1966) needed a modification of the

second term in (1) to a non-linear form. Alternatively, the perfor-

mance of the Ohno-Wang model for ratcheting can be improved

by supplementing the original kinematic hardening by combined

kinematic-isotropic hardening, controlled by a balance parameter

in each of the stress ranges, as proposed by Abdel-Karim (2010) . An

extensive overview of much of the previous work on cyclic plastic-

ity was presented by Xiao et al. (2012) , placing the theories within

a general thermodynamic framework. 

It is a common feature of cyclic behavior of metals that prop-

erties typically characterized by model parameters, such as elastic

stiffness and yield stress, may change during the process. These

effects may be included in a manner similar to traditional dam-

age theory, see e.g. Lemaitre (1985) where both isotropic and kine-

matic hardening were introduced in the plasticity model and the

evolution of the elastic stiffness was represented by continuous in-

ternal variables and coupled to the plastic evolution laws. As an

alternative to the coupling between internal variables controlling

model parameter evolution and plastic deformation, evolution of

the model parameters can be introduced via a separate mechanism
nd a separate criterion, a so-called 2M2C model, where a damage

train is introduced similar to the plastic strain and has a sepa-

ate evolution law, see e.g. Ibrahimbegovic et al. (2008) . A detailed

iscussion of the relation between model parameters in relation to

aterial characteristics was given by Pham et al. (2013) , present-

ng relations integrating to an exponential development in terms

f accumulated plastic strain. 

In multi-axial deformation the cyclic hardening/softening will

e highly influenced by non-proportionality of the strain path

s discussed by Calloch and Marquis (1999) and Tarigopula et al.

2008) . In multi-axial strain-controlled cycling the ratio of the am-

litude of one strain component to the amplitude of another strain

omponent, the so-called strain range ratio, has a large influence

n the cyclic hardening/softening. In the case of bi-axial strain cy-

ling with combined axial and shear cycling the phenomenon has

een discussed by Benallal and Marquis (1987) . The effect of non-

roportionality may be accounted for in various ways e.g. a strain-

ath memory surface as discussed by Hopperstad et al. (1995) . 

The present paper develops a simple compact elasto-plastic

odel of Armstrong–Frederick type, in which the second term in

he evolution equation for the center of the instantaneous yield

urface is generalized to non-linear form by use of a single param-

ter that controls the development of the plastic strain. This non-

inear form replaces the need for multiple additive internal stress

tates αj . The result is a simple model with 5-parameters: yield

tress and ultimate stress; external and internal elastic stiffness;

nd a non-dimensional parameter characterizing the development

f the plastic strain. These can be read fairly directly off a typ-

cal experimental stress-strain curve. Each of the parameters can

e given a development by an evolution equation relating model

arameters with internal parameters. A basic form of the plastic-

ty model is developed in Section 2 from an internal energy po-

ential, a yield function and a flow potential. The model charac-

eristics are illustrated in Section 3 and the extension to include a

on-linear representation of the gradual development of plasticity

s introduced. The theory is extended to its full format including

arameter evolution in Section 4 , where internal parameters are

ntroduced to permit gradual changes of the yield stress, the ul-

imate stress, and the elastic and the elasto-plastic stiffness. The

bility of the model to represent uniaxial cyclic experimental re-

ults is presented in Section 5 for constant model parameters and

he representation of cyclic hardening/softening by parameter evo-

ution in Section 6 . Finally, the ability to represent ratcheting strain

evelopment by a parameter interpolation based on the load cycle

haracteristics is demonstrated in Section 7 . 

. Simple cyclic plasticity model 

In this section the basic theory of Armstrong–Frederick type

yclic elasto-plasticity is developed based on the concept of ex-

ernal and internal strains and their conjugate stresses. This ‘min-

mum’ cyclic plasticity model is then generalized to account for

 more detailed description of the development of yielding in

ection 3 and of parameter evolution effects in Section 4 . 

.1. External and internal variables 

The elastic properties are represented by a specific internal en-

rgy, given by the function ϕ( ε e , ε i ), where ε e is the elastic strain,

hile ε i is a set of internal strain parameters, that represent de-

elopment of the internal state of the material. For a linear elastic

aterial with a corresponding representation of the internal strain

arameters the internal energy function is a quadratic form in the

train components: 

(ε e , ε i ) = 

1 ε 

T 
e C e ε e + 

1 ε 

T 
C i ε i . (2)
2 2 i 
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ere and in the following a notation is used that permits inter-

retation of stresses, strains and stiffness properties either as sym-

etric tensors or the equivalent ‘vector–matrix’ format. C e is the

ymmetric elastic stiffness matrix, and C i is an analogous symmet-

ic internal stiffness matrix. The superscript T denotes transposi-

ion, securing consistency of the ‘vector-matrix’ notation. 

The external observable stress σ corresponding to the elastic

train ε e and an internal stress σ i corresponding to the internal

train ε i are obtained from the internal energy function via the

erivatives 

= ∂ ε e ϕ = C e ε e , (3) 

i = ∂ ε i ϕ = C i ε i . (4) 

y convention the partial derivatives are in column format. The

rst of the relations reproduces the classic linear Hooke’s law,

hile the second gives a similar linear relation between the in-

ernal stresses σ i and the internal strains ε i . 

.2. Yield surface 

The yield function F ( σ, σ i ) defines the yield surface bounding

he elastic stress region, 

 (σ, σi ) ≤ 0 . (5)

n the present model the yield function is of the form F (σ − σi ) .

his implies that the surface translates in stress space as pre-

cribed by the internal stress σ i . The yield surface is given by 

 (σ, σi ) = ‖ σ − σi ‖ − σy , (6)

here the symbol ‖ ‖ denotes a norm of the multi-component

tress state, and σ y is the initial yield stress. In the following the

orm will be taken as the von Mises equivalent stress σe = ‖ σ‖ ,
efined in terms of the deviatoric stress σ′ = σ − 1 

3 trace (σ) by
2 
e = 

3 
2 σ

′ 
αβ

σ ′ 
αβ

. 

.3. Plastic flow 

The plastic deformation is associated with the rate of energy

issipation, evaluated as the difference between the rate of energy

upplied through the total strain rate ˙ ε and the time derivative of

he internal energy ˙ ϕ , 

 = σT ˙ ε − ˙ ϕ (σ, σi ) = σT 
(

˙ ε − ˙ ε e 

)
− σT 

i ˙ ε i ≥ 0 , (7)

here the time derivative of the internal energy potential has been

xpressed by use of (3) and (4) . This relation identifies the second

actor in the first term as the plastic strain rate 

˙ 
 p = 

˙ ε − ˙ ε e , (8) 

orresponding to additive elastic and plastic strain rates. 

The relations that govern the strain rates are defined by intro-

ucing a plastic flow potential G ( σ, σ i ), and assuming that the rate

f dissipation D is maximized on an equipotential surface for given

train rates ˙ ε p , ˙ ε i . According to this principle the strain rates are

roportional to the normal to the equipotential surface at the point

, σ i , corresponding to 

˙ 
 = 

˙ ε e + 

˙ λ∂ σG, 

 = 

˙ ε i + 

˙ λ∂ σi 
G. (9) 

he common multiplier ˙ λ is determined by the consistency condi-

ion, securing that the stress state σ remains on the yield surface. 

The flow potential contains the internal stress σ i and its math-

matical form is essential for controlling the motion of the yield

urface in connection with cyclic plasticity. A simple plastic flow
otential corresponding to the yield surface F ( σ, σ i ) in (6) can be

xpressed in the form 

 (σ, σi ) = F (σ, σi ) + 

1 

2 σm 

(‖ σi ‖ 

2 − σ 2 
m 

)
, (10)

here σ m 

is a model parameter of dimension stress. The term σ 2 
m 

s included to make the limiting value of G ( σ, σ i ) equal to zero in

nalogy to the yield function, i.e. F (σ, σi ) = 0 corresponds to max-

mum elastic capacity and G (σ, σi ) = 0 corresponds to maximum

lastic capacity. It is an important feature of the flow potential for-

at (10) that the yield function is of degree one in the stresses,

hile the additional hardening term is of higher degree in the in-

ernal stress σ i - here two. This particular feature implies that in-

reasing value of ‖ σ i ‖ leads to faster growth of the second term,

ventually stopping further increase at ‖ σi ‖ = σm 

. This feature is

iscussed in detail in Section 3 together with a simple generaliza-

ion of the hardening term. 

Much of the present theory is retained for more general yield

urfaces, if these are represented by a homogeneous function of

egree one, thereby covering the cases of anisotropy via a modified

on Mises yield surface, and yield hinges e.g. in structural mem-

ers when using a yield surface format in the form of a sum of

quare roots of quadratic forms, Tidemann and Krenk (2017) . 

.4. Elasto-plastic evolution equations 

During elasto-plastic loading the stress σ remains on the yield

urface, and thus the yield condition F (σ, σi ) = 0 is identically sat-

sfied during this time. The plastic multiplier is found by time dif-

erentiation of the yield function, followed by substitution of the

tress rates ˙ σ and 

˙ σi in terms of the equivalent strain rates ˙ ε e and

˙ 
 i via (3) and (4) . Finally, the strain rates are expressed by the flow

ule (9) , whereby the plastic multiplier is obtained as 

˙ = �T ˙ ε (11) 

n terms of the one-dimensional array 

= 

C e (∂ σF ) 

(∂ σF ) T C e (∂ σG ) + (∂ σi 
F ) T C i (∂ σi 

G ) 
. (12) 

lastic loading is based on the condition that the plastic multiplier
˙ calculated from this expression is positive. If this is not the case,

he corresponding increment is elastic corresponding to ˙ λ = 0 . 

The stress rate and internal stress rate now follow directly from

he evolution Eqs. (9) by multiplication with C e and C i , respec-

ively, 

˙ σ = 

[
C e − C e (∂ σG ) �T 

]
˙ ε , 

˙ i = − C i (∂ σi 
G ) �T ˙ ε . (13) 

hese equations describe the evolution of stresses in response to

n imposed strain history. The elastic part of the response follows

y simply omitting the terms containing �. 

.5. Relation to the Armstrong–Frederick model 

The model of Armstrong and Frederick (1966) was developed

or a von Mises material with kinematic hardening, governed by

he evolution Eq. (1) . It is of interest to compare this with the

volution equation for the internal stress σ i in the basic form of

he model developed above. When defining the stress norm by the

quivalent stress, ‖ σ‖ 2 = σ 2 
e = 

3 
2 σ

′ T σ′ , the plastic strain rate fol-

ows from ( 9 a) in the form 

˙ 
 p = 

˙ λ∂ σG = 

˙ λ
3 

2 

σ ′ − σ ′ 
i 

‖ σ ′ − σ ′ 
i 
‖ 

. (14) 

he corresponding scalar equivalent plastic strain rate is defined

y ˙ ε ∗p = ( 2 3 
˙ ε T p ˙ ε p ) 

1 / 2 = 

˙ λ, and thus the plastic multiplier is defined
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Fig. 1. Stress-strain curve of simple model with simple translation term. 
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by the equivalent plastic strain rate in the present case of the von

Mises stress surface defined via the equivalent stress σe = σy . 

The evolution of the internal stress σ i then follows from ( 9 b)

by multiplication with the internal stiffness tensor C i as 

˙ σi = −C i 
˙ λ∂ σi 

G = C i 

(
˙ λ∂ σG −

˙ λ

2 σm 

∂ σi 
‖ σi ‖ 

2 
)
. (15)

In this relation the first term is recognized as the plastic strain rate

from (14) , while the second term is evaluated by differentiation of

the stress norm and identification of the plastic multiplier with the

equivalent plastic strain rate. Hereby the evolution equation takes

the form 

˙ σi = C i 

(
˙ ε p − 3 

2 

˙ ε ∗p 
σm 

σ ′ 
i 

)
. (16)

The plastic strain rate ˙ ε p is deviatoric by (14) , and for isotropic

internal stiffness C i the first factor degenerates to scalar stiffness,

whereby the Armstrong–Frederick evolution format (1) is recov-

ered from the basic form of the present model. It is seen that the

effect of the internal stress term in the evolution equation is easily

modified by changing the second term in the definition of the flow

potential as discussed in the following section. 

3. Model characteristics and enhanced flow potential 

In this section the cyclic elasto-plastic model developed above

is specialized to uniaxial format and the basic features and their

relation to the model parameters are identified. The specific fea-

tures of the transition from elastic to mainly plastic behavior is

then used to develop a compact but more general representation

of the flow potential, containing one additional parameter. 

3.1. Uniaxial relations 

In the uniaxial model the internal energy is given in terms of

the strain εe and the internal strain εi as 

ϕ(ε e , ε i ) = 

1 
2 
ε T e E e ε e + 

1 
2 
ε T i E i ε i . (17)

This expression contains two material parameters: the elastic mod-

ulus E e and the internal elastic modulus E i . The uniaxial yield func-

tion takes the form 

F (σ, σi ) = | σ − σi | − σy , (18)

where | | denotes the absolute value, and σ y is the uniaxial yield

stress. Finally, the corresponding uniaxial flow potential is 

G (σ, σi ) = F (σ, σi ) + 

1 

2 σm 

(| σi | 2 − σ 2 
m 

)
. (19)

The stress parameter σ m 

represents a hardening limit as demon-

strated below. 

In total the model contains four parameters E e , E i , σ y and σ m 

.

Of these the two first relate directly to the stiffness, while the two

latter describe characteristic stress levels. This direct interpretation

is illustrated below, and turns out to establish a fairly direct corre-

spondence between each parameter and a characteristic feature of

the stress-strain curve. 

3.2. Uniaxial evolution equations 

The evolution equations of the model follow from evaluation of

the derivatives of the yield function F ( σ , σ i ) and the flow potential

G ( σ , σ i ) with respect to the stress σ and internal stress σ i . The

evolution equations contain the factor 	 from (12) consisting of

two terms. The first term, describing the elastic contribution, is 

(∂ σ F ) T C e (∂ σ G ) = E e . (20)
ach of the derivatives with respect to the stress σ contain the fac-

or sign (σ − σi ) = ∂ σ | σ − σi | describing the direction of the load-

ng process, but as this factor appears twice the effect cancels, and

he factor does not appear explicitly in this term. The second term

n the denominator, involving the internal variables, defines the

lastic hardening modulus 

 = (∂ σi 
F ) T C i (∂ σi 

G ) = E i 

[ 
1 − sign (σ − σi ) 

σi 

σm 

] 
. (21)

ere the contribution E i is similar to (20) , while the second con-

ribution combines the sign-function from the derivative of F with

he normalized internal stress σ i / σ m 

from the derivative of G . 

Evolution equations for both the stress σ and the internal stress

i follow from substitution of the uniaxial expressions (20) and

21) into the two general evolution Eqs. (13) , 

˙ = ˙ σi = 

˙ ε 

1 /E e + 1 /H 

. (22)

 direct interpretation of the hardening modulus H is obtained by

riting the stress relation in the form 

˙  = 

˙ σ

E e 
+ 

˙ σ

H 

= ˙ ε e + ˙ ε p . (23)

his relation clearly defines 1/ H as an additional plastic flexibility.

t follows immediately that the elastic case is described by an infi-

ite value of H . 

The role of 1/ H as an additional plastic flexibility makes a fur-

her analysis of the expression (21) important for identification of

he role of the individual model parameters. In Fig. 1 the first part

B of the initial loading curve with σ < σ y is elastic with stiffness

odulus E e . When entering the plastic regime for the first time at

= σy the stiffness changes. At this point the internal stress σ i is

till at its initial value σi = 0 , and thus H = E i at B . With increas-

ng straining the internal stress σ i increases until H = 0 , which is

eached in the limit σi = σm 

. Thus, the monotonic ultimate stress

imit is defined by 

u = σm 

+ σy . (24)

his defines the model parameter σ m 

as the stress by which the

ltimate stress σ u exceeds the initial yield stress σ y . 

In the figure unloading is initiated at C , leading to an elastic

art CD with stress range 2 σ y and flexibility 1/ E e . At D elasto-

lastic behavior starts, and the flexibility increases to 1 /E e + 1 /H.

he internal stress σ i , representing the center of the yield surface,

oes not change during the elastic unloading along CD . The expres-

ion (21) can therefore be used to express the sum of the harden-

ng modulus at C and at D as 

 D + H C = 2 E . (25)
i 
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Fig. 2. Influence of parameter α on stress-strain curve. 
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long BC the hardening modulus has decreased from E i towards

he asymptotic value zero. If the plastic straining is large compared

o the elastic yield strain σ y / E e , then H C � E i and thus H D � 2 E i .

his corresponds to the plastic strain developing at about half the

ate at D as compared to the initial plastic straining at B . This gen-

rates the often observed cyclic elasto-plastic behavior, that the

rst loading branch of the stress-strain curve appears as stretched

y a factor of two in the following cyclic branches. This behavior

s illustrated by the examples in Section 5 . 

.3. Enhanced flow potential 

The theory developed above constitutes a minimal, but quite

ersatile, cyclic plasticity model – essentially the Armstrong–

rederick theory, when using the von Mises yield surface. There

re only four model parameters: the elastic stiffness E e , the in-

ernal stiffness E i and the yield and ultimate stress levels σ y and

u = σy + σm 

. The model represents the principal features of cyclic

lasticity well. However, the transition from onset of plastic strain-

ng e.g. at the points B or D in Fig. 1 to fully developed plasticity

t C ′ or J ′ is described by only two parameters: the initial slope,

efined by the elasto-plastic flexibility 1 /E e + 1 /H, and the ulti-

ate asymptotic stress limit ±σ u . The transition is governed by

he plastic hardening modulus H , given by (21) . It consists of a con-

tant E i , defining the flexibility at initiation of plastic deformation,

inus a term that is linear in the internal stress σ i . As illustrated

n the examples in Section 5 an improved quantitative representa-

ion of experimental results for steel can be obtained, if the linear

erm is modified to exhibit a slower than linear increase with re-

pect to σ i . 

In the modified model the gradient of the flow potential with

espect to the internal stress is expressed in the form 

 σi 
G = − sign (σ − σi ) + 

σi 

(1 − α) σm 

+ α| σi | , α < 1 . (26)

n the limit α = 0 the previous basic model is recovered, while the

pper limit α < 1 is necessary to retain the last term as an increas-

ng function of σ i . The flow potential G ( σ , σ i ) follows from inte-

ration of (26) , whereby 

 = F + 

1 

α

{ 

| σi | − σm 

− 1 − α

α
σm 

ln 

(
1 + α

| σi | − σm 

σm 

)} 

, α < 1 . 

(27) 

t is seen that G → 0 when approaching the ultimate stress limit,

here | σ i | → σ m 

. Furthermore, it is easily verified by expansion of

he logarithm that the original flow potential (19) is recovered in

he limit α = 0 . 
The hardening modulus follows as 

 = (∂ σi 
F ) C i (∂ σi 

G ) = E i 

[ 
1 − sign (σ − σi ) 

σi 

(1 − α) σm 

+ α| σi | 
] 
. 

(28) 

The ultimate stress limit σ u corresponds to H = 0 . The particu-

ar parametrization used in the generalized form (28) leads to the

ame role of the parameter σ m 

in the relation (24) giving the ulti-

ate stress for σ u as the sum of the yield stress σ y and the stress

m 

. With a parametrization that retains the role of σ m 

in defining

he ultimate stress level, the role of the non-dimensional param-

ter α is simply to modify the transition curve between initiation

f plastic straining and fully developed plasticity as illustrated in

ig. 2 . It is seen that a negative value of the parameter α delays

he development of plastic strain, concentrating the curve more

nto the corner formed by the intersection of the constant harden-

ng part of the stress-strain curve and the curve marking the ulti-

ate stress level. However, as illustrated by the experimental data

n Section 5 typical values of α for steel are positive, with α � 0.8

s fairly representative and shown in Fig. 2 . 
. Full model with parameter evolution 

In this section the full multi-dimensional plasticity model is

eveloped and supplemented by a systematic framework for pa-

ameter evolution. The characteristics and increased flexibility of

he enhanced flow potential (27) are easily extended to multi-

imensional formats by replacing the absolute values | σ − σi | and

 σ i | by the norms ‖ σ − σi ‖ and ‖ σ i ‖ . The derivatives will not be

he sign-function but normalized vectors analogous to a multi-

imensional sign-function. 

In uniaxial as well as multi-axial cyclic plasticity it is often

ound, e.g. Hassan and Kyriakides (1992) and Chun et al. (2002) ,

hat cyclic plasticity leads to hardening or softening in the form

f an increase or decrease of the apparent ultimate stress σu =
y + σm 

. In analogy with the change of the characteristic internal

tress state σ i the ultimate stress was represented by Chun et al.

2002) in terms of the accumulated equivalent plastic strain εp as 

u = σ 0 
u + K 

(
1 − e −Nε p 

)
. (29)

n this formula σ 0 
u is the initial value of the ultimate stress, and the

symptotic value after large plastic straining then is σ∞ 

u = σ 0 
u + K.

 direct formulation in terms of (29) would introduce the accu-

ulated plastic strain εp as an independent variable of the theory.

 more universal form in terms of an evolution equation for σ u 

s obtained by differentiation of the relation (29) with respect to

ime, leading to 

˙ u = 

˙ λN(σ∞ 

u − σu ) , (30) 

here σ u is the current value of the ultimate stress, and the rela-

ion 

˙ λ = ˙ ε p has been used. The evolution Eq. (30) has the same for-

at as that of the internal variable ε i in ( 9 b), illustrating that evo-

ution of the parameters of the model can be treated in a similar

ay as the internal variables. An extension of the plasticity model

eveloped above to full multidimensional form including evolution

f the model parameters is outlined in the following. 

.1. Theory with model parameter evolution 

Evolution of the model parameters can be included in a man-

er similar to traditional damage theory. It is done by introducing

n extra set of internal variables in the energy formulation in the

orm of strain-like evolution parameters ξ. To permit evolution of

he stiffness the stiffness matrices are considered as functions of ξ,

nd a separate term is added to the internal energy, 

(ε e , ε i , ξ) = 

1 
2 
ε 

T 
e C e (ξ) ε e + 

1 
2 
ε 

T 
i C i (ξ) ε i + ϕ d (ξ) , (31)

here ϕd ( ξ) is a function to be specified to get an appropriate evo-

ution of the model parameters. The energy-conjugate stress and

tress-like parameters are defined by 

= ∂ ε e ϕ = C e (ξ) ε e , (32) 
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σi = ∂ ε i ϕ = C i (ξ) ε i , (33)

η= ∂ ξϕ , (34)

where η are stress-like evolution parameters, conjugate to ξ. 

It is assumed that evolution of the model parameters only oc-

curs during plastic loading, and thus the model parameter evo-

lution criterion coincides with the yield surface. Evolution of the

yield surface is introduced in the yield function via the yield stress

in the form 

F (σ, σi , η) = ‖ σ − σi ‖ − σy (η) . (35)

This formulation enables evolution of the yield stress in a form

similar to traditional isotropic hardening/softening. 

The evolution of the model parameters is governed by the plas-

tic flow potential, which has to be modified as well. It is desirable

to enable evolution of all five model parameters – E e , E i represent-

ing stiffness, σ y , σ m 

representing stress levels, and α representing

the gradual development of plastic straining. The flow potential in-

cluding evolution of the model parameters is defined as 

G = F + 

1 

α

{ 

‖ σi ‖ −σm 

− 1 − α

α
σm 

ln 

(
1 + α

‖ σi ‖ − σm 

σm 

)} 

+ G ei (η) ,

(36)

where σy = σy (η) , σm 

= σm 

(η) and α = α(η) . The term G ei ( η) is

introduced to enable evolution parameters related to the stiffness

parameters to be separated from the remaining evolution parame-

ters. 

The evolution equations relating the evolution of stress and

stress-like parameters to a strain increment are determined fol-

lowing the same procedure as in Section 2 . They are conveniently

expressed with two system stiffness matrices, that include stiff-

ness related to elastic strains and strain-like evolution parameters,

and stiffness related to elastic strains, internal strains and strain-

like evolution parameters, respectively. These total stiffness matri-

ces are defined as 

C 

T 
ed = 

[
C e (ξ) 0 ∂ T 

ξ
σ
]
, (37)

C eid = 

⎡ 

⎣ 

C e (ξ) 0 ∂ T 
ξ
σ

0 C i (ξ) ∂ T 
ξ
σi 

(∂ T 
ξ
σ) T (∂ T 

ξ
σi ) 

T ∂ T 
ξ
η

⎤ 

⎦ . (38)

Furthermore the total gradients of the yield surface and the plastic

flow potential ∂F and ∂G are defined as 

∂F = [ ∂ T σ F , ∂ T σi 
F , ∂ T η F ] T , (39)

∂G = [ ∂ T σ G , ∂ T σi 
G , ∂ T η G ] T . (40)

The plastic multiplier is given in terms of these quantities as 

˙ λ = 

(∂F ) T C ed 

(∂F ) T C eid (∂G ) 
˙ ε , (41)

and the increment of the different stress and stress-like parameters

then follows as [ 

˙ σ
˙ σi 

˙ η

] 

= 

(
C ed −

C eid (∂G ) (∂F ) T C ed 

(∂F ) T C eid (∂G ) 

)
˙ ε . (42)

It is noted that if evolution of the model parameters is not intro-

duced in the evolution equations, the general relation (42) reduces

to the classic plasticity format (13) . 
.2. Model parameter evolution 

Model parameter evolution has been incorporated into the the-

ry via a scaling factor on the stiffness matrices C e and C i , and

n the parameters σ y , σ m 

and α. In relation to the present the-

ry the five primary variables are ξ = [ ξe , ξi , ξσy , ξσm , ξα] 
T 

with en-

rgy conjugates η = [ ηe , ηi , ησy , ησm , ηα] 
T 

. In the present formula-

ion the effects of these evolution parameters are considered inde-

endent, and they are introduced into the theory in a form that

eneralizes the exponential format described by (29) and (30) . 

The three parameters ησy , ησm and ηα are introduced as scaling

actors of the form 

y = ησy 
σ 0 

y , σm 

= ησm 
σ 0 

m 

, α = ηαα0 , (43)

here the superscript 0 refers to the initial value. The format of

he model for each of the scaling factors ησy , ησm and ηα are

dentical, and will be described by the generic symbol η without

ubscript. The scaling factor η is energy conjugate to the internal

ariable ξ , with a relation here taken in the following exponential

orm 

= 

∂ϕ 

∂ξ
= η∞ − (η∞ − η0 )e −ξ/ξ ∗

. (44)

he parameters η0 and η∞ denote the initial value of the scaling

actor and its limiting value after infinite plastic deformation. The

arameter ξ ∗ describes the scaling of the evolution process. It fol-

ows from integration that this relation is obtained when a term

 d (ξ ) = η∞ ξ + (η∞ − η0 ) ξ ∗e −ξ/ξ ∗
(45)

s added to the internal potential for each of the three parame-

ers σ y , σ m 

and α. The internal parameter ξ only develops during

ielding and evolves similar to the flow rule ( 9 b), whereby 

˙ = 

∂η

∂ξ
˙ ξ = −∂η

∂ξ

∂G 

∂η
˙ λ . (46)

hen evaluating the derivative ∂ η/ ∂ ξ from the exponential rela-

ion (44) the evolution equation for the scaling factor η takes the

orm 

˙ = − ˙ λ
η∞ − η

ξ ∗
∂G 

∂η
. (47)

or the yield stress ∂ G/∂ η = −σ 0 
y , and the scaling factor ησy be-

omes an exponential function of λ, representing the accumulated

lastic strain. For the scaling parameters ησm and ηα the derivative

f the potential G is non-trivial and the evolution of these param-

ters thereby less direct. In the actual numerical implementation

he scaling factors ησy , ησm and ηα follow from the evolution Eq.

42) . 

In the case of stiffness evolution the parameters ξ e and ξ i mod-

fy the magnitude of the corresponding stiffness matrices C e and

 i directly as 

 e = ˜ ηe (ξe ) C 

0 
e = 

[ 
˜ η∞ 

e − ( ̃  η∞ 

e − ˜ η0 
e )e −ξe /ξ ∗

e 

] 
C 

0 
e (48)

ith a similar relation for C i (ξi ) . In these expressions ˜ ηe and ˜ ηi 

re scaling parameters, but not conjugate to the parameters ξ e and

i . The evolution of the scaling factors ˜ ηe and ˜ ηi follow evolution

elations similar to (46) , e.g. 

˙ ˜ e = 

∂ ̃  ηe 

∂ξe 

˙ ξe = −∂ ̃  ηe 

∂ξe 

∂G 

∂ηe 

˙ λ . (49)

he derivative ∂ G / ∂ ηe makes use of the conjugate variable ηe . A

imple choice is therefore to introduce the stiffness evolution via

he extra term 

 (ηe , η ) = −ηe − η (50)
ei i i 
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Fig. 3. Conceptual calibration procedure. 
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Table 1 

Calibration procedure. 

1. Determine E e by E e = (σC − σB ) / (ε C − ε B ) . 

2. Determine σ y by σy = (σC − σB ) / 2 . 

3. Determine E i by secant stiffness at CD and E e 
or tangent stiffness at C or D and E e . 

4. Determine σ m by σm 
 | σB | − σy 

or σm 
 | σE | − σy 

or σm 
 (σE − σB ) / 2 − σy . 

5. Determine α by the shape of the curve DE . 

Table 2 

Model parameters. 

Figure E e [GPa] E i / E e σ y [MPa] σ m / σ y α

4, 5 195 1.3 190 1.92 0.88 

6 200 1.5 150 2.30 0.94 

7 (a) 65 3.2 150 1.67 0.82 

7 (b) 90 2.0 150 1.33 0.68 

8 220 4.0 40 8.25 0.95 

9 170 2.0 360 1.72 0.82 
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n the flow potential (36) , thereby reducing the G -derivatives in

49) to ∂ G/∂ ηe = ∂ G/∂ ηi = −1 . The evolution Eq. (42) give the in-

rements of the conjugate variables ηe and ηi , and it is a simple

atter to recalculate the current values to corresponding values of

he scaling factors ˜ ηe and ˜ ηi and the associated internal variables

e and ξ i . 

Here, the parameter evolution has been based on the exponen-

ial format (44) and (48) , and as illustrated in the following ex-

mples this fits experimental data quite well. However, the proce-

ure used here to introduce the basic evolution format can also be

odified to represent the evolution via power functions or rational

unctions of the internal variables ξ. 

. Characteristics of the uniaxial model 

In this section the uniaxial characteristics of the present model

or elasto-plasticity without parameter evolution are identified,

nd the performance of the model on a number of published cyclic

ests from literature is illustrated together with results from alter-

ative models used for representation of these test results. 

.1. Calibration 

It is often useful to evaluate the backbone curve of a cyclic

oading history when calibrating cyclic plasticity models. The back-

one curve can typically be used for the initial estimation of model

arameters and the calibration can be finalized with use of the full

yclic response. In the present case all the model parameters can

e observed fairly directly from the backbone curve. The concep-

ual backbone curve of the model is highlighted as a part of the

ull response in Fig. 3 . 

In Fig. 3 the point O is the initial stress free state, A corresponds

o the first state of yielding, B is the initial stress state at reload-

ng, C is the point where plastic loading starts again, D is the point

here the center of the yield surface passes Origo, corresponding

o a stress state of σ = σy , and E is the point where loading ends.

he stress-strain relationship is linear-elastic from B to C with a

hange in stress between these two states of 2 σ y . From the point

 to the point D the stress-strain relation is almost linear, corre-

ponding to constant hardening when σ i approaches Origo. This

inear relation is almost independent of α. From the point D to the

oint E the stress-strain relationship is non-linear with a clear de-

endence on α. This type of backbone curve with a linear-elastic,

 nearly constant hardening and a non-linear hardening part is ob-

erved for many materials. 

A direct calibration procedure is described in Table 1 . It has

een used for different test specimens, described in the following

xamples, to show the characteristics of the model. The calibrated
odel parameters are shown in Table 2 . It is seen that the parame-

er α lies in the interval 0.68–0.95, with a typical value of 0.80. As

een from Fig. 2 this corresponds to faster development of plastic

train than in the Armstrong–Frederick model. 

.2. Symmetric cycling 

The calibration procedure described above is used for differ-

nt test samples with symmetric cycling, Shi et al. (2012) . Two dif-

erent scenarios of strain-controlled symmetric cycling are consid-

red; in the first case the mean strain is zero and the strain am-

litude is initially 1% and then increases by 0.5% for each cycle. In

he second case the mean strain is 1% and the amplitude is initially

.5% and increases 0.5% for each cycle. The test results are shown

n Fig. 4 together with the results from the present model with pa-

ameters given in Table 2 . It is observed that except for the first

ycle, the shape of the hysteresis loops as well as the stress levels

re predicted accurately by the model. The zero mean strain cy-

ling is predicted slightly more accurately than the non-zero mean

train cycling. This relates to the symmetric format of the model;

he zero mean strain cycling is perfectly symmetric whereas the

on-zero mean strain cycling is not perfectly symmetric with re-

pect to the strain. A more accurate representation of the first cycle

an be obtained by introducing an appropriate evolution function

hat only affects the first part of the plastic straining, using the

ramework described in Section 4 . 

Fig. 4 also shows results from the model proposed by Shi et al. 

2012) based on a combination of a peak based model and a back- 

one curve divided into two separate parts, an elastic part and a

ardening part. The hardening part is approximated by curve fit-

ing and the separation point between the elastic and the plastic

art is given by the strain. It is observed from Fig. 4 that despite

he simplicity of the present model, it gives a more accurate rep-

esentation of the experimental data. 

.3. Non-symmetric cycling 

The present model can also represent non-symmetric cycling

airly accurately as illustrated by the strain-controlled experiment

hown in Fig. 5 . The strain is cycled between a positive maximum

train which is initially 1% increasing by 0.5% for each cycle, and a

egative minimum strain of -1%. 

With the exception of the first few cycles the shapes of the hys-

eresis loops as well as the stress levels are predicted quite accu-

ately. As previously noted, the representation of the first cycle can
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Fig. 4. Symmetric cycling: Shi et al. (2012) experiment ( ), model ( – · –). Present model ( ). 

Fig. 5. Non-symmetric cycling: Shi et al. (2012) experiment ( ), model ( – · –). 

Present model ( ). 

Fig. 6. Popov and Petersson (1978) experiment ( ), model ( – · –). Present model 

( ). 
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be improved by use of an appropriate evolution of the model pa-

rameters. 

5.4. Comparison with other models 

Popov and Petersson (1978) investigated cyclic plasticity in thin

tubular specimens experimentally and used a multi-surface type

material model. This was combined with different hardening pa-

rameters with formulations based on the plastic strain. The exper-

imental results along with the model proposed by Popov and Pe-

tersson (1978) and the present model are shown in Fig. 6 . It is seen
hat the present model reproduces both the stress levels and the

hape of the hysteresis loops quite well. 

Several models have been based on the model proposed by

rmstrong and Frederick (1966) and the subsequent modifications

ade by Chaboche (1989) and Ohno and Wang (1993a, 1993b) .

ne focus area has been visco-plastic models, and recently Guo

t al. (2013) developed a model for particle-reinforced metal matrix

omposites and alloys. In this model the matrix material and the

article reinforcement have individual material parameters and the

esulting material parameters of the alloy are found via a combi-

ation depending on the volume fraction of the particle reinforce-

ent. The present model can also be used for such a type of prob-

ems if calibrated properly. Fig. 7 shows experimental stabilized re-

ponse together with theoretical results from Guo et al. (2013) as

ell as results from the present model, calibrated separately for

he two tests with parameters given in Table 2 for matrix material

lone and for a composite with 14% reinforcement particles. The

bility to capture the shape of the stress-strain curves is notable,

nd the parameters from Table 2 may be related to the representa-

ion of mixture properties. 

A visco-plastic model with focus on cyclic hardening/softening

as developed by Kang et al. (2003) , based on Ohno and Wang

1993a, 1993b) . This model typically requires a fairly large number

f parameters, and it is of interest to compare its representation

f individual cycles with that of the present model, with the five

arameters shown in Table 2 . Fig. 8 shows a comparison between

xperimental data, the model proposed by Kang et al. (2003) , and

he present calibrated model. It is observed that both models are

ather accurate in representing the shape and the stress levels of

he hysteresis loop, but the present model with only five model

arameters. 

There are also other types of models, e.g. the so-called 2M1C

odels (2 Mechanisms, 1 Criterion) models. Such a model has

een proposed by Velay et al. (2006) in relation to hot working tool

teel. An example of a comparison between the 2M1C model and

he present model is shown in Fig. 9 for a case in which the vis-

ous effect on the plastic response is negligible. Both models are

redicting the shape of the hysteresis loop and the stress levels

ather well, the present being the more accurate. 

. Cyclic hardening/softening by parameter evolution 

This section presents three examples illustrating parameter evo-

ution. The initial model parameters are shown in Table 3 which is

omparable to Table 2 . The initial value of the scaling parameters

s η0 = 1 and the parameters defining the evolution of the initial

arameters are shown in Table 4 . 
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Fig. 7. Guo et al. (2013) experiment ( ), model ( – · –). Present model ( ). (a) Matrix, (b) alloy. 

Fig. 8. Kang et al. (2003) experiment ( ), model ( – · –). Present model ( ). 

Fig. 9. Velay et al. (2006) experiment ( ), model ( – · –). Present model ( ). 

Table 3 

Model initial parameters. 

Figure E 0 e [GPa] E 0 
i 
/E 0 e σ 0 

y [MPa] σ 0 
m /σ

0 
y α0 

10 187 4.5 200 1.75 0.08 

11 185 2.5 100 2.10 0.10 

12 (b) 200 3.5 140 0.68 0.45 

Fig. 10. Degradation: Hassan and Kyriakides (1992) experiment ( ). Present 

model ( ). 
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Table 4 

Model evolution parameters. 

Figure ξ ∗
e [ – ] ξ ∗

i 
[ – ] ξ ∗

σy 
[MPa] ξ ∗

σm 
[MPa] 

10 2.0 0.7 20 - 

11 9.0 1.0 100 50 

12 (b) 7.0 0.9 10 10 
.1. Softening and hardening for constant amplitude strain cycling 

A case of cyclic softening, i.e. degradation, is observed for car-

on steel CS1020 as reported by Hassan and Kyriakides (1992) .

ith a set of relatively simple evolution functions the uniaxial

ehaviour can be represented rather accurately with the present

odel as illustrated in Fig. 10 . The experiment is strain controlled

nd the test specimen is cycled between 1% and -1% strain. 

It is observed in Fig. 10 that the combined evolution mecha-

isms reproduce the shape of the hysteresis loops, the character-

stic stress levels and the change in shape from the first loading

ranch to the remaining loading branches. There is a small dis-

repancy between the experimental results and the modelled re-

ults in the lower right corner, but overall the modelled and the

xperimental results are very similar. 

The theory including model parameter evolution described in

ection 4 can also be used to model cyclic hardening. Hassan and

yriakides (1992) showed results of stainless steel with an initial

ignificant cyclic hardening. In the experiments the hardening is

rimarily of the ultimate capacity, while the yield limit remains

airly constant. This corresponds to increasing σ m 

with asymp-

otic stabilisation ( η∞ 

σm 
= 2 . 62 ) and relatively slow change of σ y 

 ξ ∗
σy 

� ξ ∗
σm 

). The experimental results are shown in Fig. 11 together
ξ ∗
α [kPa] ˜ η∞ 

e ˜ η∞ 
i 

η∞ 
σy 

η∞ 
σm 

η∞ 
α

2.0 0.0 0.0 0.55 1 11.75 

1.8 0.0 0.4 0.00 2.62 9.20 

1.0 0.0 0.0 0.64 4.42 1.98 



66 S. Krenk, L. Tidemann / Mechanics of Materials 113 (2017) 57–68 

Fig. 11. Degradation: Hassan and Kyriakides (1992) experiment ( ). Present 

model ( ). 

Table 5 

Biaxial ratcheting: Model initial parameters. 

E e [GPa] μe [GPa] E i / E e μi / μe σ 0 
y [MPa] σ 0 

m /σ
0 
y α0 

162 60.9 2.8 74.5 180 1.72 0.08 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Biaxial ratcheting: Experiment characteristics. 

Marker σ [MPa] 
γ / 
√ 

3 [%] � · 10 3 


 100 0.8 8.84 

× 50 1.0 1.37 

◦ 50 0.8 2.24 
• 50 0.6 4.10 

Table 7 

Biaxial ratcheting: Model evolution parameters. 

η∞ 
α ξ ∗

α [kPa] η∞ 
σm 

η∞ 
σm 

− 1 

ξ ∗
σm 

[GPa −1 ] 

10.6 2.5 1.43 ( ∇) 86.4 

2.10 ( ×) 
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with the modelled results. The experiment is strain controlled, and

cycled between 2.0% and -2.0% strain. 

As shown in Fig. 11 the present model is fairly accurate for

this type of behaviour as well. Each hysteresis cycle is represented

rather accurately and the characteristic stress levels are also well

represented by the model. 

6.2. Hardening for increasing strain cycles 

Similarly Kang et al. (2003) made experiments on cyclic hard-

ening materials with a strain controlled experiment. The cycling

was symmetric about zero mean strain, but with increasing am-

plitude starting at 0.18% and increasing with 0.30% for each cycle.

The experimental results along with the results modelled by Kang

et al. (2003) are shown in Fig. 12 (a) whereas the experimental re-

sults together with results from the present model are shown in

Fig. 12 (b). 

It is observed in Fig. 12 that the present model performs quite

well - now with a total of 15 model parameters, five for the ini-

tial elasto-plastic model and 10 for the parameter evolution. The

present model reproduces the hysteresis loops and the character-

istic stress levels quite well, even with the very simple parameter

evolution functions. 

7. Biaxial ratcheting 

To illustrate the capability to model multi-axial loading and

ratcheting, experiments presented by Ohno and Wang (1993b ) are

modelled. In three experiments a specimen is loaded to a constant

tension stress state σ giving an initial axial strain ε, and subse-

quently the shear strain γ is cyclically varied between ±
γ /2 re-

sulting in axial strain ratcheting. In the biaxial stress state the elas-

tic and the internal stiffness matrices take the form 

C e = 

[
E e 0 

0 μe 

]
, C i = 

[
E i 0 

0 μi 

]
(51)

where E e is the elastic Young’s modulus and μe is the elastic shear

modulus, whereas E i and μi are the corresponding internal stiff-

ness parameters. The initial model parameters are listed in Table 5 .

While the ratio E i / E e is similar to previous examples these hold no

equivalent of the present ratio μ / μe . 
i 
In the experiments there is no direct cycling of the axial stress,

ut rather an indirect effect due to the interaction with the cy-

ling of the shear stain. The combined effect of the different levels

f prestress, strain range and degrees of non-proportionality can

e represented via a change in the single parameter σ m 

as given

y an interpolation scheme introduced by Benallal and Marquis

1987) , 

∞ 

σm 
(�) = �η∞ 

σm 
(1) + (1 − �) η∞ 

σm 
(0) , � = 1 − cos 2 θ , (52)

here θ is the angle between the incremental plastic strain d ε p 

nd the incremental deviatoric stress d σ′ , formally considered as

ectors. In practice the interpolation does not cover the interval

 ≤�≤ 1, but typically a much smaller interval between two ex-

eriments is used as the basis of the interpolation. The stress

nd the strain range values used in the experiments are given in

able 6 , together with estimated values of the parameter �. The

alue of � as well as the parameter η∞ 

σm 
(�) in these two cases

re used as basis, and the interpolated value of η∞ 

σm 
is then ob-

ained by estimating a representative value of � for each of the

emaining experiments. In the experiments the parameter σ m 

in-

reases whereby η∞ 

σm 
> 0 . It turns out that the corresponding at-

enuation parameter ξ ∗
σm 

can be assumed proportional to the rela-

ive increase of σ m 

whereby the ratio (η∞ 

σm 
− 1) /ξ ∗

σm 
is a constant,

hat is determined from the uniaxial hysteresis curve. The resulting

volution parameters are listed in Table 7 . The experiments marked

ith 
 and × in Table 6 were used as basis for determining the

alues at the end of the interpolation interval. The remaining val-

es of η∞ 

σm 
are then obtained by the interpolation procedure. It is

oted that only the parameter σ∞ 

m 

has been subjected to interpo-

ation to account for different values of �. In practical cases with

nknown stress states at different times and different points in a

tructure an initial analysis may be performed to determine a rep-

esentative value for � for the given loading condition and sub-

equently the analysis may be performed with values determined

rom the interpolation scheme. 

The uniaxial stress-strain behaviour is shown in Fig. 13 with all

our model parameter combinations and they all show good corre-

pondence with the experimental behaviour and are indistinguish-

ble from one another in the uniaxial single-cycle. 

The biaxial ratcheting effect is shown in Fig. 14 where the accu-

ulated axial strain is plotted against the number of shear strain

ycles. The modelled results agree well with the experimental re-

ults as illustrated in Fig. 14 . There is a slight offset between the

odelled results and the experimental results when σ = 50 MPa

nd 
γ / 
√ 

3 = 1 . 0 % in the cycles 10–15, but the difference is al-

ost negligible. 
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Fig. 12. Cyclic hardening: (a) Kang et al. (2003) experiment ( ), model ( – · –). (b) Kang et al. (2003) experiment ( ). Present model ( ). 

Fig. 13. Uniaxial cycling. Tanaka et al. (1991) experiment ( ◦). Ohno and Wang 

(1993b ) model ( – –). Present model ( ). 

Fig. 14. Biaxial cycling. Tanaka et al. (1991) experiment ( 
 , × , ◦, •). Ohno and 

Wang (1993b ) model ( – –). Present model ( ). 
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. Conclusions 

A simple five-parameter model has been developed for cyclic

lasticity. The model parameters are the external and internal stiff-

ess, the yield stress and a stress range parameter σ m 

represent-

ng the difference between ultimate stress and the yield stress, and

nally a non-dimensional shape parameter α describing the de-

elopment of plastic strain. Each of the five parameters describe

 fairly well defined independent feature of the stress strain rela-

ion, and thus the parameters can be estimated initially as inde-

endent, and subjected to subsequent minor adjustment, if neces-

ary. In the present format the shape parameter α, replaces the of-

en used representation of the internal stress σ as a sum of stress
i 
tates, each with their own parameters. The present single param-

ter modification permits an accurate representation of the cyclic

tress-strain loops, and the parameter α exhibits a fairly modest

ariation for the experimental data analyzed. It also accounts for

he experimental observation that the developed plastic strains are

arger than predicted by the classic Armstrong–Frederick model,

ontained in the present model as the special case α = 0 . 

The five-parameter plasticity formulation has been extended by

ncluding possible evolution of the model parameters in a format

imilar to traditional damage-theory. The format contains the plas-

ic multiplier, and evolution of the model parameters can therefore

e included by a fairly direct extension of the plasticity format. The

bility of this formulation to describe cyclic hardening and soft-

ning has been demonstrated by comparison with fairly extensive

niaxial experimental data. The model has also been used for two-

imensional ratcheting, representing the effect of the range mag-

itude and component ratio via a parameter interpolation scheme

nvolving only the stress range parameter σ m 

. 

In the literature various forms of the Armstrong–Frederick plas-

icity model have been recast into visco-plastic form by replacing

he plastic strain rate term in the evolution equation of the internal

tresses σ i with an expression in terms of current stress. As this

ransformation does not influence the format of the second term,

he present format of this term can be retained in a visco-plastic

ormulation of the model. However, this aspect has not been in-

luded in the present paper. 
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Cyclic Plastic Hinges with Degradation Effects for
Frame Structures

Lasse Tidemann1 and Steen Krenk2

Abstract: A model of cyclic plastic hinges in frame structures including degradation effects for stiffness and strength is developed.
The model is formulated via potentials in terms of section forces. It consists of a yield surface, described in a generic format permitting
representation of general convex shapes including corners, and a set of evolution equations based on an internal energy potential and a plastic
flow potential. The form of these potentials is specified by five parameters for each generalized stress-strain component describing yield level,
ultimate stress capacity, elastic and elastoplastic stiffnesses, and a shape parameter. The model permits gradual changes in stiffness and
strength parameters via damage-based degradation. The degradation effects are introduced in the energy and flow potentials and result
in additional evolution equations for the corresponding strength and stiffness parameters. The cyclic plastic hinges are introduced into a
six-component equilibrium-based beam element, using additive element and hinge flexibilities. When converted to stiffness format the plastic
hinges are incorporated into the element stiffness matrix. The cyclic plastic hinge model is implemented in a computer program and used
for analysis of some simple structures, illustrating the characteristic features of the cyclic response and the accuracy of the proposed model.
DOI: 10.1061/(ASCE)EM.1943-7889.0001358. © 2017 American Society of Civil Engineers.

Author keywords: Cyclic plasticity; Plastic hinges; Frame structures; Damage effects.

Introduction

The concept of plastic hinges has been widely used for ultimate
load carrying capacity analysis with focus on monotonically vary-
ing loads (Powell and Chen 1986; Liew et al. 1993; Attalla et al.
1994; Krenk et al. 1999), but also to a more limited extent for
analysis with cyclic plasticity as, e.g., earthquake response analy-
sis, taking into account some kind of degradation effect (Inglessis
et al. 1999; Kaewkulchai and Williamson 2004). The theory of
plastic hinges was introduced in the late 1960s for both monotonic
loading (Ueda et al. 1968) and cyclic loading with large displace-
ments (Ueda et al. 1969). The theory of elastic tangent stiffness
matrix for large displacement and small deformation was derived
by Oran (1973) with the use of an equilibrium format of the beam.
The theory of concentrated yield hinges in beams was further ex-
tended to a general plastic node method (Ueda and Yao 1982) with
extensions to, e.g., plate elements. Other works on plastic hinge
theory for beams include analysis of the effect of geometric non-
linearity (Liew et al. 2000), spread of plasticity (Jiang et al. 2002),
and plastic behavior during fire (Iu and Chan 2004).

One of the early works on cyclic plasticity with degradation in
relation to structures (Baber and Wen 1981) focused on random
vibrations but emphasized the importance of degradation mecha-
nisms and the identification of these in the mathematical model as
well as the separation of the individual mechanisms in the model.

Later works (Ibarra et al. 2005; Lignos and Krawinkler 2011;
Kamaris et al. 2013) adopted the concept of separation of the mech-
anisms by modeling each section force component separately with
predefined hysteresis and backbone curves and describing relevant
model parameters statistically. Degradation mechanisms have also
been introduced into beam elements via the flexibility format, in
which plasticity and degradation have been combined using speci-
fied degradation functions (Inglessis et al. 1999; Cipollina et al.
1995).

The degradation mechanisms typically include degradation
of elastic stiffness, elastoplastic stiffness, the yield capacity of the
different section force components, and the ultimate capacity of
the section force components. The effects were experimentally
observed in reinforced concrete structures (Lu et al. 1999; Masi
et al. 2013), where a substantial part of the degradation originates
from cracking in the concrete, and in steel structures (Popov et al.
1980; Mamaghani and Kajikawa 1998; Elchalakani et al. 2003;
Elchalakani 2007), where the degradation mechanisms typically in-
clude fracture and local buckling.

Key ingredients in plasticity theories are the yield surface and
the gradient of the flow potential, which may be obtained for beam
cross sections using analytical expressions (Chen and Atsuta 2008)
or numerical estimates (Liu et al. 2009). However, for most prac-
tical purposes it is of interest to use an approximate representation
of the yield surface and the flow potential, because most analytical
yield surfaces describing beam cross sections are based on ideal
plasticity and have corners with undefined gradients (Chen and
Atsuta 2008). A multilinear approximation of experimental yield
surfaces also introduces corners, and certain measures have to be
taken to overcome the problem with undefined gradients at the cor-
ners (e.g., Krenk et al. 1993). Furthermore, a multilinear repre-
sentation leads to multiple algorithmic checks for violation of the
yield constraint, a complication that may be circumvented by
approximating the yield surface using a single-equation approxi-
mation (e.g., Kitipornchai et al. 1991). To overcome problems with
undefined gradients at corners in a multilinear approximation,
Orbison et al. (1982) proposed a single-equation representation
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of the yield function as a sum of even powers of the generalized
stress components for I-beams. However, it was quite difficult to
guarantee convexity of yield surfaces of this format. In contrast,
convexity is ensured when using ellipsoids for approximation of the
yield surface, and an early proposal (Willam and Warnke 1974) for
the use of an elliptical approximation of yield surfaces has been
fairly widely adopted, e.g., by Folino et al. (2009). However, the
determination of the necessary gradients may be elaborate and
the format has limited flexibility with regard to general geometric
shapes.

In order to increase the flexibility of the representation, various
methods known from isogeometric analysis have been proposed
during recent years. Coombs et al. (2016) suggested a nonuniform
rational B-spline (NURBS)–based approach that can in principle
accurately approximate any yield surface, provided the control
points can be chosen appropriately. Hardening may be introduced
via movement of the control points, providing an option of modi-
fying the shape of the yield surface locally during hardening.
Depending on the number of control points, however, it may be
cumbersome, and special care has to be taken to ensure convexity
of the surface. Bleyer and de Buhan (2013a, b) suggested an alter-
native quite simple and flexible generic surface format using a
Minkowski sum of ellipsoids ensuring convexity. The format has
a high accuracy but the actual formation of the Minkowski sum and
derivation of the gradients may be difficult.

This paper develops a cyclic plasticity formulation for plastic
hinges in beam elements. First, the basic evolution equations for
cyclic plasticity with optional degradation of stiffness and strength
are developed, generalizing the stress-based von Mises theory pre-
sented by Krenk and Tidemann (2017) to a format in terms of nor-
malized section forces. Then a novel generic yield surface format,
based on the sum of square roots of quadratic forms, is introduced.
This yield surface format plays a key role in representing realistic
convex yield surfaces for beam cross sections, and includes the op-
tion of smoothing sharp corners of the surface. The cyclic plasticity
model is then implemented in the form of plastic hinges into a beam
element via the flexibility format from Krenk et al. (1999), includ-
ing the derivation of the consistent algorithmic tangent stiffness
matrix. Finally, examples illustrate the characteristic properties of
the cyclic response and the accuracy of the proposed model.

Plastic Hinge Model

A plastic hinge in a beam is a local deformation mechanism located
at a cross section of the beam in which local elongation and angle
discontinuities are considered as generalized plastic strains corre-
sponding to generalized stresses defined in terms of the local sec-
tion forces. For beams, the generalized stresses governing the
behavior of plastic hinges will typically be the normal force and
two bending moments (Fig. 1). Other section forces may also be
included but are typically of minor influence.

Thus the generalized stresses and strains used are defined as

τ ¼ ½N;My;Mz; : : : �T ; γ ¼ ½εx;κy;κz; : : : �T ð1Þ

These generalized stresses and strains are used to define a cyclic
plasticity model, following the procedure developed by Krenk
and Tidemann (2017). The first step is to introduce an internal en-
ergy function consisting of a sum of three contributions: a quadratic
function of the generalized elastic strains γe, a quadratic function of
a corresponding set of generalized internal strains γi, and an addi-
tive function of a set of generalized strains ξ representing damage.
The internal energy hereby takes the form

φðγe; γi; ξÞ ¼
1

2
γTeDeðξÞγe þ

1

2
γTi DiðξÞγi þ φdðξÞ ð2Þ

The matrices DeðξÞ and DiðξÞ representing the contributions from
the elastic and the internal strains may depend on the damage
parameters ξ, thereby permitting changes in stiffness due to degra-
dation. The energy conjugate generalized stresses are found via dif-
ferentiation of the energy potential as

τ ¼ ∂γeφ ¼ DeðξÞγe ð3Þ

τi ¼ ∂γiφ ¼ DiðξÞγi ð4Þ

η ¼ ∂ξφ ð5Þ
It is observed that the generalized stresses τ and the generalized
internal stresses τi defined via Eqs. (3) and (4), respectively, have
a Hooke’s law–type relation to their energy conjugate generalized
strains.

Normalized Yield Surface and Flow Potential

In plasticity models such as the one presented here, based on gen-
eralized stresses representing different quantities like forces and
moments, plasticity parameters such as yield and ultimate stress
levels may be different and also may develop differently during
plastic loading. This suggests the use of the normalized section
forces ½n;my;mz; : : : � ¼ ½N=Ny;My=M

y
y;Mz=M

y
z ; : : : � in the for-

mulation of the yield surface and the flow potential. This corre-
sponds to using normalized generalized stresses ~τ and normalized
internal stresses ~τi defined by

~τðηÞ ¼ B−1
y τ; ~τiðηÞ ¼ B−1

y τi ð6Þ
where the normalization coefficients are arranged in the diagonal
matrix

ByðηÞ ¼

2
666664

NyðηÞ
My

yðηÞ
My

zðηÞ
. .
.

3
777775 ð7Þ

It is convenient to choose the normalization coefficients as the cur-
rent yield level for the corresponding single component load.

The yield surface bounds the elastic generalized stress states.
In cyclic plasticity the yield surface moves in stress space, and
the simplest format consists of a translation of the yield surface
described by the generalized internal stresses τi, the so-called

Fig. 1. Beam cross section with section forces as generalized stresses
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kinematic hardening. This is conveniently represented by the
generic yield function format

Fðτ; τi; ηÞ ¼ k ~τðηÞ − ~τiðηÞk − 1 ð8Þ

where k · k = suitable norm of the normalized generalized stresses;
and ~τiðηÞ = current center of the normalized yield function. It is
well known from von Mises plasticity that a particularly simple
formulation is obtained when the yield condition is expressed
via the equivalent stress σe, which is a homogeneous form of degree
one in the stress components. This concept is extended to a more
general yield function of degree one in the “Generic Yield Surface”
section.

The flow potential controls the direction of the increments of
the generalized plastic strains and the strain-like damage parame-
ters. The basic form of the flow potential is constructed in a way
similar to the flow potential in the stress-based model of Krenk and
Tidemann (2017), in which a quadratic term of the normalized in-
ternal generalized stresses ~τi is added to the yield function along
with an unspecified function of the stress-like damage parameters,
η, giving the flow potential

Gðτ; τi; ηÞ ¼ Fðτ; τi; ηÞ þ
1

2
~τTi B

−1
β ~τi þGdðηÞ ð9Þ

where ~τi ¼ ~τiðηÞ and the coefficient matrix Bβ is defined as

BβðηÞ ¼

2
666664

βNðηÞ
βMy

ðηÞ
βMz

ðηÞ
. .
.

3
777775 ð10Þ

In the yielding process, the yield surface moves as described by the
normalized center stress ~τi. The first term in the flow potential
Eq. (9) is of degree one, whereas the second term is of degree two.
Hereby the parameters in the array β ¼ ½βN ; βMy

; βMz
; : : : �T deter-

mine the limits on the normalized center stress components ~τi,
thereby defining the ultimate stress capacity. In the von Mises
stress-based model (Krenk and Tidemann 2017), the ratio between
ultimate and initial yield level is given by a single parameter
corresponding to 1þ β, whereas in the present model the addi-
tional capacity is defined individually for each generalized stress
component.

Generalized Stress Evolution Matrix

The evolution equations for external stresses, internal stresses and
damage parameters are derived from the assumption of maximum
dissipation rate. The dissipation rate is expressed as the rate of ex-
ternally supplied energy τγ̇ minus the change in the internal energy
represented by φ̇

Ḋ ¼ τγ̇ − φ̇ðγe; γi; ξÞ ≥ 0 ð11Þ

It is assumed that the observable generalized strain γ is the sum of
the generalized elastic strain γe and the generalized plastic strain γp.
The evolution equations for the generalized stresses and damage
parameters are derived by maximizing the dissipation rate, under
the constraint that the material can be described by the flow poten-
tial, Gðτ; τi; ηÞ, and the consistency condition Ḟðτ; τi; ηÞ ¼ 0.

The first step is to express the time increments of the generalized
stress and stress-like damage variables given by Eqs. (3)–(5) in the
compact form

2
64
τ̇

τ̇i

η̇

3
75 ¼ Deid

2
64
γ̇e

γ̇i

ξ̇

3
75 ð12Þ

where the combined external-internal-damage evolution matrix is
introduced as

DeidðξÞ ¼

2
664

DeðξÞ 0 ∂T
ξ τ

0 DiðξÞ ∂T
ξ τi

ð∂T
ξ τÞT ð∂T

ξ τiÞT ∂T
ξ η

3
775 ð13Þ

The evolution equations for the generalized strain, internal strain
and the strain-like damage parameters follow from the maximum
dissipation condition Eq. (11) in the form2

64
γ̇

0

0

3
75 ¼

2
64
γ̇e

γ̇i

ξ̇

3
75þ λ̇∂GT ð14Þ

where the flow potential gradient is defined as

∂G ¼ ½∂T
τG; ∂T

τiG; ∂T
ηG�T ð15Þ

During plastic flow the stress remains on the yield surface, leading
to the consistency condition

Ḟ ¼ ∂FT

2
64
τ̇

τ̇i

η̇

3
75 ¼ 0 ð16Þ

in terms of the yield function gradient

∂F ¼ ½∂T
τ F; ∂T

τiF; ∂T
ηF�T ð17Þ

Substitution of the generalized stress rate vector from Eq. (12) and
use of the evolution Eq. (14) gives an equation for the multiplier λ̇,
from which

λ̇ ¼ ∂FTDedγ̇
∂FTDeid∂G ð18Þ

where the block matrix Ded is the first column of the block
matrix Deid

DedðξÞ ¼ ½DeðξÞ; 0; ∂T
ξ τ�T ð19Þ

The final evolution equation for the generalized stresses and the
stress-like damage parameters then follow from Eq. (12) by sub-
stitution of the generalized strain parameters from Eq. (14) and
the multiplier from Eq. (18)2

64
τ̇

τ̇i

η̇

3
75 ¼

�
Ded − Deidð∂GÞð∂FÞTDed

ð∂FÞTDeidð∂GÞ
�
γ̇ ð20Þ

From Eq. (20), the elastoplastic stiffness is identified as

Dep
eid ¼ Ded − Deidð∂GÞð∂FÞTDed

ð∂FÞTDeidð∂GÞ ð21Þ

where the subscript eid indicates that the elastoplastic stiffness
matrix relates to the generalized external, internal, and damage
stresses; and the superscript ep indicates the elastoplastic stiffness
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matrix. With this formulation, De describes the elastic stiffness, Di
describes the tangent stiffness at initial yield, and the β-parameters
describe the relative value of the ultimate capacity of the respective
generalized stress components.

Plastic Straining and Enhanced Flow Potential

The elastic stiffness is described by the stiffness matrix De. At
initial yield, additive plastic strains appear, and if disregarding pos-
sible damage effects in this particular context, the initial elastoplas-
tic stress-strain relation follows from Eq. (20) in the form

τ̇ ¼ Deγ̇ − Deð∂τGÞ
ð∂T

τ FÞDeγ̇
ð∂T

τ FÞDeð∂τGÞ þ ð∂T
τiFÞDið∂τiGÞ

ð22Þ

In general, the elastic and the plastic strain rates may have different
directions. However, if the directions are assumed to be identical,
amounting to proportionality between the strain rate and the stress
gradient of the flow potential, γ̇ ∝ ∂τG, the stress-strain evolution
relation Eq. (22) can be expressed in the form

τ̇ ¼ Deγ̇

1þ ð∂Tτ FÞDeð∂τGÞ
ð∂TτiFÞDið∂τiGÞ

ð23Þ

In this formula, the second term in the denominator represents the
relative increase in flexibility due to the additional plastic strain.
This term depends on the ratio of the internal stiffness Di to the
external stiffness De. Fig. 2(a) illustrates the effect of the relative
magnitude of the internal stiffness at 2.0, 1.0, and 0.5. For a large
value of the relative internal stiffness, the kink in the stress-strain
curve at beginning yield becomes small, and vice versa.

Although the initial inclination of the stress-strain relation at
initial yield is governed by the relative magnitude of the internal
stiffness parameters, the subsequent development of plastic strain,
and thereby the generalized stress-strain relation, between initial
yield and the ultimate capacity is governed by the gradient of
the internal stress term in the flow potential. With the flow potential
of the basic form indicated in Eq. (9), the gradient with respect to
the (normalized) internal stress components is given by the partial
derivatives

∂ ~τ ij
G ¼ ∂ ~τ ij

F þ ~τ ij
βj

ð24Þ

This form leads to a development of the plastic strain determined
by the yield and ultimate stress levels and the initial slope at first
yield. As demonstrated by Krenk and Tidemann (2017) for the von

Mises stress-based model, it is possible to enhance the flow poten-
tial, making it possible to control the development of plastic strain
between the point of initial yield and ultimate stress level. In the
present context the hysteresis curves for the individual generalized
stress components may be different, and thus must be defined by
parameters each associated with a specific generalized stress com-
ponent. A quite flexible format is obtained by replacing the denom-
inator βj by a weighted average of the parameter βj and the current
absolute value of the corresponding normalized internal stress com-
ponent ~τ ij. Hereby the components of the flow potential gradient
take the form

∂ ~τ ij
G ¼ ∂ ~τ ij

F þ ~τ ij
ð1 − αjÞβj þ αjj ~τ ijj

ð25Þ

where αj = weight parameter for component j. This formulation
enables different α parameters for each generalized stress compo-
nent. The rational function in Eq. (25) can be expressed as a con-
stant plus the reciprocal of a linear function of j ~τ ijj, and integration
of the gradient components defined in Eq. (25) then leads to the
following form of the flow potential:

Gðτ; τi; ηÞ ¼ Fðτ; τi; ηÞ þ GdðηÞ

þ
X
j

1

αj

�
j ~τ ijj − 1 − αj

αj
βj ln

�
1þ αj

1 − αj

j ~τ ijj
βj

��

ð26Þ
where αj ¼ αjðηÞ, βj ¼ βjðηÞ, and ~τ ij ¼ ~τ ijðηÞ. The basic potential
from Eq. (9) corresponds to the limit αj ¼ 0, whereas in accordance
with Krenk and Tidemann (2017), more representative values for
von Mises plasticity were found to be in the order of αj ¼
0.7–0.9. Fig. 2(b) illustrates the effect of the shape parameter αj

with stress-strain curves for αj ¼ −1.5, 0.0, and 0.5. Appropriate
combinations of the parameter(s) αj and the relative magnitude of
the internal stiffness gives a very versatile representation of the
shape of the elastic-plastic stress-strain curve with only two param-
eters per generalized stress component. The representation of the
cyclic behavior is illustrated and discussed in connection with spe-
cific examples subsequently.

Generic Yield Surface

The gradients of the yield surface and the flow potential are of cen-
tral importance because they determine the basic properties of the
elastoplastic evolution matrix Eq. (20), as well as the algorithmic

(a) (b)

Fig. 2. Influence of parameters on stress-strain relation: (a) relative internal stiffness Di ∝ De; (b) modification of flow potential G via the shape
parameter αj
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properties used in return algorithms in the numerical computations.
In the case of materials that can be represented by the von Mises
yield criterion, the gradients are well defined over the entire yield
surface, whereas that may not be the case for yield surfaces repre-
senting beam cross sections, because these may typically have cor-
ners. This problem can be overcome in various ways, e.g., with use
of a locally modified yield function for tubular beam cross sections
(Krenk et al. 1999). However, most techniques of that type re-
quire individual extensions for different types of cross sections and
hence a study of a proper extension of the yield function is neces-
sary for each type of cross section. Additionally, return algorithms
and consistent tangent operators have to be derived for each indi-
vidual yield surface, an undesirable feature in a space frame pro-
gram where multiple different beam cross sections may be needed.
In order to circumvent the corner problem and the need for a library
of different yield function formats, a generic yield surface represen-
tation is proposed in the following.

Simple Approach

The simplest form of a guaranteed convex representation, exclud-
ing the degenerate case of straight lines or planes, is an ellipsoid
(in two dimensions, an ellipse, but the term ellipsoid will be used
to refer to the general n-dimensional version here). Skordeli and
Bisbos (2010) suggested the use of approximating yield surfaces
for frame structures in the form of a single ellipsoid. However, this
approximation is not very flexible, and degenerates to a sphere
when expressed in terms of the normalized generalized stresses.
There are two logical possibilities for a next step in the line of sim-
ple suggestions: make use of a super ellipsoid, where the exponent
is larger than 2; or make use of the convexity guaranteed by the
mathematical representation of an ellipsoid and add several of these
together, leading to a convex surface. The latter approach is more
general and is chosen here.

A single ellipsoid can be represented as a homogeneous form of
degree one ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x 0TAx 0
p

¼ 1 ð27Þ
when A = symmetric, positive definite matrix; and x 0 = local
coordinates of the ellipsoid, which may be translated and rotated
relative to the global coordinate system, x. The homogeneous form
of degree one is desirable because the von Mises yield function
with equivalent stress σe is homogeneous of degree one, suggesting
that an ellipsoidal representation in the form of Eq. (27) qualita-
tively has the same properties as the von Mises yield surface.
An addition of terms of the type in Eq. (27) with different matrices

A1;A2; : : : does not reduce to an ellipsoid, even if the centers are
the same, and thus a format represented as a sum of terms of the
type in Eq. (27) offers the possibility of representing more general
shapes. The suggested format is thereforeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x 0T
1 A1x 0

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 0T
1 A2x 0

2

q
þ · · ·¼ 1 ð28Þ

which is guaranteed convex because of the convexity of each of the
terms, where Eq. (27) represents a single ellipsoid and the sum in
Eq. (28) represents a combination of ellipsoids. The ratio of the
axes of an ellipsoid is given by the matrix A, whereas the finite
size of the ellipsoid is given by the right-hand side in Eq. (27).
Because the combination of ellipsoidal terms in Eq. (28) does
not identify the finite size of the individual terms, an infinity of
combinations of finite-sized ellipsoids exists. Assigning each ellip-
soid a finite size, i.e., setting each ellipsoidal term equal to a value
less than 1, the intersection of the individual ellipsoids—being
points in two dimensions and curves in three dimensions—will be
points on the resulting surface described by Eq. (28). Fig. 3 illus-
trates the concept in a format with two ellipsoidal terms, where dif-
ferent combinations of finite-sized ellipsoids result in a convex but
nonellipsoidal surface.

Fig. 3 illustrates that the suggested format can approximate
both symmetric surfaces [Fig. 3(a)] and nonsymmetric surfaces
[Fig. 3(b)]. Symmetric yield surfaces are typical for symmetric
beam cross sections, whereas nonsymmetric yield surfaces are typ-
ical for nonsymmetrical beam cross sections or beams of materials
with different yield strengths in tension and compression, such as
concrete. Furthermore, Fig. 3 shows that there is a high degree of
flexibility in the approximation despite using only two terms. In-
cluding more than two terms will naturally lead to a higher degree
of flexibility, but also to a higher degree of complexity when de-
termining the ratios of the semiprincipal axes of the ellipsoids and
the rotation of each ellipsoid. Because of the high degree of flex-
ibility, the ensured convexity, and the elimination of corners (the
gradient of each ellipsoidal term is defined everywhere), the follow-
ing generic yield surface format is suggested:

Fðτ; τi; ηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ̄T1A1τ̄1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ̄T2A2τ̄2

q
þ · · · −1 ð29Þ

where Ak = positive definite, symmetric matrix for k ¼ 1; 2, : : : ;
and

τ̄kðηÞ ¼ ~τðηÞ − ~τiðηÞ − τ̂k ð30Þ
where τ̂k = constant offset in the normalized stress space. The
number of terms and the inclusion of the offset are both options to

(a) (b)

Fig. 3. Intersections of finite ellipsoids are points on the resulting surface
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increase the accuracy of the representation. However, for most sym-
metric beam cross sections, two or three terms are sufficient, where
the matricesAk are diagonal matrices and τ̂k ¼ 0, i.e., the ellipsoids
are centered at origo and are not rotated. For reinforced concrete
cross sections, however, it typically is advantageous to include an
offset that is the same for all terms and that only offsets the yield
surface on the axis of the normal force.

Choosing Parameters for Simple Yield Surfaces

Yield surfaces for typical steel beam cross sections are symmetric
and centered around origo with contour lines in the ðn;my; 0Þ,
ðn; 0;mzÞ, and ð0;my;mzÞ planes resembling shapes that are inter-
polations between a rhombus and a circle. Such shapes can be rep-
resented rather accurately with the suggested format using two
ellipsoidal terms with diagonal matrices, A1 and A2, and with zero
offsets, τ̂1 ¼ τ̂2 ¼ 0. Generating a proper representation of a sim-
ple, symmetric yield surface with the format of Eq. (29) is most
often eased by prescribing the matrix A1 and defining A2 by
the intersection of the yield surface and with the n-axis, my-axis,
and mz-axis denoted by n0, m0

y, and m0
z , respectively. The diagonal

matrix A2 is defined via the constraints

ffiffiffiffiffiffiffiffi
A1
1;1

q
þ

ffiffiffiffiffiffiffiffi
A2
1;1

q
¼ 1

jn0j ;
ffiffiffiffiffiffiffiffi
A1
2;2

q
þ

ffiffiffiffiffiffiffiffi
A2
2;2

q
¼ 1

jm0
yj
;

ffiffiffiffiffiffiffiffi
A1
3;3

q
þ

ffiffiffiffiffiffiffiffi
A2
3;3

q
¼ 1

jm0
z j

ð31Þ

Typically, n0 ¼ m0
y ¼ m0

z ¼ 1 in order to permit full yield capacity
of each section force, but values may be subject to change in order
to change geometric properties of the yield surface representation.

The shape of the yield surface is governed by the ratios of
A1
1;1;A

2
1;1; : : : ; leading to a fairly simple method of choosing the

values of A1. In the ðn;my; 0Þ, ðn; 0;mzÞ, and ð0;my;mzÞ planes,
the shape is governed by two types of ratios with different effects:
ratios of type Ak

1;1=A
k
2;2 and ratios of type A1

1;1=A
2
1;1. The first ratio

type is most important, because it controls whether the shape be-
tween the intersections of the yield surface and the axes is more
rhombic or more circular. If the ratio is close to 1∶1, the shape will
be circular, whereas a ratio very different from one will be rhombic.
The second type of ratio controls how rounded the yield surface is
close to the intersections with the axes. In the ðn;my; 0Þ plane the
shape around the intersection with the my-axis will be rounded
compared with the shape around the intersection with the n-axis
when A1

1;1=A
2
1;1 ≫ A1

2;2=A
2
2;2, and vice versa when A1

1;1=A
1
2;2 > 1,

i.e., for a very rhombic shape of the yield surface, there will be
a corner at the intersection with the n-axis when A1

1;1=A
2
1;1 ≫

A1
2;2=A

2
2;2. With this knowledge it is fairly easy to choose the param-

eters A1, n0, m0
y, and m0

z to get a proper representation of a simple,
symmetric yield surface. For nonsymmetric yield surfaces the pro-
cess of choosing the number of terms to include in Eq. (29) may be
more difficult and could potentially combine with optimization
routines as in Bleyer and de Buhan (2013b).

Tubular Beam Yield Surface

In order to illustrate the suggested method, a tubular steel cross
section was investigated. The yield function for the axial stress
component of the tubular cross section is

Fðn;my;mzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

y þm2
z

q
− cos

�
π
2
n

�
ð32Þ

At yield, the function equals zero, which defines the yield surface.
The yield surface is symmetric and fairly simple (Fig. 4), and
thus it is assumed that it can be accurately approximated using
Eq. (29) with two terms, diagonal matrices, and without offsets,
i.e., τ̂1 ¼ τ̂2 ¼ 0, based on the above discussion. The constraints
of Eq. (31) are applied, effectively reducing the problem to the
determination of the three diagonal terms in A1, using the normali-
zation jn0j ¼ jm0

yj ¼ jm0
z j ¼ 1. Because the yield surface Eq. (32)

in the ð0;my;mzÞ plane is a circle, it is chosen that A1
2;2 ¼ A1

3;3,
which gives a perfect circular representation. In the two remaining
planes, the yield surface Eq. (32) is very rhombic and with a
sharp corner at the intersection with the n-axis, suggesting that
A1
1;1=A

1
2;2 ≠ 1, A2

1;1=A
2
2;2 ≠ 1, and A1

1;1=A
2
1;1 ≫ A1

2;2=A
2
2;2 to get a

good representation of Eq. (32) with the format of Eq. (29). There-
fore A1 is chosen to have the diagonal terms A1

1;1 ¼ 1 − 2 × 10−5
and A1

2;2 ¼ A1
3;3 ¼ 0.16, andA2 given by the constraints of Eq. (31)

has the diagonal terms A2
1;1 ¼ 1 × 10−10 and A2

2;2 ¼ A2
3;3 ¼ 0.36,

whereby A1
1;1=A

1
2;2 ¼ 6.25 ≫ 1, A2

1;1=A
2
2;2 ¼ 2.8 × 10−10 ≪ 1, and

A1
1;1=A

2
1;1 ¼ 1010 which is far bigger than A1

2;2=A
2
2;2 ¼ 0.44. Fig. 4

shows the resulting approximation.
The approximation is nearly indistinguishable from the original

analytically determined surface (Fig. 4). However, there are slight
differences because the approximation is a smooth surface with a
unique gradient everywhere, whereas the theoretical surface has
singularities at the points ðn;my;mzÞ ¼ ð�1; 0; 0Þ. Thus for this
particular yield surface it is quite easy to determine an accurate
representation of the yield surface within the proposed generic yield
surface format Eq. (29).

Exterior Surfaces

One issue that arises with the very accurate approximation is that
even though the gradient is defined where the theoretical yield sur-
face has corners, the yield surface and the exterior surfaces still
have a very large curvature in that region. The exterior surfaces
are used for the return to the yield surface, and especially for large
load steps the return may be difficult in regions with high curvature.
Because of the mathematical formulation of the yield surface
Eq. (29), the exterior surfaces will simply be scaled versions of the
yield surface, whereby the curvature of the exterior surfaces will be
similar to that of the yield surface. Hence it may be advantageous to

Fig. 4. Theoretical yield surface for tubular steel beam and approxi-
mation; contour lines are plotted in various planes
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adjust the local curvature to facilitate the ensuing iterations. Fig. 5
shows an example of how this is achieved, in which the parameters
are jn0j ¼ 0.95, jm0

yj¼ jm0
z j¼1, A1

1;1¼0.865, A1
2;2¼A1

3;3¼0.0961,
and A2 = diagonal matrix given by the constraints of Eq. (31). The
parameters are chosen such that the shape of the yield surface in the
ðn;my; 0Þ and ðn; 0;mzÞ planes is still rather rhombic, suggesting
A1
1;1=A

1
2;2 ≠ 1 and A2

1;1=A
2
2;2 ≠ 1, but the shape at the intersection

with the n-axis should be more rounded than in the accurate rep-
resentation but still somewhat resembling corners, suggesting
A1
1;1=A

2
1;1 ≫ A1

2;2=A
2
2;2 but with a smaller factor compared to the

accurate representation.
Fig. 5 shows that although the slight change in the parameters

does not change the representation of the analytical yield surface
much, the curvature is reduced dramatically in the critical regions,
thereby improving the iteration convergence rate. The fact that the
generic yield surface is guaranteed convex without singularities,
has gradients that are easy to determine, has a high degree of flex-
ibility and accuracy, and can create exterior surfaces with relatively
low curvature indicates that it is a suitable generic method to model
yield surfaces for beam cross sections.

Beam Model with Degrading Plastic Hinges

In principle, the plastic hinge model presented in the previous
sections can be implemented for any type of element where the
generalized strains can be assumed to be the sum of elastic and
plastic generalized strains. Many frame structures have loads lead-
ing to maximum load at joints or at specific cross sections in the
spans, and it is therefore of interest to use the theory for represent-
ing plastic deformation in the form of local yield hinges. This sec-
tion demonstrates how the present cyclic plasticity model can be
implemented in the form of a plastic hinge that is incorporated into
the formulation of the element, leading to an explicit elastoplastic
tangent stiffness matrix including degradation effects. This beam
element can then be used in a corotating element formulation for
large displacements, if needed. The formulation is an extension of
that presented by Krenk et al. (1999) to include the internal variable
and damage features of the present plasticity model.

The beam element is formulated in terms of six equilibrium
states and the conjugate states of deformation. It is assumed that the
plastic deformation is concentrated at the nodes at the ends of the
element in the form of yield hinges. With the choice of deformation
measures for a beam shown in Fig. 6, the generalized elastic strains
and the conjugate generalized stresses within the beam element be-
tween the plastic hinges are defined as

~ue ¼ ½u;φx;φz1;φz2;φy1;φy2�T ð33Þ

~qe ¼ ½N; T;Mz1;Mz2;My1;My2�T ð34Þ

where the tilde indicates reference to the six-component element
equilibrium format. For the equilibrium beam element, the gener-
alized strains are the axial deformation and the rotations about the
different axes, rather than the axial strain and the curvatures about
the different axes, in order to be conjugate to the section forces
defined in Eq. (34). In the equilibrium element, the normal force
and torsion moment are of equal magnitude but opposite at the two
ends of the beam, and the shear forces follow from the bending
moments by equilibrium.

Elastoplastic Tangent Stiffness

In the derivation of the elastoplastic tangent stiffness it is neces-
sary to have a relation between the elastic and the plastic deforma-
tions, which is particularly simple for small deformation theories.
For a beam, the assumption of small deformations, which can be
combined with large displacements via, e.g., the corotational for-
mulation, implies that the total deformations, ~ut, can be split ad-
ditively into elastic deformation ~ue and plastic deformation ~up

~ut ¼ ~ue þ ~up ð35Þ

The internal energy of the beam element is analogous to the general
format of the internal energy [Eq. (2)], with the only difference

(a) (b)

Fig. 5. Outer surfaces for accurate approximation and for rounded approximation

(a)

(b)

Fig. 6. Equilibrium format of beam element: (a) element deformations;
(b) section forces

© ASCE 04017142-7 J. Eng. Mech.

J. Eng. Mech., 2017, 143(12): 04017142



being the notation introduced to indicate the relation to a beam
element

Φð ~ue; ~ui; ~udÞ ¼
1

2
~uT
eKeð ~udÞ ~ue þ

1

2
~uT
i Kið ~udÞ ~ui þΦdð ~udÞ ð36Þ

Whereas the original energy definition Eq. (2) was given per length,
the present energy applies to the full beam element. The energy is
denoted Φ rather than φ, and the stiffness matrices are denoted Ke
and Ki rather than De and Di, respectively. The energy conjugate
section forces are found via differentiation as

~qe ¼ ∂ ~ue
Φ ¼ Keð ~udÞ ~ue ð37Þ

~qi ¼ ∂ ~ui
Φ ¼ Kið ~udÞ ~ui ð38Þ

~qd ¼ ∂ ~ud
Φ ð39Þ

The remaining steps of determining the elastoplastic tangent
stiffness matrix accounting for degradation follow the steps of
Eqs. (8)–(21) using the generic yield surface described previously.
In order to retain a compact notation, the section forces ~qe, the in-
ternal section forces ~qi, and the section force-like damage param-
eters, ~qd, are arranged in a common vector ~q that has the energy
conjugate vector ~u

~qT ¼ ½ ~qT
e ; ~qT

i ; ~q
T
d �; ~uT ¼ ½ ~uT

e ; ~uT
i ; ~u

T
d � ð40Þ

which are defined to ease the notation, especially when deriving the
return algorithm.

When developing a beam element with plastic hinges at both
ends, these must be combined and plasticity may occur at each
end of the beam, whereby the maximization of the dissipation rate
[Eq. (11)] will involve two constraints, namely the plastic flow po-
tential at each end. The consistency condition for the yield surface
at each end will provide the other constraints, making it possible to
derive the elastoplastic tangent stiffness. The plastic flow potentials
and the yield functions are arranged in the vector format

gð ~qÞ ¼ ½G1ð ~qÞ;G2ð ~qÞ�T ; fyð ~qÞ ¼ ½F1ð ~qÞ;F2ð ~qÞ�T ð41Þ

With the use of the gradient of the plastic flow potential, the incre-
ment in the total deformations, d ~ut, internal deformations, d ~ui and
deformation-like damage parameters, d ~ud, can be expressed as2

64
d ~ut

0

0

3
75 ¼ d ~uþ ð∂T

~qgÞTdλ; dλ ¼
�
dλ1

dλ2

�
ð42Þ

where dλ = vector containing the two plastic multipliers, which
are determined using the consistency condition at each end. The
solution of the consistency condition is found in a compact form
with use of the combined external, internal, and damage stiffness
matrices

Ked ¼ ½Keð ~udÞ; 0; ∂T
~ud
~qe�T ð43Þ

Keid ¼

2
664

Keð ~udÞ 0 ∂T
~ud
~qe

0 Kið ~udÞ ∂T
~ud
~qi

ð∂T
~ud
~qeÞT ð∂T

~ud
~qiÞT ∂T

~ud
~qd

3
775 ð44Þ

where Ked is analogous to Ded and Keid is analogous to Deid. The
coupled evolution equations for the section forces ~qe, the internal

section forces ~qi, and the section force–like damage parameters ~qd
can compactly be described by

d ~q ¼ Keidd ~u ð45Þ
which is essential in formulating a return algorithm as well as in
solving the consistency conditions.

The solution of the consistency conditions gives the plastic
multipliers

dλ ¼
h	

∂T
~qfy



Keid

	
∂T
~qg


T
i−1ð∂T

~qfyÞKedd ~ut ð46Þ

where dλj ≥ 0; and the two equations reduce to one if the gener-
alized stress state is only located on one of the two yield surfaces.
The matrix product to be inverted is a 2 × 2 matrix in the case of
yield at both nodes and reduces to a scalar in the case of yield at
only one node. The increment in the section forces d ~qe, the internal
section forces d ~qi, and the section force-like damage parameters,
d ~qd are expressed as

d ~q ¼ ½d ~qT
e ; d ~qT

i ; d ~q
T
d �T

¼ ½Ked −Keidð∂T
~qgÞT ½ð∂T

~qfyÞKeidð∂T
~qgÞT �−1ð∂T

~qfyÞKed�d ~ut

ð47Þ
The tangent stiffness matrix relating only to the increment in the
section forces, which is needed in the equilibrium iterations in a
finite element code, is identified as

Kep ¼ Ke −KT
edð∂T

~qgÞT ½ð∂T
~qfyÞKeidð∂T

~qgÞT �−1ð∂T
~qfyÞKed ð48Þ

In the case without degradation of the elastic stiffness, the
matrix Ked reduces to ½Ke; 0�T and the elastoplastic tangent stiff-
ness is only affected by degradation in the hardening term, i.e., the
matrix ½ð∂T

~qfyÞKeidð∂T
~qgÞT �−1.

Full-Format Beam Element

The 6 × 6 equilibrium format of the beam is not sufficient for an
implementation in a finite element program because all rigid-body
displacements are absent. In order to be able to implement it in a
finite element code, the equilibrium beam element needs to be em-
bedded in a general 12 × 12 three-dimensional beam element
(Fig. 7), with the classical sign convention of the element displace-
ments and the energy conjugate element forces.

(a)

(b)

Fig. 7. Full format of beam element: (a) element displacements;
(b) element forces
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Just as the deformations and section forces of the equilibrium
element in Fig. 6 are arranged in the vectors ~ut and ~qe, the element
displacements and forces of the full-format beam element in Fig. 7
are sorted in the vectors

uT ¼ ½uT
1 ;u

T
2 �; uj ¼ ½ux; uy; uz; θyz; θxz; θxy�Tj ð49Þ

qT ¼ ½qT
1 ;q

T
2 �; qj ¼ ½Qx;Qy;Qz;Myz;Mxz;Mxy�Tj ð50Þ

In order for the two elements to be equivalent, the corresponding
generalized strains and stresses of the two formulations must satisfy
the incremental virtual work relation

qTdu ¼ ~qT
e d ~ut ð51Þ

providing a link between the two formulations. From the equilib-
rium conditions of the beam, the element forces q can be expressed
in terms of the equilibrium section forces ~qe via a transformation
matrix T

q ¼
�
q1

q2

�
¼

�
T1

T2

�
~qe ¼ T ~qe ð52Þ

With this relation it is realized that the total deformations ~ut of
the equilibrium format can be expressed via the nodal displace-
ments u and the transformation matrix T, using the work increment
Eq. (51)

d ~ut ¼ TTdu ð53Þ
With the use of Eqs. (52) and (53) it is possible to derive the

elastoplastic tangent stiffness matrix for a beam element with 12
degrees of freedom (Fig. 7). An increment in the element forces,
dq, can be expressed as

dq ¼ Td ~qe þ dT ~qe ¼ TKepTTduþ dT ~qe ð54Þ
The last term dT ~qe relates to the geometric effects of rotation and
length change of the element. Although the second effect is small, it
contributes to the symmetry of the element stiffness matrix. The
second term may be rearranged into the form of an additional stiff-
ness matrix Kr (e.g., Krenk et al. 1999; Krenk 2009)

dq ¼ ðTKepTT þKrÞdu ð55Þ
which has a form suitable for a finite element implementation,
because it relates increments in the element forces directly to incre-
ments in the element displacements.

Return Algorithm

In a finite-element setting, the use of the elastic or the elastoplastic
tangent stiffness matrix Eq. (48) will often lead to a violation of the
yield criterion in the predicted state for finite load/deformation
increments. In order to enable the use of larger increments, a return
algorithm is developed which returns the predicted section force
state to the yield surface, taking into account kinematic hardening
as well as the degradation mechanisms. The return algorithm is de-
veloped with the use of a Newton-Raphson solution scheme for the
deformation evolution Eq. (42), using finite increments giving the
residual

r ~u ¼

2
64
Δ ~ut

0

0

3
75 −Δ ~u − ð∂T

~qgÞTΔλ; Δλ ¼
�
Δλ1

Δλ2

�
ð56Þ

The variation of the residual is needed in the Newton-Raphson
solution procedure and because the yield function and the flow
potential is defined via ~q it is desirable to formulate the return
algorithm in terms of the subincrement of the section forces, δ ~q,
rather than the subincrement of the deformations, δ ~u. However,
the variation of the residual Eq. (56) is initially expressed via the
subincrements δ ~u, δ ~q, and δλ

δr ~u ¼ −δ ~u − ∂T
~q ½ð∂T

~qgÞTΔλ�δ ~q − ð∂T
~qgÞTδλ ð57Þ

because δ ~u is rather conveniently expressed by δ ~q via the variation
of the evolution equation of ~q, Eq. (45), yielding

δ ~q ¼ ½Keid þ ∂T
~uðKeidΔ ~uÞ�δ ~u ð58Þ

In the Newton-Raphson scheme the increments Δ ~u and Δλ are
considered constants in each iteration and hence they are only
placed inside the derivatives in Eqs. (57) and (58) to give the correct
dimension of vectors. Combining Eqs. (56)–(58) with the consis-
tency condition that the yield functions must be equal to zero, the
following equation system defining the return algorithm is found:" ðKA

eidÞ−1 ð∂T
~qgÞT

∂T
~qfy 0

#�
δ ~q

δλ

�
¼

� r ~u

−fy
�

ð59Þ

where the algorithmic stiffness matrix is defined via its inverse

ðKA
eidÞ−1 ¼ ½Keid þ ∂T

~uðKeidΔ ~uÞ�−1 þ ∂T
~q ½ð∂T

~qgÞTΔλ� ð60Þ

The two derivatives needed in the algorithmic stiffness matrix are
obtained as

∂T
~q ½ð∂T

~qgÞTΔλ� ¼ ∂2G1

∂ ~q∂ ~qT Δλ1 þ
∂2G2

∂ ~q∂ ~qT Δλ2 ð61Þ

and

∂T
~uðKeidΔ ~uÞ

¼

2
6666666664

∂2ð ~qT
dΔ ~udÞ

∂ ~ue∂ ~uT
e

0
∂2ð ~qT

eΔ ~ueþ ~qT
dΔ ~udÞ

∂ ~ud∂ ~uT
e

∂2ð ~qT
dΔ ~udÞ

∂ ~ui∂ ~uT
i

∂2ð ~qT
i Δ ~uiþ ~qT

dΔ ~udÞ
∂ ~ud∂ ~uT

i

symm:
∂2ð ~qT

eΔ ~ueþ ~qT
i Δ ~uiþ ~qT

dΔ ~udÞ
∂ ~ud∂ ~uT

d

3
7777777775
ð62Þ

where ∂T
~uðKeidΔ ~uÞ is composed of three diagonal blocks, which

themselves are symmetric matrices, as well as two off-diagonal
blocks which are not symmetric. Because of the differentiation pro-
cedure, however, the full matrix ∂T

~uðKeidΔ ~uÞ is symmetric, because
the off-diagonal blocks are transposed on the other side of the
diagonal blocks.

Because both Keid and ∂T
~uðKeidΔ ~uÞ have a structure with

three symmetric diagonal blocks and two off-diagonal nonsym-
metric blocks, it is possible to invert the first term, ½Keid þ
∂T
~uðKeidΔ ~uÞ�−1, of the inverse algorithmic stiffness matrix in a

simple way because the sumKeid þ ∂T
~uðKeidΔ ~uÞ has a block struc-

ture similar to Keid and ∂T
~uðKeidΔ ~uÞ. The inverse ½Keid þ

∂T
~uðKeidΔ ~uÞ�−1 can be determined using only the inverse of the

two first diagonal blocks of the sum and the inverse of the differ-
ence between the third diagonal block of the sum and the matrix
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products of the off-diagonal blocks of the sum and the inverse of the
corresponding diagonal block of the sum. The remaining part of
inverting the first term of the inverse algorithmic stiffness matrix
will then be simple matrix multiplication. The algorithmic stiffness
matrix can therefore be determined by numerical inversion of one
matrix, the size of which depends on the number of internal var-
iables, ~ui, and damage variables, ~ud, used in the element, along
with inversion of three smaller matrices and a series of matrix mul-
tiplications. The two first block diagonal terms in the sum Keid þ
∂T
~uðKeidΔ ~uÞ are most likely possible to invert analytically because

they involve the elastic and internal stiffness matrices, which them-
selves tend to be block diagonal. Furthermore, the algorithmic stiff-
ness matrix is symmetric.

Using the algorithmic stiffness matrix Eq. (60) makes it possible
to solve the equation system Eq. (59) in a relatively compact form
without having to solve the full system numerically. Initially, the
force subincrement δ ~q is solved for in the first row of equations
in Eq. (59), and subsequently substituted into the second row, mak-
ing it possible to solve for δλ, giving the relations

δλ ¼ ½ð∂T
~qfyÞKA

eidð∂T
~qgÞT �−1ðð∂T

~qfyÞKA
eidr ~u þ fyÞ ð63Þ

δ ~q ¼ KA
eidðr ~u − ð∂T

~qgÞTδλÞ ð64Þ

The return algorithm described by Eq. (56) and Eqs. (60)–(64) is
shown as pseudo-code in the following computational procedure.

Algorithm. Computational Procedure: Return Algorithm
1. Calculate elastic increment in forces, Δ ~q0 ¼ KedΔ ~ut.

2. Calculate value of yield functions, fky, using ~q ¼ ~q0 þΔ ~qk.

If F0
1 ≤ 0 and F0

2 ≤ 0, accept ~q ¼ ~q0 þΔ ~q0 and exit.

3. Calculate Δλ0 using Eq. (46) and Δ ~ut

or update Δλk ¼ Δλk−1 þ δλk−1.
4. Determine ∂T

~qg, ∂T
~qfy, and rk~u using ~q ¼ ~q0 þΔ ~qk.

If krk~uk < ϵtol, accept ~q ¼ ~q0 þΔ ~qk and exit.

5. Calculate KA
eid by Eq. (60) and determine δλk by Eq. (63).

6. Determine subincrements δ ~qk and δ ~uk by Eqs. (64) and (58).

7. Update Δ ~qkþ1 ¼ Δ ~qk þ δ ~qk and Δ ~ukþ1 ¼ Δ ~uk þ δ ~uk

and go to 2 using k ¼ kþ 1.

The return algorithm is based on a fixed deformation increment
for each element, Δ ~ut, which is obtained via a displacement incre-
ment found in a global finite-element analysis and is subsequently
transformed into a deformation increment for each element via
Eq. (53). Additionally, the section forces prior to the deformation
increment ~q0 are known. Initially, an elastic prediction step ofΔ ~q is
made, and if the new stress state is located on or inside the yield
surface, the elastic prediction step is accepted because an elastic
change has taken place, because of the convexity of the yield sur-
face. Subsequently, the increment in the plastic multipliers Δλ0 is
calculated, based on the finite increment in deformations Δ ~ut, fol-
lowed by determination of the gradients of the plastic flow potential
and the yield surface, ∂T

~qg and ∂T
~qfy, respectively, along with the

current value of the residual rk~u based on the predicted final value of
~q. If the residual is sufficiently small, the iteration procedure is
ended; otherwise, the algorithmic stiffness matrix KA

eid is recal-
culated via Eq. (60) and the subincrement in the plastic multi-
pliers is calculated, δλk. There are limitations on the values δλk,
because Δλj ≥ 0 for j ¼ 1; 2. The subincrements δ ~qk and δ ~uk are

determined via Eqs. (64) and (58), respectively, whereby the incre-
ments Δ ~qk and Δ ~uk can be updated and the iteration procedure
repeated until convergence.

Simple Damage Formulation

A very simple damage formulation is implemented in the beam
element to illustrate the concept of degradation. The damage func-
tions used for the different parameters are chosen because of the
ability to model increase as well as decrease of a parameter with
a prescribed asymptotic saturation level at which a final value of the
parameter is reached, and because of their simple format. In total,
nine different damage variables are introduced, one relating to the
elastic stiffness and two each relating to the inelastic stiffness,
the yield capacity, the βj values, and the αj values, respectively.
The deformation-like damage parameters are arranged in the vector

~ud ¼ ½ ~ued; ~ui;1d ; ~ui;2d ; ~uy;1d ; ~uy;2d ; ~uβ;1d ; ~uβ;2d ; ~uα;1d ; ~uα;2d �T ð65Þ
where the superscript indicates the parameter type and node num-
ber to which the damage variable relates. The elastic stiffness is
degraded via the function

Keð ~udÞ ¼
1þ ηe ~ued= ~u

e
d;0

1þ ~ued= ~u
e
d;0

K0
e ð66Þ

whereK0
e = elastic stiffness matrix without damage; ηe = saturation

level; and ~ued;0 = factor accounting for how fast the saturation
level is reached. Similarly, the stiffness matrix relating to the
deformation-like internal parameters is degraded via the function

Kið ~udÞ ¼
�
K1

i ð ~udÞ 0

0 K2
i ð ~udÞ

�
;

Kj
i ð ~udÞ ¼

1þ ηi;j ~u
i;j
d = ~ui;jd;0

1þ ~ui;jd = ~ui;jd;0
K0

i;j ð67Þ

where Kj
i = part of the internal stiffness matrix relating to node j

with the corresponding undamaged internal stiffness matrix K0
i;j.

The remaining material parameters are functions of the section
force-like damage parameters ~qd, and each of these is defined as

~qkd ¼
1þ ηk;j ~u

k;j
d = ~uk;jd;0

1þ ~uk;jd = ~uk;jd;0

ð68Þ

where the index k may be y, β, or α. The relation between the
material parameters and the section force-like damage parameters
is defined as

By;jð ~qdÞ ¼ ~qy;jd B0
y;j; βjð ~qdÞ ¼ ~qβ;jd β0j ; αjð ~qdÞ ¼ ~qα;jd α0

j

ð69Þ
where B0

y;j = undamaged yield capacity matrix for node j; β0j =
array of undamaged β-values for node j; and α0

j = array of undam-
aged α values for node j. The damage functions described above
are used in the following examples.

Examples

The equilibrium based element including plastic hinges using
the generic yield surface was implemented in a MATLAB toolbox,
CycPlasFrame. The toolbox has linear geometry and does not at the
present stage include the stiffness contribution from normal forces,
making it unsuitable for frame structures dominated by buckling
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failure but highly suitable for frame structures dominated by plastic
deformation.

Cantilevered I-Beams

Estimates of the model parameters can be found by the use of ex-
perimental results, and most easily with displacement-controlled
experiments of cantilevered beams. Displacement-controlled bend-
ing of a cantilevered beam activates only one hinge, eliminating
the coupling between hinges and subsequently simplifying the
calibration procedure. D’Aniello et al. (2012) tested cantilevered
I-beams with various cross sections subjected to cyclic displace-
ment controlled bending and observed a significant degradation
of the parameters, primarily because of local buckling. In the test,
a cantilever of length L ¼ 1.875 m was subjected to 12 symmetric
cycles with approximate tip displacement 2 × 10−3 L followed
by six symmetric cycles of approximate tip displacement 3.5×
10−3 L, four symmetric cycles of approximate tip displacement
5 × 10−3 L, and sets of two symmetric cycles in which the tip dis-
placement increased by approximately 10−2 L per set until failure.
Test results for an IPE 300 cross section and a HEB 240 cross sec-
tion were used for calibration of the present model. The IPE 300
and HEB 240 have approximately the same slenderness of the

flanges but the web of the IPE 300 is substantially more slender
than the web of the HEB 240, suggesting that local buckling and
thereby degradation will occur earlier in the bending of the IPE 300
than the HEB 240. Table 1 presents the model parameters for the
nondegraded system.

Aside from being more slender, the IPE 300 also has a smaller
elastic stiffness and a smaller yield capacity than the HEB 240
profile. Table 2 shows the model parameters relating to degradation
of stiffness. The higher slenderness of the IPE 300 profile com-
pared with the HEB 240 profile is apparent in the degradation
parameters in Table 2 because ued;0 and ui;1d;0 are significantly lower
for the IPE 300 profile, indicating that the degradation process de-
velops at a faster rate. The increments in the deformation-like dam-
age parameters ued and u

i;1
d are proportional to dλ1 and thus have the

dimension of energy and relate to the dissipated energy. This sug-
gests that the reference values ued;0 and ui;1d;0 may be scaled with the
size of a characteristic hysteresis loop for cross sections of similar
type. Table 3 shows the model parameters for degradation of the
capacity parameters and α. Similar to Table 2, the reference energy
levels, uy;1d;0, u

β;1
d;0 , and uα;1d;0 are lower for the IPE 300 profile com-

pared with the HEB 240 profile.
Fig. 8 plots both the experimental and the modeled results of the

tip displacement and reaction moment of the IPE 300. Fig. 8(a)
shows the first 38 cycles to illustrate that the accuracy of the model
is fairly high for most of the response despite the very simple dam-
age functions used. Fig. 8(b) includes the remaining two cycles,
which are not modeled very accurately compared with the previous
cycles. In the experiment, torsional buckling took place after the
local plastic buckling (D’Aniello et al. 2012), which led to failure
of the beam, and it is expected that this mechanism was the cause of
the nonsmooth change in the response in the last two cycles com-
pared with the initial ∼38 cycles.

Fig. 9 shows the response of the HEB 240 profile. Fig. 9(a)
models the first 38 cycles almost perfectly, with very little differ-
ence between the experimental and modelled result. In the first 38
cycles very little degradation takes place, suggesting that the model
without degradation is sufficiently accurate. In Fig. 9(b), after an
additional nine cycles, during which a significant amount of deg-
radation occurred, the modeled response still represents the exper-
imental response with good accuracy despite the simple damage
functions used. Figs. 9(c and d) show that when the degradation
process progresses further, the modeled response is not as accu-
rate as for the first cycles. Torsional buckling also occurred in the
final stages of the experimental testing of the HEB 240 profile
(D’Aniello et al. 2012), which might explain the discrepancy

Table 1. Initial Model Parameters

Cross section
ðEIyÞe
(MNm2)

ðEIyÞi
ðEIyÞe

My
y

(kNm) βMy
αMy

IPE 300 15.9 4.5 175.8 0.20 0.80
HEB 240 21.4 2.0 295.1 0.03 0.80

Table 2. Model Parameters for Stiffness Degradation

Cross section ued;0 (kJ) ηe ui;1d;0 (kJ) ηi;1

IPE 300 60 0.2 28 0.3
HEB 240 400 0.2 70 0.4

Table 3. Model Parameters for Capacity Degradation

Cross section uy;1d;0 (kJ) ηy;1 uβ;1d;0 (kJ) ηβ;1 uα;1d;0 (kJ) ηα;1

IPE 300 70 0.3 0.30 7.8 −70 1.10
HEB 240 700 0.2 0.80 95 −100 1.06

(a) (b)

Fig. 8. Cyclic bending of cantilevered IPE 300 beam: (a) first 38 cycles; (b) all 40 cycles
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between the experimental and modeled response as in the case of
the IPE 300 profile.

Tubular Offshore Frame

The plastic hinge model was implemented as an extension of the
computer code RONJA (Rambøll Offshore Nonlinear Jacket Analy-
sis) using a finite displacement corotational beam-column formu-
lation (Krenk et al. 1999). This implementation was used to model
cyclic loading on a plane offshore frame structure (Fig. 10) tested
by Zayas et al. (1980). This structure is geometrically similar to that
analyzed in Krenk et al. (1999) for monotonic loading by a linear
hardening plasticity model, but representation of the response to
cyclic loading is a considerably more challenging task. The jacket
structure was a 1∶6 scale model representative of offshore jacket
structures located in the Gulf of Mexico. The jacket had equal
bay heights, a width of 3.05 m, and was simply supported at the
bottom of the legs and loaded by an in-plane horizontal compres-
sion force P at the top right corner. Each part of the bracing was
modeled by two beam-column elements. Plastic hinges developed
in the lower left brace of the upper bay, and following (Krenk et al.
1999) the column effect was represented by the introduction of a
suitable imperfection in this brace by a center node offset in the
transverse direction of 56 mm, corresponding to 2.6%. This value
was determined by calibration via the experimental results and is
somewhat larger than 0.45 and 0.30%, reproducing the Perry-
Robertson imperfection-based column curves from the Danish and
Norwegian structural codes, respectively, when using linear hard-
ening. D’Aniello et al. (2013, 2015) treated the representation
and effect of member imperfections on the deformation and col-
lapse properties of steel frames in connection with earthquakes.

(a) (b)

(c) (d)

Fig. 9. Cyclic bending of cantilevered HEB 240 beam: (a) first 38 cycles; (b) first 47 cycles; (c) first 50 cycles; (d) all 54 cycles

Fig. 10. Plane offshore frame structure geometry
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The remaining members did not buckle and were initially straight.
The legs of the jacket had an outer diameter of 324 mm and a thick-
ness of 9.53 mm, and all horizontal bracing and the upper bay brac-
ing had outer diameter of 102 mm and thickness of 3.05 mm. The
lower bay bracing had outer diameter of 114 mm and thickness of
4.78 mm, and the top half bracing had outer diameter of 152 mm
and thickness of 4.60 mm.

The steel in the bracing had yield stress 180 MPa and the
legs had yield stress 300 MPa. All members were modeled with
βN ¼ βMy

¼ βMz
¼ 0.700 and αN ¼ αMy

¼ αMz
¼ 0.90. The rel-

ative internal stiffness of the bracing was ðEAÞi=ðEAÞe ¼ 0.6 and
ðEIÞi=ðEIÞe ¼ 2.0. The legs had sufficient strength to avoid the
formation of plastic hinges. Because the D=t ratio of all members
was relatively low, local buckling was not expected and degrada-
tion effects were not included in the model. Figs. 11(a–c) show the
horizontal load-displacement (P −Δu) curves of the loaded top
right corner, with each subfigure showing five cycles for clarity.

The figure shows good agreement between the experiment
and the results of the model, and the characteristic load levels and
shapes of the hysteresis curves of the model replicate the experi-
mental results fairly well. A degradation of the ultimate capacity
of the structure was caused by the permanent deformation of the
geometry of the structure originating from elastoplastic deforma-
tion and column buckling.

Conclusions

A model of cyclic plastic hinges based on generalized stresses in
the form of section forces was presented. The model has the ability
to degrade stiffness and strength to account for the effects of local
buckling, fracture, and so on in frame structures. The model is

based on a yield surface and a plastic flow potential which have the
same gradient with respect to the section forces. For beams, typical
analytical yield surfaces have corners which are numerically diffi-
cult to handle and a generic, smooth, and convex yield surface rep-
resentation is suggested. The present yield surface is formulated in
terms of normalized generalized stresses and is homogeneous of
degree one, which in combination with the plastic flow potential
ensures the desired plastic behavior.

The plastic hinge model is described by five parameters for
each generalized stress component: the elastic and elastoplastic
stiffnesses, the yield and ultimate capacities, and a parameter con-
trolling the shape of the hysteresis curve between yield and ulti-
mate capacity. The plastic hinge model was implemented in an
elastoplastic beam element formulated via an equilibrium format
whereby the stiffness format can be inverted to the flexibility for-
mat, which is additive. A return algorithm was formulated for the
beam element via the flexibility format, whereby the consistent
algorithmic tangent stiffness matrix was derived. The algorithmic
tangent stiffness matrix accounts for change in stiffness during
yielding as well as change of stiffness and capacity parameters,
leading to an efficient return algorithm.

The element was used to model cyclic bending of cantilevered
steel beams utilizing very simple damage functions. In the final
stages of the experiment, degradation included local instability ef-
fects, the representation of which will need further refinement of
the specific damage model. The computed results compared well
with the experimental results. The model also was used to model
and calculate the response of a tubular offshore frame subjected to
cyclic loading. In this case, too, the model captured the response
well and clearly represented the experimentally observed increased
displacements in continued cycling.

(a) (b)

(c)

Fig. 11. Plane offshore frame: (a) Cycles 1–5; (b) Cycles 6–10; (c) Cycles 11–15
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Notation

The following symbols are used in this paper:
Ak = positive definite, symmetric matrix;
By = yield capacity matrix;
Bβ = relative additional capacity matrix;
De = elastic stiffness;
Di = internal stiffness;
Ded = combined elastic and damage evolution

matrix;
Deid = combined elastic, internal, and damage

evolution matrix;
Dep

eid = combined elastic, internal, and damage-like
elastoplastic stiffness;

Ḋ = dissipation rate;
dλ = plastic multiplier vector;
F = Yield function;

fy ¼ ½F1;F2�T = yield function vector;
G = plastic flow potential;
Gd = plastic flow potential solely dependent on

generalized damage-like stresses;
g ¼ ½G1;G2�T = plastic flow potential vector;

Ke = elastic stiffness matrix of equilibrium format
beam element;

Ki = internal stiffness matrix of equilibrium format
beam element;

Ked = Ded for equilibrium format beam element;
Keid = Deid for equilibrium format beam element;
Kep = elastoplastic tangent stiffness matrix of

equilibrium format beam element;
KA

eid = algorithmic stiffness matrix;
Kr = tangent stiffness matrix for rotation and length

change effects;
q = element force vector of full format beam

element;
~qe = equilibrium force vector of beam element;
~qi = internal equilibrium forces of beam element;
~qd = damage-like equilibrium force vector of beam

element;
~q ¼ ½ ~qT

e ; ~qT
i ; ~q

T
d �T = common equilibrium, internal and

damage-like force vector;
r ~u = displacement residual in return algorithm;
T = transformation matrix, transformation between

equilibrium and full format;
u = displacement vector of full format beam

element;
~ut ¼ ~ue þ ~up = deformations in beam element, sum of elastic

and plastic deformations;
~ui = internal deformation vector of beam element;
~ud = damage-like deformation vector of beam

element;
~uk;jd;0 = reciprocal of saturation speed for material

parameter k at node j;

~u ¼ ½ ~uT
e ; ~uT

i ; ~u
T
d �T = common elastic, internal, and

damage-like deformation vector;
αj = hysteresis shape parameter for generalized

stress j;
γ ¼ γe þ γp = generalized strains, sum of elastic and plastic

generalized strains;
γi = generalized internal strains;

Δ ~ut = increment of ~ut;
Δ ~u = increment of ~u;
Δλ = finite increment plastic multiplier vector;
∂F = gradient of yield function;
δr ~u = increment of displacement residual;
δ ~u = subincrement of ~u;
δ ~q = subincrement of ~q;
δλ = increment of Δλ;
η = generalized damage-like stresses;

ηk;j = relative saturation level of material parameter k
at node j;

λ̇ = plastic multiplier;
ξ = generalized damage-like strains.
τ = generalized stresses;
τi = generalized internal stresses;
~τ = normalized generalized stresses;
~τi = normalized generalized internal stresses;
τ̂k = offset of yield surface in normalized stress

space;
Φ = internal energy of beam element;
Φd = internal energy of beam element solely

dependent on damage-like deformations;
φ = internal energy;
φd = internal energy solely dependent on

generalized damage-like strains;
∂T
~qfy = gradients of yield function vector;

∂G = gradient of plastic flow potential; and
∂T
~qg = gradients of plastic flow potential vector.
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A B S T R A C T

A robust elasto-plastic element is developed for analysis of frame structures. The element consists of a beam
member with end joints with properties permitting representation of the effect of section forces in adjoining
members, like axial forces. By use of the equilibrium formulation the deformations of beam member, plastic
hinges and joints become additive and can be expressed in explicit form. The plastic deformations of the beam
and the joints are represented by separate plastic mechanisms, described by the same generic cyclic plasticity
format. This format is defined by an energy function, a yield surface, and a plastic flow potential for each plastic
mechanism. In the cyclic plasticity model each component is characterized by the elastic stiffness, the yield
capacity, the additional flexibility at initial yield, the ultimate capacity and a shape parameter describing the
curvature of the hysteresis curve. The yield surface is represented by a recently developed generic format,
combining the section forces into a homogeneous function of degree one and permitting smooth transition
between regions with large and more moderate curvature. A robust return algorithm of approximately second
order is developed, using a mid-step state to obtain representative information about the return path. The ele-
ment is implemented in a co-rotational large-deformation computer program for frame structures. The for-
mulation is illustrated by application to a couple of typical offshore frame structures, and comparison of different
representations of the plastic effects illustrates the importance of a robust element with realistic representation
of the cyclic plastic mechanisms.

1. Introduction

In the design and analysis of frame structures, e.g. offshore tubular
structures and steel frame buildings exposed to earthquakes, a large
number of load cases are analysed to ensure the structure can withstand
the external loading. Some important load cases involve substantial
deformation of members in the elasto-plastic regime, followed by sub-
sequent unloading introducing a need for an accurate representation of
the cyclic plastic behaviour of beam members. The cyclic elasto-plastic
response of a single beam member has been experimentally investigated
in e.g. [1–5] for both uni-axial tension/compression and uni-axial
bending, and elasto-plastic cyclic column-buckling of tubular steel
columns was investigated and characterised by [6]. While cyclic plastic
bending is dominated by the non-linearity in the material behaviour,
cyclic column-buckling is characterised by the non-linearity in the
material behaviour and in the geometry. Common to both cases is that
the plastic deformation is local in the form of plastic hinges, suggesting
that it is possible to separate geometric and material non-linearity by
proper modelling. The localized plastic deformation in the form of
plastic hinges is also observed in full structures [7–9], where cyclic

loading of the local members comes naturally via global unloading or
load-shedding caused by buckling or plasticity in other members. In full
structures the plastic hinges may be caused by a plastic mechanism in
the local member itself or by a plastic mechanism at the local joint
connecting the structural member to the rest of the structure. It is ne-
cessary to distinguish the two types of mechanisms from each other and
to acknowledge that they may both be present at the same time at the
same location. Experimental investigation of capacities of local joints in
tubular structures has been carried out in [10] and extensively char-
acterized in [11].

In addition to plastic mechanisms, in practice the local joints be-
tween members introduce additional flexibility in the structure com-
pared to completely rigid connections. The difference in the response of
a structure modelled with and without local joint flexibility is clear in
both traditional analysis of frames [12] and in bifurcation and stability
analysis of frames [13]. Multiple experimental programs have in-
vestigated and characterized local joint flexibility [14–16], essentially
describing the additional flexibility of the local joint by parametric
equations depending on the local joint geometry. Recently detailed fi-
nite element models have been used to develop such parametric
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equations after validation with experimental data [17–19]. The inclu-
sion of local joint flexibility in analyses has primarily been modelled by
separate elastic joint elements [20–22], introducing a need for a
transformation between flexibility and stiffness and most often in-
troducing infinite stiffness terms for displacement directions with zero
joint flexibility. Separate joint elements including both elastic and
plastic flexibility have been introduced [23], introducing this infinite
stiffness problem. In some finite element codes e.g. RONJA developed
by Rambøll, the local joint flexibility has been introduced in the
member elements by static condensation, a method that does not re-
solve the problem with infinite stiffness.

In most frame structures the imperfections of the individual mem-
bers need to be modelled to account for the effect of the normal force.
Imperfection effects were introduced by [24,25] in an element with
negligible shear flexibility based on parabolic and a sine imperfection
shape respectively. An explicit elastic element including shear flex-
ibility and a parabolic imperfection shape was introduced in [26] and
was extended to include plastic mechanisms in the form of concentrated
plastic hinges at the ends of the elastic beam giving an explicit elasto-
plastic beam element with initial imperfections.

The differences between beam elements with concentrated plastic
hinges and beams modelled with spread of plasticity using fibre ele-
ments was investigated in [27], finding the relative magnitude of the
generalized plastic strain components to be similar for the two types of
models. Several element formulations with concentrated plastic hinges
have been proposed, some having three possible plastic hinges [28–30]
with one hinge located at mid-span to account for column buckling
effects. The degrees of freedom associated with the mid-point plastic
hinge are typically removed by static condensation. Other elements,
primarily used for column problems, have been suggested [31] with
only a hinge at mid-span, and a proposal for softening hinges with lo-
cation dependent on the section force distribution in [32]. The differ-
ence between displacement, flexibility and mixed formulations of
beams was investigated in [33] finding the flexibility format quite ac-
curate taking into account its low-order modelling compared to higher-
order modelling typically used in displacement and mixed formula-
tions. Flexibility formulations via a ×6 6 equilibrium format was pro-
posed in [34,35] for monotonic and cyclic plasticity models as well as in
[26] including local imperfections. In order to model cyclic plasticity in
frame structures more accurately [36] introduced a generalized for-
mulation of the cyclic plasticity model from [37]. The model is based on
non-linear kinematic hardening rules and evolution of the model
parameters and was subsequently extended to include local joint plastic
mechanisms [38]. Common to all of the element formulations is that
they are based on a set of yield functions bounding the elastic domain
and a set of plastic flow potentials to describe the development of
plastic deformation.

The yield surface of the individual plastic mechanisms may be de-
termined either by approximate analytical methods [39] or numerical
estimates [40] and subsequently modelled in various ways. A standard
approach that ensures convexity of the yield surface is the use of multi-
linear yield surfaces. However, the checks of multiple surfaces and
determination of gradients at vertices may be difficult, see e.g [41]. To
overcome the difficulty with multiple checks, single-equation for-
mulations of yield surfaces have been proposed, e.g. higher-order
polynomial approximations [42,43], NURBS-based formulations [44]
or use of Fourier principles [45]. All these have the disadvantage that
the coefficients in the equations or locations of the control points may
be difficult to determine while simultaneously ensuring convexity of the
yield surface. The convexity was ensured in a surface format proposed
by [46,47] using a Minkowski sum of ellipsoids, and the use of the
convexity of the ellipsoids was utilized by [36] to form a generic convex
single-equation yield function without the need to form the actual
Minkowski sum. For some cyclic plastic deformation histories the shape
of the yield surface has been found to change, and a weighted average
of different yield surfaces has been applied with success [48,49].

Independent of the choice of the yield surface formulation it is de-
sirable to be able to make large load/deformation increments in order
to have efficient computations. The analysis procedure typically de-
termines the displacement increments via a global analysis and subse-
quently determining the element deformations and forces, ensuring that
the yield condition is not violated in the individual elements.
Satisfaction of the yield condition is typically attained by a return al-
gorithm where combinations of the deformation evolution equations
and the yield conditions determine the correct increment in element
forces. For continuum elements [50] proposed a return algorithm for
plane stress elasto-plasticity including the algorithmic tangent stiffness
needed to ensure second order convergence of the global solution.
While the plane-stress elasto-plasticity return algorithm was developed
for a fairly simple yield surface, a more advanced algorithm was de-
veloped for structural concrete with a more complicated yield surface
[51] making use of sub-stepping techniques as well as line search to
ensure a proper return to the yield surface. In geotechnics the yield
surface is typically divided into multiple domains and several return
algorithms have been developed to overcome the problems with finding
the correct domain to return to [52–54]. Where [52] modified the in-
dividual domains, [53] used bisection in a transformed space and a
combination of returning to an unhardened state and subsequently re-
turning to the hardened state, and [54] made use of a relaxation
technique to obtain a more robust algorithm. The efficiency of the re-
turn algorithm may in some cases be increased by transforming to an
invariant space [55] combined with multi-linear yield surfaces and
defining separate rules for return to vertices [56]. Separate algorithms
have also been developed for coupled problems including damage [57].
Common to all return algorithms is that they need to be quite robust to
allow for large increments of deformation in any direction, and for
plastic hinges it is paramount to ensure the robustness of the algorithm
independently of the given yield surface.

This paper develops an elasto-plastic frame element, and introduces
plastic beam hinges and elasto-plastic joints via the concept of additive
flexibilities. The element is defined in an equilibrium-based co-rota-
tional formulation and is sufficiently general to encompass elastic ele-
ment formulations ranging from standard cubic shape functions to
normal force dependent stiffness functions including initial member
imperfections, see e.g. [26,58], as well as plastic mechanisms ranging
from ideal plasticity to models coupling elasto-plasticity and damage.
The cyclic plasticity formulation proposed in [37] is generalized and
extended to ensure invariance for doubly-symmetric beam cross sec-
tions. The yield function is of the type proposed by [36] and determi-
nation of parameters as well as gradual change of shape and inclusion
of shear effects are discussed. A novel two-step return algorithm that
includes the effects of distributed loads is introduced and shown to
increase the robustness of traditional single-step return algorithms
considerably. Finally, examples of realistic tubular offshore structures
are used to illustrate the effect of the plasticity formulation as well as
the robustness of the equilibrium element formulation and the modified
return algorithm. The examples highlight the differences between
standard element and plasticity formulations and the present integrated
formulation, illustrating the necessity of having an accurate re-
presentation of cyclic plasticity and local joint mechanisms.

2. Elasto-plastic frame element

The frame element is defined in an equilibrium format with six
deformation modes with energy conjugate section forces as illustrated
in Fig. 1. Details of the equilibrium formulation may be found in
[26,58]. The deformations and the section forces are arranged in the
vectors

=∼ u φ φ φ φ φu [ , , , , , ] ,x z z y y
T

t 1 2 1 2 t (1)

̃ = ∼∼ ∼ ∼ ∼ ∼N T M M M Mq [ , , , , , ] ,z z y y
T

e 1 2 1 2 (2)
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where the tilde indicates the relation to the equilibrium format and the
subscript ‘t’ indicates that it is the total deformation of the element,
while the subscript ‘e’ indicates that sections forces are energy con-
jugate to the elastic deformations.

In frame structures with cyclic plasticity and local joint effects there
are four primary mechanisms that must be represented; elastic de-
formation of the beam member ∼ue

M, plastic deformation in the form of
yield hinges at the beam member ends ∼up

M, elastic deformation at the
local joints ∼ue

J and plastic deformation of the local joints ∼up
J . The three

latter effects are concentrated at the beam ends and are assumed to be
local mechanisms, whereby the section forces of all four mechanisms
are the same as indicated in Fig. 2.

Assuming small deformations, the total deformation ∼ut at each end
is the sum of the mechanism deformations, and the flexibilities are
thereby additive and the element may be described by a single de-
formation measure, ∼ut. In the case of a negligible mechanism effect the
flexibility of the mechanism is zero and thus the format degenerates to a
simple elastic frame element when the other mechanisms are negligible.
Alternatively, in a stiffness format a negligible mechanism effect cor-
responds to an infinite stiffness making it difficult to have a simple
algorithm where negligible mechanisms lead to a degenerate element
because of numerical evaluations of infinite stiffness.

2.1. Energy definition

The cyclic plasticity model is based on [37,36] and is defined via an
energy potential, a yield function and a plastic flow potential. The
energy defines the constitutive relations between deformations and
sections forces, while the yield function set equal to zero defines the
yield surface, and the gradient of the plastic flow potential defines the
plastic deformation evolution. The energy potential is given by

= + +∼ ∼ ∼ ∼ ∼φ φ φ φu u u u u( , ) ( , ) ( )e e d i i d d d (3)

where ∼ue are elastic deformations, including both elastic member and
elastic local joint deformation, ∼ui are internal deformation measures
and ∼ud are damage-like deformation measures used to control model
parameter evolution, see [37]. The elastic energy φe is unspecified,
leaving room for geometric non-linearity/bowing and other non-linear
elastic effects, but in the simplest case is a quadratic form of the elastic
deformations. The internal energy φi may also take a general form;
however a standard quadratic form may be preferable as non-linearity
may be included via the gradient of the plastic flow potential. The
dependence on ∼ud in the elastic and internal energy terms φe and φi is
introduced to allow for an evolution of the stiffness for the energy
conjugate section forces. The damage-like energy term φd is unspecified
to allow for any type of parameter evolution format desired.
The section forces energy conjugate to the elastic, the internal and
the damage-like deformations, respectively, follow from the energy
function as

̃ =
∂
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e (4)
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The section forces ̃qe are the equilibrium forces of the beam ele-
ment, while the internal section forces ̃qi are used to describe the
centres of the yield surfaces for the different plastic mechanisms. Thus,
the dimension of ̃qe is smaller than the dimension of ̃qi. The damage-
like deformations ∼ud are used to model evolution of the elastic stiffness

̃∂∼ qT
u ee and the internal stiffness ̃∂∼ qT

u ii , while the damage-like section
forces ̃qd are used to model isotropic hardening and evolution of other
model parameters. The incremental relations for the elastic, internal
and damage-like section forces are expressed via the ‘chain rule’ as
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where Keid is the tangent stiffness matrix containing the double deri-
vatives of the energy. The stiffness matrix ̃∂∼ qT

u ee is the elastic tangent
stiffness matrix containing the contributions from both the member
elasticity and the local joint elasticity.

2.2. Plastic mechanisms

There are two plastic mechanisms at each end of the beam and
hence a total of four plastic mechanisms. The plastic flow potentials and
yield functions for these four mechanisms are arranged in the vectors

̃ ̃ ̃ ̃= … = …G G F Fg q q f q q[ ( ), , ( )] , [ ( ), , ( )] .T
y

T
1 4 1 4 (8)

The part of the damage-like section forces ̃qd used to model evolution of
the yield function parameters must be independent from the part of the
damage-like deformations ∼ud used to model evolution of the elastic
stiffness matrix given via (3) to ensure the yield surface only changes
during plastic deformation, see e.g. a discussion of the decoupling in

Fig. 1. Equilibrium format of beam element. (a) Element deformations, (b)
section forces.

Fig. 2. Equilibrium frame element with non-linear elastic and plastic me-
chanisms.
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[58].
The evolution of the elastic, plastic, internal and damage-like de-

formations is given by maximization of the dissipation rate under the
assumption of the material being described by the flow potentials,
giving
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q q
t t

1 4

(9)

where ⩾λ ̇ 0j , see e.g. [37,36] for a detailed derivation. During plastic
deformation the various yield conditions should be fulfilled at all times
imposing the consistency condition that during plastic deformation

̃̃= ∂ =f f q 0̇ ( ) ̇ .y
T

yq (10)

Combining the evolution Eq. (9) with the incremental constitutive re-
lation (7) and the consistency condition (10) gives the plastic multi-
pliers

̃ ̃ ̃ ̃= ∂ ∂ ∂ = ∂∼ ∼− −( )λ f K g f K u H f K u̇ [( ) ] ( ) ̇ ( ) ̇ .T
y

T T T
y

T
yq q q qeid

1
ed t

1
ed t (11)

Here, Ked is the first block column of Keid as defined in (7), corre-
sponding to the increment ̃q̇ when only ∼u̇e is non-zero. The hardening
matrix H to be inverted is of size ×n n when n plastic mechanisms are
active. Thus the maximum is ×4 4 and H is most often easily inverted
analytically. Combining the plastic multipliers (11) with the deforma-
tion evolution Eqs. (9) and the incremental constitutive relation (7)
gives the elasto-plastic incremental constitutive relation

̃ ̃ ̃= − ∂ ∂ ∼−( )q K K g H f K u̇ [ ( ) ] ̇ .T T T
yq qed eid

1
ed t (12)

The elasto-plastic stiffness matrix Kep, relating the section force incre-
ment ̃q̇e and the total displacement increment ∼u̇t, is used in equilibrium
iterations and is identified from the top block of (12) as

̃ ̃ ̃= ∂ − ∂ ∂−∼ ( )K q K g H f K( ) .T T T T T
yu q qep e ed

1
ede (13)

It is noted that Kep is symmetric whenever the elastic stiffness is in-
dependent of ∼ud.

2.3. Elastic and internal stiffness

The section forces ̃qe may be a non-linear function of the energy
conjugate elastic deformations ∼ue as indicated in (4). In the case of
beam-column elements with bowing effects the non-linearity originates
from the effect of the normal force, see e.g. [26]. When an elastic local
joint mechanism is present the process of determining the section forces
may be iterative and involve determination of how much of the elastic
deformation ∼ue is elastic member deformation ∼ue

M and how much is
elastic local joint deformation ∼ue

J. The process of determining the sec-
tion forces is based on additive elastic deformations

= +∼ ∼ ∼u u ue e
M

e
J (14)

and as the equation in general will not be satisfied automatically for
non-linear elastic models the residual

= − +∼ ∼ ∼∼r u u u( )u e e
M

e
J

e (15)

is formed. The deformations ∼ue
M and ∼ue

J are initially found by the con-
stitutive relations for the individual mechanisms for an estimated set of
section forces. It is typically advantageous to form an initial estimate of
the section forces from the member constitutive equations, assuming

=∼ ∼u ue
M

e. Subsequently the deformations ∼ue
M and ∼ue

J corresponding to
the section forces may be found. To ensure a correct deformation dis-
tribution a first order approximation of the residual (15) is made, where
the first order variation of the residual is

̃= − + = − +∼ ∼ − −∼δ δ δ δr u u K K q( ) (( ) ( ) ) .u e
M

e
J

e
M 1

e
J 1

ee (16)

Here −K( )e
M 1 and −K( )e

J 1 are the elastic tangent flexibilities of the
member and the local joint, respectively. Note, that the tangent

flexibility of the member may include initial imperfections, see e.g.
[26], while the tangent flexibility of the local joint may depend on the
section forces in adjacent members. The correction in the section force
estimate ̃δqe is found by setting the residual (15) equal to zero giving

̃ = + =− − − ∼ ∼δq K K r K r(( ) ( ) ) .u ue e
M 1

e
J 1 1

ee e (17)

This identifies the elastic tangent stiffness matrix
̃∂ = = +− − −∼ q K K K(( ) ( ) )T

u e e e
M 1

e
J 1 1

e to be used in (7). It is clear that the
additive flexibility format is the key to determining the correct tangent
stiffness, and it is seen that the standard tangent stiffness without local
joint effects is simply a special case where the local joint flexibility is
zero. The process of determining the section forces and the distribution
of the elastic deformations is summarised in Table 1.

While the elastic tangent stiffness is found by the inverse of the sum
of two flexibilities the internal tangent stiffness ̃∂∼ qT

u ii is found directly
by the double derivative of the internal energy φi. As the evolution of
the internal deformations ∼u̇i is controlled by the gradients of the flow
potentials according to (9) it is of interest to have a constant internal
stiffness to isolate the origin of non-linear behaviour of the internal
section forces. Therefore the internal energy is here defined as

=∼ ∼ ∼ ∼ ∼φ u u u K u u( , ) 1
2

( )T
i i d i i d i (18)

whereby the internal stiffness is ̃∂ = ∼∼ q K u( )T
u i i di . The internal stiffness

matrix is a diagonal matrix to ensure any coupling between the internal
section forces controlling the centres of the yield surfaces is controlled
by the plastic flow potentials.

2.4. Full component format

In order to use the beam element in a global analysis the formula-
tion must be expanded to 6 components at each node and a rigid-body
motion superimposed on the local element displacements, see e.g.
[26,58] for details of the formulation used here. The full format three-
dimensional beam element including rigid body motion is illustrated in
Fig. 3. The element displacements and forces are arranged in the vec-
tors

= = u u u θ θ θu u u u[ , ], [ , , , , , ] ,T T T
j x y z x y z j

T
1 2 (19)

= = Q Q Q M M Mq q q q[ , ], [ , , , , , ] ,T T T
j x y z x y z j

T
1 2 (20)

and the link between the total element deformations ∼ut and the element
displacements u and between the equilibrium format section forces ̃qe
and the element forces q is provided by the equilibrium conditions.
Axial, torsional, transverse and rotational equilibrium enables the re-
lation

̃ ̃= ⎡
⎣⎢

⎤
⎦⎥

= ⎡
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⎤
⎦⎥

=q
q
q

S
S q S q ,1

2

1

2
e e

(21)

where the transformation matrix S may take into account the effects of
axial shortening, bowing etc. see e.g. [26]. The virtual work of the full
format and the equilibrium format must be the same in order to have a
consistent element, [26], whereby the deformation increment may be
expressed in terms of the displacement increment

=∼d du S u.T
t (22)

Table 1
Elastic deformation distribution.

1. Assume =∼ ∼u ue
M

e and determine ̃qe as with no joint flexibility.

2. Determine ∼ue
M and ∼ue

J based on ̃qe and constitutive relations.

3. Determine tangent flexibility matrices − −K K( ) , ( )e
M 1

e
J 1 and residual ∼rue.

4. Determine increment ̃ = ∼δq K rue e e.
5. Update ̃ ̃ ̃= + δq q qe e e. Go to 2 and repeat until convergence.
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Note, that this transformation between displacements and deformations
removes the rigid body motion in a small-deformation format. The in-
crement in the element forces is found by differentiation of (21),

̃ ̃= +d d dq S q S q .e e (23)

The first term is expressed in terms of du by use of the constitutive
relation (13) and the incremental deformation relation (22). The second
term represents the contributions from rigid-body motion and element
elongation. When extracting the displacement increment components
this term can be expressed as dK ug , where the matrix Kg represents the
effects of the effects just mentioned. The full increment in the element
forces dq then relates to the displacement increment du by

= +d dq SK S K u( ) ,T
ep g (24)

where the local elasto-plastic stiffness matrix Kep is replaced by the
local elastic tangent stiffness matrix Ke in the absence of active plastic
mechanisms. When used in a global analysis the components in (24) are
transformed into a global coordinate system. The combination of in-
cluding the global motion in the local stiffness relation and trans-
forming the resulting stiffness relation into global components con-
stitutes a co-rotational formulation, enabling realistic cyclic collapse
analyses of offshore structures.

3. Plastic potentials

Each of the four plastic mechanisms are described by a yield surface
and a corresponding plastic flow potential and the total model is ob-
tained by arranging these in the two arrays fy and g as shown in (8). In
order to avoid an overly heavy notation each of the mechanisms will be
described by its yield function ̃F q( ) and flow potential ̃G q( ) without
explicitly introducing the subscript j identifying the particular me-
chanism. Similarly, the arrays ̃qe and ̃qi will be used to denote the
components relating to this particular mechanism, and thus these vec-
tors will have the same dimension in the present context. Also vectors
like ̃qd denoting damage parameters as well as other model parameters
will be limited to those relevant for the particular mechanism.

The present cyclic plasticity model is based on non-linear kinematic
hardening, with the centers of the individual yield surfaces represented
by the internal section forces ̃qi and the non-linearity of the hardening
introduced via the gradient of the plastic flow potential. The yield
function is defined in terms of normalized section forces as an iso-sur-
face of the kinematic hardening yield function

� �̃ ̃ ̃= − − = =− −F q q q q q q q( ) ‖ ‖ 1, , ,y ye i e
1

e i
1

i (25)

where � � ̃= q( )y y d is a diagonal matrix with the current yield capacities
in the diagonal, and the yield surface is defined by setting the yield
function equal to zero. The normalization effectively defines the yield
surface in terms of the relative sections force components, e.g. the re-
lative normal force =n N N/ y. The capacity matrix � � ̃= q( )y y d as well
as the norm ‖ ‖ may be different for the different plastic mechanisms.

The norm has the general format

− = − − + − − + ⋯q q q q A q q q q A q q‖ ‖ ( ) ( ) ( ) ( ) ,T T
e i e i 1 e i e i 2 e i (26)

where …A A, ,1 2 are all symmetric, positive definite matrices. This format
gives homogeneous yield surfaces of degree one. For a homogeneous
norm the exterior equipotential surfaces are scaled versions of the
original yield surface, a valuable property in connection with devel-
opment of an efficient return algorithm. The first and second order
derivatives of the norm exist everywhere except in − =q q 0e i where
yielding is not present and the derivatives are not needed.

The plastic flow potential is a generalization of the multi-dimen-
sional flow potential proposed in [37]. The relative capacity in addition
to the yield capacity is given by a parameter β that may be different for
the different section force components. Similarly the shape parameter α
controlling the roundedness of the hysteresis curve may vary with the
section force component. The possible directional-dependency of the
parameters is accounted for by introduction of equivalent values in the
flow potential
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(27)

where the norms ̂ ̂βq‖ ‖,‖ ‖i and ̂α‖ ‖ are defined by

� �̂ ̂ ̂ ̂ ̂ ̂= = =
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β αβ αq
q

n n‖ ‖
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, ‖ ‖ ‖ ‖, ‖ ‖ ‖ ‖.β αi
i

(28)

The matrices �β and �α are positive definite diagonal matrices that
relate the individual β- and α-values to the reference values ̂β and ̂α . It
is noted that all the resulting α-values have the same sign as ̂α and
hence all the shape parameters are either positive or negative. The
vector n is a unit vector with =n‖ ‖ 1 and is defined as a step-wise
function that is always proportional to the current value of qi, unless

=q 0i in which case n is proportional to qe. The direction vector n is
proportional to qi because the parameters α and β interact solely with qi
via the plastic flow potential.

The gradients of the yield surface and the plastic flow potential are
fairly simple
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where the gradient of the norm is easily determined. Similarly the
gradient of the flow potential with respect to ̃qi is given as
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because n is a stepwise function. When neglecting parameter evolution
the increment in ∼ui and hence ̃qi is proportional to ̃∂ GT

qi
as seen from (9)

and when ̃∂ =G 0T
qi

the hardening stops and the ultimate capacity is
reached. When ̂q‖ ‖i equals one the factor in (30) equals one and the
second term will cancel the first term when ̂ = −q q qi e i corresponding to
an ultimate capacity of ̂= + −βq q q(1 ‖ ‖)( )e e i . When the norm is
homogeneous ̂qi can be replaced by qi in (30) if ̂− α(1 ‖ ‖) is replaced by

̂ ̂− α β(1 ‖ ‖)‖ ‖. As most plastic mechanisms of members and joints may be
represented via a norm of the type (26) that is homogeneous such a
rewritten format may be advantageous for program implementation.
The format above ensures that the ultimate capacity of a tube in pure

Fig. 3. Full format of beam element. (a) Element displacements and rotations,
(b) element forces and moments.
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bending is invariant with respect to the angle between the axis of
bending and the defined main axes of the element for all values of ̂α‖ ‖ in
contrast to the model originally proposed in [36].

The effects of the different model parameters for a plastic me-
chanism defined by an energy potential, a yield function of the type
(25) and a plastic flow potential of the type (27) are illustrated in Fig. 4.

Fig. 4 illustrates a uniaxial deformation in the direction of the j’th
component of ∼ut. While Ke characterises the initial elastic stiffness, the
internal stiffness Ki characterizes the kink at plasticity, which occurs
when the section force normalized by the current yield capacity is one.
The plastic mechanism has a relative capacity of βj in addition to the
yield capacity. Finally the roundedness of the hysteresis curve is con-
trolled by the αj parameter. Note, that for a multi-axial loading qe will
be replaced by βq‖ ‖, je will be replaced by ̂β‖ ‖ and αj will be replaced by

̂α‖ ‖ in Fig. 4.

3.1. Representative norms

The concept of determining the relevant parameters of the matrices
in the definition of the norm (26) in a simple way was discussed by
[36]. It was found that yield surfaces for typical double-symmetric
beams can be represented by two terms with diagonal matrices. Simi-
larly, it was shown in [38] that the yield surface format is suitable for
representing yield surfaces for tubular steel joints. Although it is pos-
sible to represent analytical yield surfaces with corners quite accu-
rately, it can be advantageous to round the yield surface slightly in such
regions, thereby enhancing the algorithmic properties of the surface.
The most accurate representation of the yield surface overall is
achieved by rounding on the inside of the surface because of the con-
vexity of the surface. Whereas a rounding on the outside may give the
option of having a yield surface predicting the correct uni-axial yield
capacities, it will lead to over-prediction of capacity in generalized
multi-axial stress states, e.g. bending and axial tension.

The solution to finding a proper roundedness for a specific problem
without the need for a full library of different yield surfaces with dif-
ferent roundedness in a finite element program is interpolation between
surfaces. Because the norm (26) is a convex function a sum of different
norms will also be convex and ensure that an iso-surface like the yield
surface will be convex. Thus, a weighted sum of different norms will be
guaranteed to represent a convex yield surface when the weights are
positive. Thereby it is only necessary to have two different yield sur-
faces in the library; one with the maximum acceptable rounding, ty-
pically represented by approximately a 5% reduction of the capacity in
the region with large curvature in question, and the exact representa-
tion of the yield surface. Any other rounding between those states can
be achieved by simply weighting the two norms with a factor between
zero and one where the sum of the weight factors must equal one. The
concept is illustrated by contour lines of the yield surface of a tubular
steel beam in Fig. 5.

The exact yield surface representation is modelled using
two terms with diagonal matrices A1 and A2 where

= − = = =− −A A A A1 2·10 , 0.16, 1·101,1
1 5

2,2
1

3,3
1

1,1
2 10 and = =A A 0.362,2

2
3,3
2 .

The rounded surface is represented using two diagonal matrices
A1 and A2 with = = = =A A A A0.865, 0.0961, 0.01501,1

1
2,2
1

3,3
1

1,1
2 and

= =A A 0.4762,2
2

3,3
2 . Fig. 5 indicates that the interpolation between the

exact and rounded representation of the yield surface only changes a
very small region of the yield surface, where the curvature is large. The
remaining part of the yield surface is indifferent to the rounding and the
interpolation makes it very simple to create any rounding of the yield
surface with just one weighting parameter, a constraint and the two
yield surface representations to be interpolated.

Determining a representative yield surface may also be eased using
an interpolation between multiple yield surfaces. By selecting re-
presentative points on the analytical yield surface that should be ac-
curately represented a total error of a given yield surface representation
can be determined by simply adding the values of the square of the
given yield function at the selected points. With the error defined for
multiple yield surface representations it is simple to set up a total error
function being the weighted sum of the individual errors for the dif-
ferent yield surface representations. From that point on it is a simple
linear optimization problem with inequalities as constraints as well as
the constraint that the sum of the weights must equal one. This is a
fairly standard optimization problem that is fast to solve however it
may introduce the need for a large amount of different norms. In con-
trast a non-linear optimization routine minimizing the error with re-
spect to the coefficients in the individual matrices need only one norm
with fewer terms than the total amount of terms in a weighted sum,
however the optimization may be more difficult to program.

3.2. Gradual change of yield surface

Besides enabling a simple representation of a rounded yield surface
the interpolation enables the possibility of gradually changing the yield
surface during plastic loading, described by e.g. [48,49] for anisotropic
materials. A gradual shape change can be introduced by dedicating a
properly defined damage-like section force of ̃qd to describe the
weighting parameter of a norm. The damage-like section force of ̃qd is
introduced via ∼ud in ∼φ u( )d d in (3). Such a shape change enables initially
using a first fibre yield surface and gradually changing to the full
plastification yield surface without using a two-surface model. This is
illustrated in Fig. 6.

If multiple surfaces are used in the interpolation to introduce e.g.
dependency on loading type or similar effects multiple parameters are
simply introduced in φd. With such a formulation it will be possible to
use the exact representation of the yield surface for initial estimation of
the yield capacity and subsequently gradually change the yield surface
representation to a more rounded version to benefit the algorithmic
properties.

Note, that because of the form of the norm (26) it is possible to
introduce rotation of the yield surface simply by multiplying the ma-
trices A A,1 2, …with rotation matrices symmetrically from each side. If
it is found that the yield surface rotates during plastic loading such an

Fig. 4. Effect of model parameters.

Fig. 5. Contour lines of rounded yield surface by weighting of two yield sur-
faces.
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effect may be introduced by letting the rotation matrix depend on a
parameter of ̃qd. With the use of weighting of different norms, rotation
matrices, the kinematic hardening and the dependency of the current
yield values on ̃qd, it is possible to have expansion/contraction, dis-
tortion, translation, rotation and affine deformation of the yield surface
in very simple and identifiable ways, similar to what is proposed for
cubic polynomial representations of yield surfaces in [43].

3.3. Inclusion of shear effects and local joint coordinates

Yield surfaces for local joint plastic mechanisms are defined in terms
of the local forces, typically defined in the local joint coordinate system
rather than the section forces in the element coordinate system.
Similarly the effect of shear forces may be important for some beams,
primarily in the form of plastic mechanisms in the member ends. An
example of a yield surface for a tubular steel joint from the MSL report
[59] is shown in Fig. 7 in terms of normalized section forces, along with
a representation using the proposed yield surface format.

Both effects are included without violating the equilibrium format
introduced in the previous section. The shear force effect is most easily
included by describing the yield surface in terms of the element forces
q, and when doing so the plastic mechanisms at each end should only
be described by the element forces qj at beam end j as defined in (20).
Similarly, the local joint plastic mechanisms are defined in terms of the
element nodal forces in the local joint coordinate system at the current
end given by

=q T q ,j j j
J J

(31)

where T j
J is a transformation matrix, that transforms from the element

coordinate system to the local joint coordinate system. The gradient of
the yield function F with respect to the section forces is given by the
transformation
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(32)

In the case of a plastic mechanism in the member the joint co-
ordinate system transformation matrix T j

J is the identity matrix and for
a plastic mechanism F located at node 1, the derivative ∂ ∂F q/ 2

J equals
zero. The gradient of the plastic flow potentials are carried out in the
same way.

4. Robust return algorithm including distributed loads

The deformation evolution Eq. (9) is valid for infinitesimal incre-
ments of deformations, a format not suitable for actual finite element
calculations where the increments are finite. To obtain a robust algo-
rithm capable of handling finite increments of deformation, the de-
formation evolution Eq. (9) is replaced by its equivalent finite incre-
ment form
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(33)

Here ∼uΔ t includes both the global deformations ∼uΔ g and the local de-
formations from the distributed load ∼uΔ l. The local deformations are
determined via the elastic flexibility matrix and the equivalent nodal
forces

=∼ −u K fΔ Δ .l e
1

l (34)

The distributed load vector fl contains only the loads that can be re-
presented by deformations and loads corresponding to rigid body mo-
tions must be added subsequently, i.e. non-homogeneous shear forces
from the distributed load must be added to the element nodal forces
separately.

It is assumed that the finite increment formulation (33) is satisfied
in the final state, and to ensure that a residual is formed

̃=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− − ∂
∼

∼∼ λr
u
0
0

u g
Δ

Δ ( ) Δ .T T
u q

t

(35)

The residual is generally not zero initially for yield surfaces re-
presenting plastic mechanisms in frame elements. The increment of the
residual is found by variation about the final state

̃ ̃ ̃ ̃∑= − −
⎛

⎝
⎜

∂
∂ ∂

⎞

⎠
⎟ − ∂∼∼ λδ δ

G
λ δ δr u

q q
q gΔ ( ) ,

j

j
T j

T T
u q

2

(36)

where the increments ∼δ δu q, ͠ and λδ are all increments of the final state
parameters. The increment ∼δu is related to the increment ̃δq via the
constitutive relation (7) and the first order approximation of the re-
sidual can be expressed entirely in terms of ̃δq and λδ . The additional
equations necessary to determine both ̃δq and λδ come from the con-
sistency condition that the final stress state must be located on the yield
surface. That is ensured by a first order approximation

̃̃+ ∂ =δf f q 0( ) .y
T

yq (37)

Using the first order approximation of the residual via (35) and (36)
and setting it equal to zero in combination with the consistency con-
dition (37) gives the equation system

̃̃

̃
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q

q

ueid
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(38)

where the algorithmic stiffness matrix K A
eid is identified by its inverse

Fig. 6. Contour lines of gradual change from first fibre yield to full plastifica-
tion.

Fig. 7. Theoretical yield surface for tubular joint (MSL surface) and re-
presentation, ( ). Contour lines are plotted in selected planes.
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q q
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eid

1
2

(39)

The equation system is solved explicitly by isolating ̃δq in the first row
in (38), substituting it in the second row and solving for λδ giving the
increments

̃ ̃ ̃= ∂ ∂ + ∂− ∼( )λδ f K g f f K r[( ) ] ( ( ) ),T
y

A T T
y

T
y

A
q q q ueid

1
eid (40)

̃ ̃= − ∂∼ ( ) λδ δq K r g( ).A T T
u qeid (41)

It is noted that the increments in the plastic multipliers λδ must take
values ensuring that λΔ remains positive or zero.

4.1. Increased robustness

The increments (40) and (41) are essentially linear representations.
In regions where the curvature of the yield surface is large or when the
hardening is highly non-linear over the deformation increment a linear
representation may not provide a sufficiently robust algorithm. The
residual (35) is dependent on the direction of the return via the gradient
of the flow potential and dependent on the magnitude of return via the
plastic multipliers. A good estimate of the return is more dependent on
the estimate of the direction than on the estimate of the magnitude. In
order to increase the robustness of the return algorithm better estimates
of the algorithmic stiffness and the gradients of the yield function and
the flow potential are sought in order to get better estimates of the
direction of the return.

The estimate of the gradients and algorithmic stiffness are de-
termined by a procedure similar to the two-step procedure for explicit
stress integration proposed in [60]. A second order Taylor expansion of

̃δq from the initial point ̃ =δq 00 to the point ̃ ∼δ ξ ξq r f( , )yu is given by

̃ ̃ ̃=
∂

∂
+

∂
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δ ξ ξ
δ
ξ

ξ
δ
ξ

q
q q

( )
( ) 1

2
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.
ξ ξ0

2
2

2
0 (42)

The first order derivative is found by combination of the incremental
relations (40) and (41) expressing the linear representation of ̃δq di-
rectly in terms of ∼ru and fy by the general format

̃∂
∂

= −∼
δ
ξ
q

K r K f
( )

,yr u f
(43)

where the stiffness matrices Kr and Kf are

̃ ̃ ̃= − ∂ ∂ = ∂− −( ) ( )K K K g H f K K K g H( ) , ,A A T T
A

T
y

A A T T
Ar q q f qeid eid

1
eid eid

1
(44)

with the algorithmic hardening matrix

̃ ̃= ∂ ∂( )H f K g( ) .A
T

y
A T T

q qeid (45)

It is noted that Kr corresponds to the consistent elasto-plastic tangent
operator. The three matrices K K,r f and HA all vary with ̃ ̃ ̃= + δq q q0
as they depend on gradients of the yield functions and flow potentials
and on second order derivatives of the flow potentials. The second order
derivative in (42) is found by differentiation of (43),

̃∂
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= ∂
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− ≃ −∼ ∼
δ
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K r K f K r K f
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( ) Δ
Δ

Δ
Δ
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u
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2

2 (46)

illustrating that a higher order method needs more information than
what is available at the initial point. To obtain KΔ r and KΔ f half a
return step is made, corresponding to finding the midpoint of a full step
in the linear return algorithm (40) and (41). The half-step is given by

̃ = −∼δq K r K f1
2

( ),yr u f1/2
0 0

(47)

where the superscript 0 indicates that the initial values of the matrices
are used. The midpoint is characterized by ̃ ̃ ̃= + δq q q1/2 0 1/2 and

= +∼ ∼ ∼δu u u1/2 0 1/2. At the midpoint the matrices Kr
1/2 and Kf

1/2 are

determined and in combination with Kr
0 and Kf

0 they are used to form
the second order derivative in (46) where =ξΔ 1/2. Inserting the de-
rivatives (43) and (46) into the Taylor expansion (42) and setting =ξ 1
gives a second order estimate of the increment ̃δq as

̃ = −∼δq K r K f ,yr u f
1/2 1/2 (48)

a format very similar to the two-step explicit stress integration format
proposed in [60]. In practice it is more desirable to use the formulas
(40) and (41) where algorithmic stiffness and gradients of the yield
functions and plastic flow potentials are determined at the mid-point.
By making the two-step subincrementation using (40) and (41) it is easy
to limit how negative the increment δλj may be to still have positive λΔ j
and subsequently obtaining the consistent increment ̃δq. The return
procedure is illustrated in Fig. 8.

In Fig. 8 the return procedure is illustrated for a single active plastic
mechanism. From the initial estimate of the final state qe

0 half a return
step is made to the position qe

1/2 where the algorithmic stiffness and the
gradients of the yield function and the flow potential are evaluated.
With the information from qe

1/2 a full step is taken from the initial po-
sition qe

0 to the next estimate of the final state qe
1. Note, that the estimate

of the final state after the first return step qe
1 is fairly close to the

converged final state ∞qe . Marked in blue are the points of iterations
when using a traditional single step return algorithm that will not
converge in the present case.

The format above makes use of the algorithmic stiffness defined at
the mid-point suggesting that λΔ should also be updated at the mid-
point as it is part of the algorithmic stiffness. However it is found that
the algorithm is more robust when only the gradients of the yield
functions and the plastic flow potentials as well as the double deriva-
tives of the plastic flow potentials are updated at the mid-point, while
the initial estimate of the plastic multiplier is retained. The difference in
robustness is attributed to the fact that the estimate of the plastic
multiplier is not systematically improved at the half-step position be-
cause it has not yet corrected the direction of the step.

4.2. Limitations on increments

In principle the algorithm above imposes no limits on the type of
yield surface nor the flow potential as long as the incremental relation
(7) holds and the second order derivatives of the plastic flow potentials
exist. However, in the present theory it is necessary to impose limits on
the increments of the internal section forces ̃qi as the algorithm will be
ill-behaved if ̂ >q‖ ‖ 1i , leading to an inconsistency in the flow potential
gradient (30). To ensure a robust algorithm a limit is therefore put on
the increment ̃δqi, similar to how a limit is imposed on the increment in
the plastic multipliers λδ . The limitation is imposed by making a second
order Taylor-expansion of the norm

Fig. 8. Comparison between single step (blue) and the proposed two-step
(magenta) return algorithm. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Solving the second order equation with only the plus sign gives the
solution of interest
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The second derivative is not defined when ̂ =q 0‖ ‖i , and in this case it is
used that the norm is most commonly homogeneous or close to
homogeneous for eccentric surfaces, and ∗ξ is found as

̂=∗ξ
δq
1

‖ ‖
.

i (51)

In practice (50) and (51) may not result in a solution where
̂ ̂+ =∗ξ δq q‖ ‖ 1i i and in that case a new value of ∗ξ is calculated via (50)

where ̂ ̂ ̂= + ∗ξ δq q qi i i is the starting point of the approximation. The
resulting ∗ξ is added to the previous value of ∗ξ and that process is
repeated until ̂ ̂+ =∗ξ δq q‖ ‖ 1i i . With such an approach the basis of the
model is not violated, making the return algorithm more robust. The
final return algorithm is shown in Algorithm 1.

Algorithm 1. Return algorithm.

1. Calculate deformation increment from distributed load
=∼ −u K fΔ Δl e

1
l.

2. Update total deformation increment = +∼ ∼ ∼u u uΔ Δ Δt g l.

3. Calculate elastic increment in forces, ̃ = ∼q K uΔ Δ0
ed t.

4. Calculate value of yield functions, ̃ ̃+f q q( Δ )y
k . If ⩽F 0j

0 , accept

̃ ̃ ̃= +q q qΔ0 0 and exit.

5. Determine ∂ ∂g f,T T
yq q͠ ͠ and K A

eid. If =k 0 determine λΔ as well.

6. Calculate ∼ru. If < ∊ ∼∼r u‖ ‖ ‖Δ ‖tol tu and ⩽F 0j
k , accept ̃ ̃ ̃= +q q qΔ k0

and exit.

7. Determine λδ k
1/2 and ̃δqk

1/2 using (40) and (41) with ∼ru
1
2 and fy

1
2 .

Check magnitudes of λδ k
1/2.

8. Determine ̃ ̃∂ ∂( ) ( )g f,T T
yq q1/2 1/2 and K( )A

eid 1/2 at

̃ ̃ ̃ ̃= + + δq q q qΔk k k
1/2

0
1/2.

9. Determine λδ k and ̃δqk using (40) and (41) with

̃ ̃∂ ∂ ∼( ) ( )g f K r, , ( ) ,T T
y

A
q q u1/2 1/2 eid 1/2 and fy. Check magnitudes of λδ k and

̃δqk
i .

10. Update ̃ ̃ ̃ ̃= + = +∼ ∼+ − +δ δu u K q q q qΔ Δ ,Δ Δk k k k k k1
eid

1 1 and
= ++λ λ λδΔ Δk k k1 and go to 4 using = +k k 1.

The return algorithm shown in Algorithm 1 is based on a known
deformation increment from the global analysis ∼uΔ g and the local de-
formation increment ∼uΔ l combined to a total deformation increment

∼uΔ t. While ∼uΔ g is initially known, ∼uΔ l is calculated via the increment in
the local distributed load. Once ∼uΔ t is found an elastic prediction step is
made and it is checked whether the predicted state violates any of the
yield conditions or not; if not, the predicted state is accepted and
otherwise the plastic return is started. After the values of the yield
functions are determined the gradients of the flow potentials and the
yield functions are found along with the algorithmic stiffness, all in the
predicted final state. In the first iteration an estimate of λΔ is calculated
as well via (11) where ∼u̇t is replaced by ∼uΔ t. Subsequently the residual
is calculated via (35) and if the residual is sufficiently small and none of
the yield conditions are violated, the predicted state is accepted. If the
residual is not sufficiently small a midpoint state is determined by
making half a step using (40) and (41) with ∼r /2u and f /2y . The gradients
of the flow potentials and the yield functions are determined at the

midpoint along with the algorithmic stiffness at the midpoint and these
are used in (40) and (41) to make a full step from the initially predicted
state. It is found by several numerical tests that the highest degree of
robustness is obtained when λδ k

1/2 is not added to λΔ k in the determi-
nation of the algorithmic stiffness at midpoint. Similarly the algorithm
is more robust when ̃δq( )k

i 1/2 is not limited via the procedure described
above, and in cases where ̂ >q‖ ‖ 1i 1/2 simply setting ̂ =q‖ ‖ 1i 1/2 in the
calculation of the derivatives of the plastic flow potentials increases the
robustness. The increased robustness by using the full increment ̃δq( )k

i 1/2
is attributed to the increased prediction accuracy of the direction of the
return step given by the full increment ̃δq( )k

i 1/2 in comparison to using a
limited version of it. In the prediction of the increments λδ k and ̃δqk

limits are put on the increment in the plastic multipliers δλj
k so

⩾+λΔ 0j
k 1 and on the increment in the internal section forces ̃δqk

i so
that ̂ ⩽+q‖ ‖ 1k

i
1 . The final state is updated by the predicted states and

the iteration is repeated again by determining the yield values in the
new predicted final state and following the above steps.

5. Examples

The beam element and return algorithm described above have been
implemented in the computer code RONJA (Rambøll Offshore
Nonlinear Jacket Analysis) where the member elastic stiffness including
imperfections derived in [26] is implemented. The original plastic
hinge model implemented in RONJA is based on a constant linear
hardening with a rounding introduced by taking into account the ap-
proximate length of the plastic zone. However, typically a very small
hardening is used to ensure that section forces in members and joints
will not exceed realistic capacities even for severe plastic deformation.
In the original RONJA code local joint flexibility is introduced by an
additional node and static condensation rather than additive flex-
ibilities used in the present formulation.

Two examples are presented to illustrate the effects of the more
realistic hardening behaviour compared to a linear hardening model
and the effect of the more robust return algorithm and present in-
tegrated element formulation. Both examples are realistic models of
offshore tubular structures located in the North Sea; one is a monopile
structure and the other is a jacket structure. The models include the
stiffness of the soil modelled by springs as well as initial member im-
perfections. The structures are vertically loaded by their own weight,
weight of topsides (not illustrated) and attached bridges (not illu-
strated) and buoyancy corresponding to water depths of 47.9 meters
and 45.0 meters, respectively. After the application of the vertical load,
a horizontal load series is applied. The first part of the horizontal load
series is wind with a recurrence period of 100 years and a wave with a
recurrence period of 10.000 years and wave height 27.7m. Such a
loading is current standard for determining the push-over capacity of
offshore structures [61]. Subsequently the horizontal load is reduced to
zero and load from a wave with a 100 year recurrence period and wave
height 21.9m is applied in the opposite direction of the load from the
wave with a 10.000 year recurrence period followed by a similar wave
in the original horizontal loading direction. Local joint flexibilities are
modelled using the flexibilities proposed by [16] and local joint plastic
mechanisms are modelled with the MSL surface illustrated in Fig. 7
using the capacities predicted by the ISO 19902 standard, [62]. The
MSL surface is rounded at the line corresponding to =n 0 in Fig. 7 to a
capacity of = =m m 0.98ip op . The yield surface of tubular member
plastic mechanisms correspond to the most rounded surface shown in
Fig. 5. Parameter evolution is neglected in these examples, corre-
sponding to removing the third block column and row of Keid and the
third block row of Ked. The effect of softening due to section changes
from local buckling can be included and has been illustrated in [36].

5.1. Monopile structure

The geometry of the monopile structure is illustrated in Fig. 9 and it
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is observed that very few tubular joints are present and the structure
has very little redundancy. Failure mechanisms are expected to be
plasticity at the intersection of the monopile and the supporting braces
in the form of plastic deformation in the braces followed by plastifi-
cation of the main column.

The response history is shown in Fig. 10 where the dashed black line
indicates the response with the original linear hardening model, and the
solid blue line indicates the response using the new beam formulation
and plasticity model. The horizontal load is normalized with the hor-
izontal load =P 14.510.000y MN of the wave with a 10.000 year recur-
rence period.

It is observed that the elastic part of the response is the same for the
two models and that the major difference occurs once the first plastic
mechanisms become active. With both modelling types the first plastic
mechanism that activates is a joint mechanism located in the tension
brace at the connection with the main column. Subsequently the local
joint plastic mechanism activates in the compression braces at the
connection with the main column. The present model is capable of
substantial hardening permitting a considerable load increase, whereas
the original linear hardening model does not allow for much additional
load, and once a plastic hinge forms in the main column a structural
mechanism is created and the main column is essentially free to rotate.
At that point a plastic hinge is created in the middle brace on the

tension side reducing the rotational stiffness in the main column even
further. The ultimate capacity is reached once all three braces have
plastic mechanisms, the main column develops a plastic hinge and the
lower part of the main column loses rotational stiffness due to a plastic
mechanism in the brace on the tension side. If the load is reversed at
this load level, there is hardly any plastic deformation predicted by the
present model as illustrated in Fig. 10(a). In order to have a similar
deformation level the load on the structure with the present plasticity
model must be substantially increased as illustrated in Fig. 10(b). It is
noted that while elastic load reversal is present for the monopile
structure modelled by the linear hardening model that is not the case
when the load is reversed with displacement control of the present
model. In that case the structure unloads plastically, as the joint plastic
hinges of the braces will still deform plastically. The local joint plastic
mechanisms are active because the bending moment in the main
column is so large that the bending capacity of the joint plastic me-
chanism in the braces is virtually zero. Once the loading on the main
column is sufficiently low, the local joint plastic mechanisms become
inactive and the structure unloads elastically. In Fig. 10(b) is it ob-
served that for similar maximum deformation levels the present model
predicts a plastic deformation at zero load that is roughly half the
plastic deformation predicted by the linear hardening model.

The deformed monopile structure at three different load levels is
illustrated in Fig. 11 with displacements scaled by a factor of 5. The
columns show the three types of analysis: load control with linear
hardening, and present model with either load or displacement control,
and the rows correspond to the load stages identified in Fig. 10.

The deformed structure at the maximum load (×) is shown in the top
row of Fig. 11. In Fig. 11(a) the five critical plastic mechanisms are
observed; the plastic mechanisms in the upper joint where the braces
deform plastically, the plastic mechanism in the main column and the
plastic mechanism in the middle brace on the tension side. In Fig. 11(b)
and (c) it is observed that the load must be increased in order to have
similar deformation with the present non-linear hardening model and
in that case, the plasticity is more wide-spread over the main column. In
the second row (∘) the unloaded structure is shown and for the linear
hardening case in (d) the plastic mechanism in the main column is
clearly observed as a permanent deformation. With the proposed
hardening model in Fig. 11(e) the permanent deformation is seen to be
almost negligible corresponding to hardly any plastic deformation,
whereas the more loaded structure in Fig. 11(f) has a deformation
pattern more similar to the structure modelled with linear hardening. In
the bottom row (∗) the deformed structure is shown when the load is
maximum in the opposite direction and it is observed that the location
most heavily loaded is the compression brace (originally the tension
brace) that almost becomes plastic. It is noted that the 10.000 year
wave load is scaled with a factor of 1.08 and the subsequent 100 year
wave load is scaled by a factor of 1.1 to investigate if slightly larger
loads than the original design loads can be sustained and if elastic
shakedown would still be experienced. In the present case (without
dynamic effects) that is found to be the case.

Fig. 9. Geometry of monopile structure.

Fig. 10. Extreme response of monopile structure.
Total horizontal load vs. top displacement. (a) Load
control. (b) Displacement control. Linear hardening
(– –), present hardening ( ).
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5.2. Jacket structure

The geometry of the jacket structure is illustrated in Fig. 12 and it is
observed that in contrast to the monopile it is dominated by braces with
tubular joints at the main legs and at brace-brace joints. Failure me-
chanisms are expected to be elasto-plastic buckling of bracing and most
likely first failure will be buckling of the compression braces in the top
X-brace, as this is a typical failure mechanism, see e.g. [26].

The response history is shown in Fig. 13 where the dashed line re-
presents the response with the original linear hardening model and the
solid blue line represents the response with the present beam for-
mulation and plasticity model. The horizontal load is normalized with
the horizontal load =P 36.110.000y MN of the wave with a 10.000 year
recurrence period.

Similar to the monopile structure the elastic responses shown in
Fig. 13 are identical for the original linear hardening RONJA im-
plementation and the present beam model. During deformation elasto-
plastic buckling of the compression braces in the top X-brace softens the
response. In the linear hardening model the buckling of the brace leads

to a redistribution of the load in the braces and they become loaded
primarily in bending, while the present model hardens more and the
braces are still loaded mostly in axial compression. The stiffness of the
braces loaded in bending is significantly less than the stiffness of the
braces loaded in axial compression as identified by Fig. 13(a). It is
noted that with load control, there is some plastic deformation in the
structure modelled by the present model in contrast to the monopile
structure. If the jacket structure is loaded to similar deformation levels
as shown in Fig. 13(b) rather than similar load levels as shown in
Fig. 13(a) it is noted that the plastic deformation differs by less than a
factor of two in contrast to the monopile structure where the difference
is roughly a factor of two. It is noted that in both the load and the
displacement controlled case both models experience plastic unloading.
At unloading some elements will unload elastically, which is the reason
for the difference between the loading and unloading tangent stiffness.
However, some elements will experience a continued state of plastic
deformation because of the stiffness redistribution in the structure. It is
noted that at a relative load of approximately 2 the response of the
structure is again fully elastic. The plastic deformation at reversed
loading is also the reason why the top displacement increases slightly at
load reversal with displacement control of the present model.

The deformed jacket structure is illustrated in Fig. 14 for three
different load levels modelled with columns showing results from the
linear hardening model and for the present model with load and dis-
placement control, respectively, and the rows correspond to the load
stages identified in Fig. 13. The displacements are scaled by a factor of
5.

The linear hardening model is shown in the left column of Fig. 14,
while the middle and right column illustrate the present model with
load and displacement control, respectively. The top row corresponds to
maximum deformation (×), while the middle row corresponds to zero
horizontal load (∘) and the bottom row corresponds to maximum load
in the opposite direction (∗). Comparing Fig. 14(a)–(c) it is evident that
the different hardening representations give rise to different load re-
distributions. While the linear hardening model in Fig. 14(a) illustrates
an elasto-plastic buckling of the compression braces in the top X-brace
so severe that the load is redistributed to bending, the remaining parts
of the load are distributed to partly the tension braces in the top X-

Fig. 11. Deformation of monopile structure. Left: Linear hardening model.
Middle: Present model with load control. Right: Present model with displace-
ment control. Top: State ×. Center: State ∘. Bottom: State ∗.

Fig. 12. Geometry of jacket structure.
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brace, partly the top braces of the lower X-brace and partly the legs at
the buckled braces and the legs close to the topside. For the present
model in Fig. 14(b) and (c) the braces do not buckle sufficiently to
redistribute the loading to bending, and as a consequence the remaining
part of the load is primarily redistributed to the lower tension braces in
the top X-brace as well as to the top braces of the lower X-brace.
Comparing the different models for similar deformations Fig. 14(a) and
(c) it is evident that the redistribution of load differs significantly be-
tween the two models, where the present model predicts far less loading
in the jacket legs and the top tension braces of the top X-brace. At zero
horizontal load illustrated in Fig. 14(d)–(f) the permanent deformation
is similar for the three models; the most visible permanent deformation
is present in the buckled compression braces and the permanent buckle
is much larger for the linear hardening model. The structure with
maximum load in the opposite direction is illustrated in Fig. 14(g)–(i).
The deformed compression braces are being stretched with slightly
plastic deformation leading to a more symmetric structure with bracing
acting in tension rather than bending, ultimately slightly stiffening the
response. This effect is evident in Fig. 13 where it is noted that the
response at reloading in the original direction is slightly stiffer than the
initial unloading stiffness. Note, that for the present model the load of
the wave with a 10.000 year recurrence period is scaled by a factor of
2.25 and the subsequent 100 year wave load is scaled by a factor of 1.1.
Even with these increased loads (where dynamic effects are neglected)
it is found that elastic shakedown would be expected.

In addition to the difference in the loading redistribution due to
plasticity a notable difference between the original linear hardening
RONJA code and the present cyclic plasticity beam model is the ro-
bustness and stability. In the original code local joint flexibility is in-
troduced via internal nodes and static condensation instead of the ad-
ditive flexibility format applied here. Furthermore the original code
makes use of a standard return algorithm in contrast to the present
more robust two-step algorithm. The main effect of the additive flex-
ibility format and the return algorithm with increased robustness is that
larger load increments are possible. When using the original code a
smaller load step had to be taken 46 times in the jacket analysis, be-
cause of lack of convergence in either the condensation of the local joint
flexibility or in the return algorithm. With the present non-linear
hardening beam element formulation and return algorithm there was
no need for a load step reduction. In addition, the present hardening
model clearly enhances the RONJA code in comparison to the bench-
marking study [63], where RONJA was found to be among the best
offshore structure analysis codes. RONJA was found to predict the
correct failure mechanisms, e.g. elasto-plastic buckling of an X-brace,
and the sequence of these, however the main improvement point was
found to be the response after activation of a plastic mechanism ex-
hibiting too little hardening. The hardening was set low on purpose to
avoid over-predicting the strength of plastic members with the linear
hardening model, a problem that is solved by the form of the present
plasticity model, where a natural ultimate capacity limit is represented
in the model. This suggests that the present beam element with non-

linear hardening not only increases the robustness and stability of the
code, but also increases the accuracy of the code to make the corre-
spondence between model and reality closer.

6. Conclusions

A robust frame element with cyclic plasticity and local joint effects
has been presented. The element is based on additive flexibilities and
includes plastic mechanisms in the member, plastic mechanisms in the
local joints and elastic flexibilities at the local joints. The elastic stiff-
ness of the element may include non-linear dependence on the normal
force, bowing effects, initial imperfections etc. and it is found by the
inverse of the total elastic flexibility including the local joint flexibility.
The plastic mechanisms are described by a plasticity model capable of
representing realistic cyclic plasticity phenomena including degrada-
tion effects via parameter evolution.

The cyclic plasticity model makes use of plastic potentials defined
using a homogeneous norm of degree one. The norm consists of a sum
of square roots of quadratic terms and is shown to be able to represent
multiple different yield surfaces for both member and joint mechan-
isms. Furthermore, parameter estimation is discussed along with the
possibility of a gradually changing yield surface, enabling a single-
surface representation of first-fibre-yield and full plastification criteria.
The yield surface format is shown to be able to incorporate effects of
shear and local joint coordinate systems by simple transformation.

The robustness of the element comes partly from the additive flex-
ibility format and partly from the robust return algorithm developed.
The return algorithm includes the effects of distributed load and is a
two-step algorithm where a half-step is made to obtain information and
subsequently a full step is made using this information, making the
algorithm approximately second order accurate. The algorithm is far
more robust than traditional single-step algorithms and is sufficiently
general to handle different types of yield surfaces and plastic flow po-
tentials.

Finally, the developed element was used to model two realistic
offshore structures and to investigate the numerical as well as quali-
tative differences between a linear hardening beam element, currently
used in analysis of offshore structures, and the present element with
non-linear hardening and integrated joint properties. It was found that
the present element highly increased the robustness of the computation,
eliminating otherwise necessary restarts of load steps due to lack of
convergence. With a more realistic plasticity model the present element
accounts for larger capacity of the structures caused by a more realistic
hardening behaviour leading to somewhat different load shedding once
plasticity and elasto-plastic buckling occurs. The examples highlight the
usefulness of a robust frame element, capable of accounting for cyclic
plasticity and local joint effects in a realistic manner, to ensure a rea-
listic prediction of the behaviour of frame structures subjected to large
loads.

Fig. 13. Extreme response of jacket structure. Total
horizontal load vs. top displacement. (a) Load con-
trol. (b) Displacement control. Linear hardening (–
–), present hardening ( ).

L. Tidemann, S. Krenk Engineering Structures 168 (2018) 191–204

202



Acknowledgements

This paper is part of a project sponsored jointly by Innovation Fund
Denmark, Maersk Oil A/S and the Technical University of Denmark.

References

[1] Elchalakani M, Zhao XL, Grzbieta R. Tests of cold-formed circular tubular braces
under cyclic axial loading. J Struct Eng 2003;129:507–14.

[2] Elchalakani M, Zhao XL, Grzbieta R. Concrete-filled steel circular tubes subjected to
constant amplitude cyclic pure bending. Eng Struct 2004;26:2125–35.

[3] Elchalakani M, Zhao XL, Grzbeita R. Variable amplitude cyclic pure bending tests to
determine fully ductile section slenderness limits for cold-formed CHS. Eng Struct

2006;28:1223–35.
[4] Elchalakani M. Plastic mechanism analyses of circular tubular members under cyclic

loading. Thin-Walled Struct 2007;45:1044–57.
[5] Elchalakani M, Zhao XL. Concrete-filled cold-formed circular steel tubes subjected

to variable amplitude cyclic pure bending. Eng Struct 2008;30:287–99.
[6] Popov EP, Zayas VA, Mahin SA. Cyclic inelastic buckling of thin tubular columns. J

Struct Div ASCE 1979;105:2261–77.
[7] Popov EP, Mahin SA, Zayas VA. Inelastic cyclic behavior of tubular braced frames. J

Struct Div ASCE 1980;106:2375–90.
[8] Popov EP, Mahin SA, Clough RW. Inelastic response of tubular steel offshore towers.

J Struct Eng 1985;111:2240–58.
[9] Zayas VA, Mahin SA, Popov EP. Cyclic inelastic behavior of steel offshore structures.

Technical report report UCB/EERC-80/27. EERC, Berkeley, CA: Earthquake
Engineering Research Center; 1980.

[10] Paul JC, Makino Y, Kurobane Y. Ultimate resistance of unstiffened multiplanar

Fig. 14. Deformation of jacket structure. Left: Linear hardening model. Middle: Present model with load control. Right: Present model with displacement control.
Top: State ×. Center: State ∘. Bottom: State ∗.

L. Tidemann, S. Krenk Engineering Structures 168 (2018) 191–204

203

http://refhub.elsevier.com/S0141-0296(17)33532-0/h0005
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0005
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0010
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0010
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0015
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0015
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0015
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0020
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0020
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0025
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0025
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0030
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0030
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0035
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0035
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0040
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0040
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0050


tubular TT- and KK-joints. J Struct Eng 1994;120:2853–70.
[11] Kurobane Y. Static behaviour and earthquake resistant design of welded tubular

structures. Jármai K, Farkas J, editors. Mechanics and design of tubular structures.
International centre for mechanical sciences (courses and lectures), vol. 394.
Vienna: Springer; 1998. p. 53–116.

[12] Chen W-F, Lui EM. Effects of joint flexibility on the behavior of steel frames.
Comput Struct 1987;26:719–32.

[13] Ho WMG, Chan S-L. Semibifurcation and bifurcation analysis of flexibly connected
steel frames. J Struct Eng 1995;117:939–45.

[14] Fessler H, Mockford PB, Webster JJ. Parametric equations for the flexibility ma-
trices of multi-brace tubular joints in offshore structures. Proc Inst Civ Eng
1986;81:675–96.

[15] Chen B, Hu Y, Tan M. Local joint flexibility of tubular joints of offshore structures.
Marine Struct 1990;3:177–97.

[16] Buitrago J, Healy BE, Chang TY. Local joint flexibility of tubular joints. In:
Chakrabarti SK, editor. Proceedings of the 12th international conference on off-
shore mechanics and arctic engineering. Glasgow, Scotland: The American Society
of Mechanical Engineers, Offshore Mechanics and Arctic Engineering Division; June
20–24, 1993.

[17] Gao F, Hu B, Zhu HP. Parametric equations to predict LJF of completely overlapped
tubular joints under lap brace axial loading. J Constr Steel Res 2013;89:284–92.

[18] Gao F, Hu B, Zhu HP. Local joint flexibility of completely overlapped tubular joints
under in-plane bending. J Constr Steel Res 2014;99:1–9.

[19] Gao F, Hu B. Local joint flexibility of completely overlapped tubular joints under
out-of-plane bending. J Constr Steel Res 2015;115:121–30.

[20] Hu Y, Chen B, Ma J. An equivalent element representing local flexibility of tubular
joints in structural analysis of offshore platforms. Comput Struct 1993;47:957–69.

[21] Golafshani AA, Kia M, Alanjari P. Local joint flexibility element for offshore pla-
teforms structures. Marine Struct 2013;33:56–70.

[22] Asgarian B, Alanjari P, Aghaeidoost V. Three-dimensional joint flexibility element
for modeling of tubular offshore connections. J Mar Sci Technol 2015;20:629–39.

[23] Ueda Y, Rashed SMH, Nakacho K. An improved joint model and equations for
flexibility of tubular joints. J Offshore Mech Arct Eng 1990;112:157–68.

[24] Chan S-L, Zhou ZH. Second-order elastic analysis of frames using single imperfect
element per member. J Struct Eng 1995;121:939–45.

[25] Chan S-L, Gu J-X. Exact tangent stiffness for imperfect beam-column members. J
Struct Eng 2000;126:1094–102.

[26] Krenk S, Vissing-Jørgensen C, Thesbjerg L. Efficient collapse analysis techniques for
framed structures. Comput Struct 1999;72:481–96.

[27] El-Tawil S, Deierlein GG. Stress-resultant plasticity for frame structures. J Eng Mech
1998;124:1360–70.

[28] Søreide T, Amdahl J, Granli T, Astrud OC. Collapse analysis of framed offshore
structures. In: Proceedings of the 18th offshore technology conference, Houston,
Texas, May 5–8, 1986. p. 95–102.

[29] Liew JYR, Tang LK. Advanced plastic hinge analysis for the design of tubular space
frames. Eng Struct 2000;22:769–83.

[30] Rodrigues PFN, Jacob BP. Collapse analysis of steel jacket structures for offshore oil
exploitation. J Constr Steel Res 2005;61:1147–71.

[31] Davaran A, Far NE. An inelastic model for low cycle fatigue prediction in steel
braces. J Constr Steel Res 2009;65:523–30.

[32] Armero F, Ehrlich D. Numerical modeling of softening hinges in thin Euler-
Bernoulli beams. Comput Struct 2006;84:641–56.

[33] Alemdar BN, White DW. Displacement, flexibility, and mixed beam-column finite
element formulations for distributed plasticity analysis. J Struct Eng
2005;131:1812–9.

[34] Ueda Y, Matsuishi M, Yamakawa T, Akamatsu Y. Elastic-plastic analysis of framed
structures using the matrix method (in japanese). J Soc Naval Architects Jpn
1968;124:183–91.

[35] Ueda Y, Akamatsu T, Ohmi Y. Elastic-plastic analysis of framed structures using the
matrix method (in japanese). J Soc Naval Architects Jpn 1969;126:253–62.

[36] Tidemann L, Krenk S. Cyclic plastic hinges with degradation effects for frame
structures. J Eng Mech 2017;143.

[37] Krenk S, Tidemann L. A compact cyclic plasticity model with parameter evolution.
Mech Mater 2017;113:57–68.

[38] Tidemann L, Krenk S. Beam element including local member and joint plasticity

effects. In: Chung J, editor. The proceedings of the 27th (2017) international ocean
and polar engineering conference. San Francisco, California: International Society
of Offshore and Polar Engineering, ISOPE; 2017.

[39] Chen W-F, Atsuta T. Theory of beam-columns. Fort Lauderdale, USA: J. Ross
Publishing; 2008.

[40] Liu Y, Xu L, Grierson DE. Combined MVP failure criterion for steel cross-sections. J
Constr Steel Res 2009;65:116–24.

[41] Krenk S, Vissing S, Vissing-Jørgensen C. A finite step updating method for elasto-
plastic analysis of frames. J Eng Mech 1993;119:2478–95.

[42] Kitipornchai S, Zhu K, Xiang Y, Al-Bermani FGA. Single-equation yield surfaces for
monosymmetric and asymmetric sections. Eng Struct 1991;13:366–70.

[43] Liu L-W, Hong H-K. A description of three-dimensional yield surfaces by cubic
polynomials. J Eng Mech 2017;143.

[44] Coombs WM, Petit OA, Motlagh YG. NURBS plasticity: yield surface representation
and implicit stress integration for isotropic inelasticity. Comput Methods Appl Mech
Eng 2016.

[45] Soare SC, Benzerga AA. On the modeling of asymmetric yield functions. Int J Solids
Struct 2016;80:486–500.

[46] Bleyer J, de Buhan P. A greedy algorithm for yield surface approximation. C R Mec
2013;341:605–15.

[47] Bleyer J, de Buhan P. Yield surface approximation for lower and upper bound yield
design of 3D composite frame structures. Comput Struct 2013;129:86–98.

[48] Bron F, Besson J. A yield function for anisotropic materials: Application to alu-
minum alloys. Int J Plast 2004;20:937–63.

[49] Martinez M, Pépin, A, Sicsic P. Ovality prediction of reeled seamless and seam
welded pipes. In: Chung J, editor. The proceedings of the 27th (2017) international
ocean and polar engineering conference. San Francisco, California: International
Society of Offshore and Polar Engineering, ISOPE; 2017.

[50] Simo JC, Taylor RL. A return mapping algorithm for plane stress elastoplasticity. Int
J Numer Meth Eng 1986;22:649–70.

[51] Li T, Crouch R. A C2 plasticity model for structural concrete. Comput Struct
2010;88:1322–32.

[52] Brannon RM, Leelavanichkul S. A multi-stage return algorithm for solving the
classical damage component of constitutive models for rocks, ceramics and other
rock-like media. Int J Fract 2010;163:133–49.

[53] Homel MA, Guilkey JE, Brannon RM. Numerical solution for plasticity models using
consistency bisection and a transformed-space closest-point return: a nongradient
solution method. Comput Mech 2015;56:565–84.

[54] Homel MA, Brannon RM. Relaxing the multi-stage nested return algorithm for
curved yield surfaces and nonlinear hardening laws. Int J Fract 2015;194:51–7.

[55] Peng Q, Chen MX. An efficient return mapping algorithm for general isotropic
elastoplasticity in principal space. Comput Struct 2012;92–93:173–84.

[56] Clausen J, Damkilde L, Andersen L. An efficient return algorithm for non-associated
plasticity with linear yield criteria in principal stress space. Comput Struct
2007;85:1795–807.

[57] Heinze T, Galvan B. Novel numerical strategy for solving strongly coupled elasto-
plastic damage models with explicit return algorithms: Applications to geomater-
ials. Int J Solids Struct 2016;80:64–72.

[58] Krenk S. Non-linear modeling and analysis of solids and structures. Cambridge, UK:
Cambridge University Press; 2009.

[59] Dier AF, Lalani M. JIP – Assessment criteria, reliability and reserve strength of
tubular joints (Phase II), Technical Report DOC REF C20400R014 Rev 0, MSL
Engineering Limited, MSL House, 5–7 High Street, Sunninghill, Ascot, Berkshire SL5
9NQ, UK; 2000.

[60] Zienkiewicz OC, Taylor RL, Zhu JZ. The finite element method. 6 ed. Oxford:
Elsevier Butterworth–Heinemann; 2005.

[61] DNV, SINTEF, BOMEL, Ultiguide – Best practice guidelines for use of non-linear
analysis methods in documentation of ultimate limit states of jacket type offshore
structures, Det Norske Veritas, Høvik, Norway; 1999.

[62] CEN, EN ISO 19902 – Petroleum and natural gas industries – Fixed steel offshore
structures, European Committee for Standardization, Brussels, Belgium; 2007.

[63] Bolt HM. Joint industry tubular frames project – Phase III, Benchmark conclusions.
Technical Report C636\32\084R, BOMEL Engineering Consultants, Berkshire, UK;
1999.

L. Tidemann, S. Krenk Engineering Structures 168 (2018) 191–204

204

http://refhub.elsevier.com/S0141-0296(17)33532-0/h0050
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0055
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0055
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0055
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0055
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0060
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0060
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0065
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0065
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0070
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0070
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0070
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0075
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0075
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0085
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0085
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0090
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0090
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0095
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0095
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0100
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0100
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0105
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0105
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0110
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0110
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0115
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0115
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0120
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0120
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0125
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0125
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0130
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0130
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0135
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0135
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0145
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0145
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0150
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0150
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0155
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0155
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0160
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0160
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0165
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0165
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0165
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0170
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0170
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0170
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0175
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0175
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0180
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0180
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0185
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0185
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0200
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0200
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0205
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0205
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0210
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0210
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0215
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0215
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0220
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0220
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0220
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0225
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0225
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0230
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0230
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0235
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0235
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0240
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0240
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0250
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0250
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0255
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0255
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0260
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0260
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0260
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0265
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0265
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0265
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0270
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0270
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0275
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0275
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0280
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0280
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0280
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0285
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0285
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0285
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0290
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0290
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0300
http://refhub.elsevier.com/S0141-0296(17)33532-0/h0300


C1

Beam element including local member and

joint plasticity effects

L. Tidemann & S. Krenk

Proceedings of the 27th (2017) International Ocean and Polar

Engineering Conference, ISOPE, pp. 249–256.

San Francisco, California, June 25–30, 2017.



Chuck Norris was here!



Beam Element Including Local Member and Joint Plasticity Effects

Lasse Tidemann†,‡ and Steen Krenk†

†) Department of Mechanical Engineering,
Technical University of Denmark,

Kongens Lyngby, Denmark.

‡) Facilities & Projects Discipline Area,
Maersk Oil,

Esbjerg, Denmark.

ABSTRACT

In the present paper a cyclic plasticity model accounting for mul-
tiple plastic mechanisms is developed. A flexible yield surface
representation is proposed and used to implement the cyclic plas-
ticity model in an equilibrium-based beam element accounting
for local member and joint plasticity effects. The yield surface
representation is sufficiently flexible to represent analytical yield
surfaces for both tubular steel beams and tubular steel joints.
The accuracy of the beam element is illustrated by comparison
with experimental data of cyclic in-plane bending of a T-joint
and cyclic out-of-plane bending of an X-joint.

KEY WORDS: Cyclic plasticity; Cyclic yield hinge; Combined
plasticity mechanisms; Plastic frame analysis.

INTRODUCTION

Plasticity in idealised frame structures where joint effects are neg-
ligible is often represented by yield hinges in the beams where
plasticity cause local elongation and angle discontinuities, e.g.
(Krenk et al. 1999). In more realistic representations multiple
plastic mechanisms may be present at approximately the same
location, e.g. at joints between two or more beams where the
plastic capacities are governed by physical properties different
from the properties in the beam members forming the joint, and
plastic deformation may occur both in the joint and in the local
member. Within the geometrical accuracy of a beam model the
two different types of plastic mechanism will be located the same
place whereby the section forces in the two different plastic mech-
anisms will be the same. The section forces typically controlling
the behaviour at yield hinges in beams are the normal force and
the two bending moments, but the format proposed in this paper
is sufficiently general to account for the effect of shear forces and
torsion as well.

With multiple plastic mechanisms present it is necessary to re-
fine standard single mechanism plasticity theory as done by e.g.
(Ibrahimbegovic et al. 2008) where a continuum formulation cou-
pling plasticity and damage is developed. The continuum formu-
lation is achieved by having two separate mechanisms, a plastic
and a damage mechanism, each having a criterion for activation

corresponding to a traditional yield surface. For reinforced con-
crete beams (Bui et al. 2014) proposed a model with two plastic
mechanisms; one accounting for cracking in the concrete and one
accounting for yield in reinforcement bars, both depending on
the bending moment. Additionally (Bui et al. 2014) introduced
a separate plastic mechanism for the shear forces, completely de-
coupled from the other two as it only relates to the shear strains
whereas the first two only relate to the bending curvature.

A central theme for all plasticity models is the yield surface and
the gradients of this. The yield surface must be convex to abide
with assumptions of elasticity and the gradients are a key part of
the elasto-plastic stiffness, whereby a uniquely defined gradient
is needed everywhere. Analytically determined yield surfaces for
beam members and joints typically include corners or lines where
the gradients are undefined suggesting that alternative represen-
tation of the yield surface has to be made. One option is to make
local modifications to the yield surface (Krenk et al. 1999) result-
ing in a need to check multiple yield surfaces for a single plastic
mechanism. Formulating a single-equation yield function that
ensures convexity and still holds sufficient flexibility to be ap-
plied to different types of yield surfaces is difficult and proposed
formulations include e.g. sums of higher-order terms (Orbison
et al. 1982), use of a single ellipsoid (Skordeli and Bisbos 2010),
and Minkowski sum of ellipsoids (Bleyer and de Buhan 2013a;
Bleyer and de Buhan 2013b). The first type exhibits problems
with ensuring convexity, while the second type ensures convexity
but has rather limited flexibility, and in the third case the actual
formation of the Minkowski sum may be difficult. To overcome
these problems (Tidemann and Krenk 2017) proposed a single-
equation, first order homogeneous yield function defined as a sum
of terms consisting of the square-root of a quadratic form, ensur-
ing convexity and flexibility, and examples have illustrated the
potential of the formulation.

In the present paper a general cyclic plasticity model with mul-
tiple plastic mechanisms is presented. The paper presents a plas-
tic flow potential suitable for cyclic plasticity and formulates the
general elasto-plastic stiffness matrix with multiple plastic mech-
anisms via a flexibility format. A flexible yield surface represen-
tation is introduced and is shown to be sufficiently accurate to
represent the yield surface of both tubular steel beams and tubu-
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lar steel joints. The cyclic plasticity model is implemented in an
equilibrium based beam element in a form including local member
and joint plasticity without adding extra nodes. The accuracy of
the beam element is illustrated by comparison with experimental
data for in-plane bending of a T-joint and out-of-plane bending
of an X-joint.

CYCLIC PLASTICITY MODEL

In the following the cyclic plasticity model developed in (Krenk
and Tidemann 2017; Tidemann and Krenk 2017) is extended to
include several mechanisms e.g. representing yield at the end
section of a beam and deformation and yield at the connection
joint. It is convenient to formulate hardening and cyclic plasticity
by a formalism that makes use of external and internal kinematic
variables. The internal energy is then given in the form

Φ = 1
2
v
T
e Keve +

1
2
v
T
i Kivi , (1)

where the first quadratic term is the elastic energy with ve rep-
resenting the the elastic deformations – for beams typically the
elongation and the angle of rotation. The second quadratic term
is an analogous internal energy with vi representing a set of inter-
nal and unobservable deformations, introduced into the energy to
enable modeling of hardening. Ke and Ki are the elastic and in-
ternal stiffness matrices, respectively. These define the conjugate
forces by differentiation of the energy

p = ∂ve
Φ = Keve , pi = ∂vi

Φ = Kivi . (2)

Thus, both the observable section forces p and the internal forces
pi have a Hooke’s law type relation to the elastic and internal
deformation measures ve and vi, respectively. The observable
section forces p will typically be the normal force and two bending
moments as discussed in the above, while pi will be analogous
internal forces acting as kinematic hardening parameters when
introduced in the yield function. Note, that in the case of multiple
plastic mechanisms with the same location, the dimension of the
internal force array pi may be larger than the dimension of the
section force array p.

Yield Functions and Flow Potentials

As there are multiple plastic mechanisms the internal force vector
pi is divided into multiple parts, each relating to a separate plastic
mechanism

pi = [pT
i1,p

T
i2, · · · ]

T , (3)

where the subscript 1 identifies the part of pi that relates to
plastic mechanism 1 and similarly subscript 2 identifies the part
of pi that relates to plastic mechanism 2 etc. When the normal
force and the two bending moments are used to describe the yield
surface it is desirable to use normalized variables. In the present
context is convenient to normalize both the observable section
forces p and the internal forces pi with the yield capacities for the
individual section force components at each plastic mechanism

p̄j = B
−1
yj p , p̄ij = B

−1
yj pij , Byj =

[
Ny

. . .

]
j

, (4)

where Ny is the normal force that activates the plastic mecha-
nism when no bending moments are present and the subscript j

indicates that the parameters relate to plastic mechanism j. In
terms of the normalized section forces and internal forces, the
yield surface for the plastic mechanism j is of the form

Fj(p,pi) = ‖p̄j − p̄ij‖ − 1 ≤ 0 , (5)

where the norm ‖ ‖ is a suitable first order homogeneous function
that is discussed in further detail in the following section. The
normalized internal forces p̄ij are used to represent the center of
the yield surface in Eq. (5) equivalent to kinematic hardening of
the yield surface. A kinematic hardening yield surface is chosen
in order to capture the characteristics of cyclic plasticity.

The characteristics of the hysteresis curve for plastic mecha-
nisms in the local beam members are discussed by (Tidemann
and Krenk, 2017) and the characteristics of plastic mechanisms
in joints are approximately the same. The hysteresis curve is
characterised by an initially linear-elastic part followed by a (rel-
atively small) kink in the force-deformation curve once the plastic
mechanism is activated, and subsequently the stiffness decreases
continuously with increased deformation until the ultimate capac-
ity of the force is reached, where the hysteresis curve show ideal-
plasticity behaviour. The linear-elastic relation is represented by
Ke, and the kink in the curve at initial plasticity is represented
by Ki, while the elasticity limit is represented by Byj. To repre-
sent the ultimate capacity a set of non-dimensional parameters
βj = [βj

N , · · · ]T defining the non-dimensional additional capacity
beyond the initial yield is introduced for each plastic mechanism
j. Hereby the relative ultimate capacities become 1+ β. Finally,
each plastic mechanism j has set of parameters αj = [αj

N , · · · ]T

controlling the gradual development of plastic deformation after
first yield. With these parameters the normalized plastic flow
potential used in the present model for mechanism j is similar to
that presented by (Tidemann and Krenk 2017),

Gj(p,pi) = Fj(p,pi) +∑
k

(βj

k

αj

k

{ |p̄ijk |

βj

k

−
1− αj

k

αj

k

ln
(
1 +

αj

k

1− αj

k

|p̄ijk |

βj

k

)})
.
(6)

It is noted that the flow potential Gj only depends on p via the
yield function Fj making it an associated plasticity theory, an
assumption often found to be accurate for plastic mechanisms in
steel beam members.

Elasto-Plastic Stiffness

The elasto-plastic stiffness matrix is derived by maximising the
plastic dissipation rate under the assumption, that the material
can be described by the plastic flow potentials for each plastic
mechanism j, while enforcing the consistency condition that dur-
ing plastic loading the forces p must always be located on the
yield surfaces of the active plastic mechanisms, see e.g. (Krenk
and Tidemann 2017) for a more detailed derivation. The defor-
mations associated with the beam end and the attachment to
the joint are assumed to be local and are concentrated at a sin-
gle node, following the equilibrium based element formulation in
(Krenk et al. 1999). In this formulation the local plastic defor-
mations are simply added in the beam flexibility. Thus, the total
deformation is

v = ve + v
1
p + v

2
p + · · · , (7)

where ve is the elastic deformation used in Eq. (1), and vj
p is

the plastic deformation of the plastic mechanism j. The total
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deformation is illustrated in Fig. 1, showing additive deformation
and common section forces.

ve v1
p v2

p

v = ve + v1
p + v2

p + · · ·

· · ·

F
M

Figure 1: Deformation concept with multiple plastic mechanisms.

Each of the plastic mechanisms shown in Fig. 1 has a yield
surface of the type described in Eq. (5) and a flow potential of
the type described in Eq. (6) and they are organised in the two
vectors

fy = [F1(p,pi), F2(p,pi), · · · ]
T , (8)

g = [G1(p,pi), G2(p,pi), · · · ]
T , (9)

to simplify the derivation of the elasto-plastic stiffness matrix.
Based on the maximization of the dissipation rate and the en-

forcement of the consistency condition, the elasto-plastic stiffness
matrix is expressed as

K
ep
e = Ke −Ke(∂

T
p g)

T
H

−1 (∂T
p fy)Ke , (10)

where

H = (∂T
p fy)

T
Ke (∂

T
p g) + (∂T

pi
fy)

T
Ki (∂

T
pi
g) , (11)

is a n× n block matrix, where n is the number of plastic mech-
anisms. The matrix H contains the effect of hardening, repre-
sented by the second term. The constitutive behaviour in the
case of a single plastic mechanism is shown in Fig. 2 along with
a clear identification of the different model parameters.

Figure 2 illustrates the force-deformation characteristics of a
single plastic mechanism and the role the model parameters. The
elastic stiffness is clearly identified as Ke, and the yield capacity
is identified by pyj with the parameter βj defining the relative
additional capacity. Figure 2(a) shows that the magnitude of Ki

relative to Ke controls the magnitude of the kink at yield, while
Fig. 2(b) illustrates how the value of αj controls the shape of the
curve between initial yield and the ultimate capacity. With these
clear relations between physical characteristics and the model
parameters it is rather easy to calibrate the model for a single
plastic mechanism.

YIELD SURFACE REPRESENTATION

A simple and versatile yield surface format can be obtained by
using a sum of square roots of quadratic forms as introduced in
(Tidemann and Krenk 2017). It turns out that two terms in
the sum is typically sufficient to get an accurate representation
of common yield surfaces and thus the yield surface Eq. (5) is
represented by

Fj(p,pi) =
√

(p̄− p̄i)TA1(p̄− p̄i)j +√
(p̄− p̄i)TA2(p̄− p̄i)j − 1 ,

(12)

where the subscript j indicates that the parameters for the plastic
mechanism j are used. The matrices A1 and A2 need to be
positive definite in order to ensure convexity.

βjp
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pyj

pj

vj

(a)
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Kep
e
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(b)

Ke

Kep
e

αj

{ – –−1.5

—–−0.0

– ·–−0.5

Figure 2: Influence of parameters on stress-strain relation: (a)
relative internal stiffness Ki = (−)Ke, (b) modification of flow
potential G via the shape parameter αj .

The only formal restriction on A1 and A2 is that they need to
be positive definite the coefficients of the matrices can be chosen
in various ways giving the format the desired flexibility. Choosing
the coefficients in the matrices properly in order to accurately
represent analytically determined yield surfaces is typically based
on the shape of the yield surface in the planes of the section forces
as outlined in the following.

Yield Surface Parameters

As the yield surface representation Eq. (12) is first order homo-
geneous the value of the yield function at any point is a good
estimate of the distance from the point to the yield surface. If
the points on the analytical yield surface is known, it is easily
determined what the ”error” of the yield surface representation
Eq. (12) is measured by the distance from the point of the analyt-
ical yield surface to the corresponding point on the yield surface
representation, as the distance will correspond to the value of the
yield function Eq. (12). When a point is known on the analytical
yield surface the quality of the representation by Eq. (12) follows
by substitution. In the ideal case that the representation equals
the analytical yield surface the measure of error would be zero
and in other cases it can be minimized in various ways. In such
an ‘optimization procedure’ it is possible to select what parts of
the analytical yield surface that are accurately represented and
hence it is possible to neglect points on the yield surface where
the curvature is large allowing a reduced curvature in these ar-
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eas without changing the optimization procedure. When only a
single yield surface needs to be represented it may be sufficient
to do a simple ‘trial and error’ optimization procedure instead of
programming a gradient based optimization algorithm.

−1
0

1
−1

0

1−1

0

1

n

my

mz

Figure 3: Theoretical yield surface for tubular steel beam and
representation, (—). Contour lines are plotted in various planes.

To illustrate the flexibility and accuracy of the yield surface
format Eq. (12) two different yield surfaces are represented. The
classic analytical yield surface for a tubular steel beam,

F (n,my,mz) =
√

m2
y +m2

z − cos
(π
2
n
)

(13)

is represented by diagonal matrices A1 and A2 where A1
1,1 =

1 − 2 · 10−5, A1
2,2 = A1

3,3 = 0.16, A2
1,1 = 1 · 10−10 and A2

2,2 =
A2

3,3 = 0.36 and the analytical yield surface is shown along with
the yield surface representation in Fig. 3.

It is observed from Fig. 3 that the representation is highly ac-
curate and the differences in the contour lines are indistinguish-
able. There are small differences as the analytical yield surface
has undefined gradients at (n,my,mz) = (±1, 0, 0) while the rep-
resentation has an actual gradient in these points. The curvature
in the area around these points is high for both the analytical
yield surface and the yield surface representation.

In Fig. 4 the yield surface for a tubular steel joint (MSL sur-
face) is shown along with the representation with diagonal ma-
trices A1 and A2 where A1

1,1 = 0.21, A1
2,2 = A1

3,3 = 0.97,
A2

1,1 = 0.29 and A2
2,2 = A2

3,3 = 2.3 · 10−4. The yield surface
shown in Fig. 4 is described in terms of the normalized normal
force n, in-plane bending moment mip and out-of-plane bending
moment mop. Fig. 4 illustrates that by changing the coefficients
in the matrices A1 and A2 a rather different yield surface is
represented quite well. The analytical yield surface and the rep-
resentation are very similar as depicted both from the 3D figure
and the contour lines. It is noted that where the yield surface
of the tubular steel beam only has two points with undefined
gradients, the tubular joint yield surface has a whole line with
undefined gradients as the gradient is undefined for |n| = 0. The
yield surface representation Eq. (12) is sufficiently flexible to be
able to model such a surface as well.

−1
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1
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0

1−1

0

1

n

mip

mop

Figure 4: Theoretical yield surface for tubular joint (MSL sur-
face) and approximation, (—). Contour lines are plotted in var-
ious planes.

Exterior Equipotential Surfaces

Aside from the possibility of local rounding of the yield surface,
while still using a single-equation yield surface that is guaran-
teed convex, another positive feature of the yield surface format
Eq. (12) is that it is homogeneous of degree one, whereby ex-
terior equipotential surfaces are scaled versions of the yield sur-
faces. This ensures that if the curvature of the yield surface is
relatively small, the curvature of the exterior surfaces used for
return to the yield surface will also be relatively small. The an-
alytical yield surface of a tubular steel beam Eq. (13) does not
hold this property and special measures have to be taken to en-
sure convergence in a return algorithm because of the harmonic
term in the yield function. Due to the harmonic term the gra-
dient of the yield function may be directed away from the yield
surface potentially causing divergence in the return algorithm. In
Fig. 5 contour lines of the exterior surfaces of the tubular joint
yield surface for mz = 0 are shown along with the contour lines
of the exterior surfaces of the present homogeneous yield surface
representation Eq. (12).

−2 −1 0 1 2
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1
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m
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Figure 5: Yield surface with exterior equipotential curves for
tubular joint (– –) and yield surface representation, (—).
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It is observed in Fig. 5 that while the exterior surfaces of the
homogeneous representation are simply an enlarged version of
the actual yield surface, the exterior equipotential surfaces of
the analytical yield surface change shape, reducing the curvature
around n = 0 and increasing the curvature in the area where
mip � 0.

FRAME ELEMENT IMPLEMENTATION

As discussed in connection with Fig. 1 in a beam element the
plastic deformation at the nodes is additive, while the section
forces at the nodes are common for the beam and the plastic
deformation mechanisms. This suggests the use of an equilibrium
based formulation of the beam element flexibility, see e.g. (Krenk
et al. 1999).
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T My1

Mz1

My2

Mz2

(b)

Figure 6: Deformation format of beam element. (a) Element
deformations, (b) section forces.

Figure 6 shows the beam element with the axial force N and
the moment components together with the corresponding total
nodal deformations. The deformations are arranged in the vector

v = [u, ϕx, ϕz1, ϕz2, ϕy1, ϕy2 ]
T = ve + v

M
p + v

J
p , (14)

fitting the energy format Eq. (1). The deformations are split into
three parts; an elastic part ve and two plastic parts vM

p and vJ
p,

where vM
p represents plastic deformations in the local member at

each end and vJ
p represents plastic deformations at the joints in

each end. With this formulation there is a total of four plastic
mechanisms with a local member plastic mechanism and a joint
plastic mechanism at each end respectively. The section forces
conjugate to the elastic deformation ve are

p = [N,T,Mz1,Mz2,My1,My2 ]
T , (15)

corresponding to the standard section forces in a beam as illus-
trated in Fig. 6. The displacements and element forces are ar-
ranged as for standard beam elements with displacement vector

u
T = [uT

1 ,u
T
2 ] , uj = [ux, uy, uz, θx, θy, θz]

T
j , (16)

where ux, uy , uz and θx, θy, θz are the displacements and rota-
tions about the x- y- and z-axis, respectively. The corresponding
element force vector is

q
T = [qT

1 ,q
T
2 ] , qj = [Qx, Qy, Qz,Mx,My ,Mz]

T
j , (17)

where Qx, Qy, Qz and Mx, My , Mz are the moments about the
x-, y- and z-axis respectively.

Via the six equilibrium conditions of the beam it is possible to
express the element forces q in terms of the equilibrium forces p,

q =

[
q1

q2

]
=

[
T1

T2

]
p = Tp , (18)

where T is the transformation matrix and can be found in e.g.
(Krenk et al. 1999). As virtual work must be the same in the
deformation format and the displacement format the deformation
increment dv has a relationship to the displacement increment du
similar to the relationship between element forces q and section
forces p as

dv = T
T du . (19)

The stiffness matrix Eq. (10) is then transformed from the de-
formation format to the displacement format by use of Eqs. (18)
and (19).

The internal deformation variables vi and internal forces pi

are arranged in vectors as shown in Eq. (3), and when the plastic
mechanisms each depend on the normal force and the two bend-
ing moments there is a total of 12 internal variables. The size
of v and ve is different from the size of vi as the former only
have six variables. In addition the structure of Ki is different
from the structure of Ke as the latter includes coupling terms
between the two ends, the internal stiffness matrix Ki is taken to
be a diagonal matrix such that the different internal variables do
not couple. The internal variables should not be coupled through
the stiffness matrix as a uniaxial loading should not cause move-
ment of the yield-surface in other directions unless the shape of
the yield surface dictates it, and in that case the coupling will
come through the gradient of the yield surface. With the choice
of having four plastic mechanisms the size of the matrix H in
Eq. (11) will be 4×4 when all four plastic mechanisms are active
and smaller for fewer active plastic mechanisms making the com-
putational cost of inverting the H matrix inconsiderable. The
internal stiffness matrix Ki will be a 12 × 12 diagonal matrix so
any associated multiplication is rather straightforward. In total
the formulation of the beam element stiffness matrix in the de-
formation format via Eq. (10) is very efficient computationally as
is the transformation to the displacement format.

For joints between elements the yield surface is most often
given in terms of the in-plane and out-of-plane bending moments
rather than the bending moments about the y– and z–axis of the
beam element as shown in Fig. 4. The gradient of the yield func-
tion and the flow potential must be with respect to the bending
moments about the y– and z–axis of the beam element and it
is necessary to transform between the formats. The transforma-
tion between the two is a geometric rotation of vectors and the
gradient with respect to the bending moments about the y– and
z–axis of the beam element is easily found by standard rotation
of a vector using a rotation matrix.

EXAMPLES

The theory described above has been implemented in the finite
element code RONJA (Rambøll Offshore Nonlinear Jacket Anal-
ysis) where automatic calculation of tubular joint capacities is
implemented according to several design codes including the MSL
code. The accuracy of the plastic mechanism model is illustrated
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by two cases of in-plane cyclic bending of a T-joint with differ-
ent compression in the chord in the two cases. The accuracy of
the model with combined multiple plastic mechanisms is illus-
trated by out-of-plane bending of a X-joint with simultaneous
active plastic mechanisms in the joint and in the brace ends at
the joint.

In-Plane Bending of T-Joint

The T-joint illustrated in Fig. 7 was experimentally tested by
(Kim et al. 2012) to determine the behaviour of T-joints in cyclic
in-plane bending and the effect of compression in the chord. The
T-joint has a chord diameter of Dc = 450mm and chord length
Lc = 2000mm. The characteristics of the tubular joint are γ =
Dc/2tc = 18.75, β = Db/Dc = 0.778 and τ = tb/tc = 1.00. The
length of the brace is Lb = 1775mm measured from the centerline
of the chord to the brace end.

Dc

Db

tc

tb

Lc

Lb

P

Figure 7: Geometry of T-joint.

The chord ends have hinged connections and the left chord end
is fixed against all in-plane motion whereas the right chord end
may move in the axial direction to allow for zero chord compres-
sion. The brace end is loaded by an in-plane transverse force and
otherwise free. Coupon tests were made by (Kim et al. 2012)
identifying a yield stress of σy = 584MPa and an ultimate stress
of σu = 670MPa for both brace and chord steel.

The chord compression is achieved by initial compression of
the chord via force control to the desired level and subsequently
holding the chord compression constant throughout the exper-
iment. The in-plane bending is achieved by displacement con-
trol of the brace end consisting of 18 cycles of 5.63mm, 7.5mm
and 11.25mm peak displacement with six cycles of each. Subse-
quently, four cycles of 15mm displacement are carried out, fol-
lowed by six times two cycles with displacements of 22.5 mm,
30mm, 45mm, 60mm, 75mm and 90mm, respectively. The dis-
placements account for rotation of the brace, rotation of the chord
as well as elastic deformation in the brace and plastic deformation
at the tubular joint.

The experiment is modelled using three beam elements of the
type described above; one for each half of the chord and one for
the brace. The yield stress of 584MPa has been used to calculate
all the brace and chord yield capacities and the ultimate stress
levels have all been set by the parameter βM = σu/σy−1 = 0.147.
The yield capacities at the joint have all been calculated using
the MSL norm and the βJ values have been set to 2.06 to get an
accurate representation of the experimental results. It is noted

that the values of βJ are much larger than βM because the plastic
mechanism at the joint is not governed by the yield and ultimate
stress in the same way as the plastic mechanisms in the mem-
bers. The shape parameters α are set to 0.80. The results of
the experiment and the numerical analysis with no chord com-
pression and with chord compression N/Ny = 0.2 are shown in
Fig. 8 where Δu is the brace end displacement and P is the ap-
plied transverse force. In Fig. 8 the numerical results obtained
by (Kim et al. 2012) using a detailed thick-shell model including
transverse shear effects are also shown.
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Figure 8: T-joint: experiment (Kim et al. 2012) (—), FE shell
model (– · –). Present model (– –). (a) No chord compression,
(b) Chord compression N/Ny = 0.2.

It is observed in Fig. 8 that the present section-force based
model represents the hysteresis curve quite well with load levels
and shape of each of the hysteresis loops well represented. There
is a discrepancy between the experimental hysteresis loop and
the numerical model when the load becomes increasingly nega-
tive and the model is not as accurate as when the load becomes
increasingly positive. The discrepancy is largest in the case with-
out chord compression and is to a large extent caused by the
horizontal shift in the experimental hysteresis curve at a load
level of P � 180 kN. However, there is no evident explanation of
the cause of this plateau and it is noted that the highly detailed
shell-model provided by (Kim et al. 2012) does not replicate this
behaviour either. It is observed that in the case of chord compres-
sion the shifts on the unloading path disappear and the model
reproduces the hysteresis curve better. In both cases the hystere-
sis curve is modelled with about equal accuracy by the present
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section-force based model as with a quite detailed shell element
model. Neither of the models reproduce the drop in capacity in
the last half cycle, as this is caused by cracking at the joint and
neither of the models account for cracking.

Out-of-Plane Bending of X-Joint

The X-joint shown in Fig. 9 was experimentally tested in out-of-
place bending by (Wang et al. 2010) to determine the hysteretic
behaviour of moment transferring joints in tubular structures.
The X-joint has a chord diameter of Dc = 273mm and chord
length Lc = 1700mm and the characteristics of the tubular joint
are γ = Dc/2tc = 8.53, β = Db/Dc = 0.90 and τ = tb/tc =
0.75 and each brace has a length of 845 mm measured from the
centerline of the chord.
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Figure 9: Geometry of X-joint.

The test setup is made in such a way that the out-of-plane
boundary conditions of the chord ends are pinned allowing rota-
tion about the in-plane transverse axis of the chord. As the test
setup is symmetric torsion of the chord is restrained at the ends.
The yield strength of the brace is reported by (Wang et al. 2010)
to be σy = 368MPa for the chord and σy = 385MPa for the
braces and the ultimate strength is reported to be σu = 520MPa
for the chord and σu = 551MPa for the braces. These values
are used to model the member capacities while a yield stress of
σy = 250MPa is used to model the joint capacities. The special
choice of the joint capacity yield strength is based on the elastic
range of the hysteresis curve and it is assumed that the welding
process is what may have changed the apparent yield stress at
the joint. All joint capacities are determined based on the MSL
standard and it was found suitable to use a value of βJ = 1.8 and
αJ = 0.85, while αM = 0.80; all values that are fairly similar to
the values used to model the T-joint.

The test is made by displacement control where the brace ends
are cycled in the out-of-plane direction with increasing magnitude
for each cycle and the displacement is the same for both brace
ends and the experimental results as well as the numerical results
are shown in Fig. 10 where Δu is the displacement of a brace end
and P is the load on each brace end.

It is observed in Fig. 10 that the accuracy of the model is quite
high with the characteristic load levels reproduced well and the
shape of the individual hysteresis curves reproduced with reason-
able accuracy. The results in Fig. 10 reveal that both joint and
local member plastic mechanisms are active at the same time,
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Figure 10: X-joint: experiment (Wang et al. 2010) (—). Present
model (– –).

stressing the need for multiple plastic mechanisms at each end.
The joint properties are fairly similar for the T-joint and the
X-joint, suggesting that only small variation in the model pa-
rameters is needed to get a good overall representation of actual
joint behaviour even for different joint types.

CONCLUSIONS

A cyclic plasticity model based on section-forces has been de-
veloped for analysis of offshore structures. The basic plastic-
ity model makes use of a kinematically hardening yield surface
and a flow potential in which the yield function is augmented by
terms containing internal variables controlling the development
of plastic strains. The yield function is in the form of a sum of
square roots of quadratic forms of the section-forces. This par-
ticular format is very flexible with respect to representation of
the characteristics of tubular joints, and furthermore generates
self-similar exterior surfaces convenient in the formulation of re-
turn type algorithms for the elasto-plastic increments. The model
contains a series representation of yield mechanisms, enabling e.g.
the simultaneous action of a member yield hinge and the yield
mechanism of the associated joint. The cyclic plasticity model
is implemented in an equilibrium-based beam element in such a
way that no additional global degrees of freedom are added to
the beam model.

The performance of the model is illustrated by application
to published experimental results for the development of elasto-
plastic deformation of a T- and an X-joint. The hysteresis cycles
and their general shape are represented quite well although the
model only contains five parameters for each yield mechanism.
The basic parameters of the model – representing initial yield,
ultimate capacity, and a single shape parameter describing the
gradual development of plasticity – are similar for the two cases
analyzed, and indeed seem to be representative values for typical
offshore joints.
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1 INTRODUCTION

Plasticity models can be defined by an energy potential, a plastic flow potential and
a yield surface. The energy potential defines the relation between the observable elastic
strains γe and the energy conjugate stresses τ e and between the non-observable internal
strains γ i and the energy conjugate internal stresses τ i, where the internal stresses control
the various hardening mechanisms. Plasticity models may be defined either in terms of
traditional stresses and strains τ = [σ11, σ22, · · · ]

T and γ = [ε11, ε22, · · · ]
T or generalized

stresses and strains, e.g. τ = [N,My, · · · ]
T and γ = [ε, κy, · · · ]

T , the latter typically used
in plastic analysis of frame structures. To have a compact notation in the following τ e

and τ i are arranged in a common vector τ̃ T = [τ T
e , τ

T
i ] and correspondingly γe and γ i

are arranged in the common vector γ̃T = [γT
e ,γ

T
i ].

In traditional stress-based analyses the stress is evaluated at a material point, where
a single plastic mechanism may be active, whereas in the case of frame structures each
beam may have two active plastic mechanisms, in the form of a yield hinge in each
end as illustrated in Fig. 1. In general multiple plastic mechanisms may be active for
different types of elements. Each plastic mechanism has a yield surface described by a yield
function Fj and a flow potential Gj describing the plastic flow evolution by its gradient
and these potentials are conveniently collected in the vectors fy = [F1(τ̃ ), ... , Fn(τ̃ )]

T

and g = [G1(τ̃ ), ... , Gn(τ̃ )]
T respectively.

The key to developing a general and robust return algorithm for anisotropic plasticity
models is the strain evolution equation. The strain evolution equation is obtained from
maximizing the dissipation rate under the assumption that the material is described by
the flow potential1,2

˙̃γ =

[

γ̇t

0

]

−
∑

j

∂τ̃Gj λ̇j =

[

γ̇t

0

]

−
(

∂T
τ̃
g
)T

λ̇ , (1)
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Figure 1: Beam with plastic hinges and corresponding yield surface.

where γ̇t is the total increment in the observable strains. The plastic multipliers λ̇ are
determined by the consistency condition that during plastic loading, the stress state τ e

must stay on the yield surfaces defined in fy.

2 RETURN ALGORITHM

The strain evolution equation (1) is reformulated to finite increments and is assumed to
be satisfied in the final generalized stress state3. For non-trivial yield surfaces the strain
evolution equation will not initially be satisfied and a residual is formed

rγ̃ =

[

∆γt

0

]

−∆γ̃ −
(

∂T
τ̃
g
)T

∆λ . (2)

The final state where rγ̃ = 0 is obtained by a first order variation of the residual (2)
combined with the consistency condition that the final stress state must be on the yield
surface. The first order variation is formulated entirely in terms of δτ̃ and δλ with use
of the constitutive relation

δτ̃ = K̃ δγ̃ , (3)

where the tangent stiffness matrix K̃ contains the double derivatives of the energy poten-
tial. The resulting equation system to solve is

[

K̃−1
A

(

∂T
τ̃
g
)T

∂T
τ̃
fy 0

]

[

δτ̃
δλ

]

=

[

rγ̃
−fy

]

, K̃−1
A = K̃−1 +

∑

j

∂2Gj

∂τ̃ T∂τ̃
∆λj , (4)

where K̃A is the consistent algorithmic stiffness matrix. Instead of solving (4) directly
it is solved sequentially by eliminating δτ̃ in the first equation and determining δλ from
the second equation and back-substituting the result into the first equation. Anisotropic
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plasticity models may have yield surfaces with regions with large curvature, Fig. 1, leading
to large changes in the direction of the gradient of the yield surface and the plastic flow
potential. Though δτ̃ is a linear function of the residual rγ̃ and the value of the yield
function fy according to (4) the function is non-linear as K̃−1

A , ∂T
τ̃
g and ∂T

τ̃
fy in general are

non-linear. The increment δτ̃ = δτ̃ (ξrγ̃, ξfy) is therefore represented by a second order
approximation

δτ̃ (ξ) = ξ
∂(δτ̃ )

∂ξ

∣

∣

∣

∣

ξ=0

+ 1
2
ξ2
∂2(δτ̃ )

∂ξ2

∣

∣

∣

∣

ξ=0

, (5)

where the constant term is zero for ξ = 0 and the two derivatives are given by

∂(δτ̃ )

∂ξ
= Krrγ̃ −Kf fy ,

∂2(δτ̃ )

∂2ξ
=

∂

∂ξ

(

Krrγ̃ −Kf fy

)

≃
∆Kr

∆ξ
rγ̃ −

∆Kf

∆ξ
fy . (6)

The differences ∆Kr and ∆Kf are determined by making half a step, i.e. setting ξ = 1/2
and determining the matrices in the updated state by the gradients ∂T

τ̃
g and ∂T

τ̃
fy as well

as the second order derivatives ∂2Gj/(∂τ̃
T∂τ̃ ). These are combined with the solution of

the equation system (4) to form K
1/2
r and K

1/2
f

. Inserting the results into (6) and (5)
with ∆ξ = 1/2 and setting ξ = 1 gives the relation

δτ̃ = K1/2
r

rγ̃ −K
1/2
f

fy . (7)

This is analogous to a method used in explicit stress integration3 where a midpoint is
found and the elasto-plastic stiffness at the midpoint is used for a full step.

3 NUMERICAL EXAMPLES

The robustness of the return algorithm is illustrated by deformation of a beam with
plastic hinges, Fig. 1, described by a cyclic plasticity model1 in terms of the normalized
section forces2 n = N/My and m = M/My. The yield surface is slightly rounded in
comparison to the one shown in Fig. 1. The energy potential consists of two quadratic
terms uncoupling τ e and τ i whereby K̃ becomes a block diagonal matrix with Ke and
Ki in the diagonals. The yield surface is kinematic hardening and is tailored for cyclic
plasticity models with general hardening behaviour1. The beam is modelled with param-
eters representing ideal-plastic behaviour, Fig. 2(a) and (b), and parameters representing
non-linear hardening plastic hinges, Fig. 2(c) and (d). Both beams are subjected to a
large strain increment with an equivalent estimated elastic stress state with n = 14 and
my = 4 at one hinge and n = 14 and my = 0 at the other hinge.

The estimated elastic stress state is located far away from the yield surface in a region
with relatively large curvature of the yield surface and two plastic mechanisms. Never-
theless the algorithm returns the stress state to the yield surfaces in just 10 iterations
in the ideal plasticity case as illustrated in Fig. 2(a) and (b). About half the number of
iterations is used to get to the neighbourhood of the final state and the remaining half is
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Figure 2: Return with ideal plasticity parameters (top) and hardening plasticity parameters (bottom).
Left: Yield surface 1. Right: Yield surface 2.

to ensure rγ̃ = 0. Hardening typically eases return and as shown in Fig. 2(c) and (d) it
does in the present case as well, as the return is made in only 7 steps. It is noted that
a traditional single-step return algorithm fails to converge for the predicted stress states
shown in Fig. 2. In general the method presented here is more robust, e.g. if half the
deformation increment used above is applied a traditional single-step return algorithm
will converge in the ideal-plastic case but not in the hardening case.
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