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Key Points: 

 A new soil resistance formulation has been integrated into the Two-Source Energy 

Balance (TSEB) model 

 The new soil resistance formulation has low sensitivity to uncertainty in model 

coefficients 

 With the new soil resistance formulation implemented in TSEB, model output of 

sensible heat flux was in good agreement with measurements in heterogeneous 

semiarid and arid regions  

  

Abstract  

Relatively small fluctuations in the surface energy balance and evapotranspiration (ET) in 

semiarid and arid regions can be indicative of significant changes to ecosystem health. 

Therefore, it is imperative to have approaches for monitoring surface fluxes in these regions. 

The remote sensing-based Two-Source Energy Balance (TSEB) model is a suitable method 

for flux estimation over sparsely vegetated semiarid and arid landscapes since it explicitly 

considers surface energy flux contributions from soil and vegetation. However, previous 

studies indicate that TSEB generally underestimates sensible heat flux (H) and hence 

overestimates latent heat flux (LE) or ET for these regions unless soil resistance coefficients 

are modified based on additional ground information. In this study, TSEB is applied over 

semiarid and arid regions on three continents using the original soil resistance formulation 

with modified coefficients and a recently developed physically-based soil resistance 

formulation. Model sensitivity analysis demonstrates the high sensitivity of TSEB with 

original soil resistance formulation to soil resistance coefficients, while TSEB with the new 

soil resistance formulation has relatively low sensitivity to uncertainties in all coefficients. 

The performance of TSEB using different soil resistance formulations are evaluated by 

comparing modeled H against eddy covariance measurements in six semiarid and arid study 

sites and ranking the error statistics. Our results indicate that incorporating the new soil 

resistance formulation into TSEB would enhance its utility in flux estimation over 

heterogeneous landscapes by obviating its reliance on semi-empirical coefficients, and thus 

provide more robust fluxes over sparsely vegetated regions without model calibration and/or 

parameter tuning. 
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1. Introduction 

Semiarid and arid regions occupy approximately 25% of Earth’s land surface. These regions 

are characterized by limited water resources, sparse vegetation, and fragile ecosystems 

(Fensholt et al., 2012). In these regions, more than 90% of annual rainfall returns to the 

atmosphere as evapotranspiration (ET) (Wilcox et al., 2003; Garcia et al., 2013). Accurately 

estimating the spatial and temporal distribution of ET or the latent heat flux (LE) is critical 

for monitoring ecosystem health (Moran, 2004) and improving water resources management 

(Dinpashoh, 2006) in these regions. Remote sensing can provide estimates of ET over a wide 

range of temporal and spatial scales by providing spatially distributed surface information 

related to water and energy fluxes, which include land surface temperature, soil moisture, and 

vegetation cover (Huang et al., 2015).  Over the last few decades, several methods have been 

proposed for estimating ET and surface fluxes based on remotely sensed data, which can be 

divided into four main categories (Li et al., 2017): (1) empirical and semi-empirical 

approaches; (2) surface energy balance (SEB) models; (3) traditional ET approaches (i.e. the 

Penman-Monteith (PM) and Priestley-Taylor (PT) approaches) combined with remotely 

sensed data; and (4) data assimilation combined with land surface models and remote sensing 

observations.  

 

This study focuses on SEB modeling, in which LE is calculated as the residual of available 

energy (i.e. the difference between net radiation and soil heat flux) minus sensible heat flux 

(H), which is estimated via surface-to-air temperature gradient (Kustas and Anderson, 2009). 

SEB models can be classified into two main categories: single-source models that do not 

distinguish energy fluxes from soil and vegetation elements, and two-source models which 

explicitly treat soil and vegetation canopy energy exchanges with the lower atmosphere 

(Kalma et al., 2008). Single-source modeling has been used to estimate ET and surface 

energy fluxes over a wide range of scales, climate conditions and land cover types and has 

performed reasonably well, especially for irrigated cropland covered by dense vegetation 

(Elhag et al., 2011; Huang et al., 2015; Li et al., 2017; Van der Kwast et al., 2009). However, 

for sparsely vegetated surfaces in semiarid and arid regions, single-source models can 

produce large errors in surface energy fluxes (Cleugh et al., 2007). Flux estimates from 

single-source models can be improved with a prior calibration of resistance parameters based 

on in situ flux measurements (Gokmen et al., 2012; Huang et al., 2015; Kustas and Anderson, 

2009; Kustas et al., 2016). However, the need to perform a calibration limits the utility of 
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single-source models applied to sparsely vegetated complex landscapes located in  semiarid 

and arid climates.  

 

To accommodate the effects of partially vegetated surfaces on turbulent energy exchange and 

radiometric land surface temperature, Norman et al. (1995) proposed the thermal-based Two-

source Energy Balance Model (TSEB), which considers surface energy flux contributions 

from soil and vegetation using component temperatures from soil (𝑇𝑠) and canopy (𝑇𝑐) as 

well as the partitioning of radiation and heat fluxes between soil and canopy elements. The 

original TSEB formulation of Norman et al. (1995) provides two different resistance 

networks: a parallel approach and a series approach. Previous studies found that the series 

approach, which considers interaction between soil and canopy, is more robust (Morillas et 

al., 2013; Song et al., 2016b). TSEB and its revisions (Anderson et al., 1997; Kustas and 

Norman, 1999; 2000; Colaizzi et al., 2012a) have been successfully applied to compute 

surface energy fluxes and produced daily ET maps over a wide variety of fractional 

vegetation cover and soil moisture conditions based on remotely sensed data (Anderson et al., 

2011). Moreover, TSEB is not only able to provide soil evaporation and canopy transpiration 

separately, but also is shown to be more robust than single-source models when applied to 

complex landscapes and more extreme climatic conditions (Kustas and Anderson, 2009; Tang 

et al., 2011; Timmermans et al., 2007; Zhan et al., 1996).  

 

Nevertheless, the utility of TSEB in surface flux estimation over heterogeneous semiarid and 

arid regions is challenging since it is characterized by low ET due to low water availability 

(Garcia et al., 2013; Morillas et al., 2013). The original TSEB formulation tested by Norman 

et al. (1995) in semiarid desert gave good results. However more recently, Morillas et al. 

(2013) showed that TSEB significantly underestimated H over semiarid Mediterranean 

tussock grassland, leading to large positive biases in LE computed as a residual by TSEB. A 

follow-up analysis by Kustas et al. (2016) suggested that key vegetation inputs and the semi-

empirical coefficients of the soil resistance formulation used in estimating sensible heat flux 

from the soil surface lead to a large bias in estimates of H over this semiarid grassland site. 

Reliable results for this site were achieved primarily by modifying the coefficients in the soil 

resistance formulation based on ground observations of the soil roughness and vegetation 

characteristics at the field site (Kustas et al., 2016). The soil resistance coefficients beneath a 

canopy can be determined with heat flux measurements at the soil surface, and temperature 

and vapor pressure profiles from soil surface to canopy air space (Sauer et al., 1995). Such 
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detailed measurements are rare while ground-based information on soil roughness and 

vegetation distribution and architecture are not routinely available, so that refining the soil 

resistance coefficients may be difficult to implement operationally. The need for more robust 

model formulations to estimate soil surface fluxes has recently been highlighted by Talsma et 

al. (2018) as critical for improving remote sensing-based model estimates of ET partitioning 

between soil and vegetation. 

 

Haghighi and Or (2015b) proposed a physically-based model for simulating soil evaporative 

fluxes with a new soil resistance formulation for turbulent heat transport based on 

fundamental fluid dynamic principles, and validated this scheme at the micro-scale using 

small laboratory wind tunnel data. The new soil resistance used in Haghighi and Or (2015b) 

is appropriate for drying soil surfaces covered by bluff-body obstacles, and explicitly 

considers aerodynamic interactions between adjacent bluff-bodies. This new scheme has been 

successfully applied to sparsely vegetated semiarid areas, providing theoretical estimates of 

turbulent heat fluxes and their partitioning (Haghighi and Kirchner, 2017). To reduce 

overestimates of LE in the Community Atmosphere Biosphere Land Exchange (CABLE) 

land surface model, Decker et al. (2017) incorporated a previous version of this new soil 

resistance that explicitly accounts for subsurface viscous losses constraining soil evaporation 

fluxes (Haghighi and Or, 2015a; Haghighi et al., 2013). Results of Decker et al. (2017)’s 

study showed that errors in daily H and LE tend to reduce when empirical formulations of 

soil resistance in CABLE are replaced by this physical-based formulation. Recently, this new 

physically-based scheme and the original soil resistance formulation used in TSEB were 

compared over an irrigated vineyard (Li et al., 2018). The results indicated that the new 

scheme outperformed the original formulation using standard soil resistance coefficients and 

offered an opportunity to advance the utility of TSEB model when applied to sparsely 

vegetated areas. Given these promising findings, this new formulation has been incorporated 

in TSEB to enhance its utility in estimating fluxes over sparsely vegetated semiarid and arid 

regions where the ground-based observations are not typically available for modifying soil 

resistance coefficients, and thus advance its operational capabilities by requiring minimal 

ground information.  

 

The objective of this study is to assess the performance of TSEB with soil resistance 

formulation using typical coefficients (Kustas and Norman, 1999), modified coefficients for 

semiarid clumped vegetation with rocky soil surfaces (Kustas et al., 2016), and the new soil 
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resistance formulation proposed by Haghighi and Or (2015b; 2015c; 2015d) over 

heterogeneous semiarid and arid regions. To reduce input errors in running TSEB, local 

ground-based vegetation parameters and radiometric land surface temperature during daytime 

conditions are used. Data used in this study are from six field sites with flux tower 

measurements under water-limited conditions in natural semiarid and arid regions. Since 

TSEB is a residual-based approach, we evaluate model performance based on H 

measurements from eddy covariance (EC) towers. In this way, we are not confounding model 

performance with errors in estimates of available energy and lack of energy balance closure 

with EC systems. In addition, a new model evaluation strategy proposed by Best et al. (2015) 

is used to evaluate model performance, which leads to less ambiguous conclusions based on 

the selected performance criteria and allows for an explicit framework for stepwise 

hypothesis testing. To identify the influencing parameters of TSEB over natural semiarid and 

arid regions, a global sensitivity analysis was conducted for evaluating the effects of key 

inputs and soil resistance coefficients to TSEB with original and the new soil resistance 

formulation.  

2. Methodology 

2.1 Two-source energy balance (TSEB) model 

The TSEB model, originally proposed by Norman et al. (1995) for estimating component 

surface energy fluxes from soil and vegetation using observations of directional radiometric 

temperature, was developed to accommodate a wider range of land cover and environmental 

conditions. Several revisions to TSEB algorithms have been subsequently implemented, 

which include improving estimates of net radiation for soil and vegetation based on a more 

physically algorithm proposed by Campbell and Norman. (1998) and refining formulations 

for soil resistance terms (Kustas and Norman, 1999; 2000). There have also been proposed 

improvements to the soil and vegetation partitioning of temperatures and radiation for row 

crops (Colaizzi et al. 2012b; 2014) as well as a transpiration algorithm based on Penman-

Monteith canopy conductance instead of Priestly-Taylor (Colaizzi et al., 2013; 2014). In this 

study, the original TSEB including refinements by Kustas and Norman (1999; 2000) was 

considered suitable for modeling the surface energy balance of landscapes containing sparse 

randomly distributed clumped vegetation.   

 

In TSEB, the surface energy budgets are separately balanced for soil and vegetation: 

Rn = LE + 𝐻 + G                   (1) 
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Rnc = 𝐻𝑐 +  LE𝑐                     (2) 

Rns = 𝐻s +  LEs + G              (3) 

where Rn is net radiation, G is soil heat flux, 𝐻 is sensible heat flux, and LE is latent heat flux 

(all in W/m
2
). Subscripts s and c represent soil and vegetation scene components, respectively.  

All the composite surface fluxes for the combined soil-vegetation system in Eq. (1) can be 

estimated as the sum of soil and vegetation components except G, which is parameterized as a 

fraction of  Rns, 

G = 𝑐GRns                               (4) 

where, 𝑐G is an empirical coefficient, which is constant for several hours around solar noon 

(Kustas and Daughtry, 1990). Details of estimating Rns and Rnc can be found in Kustas and 

Norman (1999) and Morillas et al. (2013). For incomplete vegetation cover, Colaizzi et al. 

(2016a; 2016b) proposed a soil heat flux model that calculate G as a function of shaded, 

partially sunlit, or fully sunlit Rns. 

 

By permitting the interaction between soil and vegetation, Norman et al. (1995) proposed a 

“series” soil-vegetation resistance network to estimate sensible heat flux (𝐻 ), which is 

defined as,  

𝐻 = 𝐻𝑠 + 𝐻𝑐 =  𝜌𝐶𝑃
𝑇𝑎𝑐− 𝑇𝑎

𝑟𝑎
                (5) 

with 

𝐻𝑠 =  𝜌𝐶𝑃
𝑇𝑠− 𝑇𝑎𝑐

𝑟𝑠
                                  (6) 

𝐻𝑐 =  𝜌𝐶𝑃
𝑇𝑐− 𝑇𝑎𝑐

𝑟𝑥
                                  (7) 

where 𝐻𝑠 and 𝐻𝑐 are sensible heat flux from soil and vegetation, respectively. The symbol 𝜌 

is the density of air (kg/m
3
), 𝐶𝑃  is the specific heat of air (J/(kg ∙K)), 𝑇𝑠  and 𝑇𝑐  are soil 

temperature (K) and vegetation canopy temperature (K) respectively, 𝑇𝑎𝑐 is the temperature 

in the canopy-air space (K), 𝑇𝑎 is air temperature (K) in the surface layer. The term 𝑟𝑥 is the 

boundary layer resistance associated with the complete canopy of leaves (s/m), which is 

calculated according to Norman et al. (1995). The bulk aerodynamic resistance 𝑟𝑎 (s/m) is 

calculated based on Monin-Obukhov surface layer similarity theory. The resistance to heat 

flow in the boundary layer immediately above the soil surface, 𝑟𝑠  (s/m), is derived by Kustas 

and Norman (1999) as follows, 

𝑟𝑠 =  
1

𝑐(𝑇𝑠−𝑇𝑐)1/3+𝑏𝑢𝑠
                (8) 
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where, 𝑢𝑠 is wind speed near soil surface (m/s). 𝑐(𝑇𝑠 − 𝑇𝑐)1/3 is the free convection velocity 

(m/s). Kondo and Ishida (1997) indicated that 𝑐 (m s
-1

 K
-1/3

) ranges from 0.0011 for a smooth 

surface to 0.0038 for rough surface based on both laboratory and field experiments. The 

coefficient 𝑏 (-) cannot be determined directly from routine observations, which relates to 

turbulent length scale in the canopy, soil surface roughness and turbulence intensity (Sauer et 

al., 1995). The regression statistics for the heat exchange speed over soil surface beneath a 

maize canopy versus 𝑢𝑠 from Sauer et al. (1995)’s experiments reported that 𝑏 ranges from 

0.025 to 0.087 during a whole growing season. For moderately rough soil surfaces, default 

values for 𝑏 and 𝑐 are 0.012 and 0.0025, respectively, in TSEB (Kustas and Norman, 1999). 

For rough soil surfaces with sparse vegetation, however, 𝑏 and 𝑐 are up to 0.087 and 0.0038 

(Kondo and Ishida, 1997; Sauer et al., 1995), respectively. In a previous study (Kustas et al., 

2016), b = 0.065, and c = 0.0038 were used for a strongly clumped tussock grassland with 

rocky soils in a semiarid region, yielding good agreement with measured H.  This result is 

due to the fact that in sparsely vegetated semiarid and arid landscapes, accurate estimates of 

𝐻𝑠 is critical since it is the main contributor to 𝐻 (Jacobs et al., 1996). 

 

Radiometric surface temperature observations (𝑇𝑅), the key variable for estimating surface 

energy fluxes based on TSEB, is partitioned into soil and vegetation component temperatures 

based on fraction vegetation cover (Kustas and Anderson, 2009):  

𝑇𝑅 =  [𝑓𝑐(𝜃)𝑇𝑐
4 +  (1 − 𝑓𝑐(𝜃))𝑇𝑠

4]1/4       (9) 

where 𝑓𝑐(𝜃) is the vegetation cover fraction at the view angle 𝜃 of thermal sensor, and the 

soil and canopy temperatures, 𝑇𝑠 and 𝑇𝑐 respectively, are estimated iteratively by solving Eqs. 

(2) - (9) with an initial LE𝑐 calculated based on Priestly-Taylor formulation: 

𝐿𝐸𝑐 =  𝛼𝑃𝑇𝑓𝑔
∆

∆+𝛾
𝑅𝑛𝑐               (10) 

where 𝛼𝑃𝑇 is Priestly-Taylor coefficient of 1.26 assumed for unstressed transpiring vegetation.  

The value of 𝛼𝑃𝑇 , is iteratively reduced for stressed vegetation conditions to achieve a 

physically plausible solution (LEs >0) (see Kustas and Anderson, 2009). In Eq. 10, the 

variable 𝑓𝑔 is the fraction of leaf area index that is green, ∆ is the slope of the saturation vapor 

pressure versus temperature curve (kPa/°C), 𝛾 is the psychrometric constant (kPa/°C).  

 

Surface energy fluxes and temperatures of the soil and vegetation are solved for iteratively 

with the above formulations. Model inputs for TSEB can be divided into two categories: 

meteorological forcing factors (i.e., air temperature, wind speed, vapor pressure, and 
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incoming solar radiation) and land surface boundary conditions, the key ones being 𝑇𝑅, 𝑓𝑐, 

leaf area index (LAI) and canopy height (ℎ𝑐). For more detailed description of TSEB, please 

refer to Norman et al. (1995) and Kustas and Norman (1999).   

2.2 New soil resistance formulation 

Interactions between bluff-body elements, protruding a drying surface, and airflow boundary 

layer result in complex and unsteady flow regimes in the near-surface region forming a thin 

aerodynamic layer adjacent to the surface (termed viscous sublayer) that underlies turbulent 

air boundary layer and sets the upper boundary conditions for heat and water vapor transfer 

by thermal conduction and molecular diffusion, respectively (Haghighi and Or, 2013; 2015a; 

2015c; Haghighi et al., 2013). The complex and unsteady flow regime is characterized by 

turbulent structures termed eddies (Palau-Salvador et al., 2010) that affect the viscous 

sublayer local patterns via modifying the local wind stress and drag partitioning, and thus 

govern momentum, heat, and mass transfer processes (Raupach, 1992; Shao and Yang, 2008; 

Haghighi and Or, 2015b; Haghighi and Kirchner, 2017). Considering the dynamics of viscous 

sublayer caused by interactions between bluff-body elements and airflow, a mechanistic 

model for estimating turbulent sensible and latent heat fluxes over a drying surface with 

bluff-body elements, representing a natural landscape comprised of bare soil with 

rocks/stones and clumped vegetation, was proposed and verified using evaporation 

experiments conducted under controlled boundary conditions in a small wind tunnel 

(Haghighi and Or, 2015b). In this model, a boundary layer resistance 𝑟𝐵𝐿 (for the soil) was 

developed for heat transfer (s/m) (Haghighi and Or, 2015c; 2015d), explicitly incorporating 

near-surface turbulence around dryland vegetation (Mayaud et al., 2016), 

𝑟𝐵𝐿 =  
𝛿

𝐷ℎ
                     (11) 

where 𝐷ℎ is thermal diffusivity of air (≈ 1.9 × 10−5 m2
/s, Decker et al., 2017) and  𝛿 (m) is 

the mean thickness of the viscous sublayer. Following Haghighi and Or (2013), 𝛿  is 

expressed as, 

𝛿 =  𝑔(𝛼)
𝑣

𝑢∗
                (12) 

with a dimensionless coefficient 𝑔(𝛼), 

𝑔(𝛼) =  
2.2√112𝜋

Г(𝛼+1)

1

2(𝛼+1)√𝛼+1
{

      1             𝛼 = 0
П(2𝛼 + 1)  𝛼 > 0

              (13a) 

П(2𝛼 + 1) = (2𝛼 + 1)(2(𝛼 − 1) + 1)(2(𝛼 − 2) + 1) … (2(𝛼 − 𝑛) + 1)     𝑛 < 𝛼         (13b) 
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where 𝑣 is the air kinematic viscosity (1.5 × 10−5 m
2
/s), n is the largest integer smaller than 

𝛼.  The variable 𝛼 is the shape parameter of eddy residence time distribution, which can be 

determined from observations of spatially variable surface thermal fluctuations. With values 

of 𝛼 typically ranging from 0 to 5, 𝑔(𝛼) varies from 20.6 to 22.8 (Haghighi and Or, 2013).  

The friction velocity,  𝑢∗, (m/s) is computed by (Haghighi and Or, 2013) as follows, 

𝑢∗ =  
0.3

𝛼+1
𝑈𝑎               (14) 

where 𝑈𝑎 is the mean wind speed at a reference height in the surface layer (m/s).  

 

Shao and Yang (2008) developed a formulation for friction velocity (𝑢∗) over rough surfaces 

(considered as a relatively smoother surface superposed with bluff-body elements), which is 

parameterized as 

𝑢∗ =  𝑈𝑎√𝑓𝑟𝜆(1 − 𝜂)𝐶𝑟𝑔 + (𝑓𝑠(1 − 𝜂) + 𝑓𝑣𝜂)𝐶𝑠𝑔             (15)     

where 𝜂 is the fraction of elements cover (equivalent to vegetation cover fraction, 𝑓𝑐), 𝜆 is 

roughness density (or frontal area index) that can be calculated based on 𝜂, height of elements 

(h) and element width to height ratio (𝑤𝑐/ℎ𝑐) (Haghighi and Or, 2015b, Shao and Yang, 

2008). The variables 𝑓𝑟, 𝑓𝑠, and 𝑓𝑣 are functions of quantities related to bluff-body elements 

parameterized by, 

𝑓𝑟 = exp (−
𝑎𝑟𝜆

(1−𝜂)𝑘)                    (16) 

𝑓𝑠 = exp (−
𝑎𝑠𝜆

(1−𝜂)𝑘)                    (17) 

𝑓𝑣 = 1 + (
𝐶𝑠𝑔𝑐

𝐶𝑠𝑔
− 1)𝜂                   (18) 

where, 𝑎𝑟 = 3, 𝑎𝑠 = 5, and 𝑘 = 0.1 are determined from numerical simulations (Shao and 

Yang, 2008). The variables 𝐶𝑟𝑔, 𝐶𝑠𝑔, and  𝐶𝑠𝑔𝑐 are drag coefficients for bluff-body element, 

ground surface, and surface of bluff-body element at 𝜆 = 0, respectively, which are defined 

as,  

𝐶𝑠𝑔 = 𝜅2 𝑙𝑛−2(
𝑧𝑤

𝑧0𝑠
)                     (19) 

𝐶𝑠𝑔𝑐 = 𝜅2 𝑙𝑛−2(
𝑧𝑤−ℎ

𝑧0𝑠𝑐
)                (20) 

𝐶𝑟𝑔 =  𝛽𝐶𝑠𝑔                                (21) 

with  

𝛽 =  
𝐶𝑑

𝜅2 ((ln (
ℎ

𝑧0𝑠
) − 1)

2

+ 1)         (22) 
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where 𝜅 = 0.41 is the von Karman constant, 𝑧𝑤 is the reference height (m) at which 𝑈𝑎 is 

measured, 𝑧0𝑠  is the roughness length for bare surface (m), 𝑧0𝑠𝑐  (≈ 𝑧0𝑠 ) is the roughness 

length for fully covered surface (m), h is the height for bluff-body element (m) and 𝐶𝑑 is the 

drag coefficient of bluff-body element. For a wide range of plant species, 𝐶𝑑 varies from 0.2 

to 0.45 (Choudhury and Monteith, 1988; Gillies et al., 2002). 

 

To generalize this model, Haghighi and Or, (2015b) established a formulation for the average 

eddy distribution shape parameter �̅� for rough surfaces by combining Eq. (14) and Eq. (15), 

�̅� =  
0.3

√𝑓𝑟𝜆(1−𝜂)𝐶𝑟𝑔+(𝑓𝑠(1−𝜂)+𝑓𝑣𝜂)𝐶𝑠𝑔

− 1          (23) 

where �̅� defined in Eq. (23) is independent of the thermal observations and parameterized as 

a function of bluff-body roughness density and drag coefficients that relate to interactions 

between near-surface turbulent airflow boundary layer and bluff-body elements (Haghighi 

and Or, 2015b; Mayaud et al., 2016).  

 

Combining Eq. (11-13) with Eq. (15-23), the boundary layer resistance 𝑟𝐵𝐿 for heat transfer 

can be calculated over rough surfaces, which reflects physical insights about variations of 

eddy distribution (parameterized by eddy distribution shape parameter �̅�) and patterns of 

momentum transfer to the surface (parameterized by friction velocity 𝑢∗).  In this study, 𝑟𝐵𝐿 

replaced 𝑟𝑠  in Eq.(6) for estimating soil sensible heat flux 𝐻𝑠  in TSEB for evaluating its 

performance in estimating the total sensible heat flux over semiarid and arid regions with 

sparse and clumped vegetation. Input parameters and coefficients involved in calculating 𝑟𝐵𝐿 

are listed in Table 1.  

 

Table 1. Input Parameters and coefficients involved in calculating 𝒓𝑩𝑳 

Input parameter or 

coefficient 

Description Value source or value 

Inputs 

 
𝑈𝑎 Mean air wind speed at reference height Measurement 

𝑧𝑤 Reference height for wind speed  Measurement 

𝜂 Fraction of elements cover (i.e. 𝑓𝑐) Measurement or calculate based on NDVI 

h Height of elements (i.e. ℎ𝑐)  Measurement or calculate based on NDVI 

𝑤𝑐/ℎ𝑐 Elements width to height ratio 1.5 in this study 

coefficients 𝑧𝑜𝑠 Roughness length for bare surface ranges from 0.01 to 0.1 m for different 

sites 

𝐶𝑑 Drag coefficient of bluff-body element 0.2 (Choudhury and Monteith, 1988) 

𝑎𝑟  Model parameters  3 (Shao and Yang, 2008) 

𝑎𝑠 Model parameters 5 (Shao and Yang, 2008) 

𝑘 Model parameters 0.1 (Shao and Yang, 2008) 
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3. Study areas and data sets 

Three semiarid and three arid sites were used in this study to evaluate the performance of 

TSEB with original and new soil resistance formulations. One semiarid site is in southeast 

Spain while the other two semiarid sites are in southwest United States. The three arid sites 

are in northwest China. A general description of the field sites is given in Table 2 (Garcia et 

al., 2013; Cheng et al., 2014; Li et al., 2008; Li et al., 2013; Scott et al., 2010, 2015; Xu et al., 

2013; ). All six field sites are covered by sparse and clumped vegetation (Fig.1) and are under 

water-limited conditions. As a result, ET and LE rates are low and H is the dominant 

turbulent flux during most of the growing season (Fig. 2). 

Table 2 A general description of the field sites used to evaluate the TSEB model with the two 

soil resistance formulations. 

 
Semiarid sites  Arid sites 

Balsa Blanca Lucky Hills Kendall  Desert Steppe Gobi Sandy 

Study period 
Jan 15

th
 - Jun 

9
th
 in 2011 

Jun 1
st
 - Sep 

30
th
 in 2013 

Jun 1
st
 - Sep 

30
th
 in 2013 

 
Jun 7

th
 - Sep 

14
th

 in 2012 

Jun 1
st
 - Sep 

14
th
 in 2012 

Jun 2
rd

 - Sep 

14
th
 in 2012 

Latitude, 

longitude 

36.94°N, 

2.03°W 

31.749°N, 

110.052°W 

31.737°N, 

109.943°W 
 

38.765°N, 

100.318°E 

38.915°N, 

100.304°E 

38.789°N, 

100.493°E 

Elevation (m) 196 1370 1530  1731 1562 1594 

Annual 

precipitation 

(mm) 

375 285 294  157 110 140 

Mean air 

temperature (°C) 
18.1 17.6 17.3  9.4 9.3 9.0 

Land cover type Grass Shrub Grass  Short shrub Grass Grass 

Dominate 

species 

Stipa 

tenacissima 

Parthenium 

incanum, 
Acacia 

constricta, 

Larrea 
tridentata 

Eragrostis 
lehmanniana, 

Bouteloua 
eripoda, 

Aristida spp 

 
Reaumuria 

soongaria 

Alhagi 

sparsifolia 

Artemisia 

ordosica, 
Scorzonera 

divaricata 

Turcz, Inula 
salsoloides 

𝒉𝒄 (m)
a
 0.7 1.0 0.3  0.3 0.2 0.3 

Range of 𝒇𝒄
a
 0.6 0.05-0.22 0.07-0.31  0.11-0.32 0.10-0.18 0.09-0.22 

Range of LAI
 a
 1.05 0.10-0.50 0.15-0.75  0.15- 0.78 0.20-0.38 0.19-0.50 

Soil texture class 

(rock content) 

Very gravelly 

sandy loams 

(high)  

Gravelly sandy 

loams (high) 

Very gravelly, 

sandy to fine 

sand, and clay 

loams (high) 

 
Silt loams 

(moderate)  

Silt loams 

(moderate) 

Fine sand 

(none) 

Values of 𝒛𝒐𝒔 in 

TSEB 
0.1 0.1 0.1  0.05 0.05 0.01 

a
 values used for the study period 
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Figure 1. Photos of typical land cover conditions for the (a) Balsa Blanca, (b) Lucky Hills, (c) 

Kendall, (d) Desert steppe, (e) Gobi, and (f) Sandy sites. 
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Figure 2. Variation in NDVI, midday soil water content (SWC) at depths of 0.04 m for Balsa 

Blanca, Gobi, and Sandy, 0.05 m for Lucky Hills and Kendall, and 0.1 m for Desert steppe, 

and daytime average sensible and latent heat flux from the EC measurements during 

experiment periods used with TSEB.  Values for Balsa Blanca are shown in a) and b), c) and 

d) for Lucky Hills, e) and f) for Kendall, g) and h) for Desert steppe site, i) and j) for Gobi, 

and k) and l) for Sandy site. 
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3.1 Semiarid sites 

The Balsa Blanca site is a tussock grassland located in Cabo de Gata National Park southwest 

of Spain with a semiarid Mediterranean climate characterized by rainy winters and dry 

summers.  Although the study period is only part of a complete growing season, the data 

capture most of the annual variability in soil water availability, surface energy exchange, and 

phenology (Fig. 2; Garcia et al., 2013; Morillas et al., 2013).   

 

An EC system was installed at height of 3.5 m above ground level (agl) to measure sensible 

and latent heat fluxes with a sampling frequency of 10 Hz. The EC system was composed of 

a three-dimensional sonic anemometer (CSAT-3, Campbell Scientific Inc., Logan, UT, USA) 

that was used to measure wind speed and direction and an open-path infrared gas analyzer 

(LI-7500, LI-COR, Lincoln, NE, USA) that was used to measure water vapor and CO2 

concentration. [The use of trade, firm, or corporation names in this article is for the 

information and convenience of the reader. Such use does not constitute official endorsement 

or approval by the US Department of Agriculture or the Agricultural Research Service of any 

product or service to the exclusion of others that may be suitable.] The raw, high-frequency 

data were processed over 15 min intervals using the corrections for axis-rotation and density 

fluctuations (Garcia et al., 2013). Air temperature and relative humidity were measured by a 

thermo-hygrometer (HMP45C Vaisala Inc., Helsinki, Finland) installed at a height of 2.5 m 

agl. Net radiation and incoming shortwave radiation were measured using a net radiometer 

(NRLite, Kipp & Zonen, Delft, The Netherlands) installed at a height of 1.9 m and a LP02 

Pyranometer (Campbell Scientific Inc., USA) at height of 3.5 m, agl respectively. A water-

content reflectometer (ECHO EC5, Decagon Devices, Pullman, WA,USA) buried at depth of 

0.04 m in a bare soil area was used to measure near-surface volumetric soil moisture content. 

Radiometric surface temperature, 𝑇𝑅, and soil surface temperature, 𝑇𝑠, were measured using 

Apogee broadband thermal infrared thermometers (IRTs) (IRTS-P, Apogee Instruments Inc., 

Logan, UT, USA). All the meteorological, soil water content, radiation and temperature 

variables were averaged over 15 min intervals. 

 

Measured values of vegetation cover fraction (𝑓𝑐) and canopy height (ℎ𝑐) of 0.6 and 0.7 m, 

respectively, were considered as constant for the experimental period because the site was 

comprised of perennial grasses. Considering the fact that a significant amount of 

dead/senescent grass always exists in perennial tussock grass communities during the whole 

growing season, Kustas et al. (2016) assumed that total (green + dead) local LAI was a 
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constant value of 1.75 based on visual observations.  The fraction green vegetation,  𝑓𝑔,  was 

derived based on green LAI calculated using an NDVI (Normalized Difference Vegetation 

Index)-LAI relationship derived from Tetracam camera images (ADC Tetracam Inc., 

Chatsworth, CA, USA) together with LAI from destructive sampling.  

 

The other two semiarid sites, Lucky Hills and Kendall, are located in the U.S. Department of 

Agriculture-Agricultural Research Service (USDA-ARS) Walnut Gulch Experimental 

Watershed (WGEW) located southeast of Tucson, Arizona, USA (Scott et al., 2010; 2015). 

The climate is characterized by cool, dry winters and warm, wet summers, with 50-60% 

rainfall arriving in July-September as part of the North American Monsoon (Scott et al., 

2010). Lucky Hills is a desert shrubland containing several species while Kendall is a semi-

desert grassland comprised mainly of grasses with a few scattered shrubs.  

 

At each site, the EC flux tower which is still in operation, contains eddy covariance, radiation, 

and meteorology instrumentation. The EC systems are mounted at ～5 m above the height of 

the vegetation with four-component radiation measurements at ～3 m above the canopy. Air 

temperature and relative humidity are made with temperature/relative humidity probe 

(HMP35C, Vaisala, Helsinki, Finland) at a height of 6 m agl. Wind speed and direction are 

measured at height of 6.4 m agl. Near surface volumetric soil water content at 0.05 m depth is 

measured by TDR soil moisture probes (CS616, Campbell Scientific Inc., Logan, UT, USA). 

These measurements were processed over 30 min intervals and are available at the 

AmeriFlux website (Lucky Hills site is named as US-whs, and the Kendall site is referred to 

as US-wkg). 

 

Land surface temperature over the study sites were derived based on upwelling and 

downwelling longwave radiation measured by four-component radiometers using thermal 

radiative transfer theory (Liang, 2004).  The constant values of ℎ𝑐 given by Li et al. (2008) 

were used in this study (i.e. 1 m for Lucky Hills, and 0.3 m for Kendall). Values of 𝑓𝑐 and 

LAI were calculated from NDVI using a relationship from Li et al. (2008). NDVI was 

calculated using fused red and near-infrared reflectance that was derived from 30 m Landsat 

8 and 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) images using the 

spatial and temporal adaptive reflectance fusion model (STARFM, Gao et al., 2006). 
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3.2 Arid sites 

The Desert steppe, Gobi and Sandy sites are located around an artificial oasis at the midpoint 

of the Heihe River Basin in northwest China . This region has an arid continental monsoon 

climate characterized by extremely hot summers and severely cold winters, with 60-70% of 

precipitation occurring in the summer months (Cheng et al., 2014). In 2012, a comprehensive 

eco-hydrological experiment---the Heihe Water Allied Telemetry Experimental Research 

project including the Multi-Scale Observation Experiment on Evapotranspiration 

(HiWATER-MUSOEXE) --- was conducted in this region from May to September (Li et al., 

2013; Xu et al., 2013). An extensive network of measurement sites including the three desert 

sites was instrumented during the HiWATER-MUSOEXE experiment. The meteorological 

and land surface flux observations collected from the HiWATER-MUSOEXE experiment are 

available at the Cold and Arid Regions Science Data Center at Lanzhou 

(http://card.westgis.ac.cn/).  

 

For the Desert steppe site, the EC system is still in operation and is installed at height of 2.85 

m agl. Humidity and temperature probes (HMP45A, Vaisala, Helsinki, Finland) are installed 

at three levels (1m, 1.99 m, and 2.99 m agl). Wind speed and direction are made with wind 

sentry anemometer and vane (03102/03302, RM Young, Traverse City MI, USA) systems at 

four levels (0.48 m, 0.98 m, 1.99 m, and 2.99 m agl). Air temperature, relative humidity, and 

wind speed measured at 2.99 m were used for this site. Four-component radiation 

measurements are made with a CNR1 radiometer (Kipp & Zonen, Delft, Netherlands) 

installed at height of 2.65 m agl. Volumetric soil moisture content is measured at a depth of 

0.1 m using soil moisture sensor (ML2X, Delta-T Devices Ltd, Cambridge, UK) buried at 2 

m south of the EC tower.  

 

For the Gobi and Sandy desert sites, the EC systems (no longer operating after 2015) were 

installed at a height of 4.6 m agl. Air temperature, relative humidity, and wind speed were 

measured at two levels (5 m and 10 m); the observations at 5 m agl were used in this study. A 

four-component radiometer (CNR1, Kipp & Zonen, Delft, Netherlands) was installed at 6 m 

agl. Soil moisture sensors (ECH2O-5, Decagon Devices, Pullman, WA, USA for the Gobi site, 

and CS616, Campbell Scientific Inc., Logan, UT, USA for the Sandy site) were buried at 

seven levels (0.02 m, 0.04 m, 0.1 m, 0.2 m, 0.4 m, 0.6m, and 1 m). Volumetric soil moisture 

measurements at 0.04 m were used in this study because the sampling at this depth was 

nearly time continuous. Composite land surface temperature was derived based on upwelling 
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and downwelling longwave radiation measurements. Meteorological measurements and 

turbulent fluxes were processed over 30 min intervals.  

 

Desert steppe site is partially covered by small shrubs while Gobi and Sandy sites are 

partially covered by perennial grasses. Due to the fact that these three sites are dominated by 

perennial vegetation, ℎ𝑐 was considered as constant (ℎ𝑐 = 0.3 m for Desert steppe, 0.2 m for 

Gobi, and 0.3 m for Sandy) during the study period. Estimates of 𝑓𝑐 were calculated via the 

NDVI-based approach proposed by Gutman and Ignatov (1998). LAI was derived from 𝑓𝑐  

using an exponential relationship between 𝑓𝑐 and LAI (Choudhury 1987). In this study, NDVI 

was calculated by fusing red and near-infrared reflectances at 90 m spatial resolution from 

Advanced Space-borne Thermal Emission Reflectance Radiometer (ASTER) with 

spatiotemporal characteristics at 500 m from MODIS (Li et al., 2017). Estimates of 𝑓𝑔 were 

computed as the ratio of fraction of photosynthetically active radiation (PAR) absorbed by 

green vegetation cover (𝑓𝐴𝑃𝐴𝑅) and intercepted by total vegetation cover (𝑓𝐼𝑃𝐴𝑅) (Fisher et al., 

2008).  

4. Evaluating TSEB model performance  

4.1 Evaluation strategy 

Sensible (𝐻) and latent (LE) heat fluxes obtained from an EC system, net radiation (Rn) 

measured with a radiometer, and soil heat flux (G) calculated from an array of soil heat flux 

plates and near-surface soil temperature and moisture measurements are widely used to 

validate the performance of ET models. However, the sum of 𝐻 and LE from EC is generally 

less than available energy (Rn −  G), known as surface energy imbalance or lack of energy 

closure. There are many factors that can contribute to this flux mismatch, including a 

mismatch in source areas between the EC turbulent measurements of H and LE, and the net 

radiometer, and soil heat flux measurements, ignoring or underestimating the heat storage 

terms, neglecting advective flux divergence, and inability to capture large eddies using EC 

systems (Foken, 2008; Leuning et al., 2012; Xu et al., 2017).  

 

Average values of the closure ratios (𝐻 + 𝐿𝐸)/(Rn −  G) during the study periods for Balsa 

Blanca, Lucky Hills, Kendall, Desert steppe, Gobi, and Sandy were 0.8 (Morillas et al., 2013), 

0.8 and  0.75 (Scott, 2010), 0.88, 0.86, and 0.76 (Li et al., 2017), respectively. The impact of 

energy imbalance on model comparisons can be assessed by forcing closure in the observed 
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energy budget. Given that underestimation of LE relative to H tends to be considered the 

main reason for energy imbalance (Wang and Dickinson, 2012), the residual-LE closure 

method is considered as the most appropriate method for validating SEB-based models in 

previous studies (Alfieri et al., 2012; Morillas et al., 2013; Li et al., 2005; Li et al., 2017; 

Song et al., 2016a). This method assumes that 𝐻 is measured accurately and adjusts LE by 

adding residual of energy balance (i.e. Rn −  G − 𝐻 = 𝐿𝐸 ). However, there is mounting 

evidence of sonic anemometer measurement issues (Frank et al., 2013; Kochendorfer et al., 

2012) which affect both H and LE. But in these sparsely vegetated environments, G is a 

significant term in the energy balance, similar in magnitude to H. Hence the method for 

measuring G can significantly affect its magnitude (e.g., Liebethal et al., 2005; Ochsner et al., 

2006). In addition, the sparse and heterogeneous nature of arid vegetated landscapes makes it 

challenging to obtain an areal average G representative of the tower flux footprint (Kustas et 

al., 2000). Considering the objective of this study, and the energy balance closure issues 

discussed above – namely, evaluating the performance of the TSEB using different soil 

resistance formulations – only the sensible heat flux, which has its main contribution from the 

soil (Hs), was evaluated here since it tends to be more accurately measured and is a direct 

computation in TSEB.   

 

In addition to the traditional method of evaluating TSEB by comparing with observed H from 

EC systems, a new model evaluation strategy – benchmarking model performance – proposed 

by Best et al. (2015) was used to evaluate TSEB performance. Best et al. (2015) reported that 

unlike traditional methods of model evaluation, benchmarking model performance can lead to 

different conclusions about model performance based on setting expectations of performance 

(i.e. performance benchmarks) for a range of metrics. In benchmarking model performance 

strategy, simple physically-based models as well as empirical relationships can be used as the 

benchmarks. The metrics (i.e. error statistics) for all models and benchmarks are determined 

by comparing observations and model output. Then, each model is ranked, with the best 

performant given a score of 1 and the worst a score of 5 in this study. Finally, the average 

rankings for each model over all statistics and all sites are given as, 

𝑅�̅� =
1

𝑛𝑠𝑛𝑡
∑ ∑ 𝑅𝑗𝑖𝑘

𝑛𝑡
𝑘=1

𝑛𝑠
𝑗=1             (24) 

where 𝑅�̅� is the average ranking for i
th

 model or benchmark, 𝑛𝑠 is the number of study sites, 

𝑛𝑡 is the number of statistical metric, 𝑅𝑗𝑖𝑘 is the ranking of i
th

 model or benchmark at site j for 

statistical metric k. The average rankings for models are reasonably robust because the 
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influence of a particularly good or poor performance on overall average rankings is avoided 

with limited contribution from each statistic at each site (Best et al., 2015). 

 

For this study, a simple one-source surface energy balance model (OSEB, Kustas et al., 1996) 

was considered as the benchmark. Total H from the combined soil-canopy system can be 

governed by a bulk resistance formulation, 

𝐻 =  𝜌𝐶𝑃
𝑇𝑟− 𝑇𝑎

𝑟𝑎ℎ
               (25) 

with  

𝑟𝑎ℎ =
1

𝑘𝑢2 [ln (
𝑧−𝑑0

𝑧𝑜𝑚
) − 𝛹𝑚] [ln (

𝑧−𝑑0

𝑧𝑜𝑚
) + 𝑘𝐵−1 − 𝛹ℎ]               (26) 

where 𝑇𝑟  is composite radiometric surface temperature (K),  𝑟𝑎ℎ  is the resistance for heat 

transfer (s/m),  𝑢 is wind speed (m/s) at reference height 𝑧 (m),  𝑧𝑜𝑚 is roughness heights for 

momentum transfer (m) and  𝛹𝑚 and 𝛹ℎ are the stability corrections for momentum and heat 

transfer, respectively. The variable 𝑘𝐵−1 (-) represents the difference in the efficiency of heat 

and momentum transport. For semiarid and arid regions, an average value of 𝑘𝐵−1 = 7 was 

derived from Eq. (25) and (26) using observed H, 𝑢, 𝑇𝑟, and 𝑇𝑎 by Stewart et al. (1994). For 

the six study sites in this case, however, the average value of 𝑘𝐵−1 = 3.7 was derived from a 

similar set of observations.  

 

Here, the OSEB with 𝑘𝐵−1 = 7 is set as a “better than another” benchmark (Best et al., 2015) 

which means that the more complicated physically-based TSEB should outperform this 

benchmark validating the hypothesis that TSEB is a more robust model than OSEB in 

semiarid/arid environments. The OSEB with 𝑘𝐵−1 = 3.7  is set as a “fit for a particular 

application” benchmark (Best et al., 2015) that represents the level of performance required 

for TSEB to meet or exceed to be considered an improvement over existing approaches.  

4.2 Model sensitivity analysis 

To identify the sensitivity of input variables and coefficients in the soil resistance 

formulations used in TSEBKN (i.e. TSEB with soil resistance formulation proposed by Kustas 

and Norman (1999)) and TSEBHO (i.e. TSEB with soil resistance formulation proposed by 

Haghighi and Or (2015b; 2015d)), the Extended Fourier Amplitude Sensitivity Test (EFAST) 

was used for global sensitivity analysis. The EFAST method developed by Saltelli et al. 

(1999) not only computes the main effect contribution of each individual factor to the 

variance of the output but also addresses the influence of the interactions between factors on 
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the variance of the model predictions. For each factor i, there are two sensitivity indexes 

derived from EFAST: (1) the first order effect index (𝑆𝑖) and (2) the total effect index (𝑆𝑇𝑖). 

The 𝑆𝑖 measures the influence of factor i without considering interactions with other factors, 

which is defined as, 

𝑆𝑖 =
𝑉𝑎𝑟𝑋𝑖[𝑀(𝑌 𝑋𝑖⁄ )]

𝑉𝑎𝑟(𝑌)
                            (27) 

where 𝑌 denotes the output variable and  𝑋𝑖 denotes the factor i. Var and M are the variance 

operator and the expectancy operator, respectively. 

The variable 𝑆𝑇𝑖 indicates the total effect of factor i on the output variance considering its 

main effect as well as interactions with other factors. The 𝑆𝑇𝑖 is expressed as, 

𝑆𝑇𝑖 = 𝑆𝑖 + 𝑆𝑖𝑗 + 𝑆𝑖𝑗𝑚 + ⋯ + 𝑆1,2,⋯,𝑖,⋯,𝑘                 (28) 

where 𝑆𝑖𝑗 is the second order sensitivity index for factor i, measuring the contributions of the 

interaction between factor i and factor j to output variance. Similarity, 𝑆𝑖𝑗𝑚 and 𝑆1,2,⋯,𝑖,⋯,𝑘 are 

the third order and higher order sensitivity index. The difference between 𝑆𝑇𝑖  and 𝑆𝑖 

represents the interactions among factors. 

 

In this study, the sensitivity of H to input variables and coefficients used in the soil resistance 

formulations were calculated using EFAST from an open-source Python library for 

Sensitivity Analysis (SALib, Herman and Usher, 2017). The input parameters related to 

resistance terms for TSEBKN and TSEBHO usually derived from satellite data with relatively 

large uncertainty include LAI, 𝑓𝑐, and ℎ𝑐 and therefore were used in this sensitivity analysis. 

The input parameters  𝑤𝑐/ℎ𝑐  and 𝑧𝑜𝑠 were also analyzed, which are usually considered as 

constant when running TSEB. Additionally, variation in the soil resistance coefficients b and 

c in Eq.(8) were analyzed for TSEBKN. For TSEBHO, variation in the soil resistance 

coefficients listed in Table 1 were evaluated  in the sensitivity analysis. For each input or 

coefficient, 7000 samples were generated and analyzed in EFAST. The sampling range of 

LAI, 𝑓𝑐, ℎ𝑐, and 𝑧0𝑠 were determined based on the observed range in their values for the six 

sites listed in Table 2. The range in values of the soil resistance coefficients for TSEBKN and 

TSEBHO were derived from the literature (Kondo and Ishida, 1997; Sauer et al., 1995; Kustas 

and Norman, 1999; Choudhury and Monteith, 1988; Gillies et al., 2002; Shao and Yang, 

2008). The sampling range for all analyzed inputs and coefficients are listed in Table 3 and 

Table 4.  
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5. Results 

5.1 Sensitivity Analysis   

The sensitivity indexes of 𝐻 from TSEBKN and TSEBHO are presented in Fig. 3 and Table 3 

and 4. From Fig.3a and Table 3, it appears that TSEBKN has relatively low sensitivity to 

𝑤𝑐/ℎ𝑐  and 𝑧𝑜𝑠  with 𝑆𝑖  of ～0 and 𝑆𝑇𝑖  less than 0.06. However, the sensitivity analysis 

indicates that coefficient b is a highly sensitive parameter for computing 𝐻 yielding 𝑆𝑖 of 0.34 

and 𝑆𝑇𝑖 of 0.58. In addition, TSEBKN shows moderate sensitivity to vegetation parameters 

LAI, 𝑓𝑐 , ℎ𝑐 , and coefficient c with 𝑆𝑖  between 0.05-0.12 and 𝑆𝑇𝑖  between 0.18-0.34. For 

almost all analyzed parameters and coefficients used in TSEBKN, the second and higher order 

interactions among the 7 factors (i.e. 𝑆𝑇𝑖 − 𝑆𝑖) had a larger impact on 𝐻 than the effects of 

any individual factor. With the new soil resistance formulation in TSEB, namely TSEBHO, 

variation in 𝑓𝑐 and ℎ𝑐 had a moderate effect on 𝐻 estimates with 𝑆𝑖 of ～0.15 and 𝑆𝑇𝑖 of ～

0.25, while variation in 𝑤𝑐/ℎ𝑐 and 𝑧𝑜𝑠 did not significantly affect 𝐻 estimates with 𝑆𝑇𝑖 less 

than 0.02 (Fig. 3b and Table 4). This is similar to the results found with TSEBKN. It appears 

that the value of 𝑎𝑟  may cause the largest variations in TSEBHO estimates of 𝐻 but in all 

cases 𝑆𝑇𝑖 values are below 0.1 indicating TSEBHO has relatively low sensitivity to all the soil 

resistance model coefficients. TSEBHO shows highest sensitivity to LAI yielding  𝑆𝑖 of 0.45 

and 𝑆𝑇𝑖  of 0.52, similar to the sensitivity of the soil resistance coefficient b for TSEBKN. 

However, interactions among factors had relatively lower impact on estimates of  𝐻 using 

TSEBHO versus TSEBKN. Therefore, compared with TSEBKN, TSEBHO appears to be more 

robust because interactions among input variables and uncertainty in key coefficients do not 

lead to significant variation in modeled estimates of 𝐻.  
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Figure 3 The sensitivity indexes for H from TSEBKN (a) and TSEBHO (b) due to uncertainty 

in model parameters and key input variables. 

 

Table 3. The sensitivity indexes of model coefficients and range in input variables or 

coefficients for estimating  𝑯 using TSEBKN. 

Inputs or coefficients   The sensitivity indexes 

Names Ranges  𝑆𝑖 𝑆𝑇𝑖 

𝒇𝒄 [0.05, 0.6]  0.05 0.26 

LAI [0.10, 1.05]  0.10 0.34 

𝒉𝒄 [0.2, 1.0]  0.12 0.27 

𝒘𝒄/𝒉𝒄 [0.5, 2.0]  0 0.03 

𝒛𝒐𝒔 [0.01, 0.1]  0 0.06 

b [0.012, 0.087]  0.34 0.58 

c [0.0011, 0.0038]  0.08 0.18 

 

Table 4. The sensitivity indexes of model coefficients range in and input variables or 

coefficients for estimating  𝑯 using TSEBHO. 

Inputs or coefficients   The sensitivity indexes 

Names Ranges  𝑆𝑖 𝑆𝑇𝑖 

𝒇𝒄 [0.05, 0.6]  0.15 0.25 

LAI [0.10, 1.05]  0.45 0.52 

𝒉𝒄 [0.2, 1.0]  0.17 0.22 

𝒘𝒄/𝒉𝒄 [0.5, 2.0]  0 0.01 

𝒛𝒐𝒔 [0.01, 0.1]  0 0.02 

𝑪𝒅 [0.2, 0.45]  0 0.01 

𝒂𝒓 [0.0, 10.0]  0.06 0.09 

𝒂𝒔 [0.0, 10.0]  0.02 0.03 

𝒌 [0.0, 1.0]  0 0.01 
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5.2 Performance of TSEB with different soil resistance formulations 

The TSEB model has not been extensively applied and verified over heterogeneous semiarid 

and arid regions, which are challenging landscapes for estimating surface fluxes due to 

random and ill-defined canopy cover, large differences in the efficiency in heat flux transport 

from the soil and vegetation canopy surfaces, and major contribution of the soil component to 

the turbulent fluxes, particularly H. To evaluate performance of TSEB with different soil 

resistance formulations over these heterogeneous semiarid and arid sites as discussed in 

Section 4.1, modeled H from TSEB was compared with measured 𝐻 from the EC systems at 

all six study sites, as shown in Fig 4. Quantitative measures (i.e., error statistics) of modeled 

H for the six study sites are listed in Table 5.  

 

As reported by Kustas et al. (2016), TSEBKN with original soil resistance coefficients 

𝑏 = 0.012  and 𝑐 = 0.0025  clearly underestimated 𝐻  with a significant bias (Fig. 4a) for 

Balsa Blanca which contained rocky and rough soil surface with clumped vegetation, while 

reliable estimates of H were recomputed using 𝑏 = 0.065  and 𝑐 = 0.0038  with points 

scattered around the 1:1 line (Fig. 4b). For the other five study sites, 𝐻  was also 

underestimated by TSEBKN with original soil resistance coefficients, yielding large bias 

values for Lucky Hills, Kendall, and Desert Steppe (Fig. 4d, 4g, and 4j). According to ground 

observations (Table 2, Fig 1, and Fig 2), the Lucky Hills, Kendall, and Desert Steppe are 

similar in soil roughness and vegetation distribution to Balsa Blanca while the Gobi and 

Sandy sites have a much smoother soil surface and very sparse and short vegetation cover. 

Therefore, improvement in the agreement with 𝐻 observations using TSEBKN were expected 

using 𝑏 = 0.065  and 𝑐 = 0.0038  for Lucky Hills, Kendall, and Desert Steppe. Thus, 

TSEBKN computed H with 𝑏 = 0.065 and 𝑐 = 0.0038 were compared with observations and 

results are shown in Fig. 4b, 4e, 4h, 4k, 4n, and 4q. Indeed, the agreement with observed H 

improved for Lucky Hills, Kendall, and Desert Steppe using the larger coefficients. The 

values of bias, root mean square error (RMSE), and the mean absolute percent difference 

(MAPD) are reduced. However, the most significant improvement in model performance by 

adjusting 𝑏 and 𝑐 is still with the Balsa Blanca site. For Sandy and Gobi sites, TSEBKN with 

the default b and c produces quite reliable estimates of 𝐻  with higher coefficient of 

determination (R
2
) and Nash-Sutcliffe efficiency coefficient (NSE) values. The good results 

using the default values for 𝑏 and 𝑐 for Gobi and Sandy sites is likely because these sites have 

smoother soil surfaces with lower fractional cover and smaller vegetation.  
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The results from the sensitivity analysis and estimates of H using TSEBKN, suggests that 

reasonable estimates of 𝐻  can be computed if soil resistance coefficients 𝑏  and 𝑐  can be 

modified based on ground/land use information when applied over these sparsely vegetated 

heterogeneous landscapes. Since 𝑏 and 𝑐 cannot be determined directly from routine satellite 

observations, adjusting 𝑏  and 𝑐  coefficients for specific study areas would be a major 

challenge, operationally, especially over complex landscapes.  Yet, basic land cover 

information may help to nominally adjust b and c values in different arid regions. 

 

A similar comparison of modeled versus measured H using TSEBHO over these same 

semiarid and arid sites, is shown in Fig 4. The coefficients of 𝑟𝐵𝐿 are listed in Table 1 and 

Table 2, which did not significantly affect 𝐻  estimates. It is clear from Fig. 4 and the 

statistics in Table 5 that TSEBHO performs quite well for all the sites with points distributed 

around the 1:1 line and the NSE value ranging from 0.45 to 0.84. For Balsa Blanca, TSEBHO 

yields a bias and RMSE values slightly larger than that of TSEBKN with modified soil 

resistance coefficients (Table 5) but clearly less than that of TSEBKN with original 

coefficients (Morillas et al., 2013; Kustas et al., 2016). For Lucky Hills and Kendall, TSEBHO 

performance is similar to TSEBKN with modified soil resistance coefficients. but again, is 

better than TSEBKN using original soil resistance coefficients. For Desert steppe and Gobi 

sites, TSEBHO performance is slightly better than TSEBKN. For the Sandy site, the errors in H 

for TSEBHO are similar to TSEBKN with original soil resistance coefficients but with H 

slightly underestimated by TSEBKN and slightly overestimated by TSEBHO when H is greater 

than 200 W/m
2
. MAPD values from TSEBHO and TSEBKN with coefficients b and c adjusted 

for the soil/vegetation condition range between 20 and 30%. This range in MAPD values is 

similar to the uncertainty in the EC observations evaluated for these study sites, which is 10 

to 30% for Lucky Hills and Kendall (Scott et al., 2010), and nearly 20% reported for the three 

arid sites (i.e., Desert Steppe, Gobi, and Sandy) (Wang et al., 2015) and for Balsa Blanca 

(Morallis et al., 2013).  
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Table 5. Statistical results comparing modeled H from TSEBKN with original and modified 

coefficients and TSEBHO with measurements for Balsa Blanca, Lucky Hills, Kendall, Desert 

steppe, Gobi, and Sandy experimental sites. 

Study 

sites 

TSEBKN with b=0.012 and c=0.0025  TSEBKN with b=0.065 and c=0.0038  TSEBHO 

Bias RMSE MAPD R
2
 NSE  Bias RMSE MAPD R

2
 NSE  Bias RMSE MAPD R

2
 NSE 

Balsa 

Blanca 
-61 98 39 0.65 0.26  14 54 22 0.81 0.78  -23 61 24 0.76 0.71 

Lucky 

Hills 
-46 75 33 0.61 0.38  4 67 29 0.6 0.5  -13 65 29 0.62 0.53 

Kendall -39 67 31 0.62 0.4  23 62 28 0.69 0.47  -4 63 28 0.63 0.45 

Desert 

Steppe 
-48 64 36 0.85 0.6  15 46 23 0.86 0.79  -22 41 22 0.89 0.84 

Gobi -27 48 28 0.79 0.69  12 53 31 0.72 0.62  -7 41 23 0.80 0.77 

Sandy -19 47 28 0.73 0.67  33 70 43 0.69 0.28  0 51 30 0.71 0.62 

Bias is the average difference between measured and modeled H (W/m
2
); 

RMSE is root mean square error (W/m
2
); 

MAPD (%) is mean absolute percent difference (average of absolute difference between 

modeled and measured H divided by average measured H); 

R
2
 is the coefficient determination 

NSE is the Nash-Sutcliffe efficiency coefficient 
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Figure 4. Comparisons of measured H from EC systems and modeled H from TSEBKN with 

original and modified coefficients and from TSEBHO for Balsa Blanca (a, b, and c), Lucky 

Hills (d, e, and f), Kendall (g, h, and i), Desert steppe (j, k, and l), Gobi (m, n, and o), and 

Sandy (p, q, and r) sites. 
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Figure 4. (Continued) 

 

To test the hypothesis of TSEB being a superior model and to evaluate the improvements 

made by modifying soil resistance formulations in general, the average rankings of TSEB 

with different soil resistance formulations and two benchmarks were calculated across the six 

study sites, with the results summarized in Table 6. Overall, TSEB with original soil 

resistance coefficients 𝑏 = 0.012  and 𝑐 = 0.0025  outperforms OSEB with 𝑘𝐵−1 = 7  (the 

“better than another” benchmark), which is the minimum expectation TSEB should meet. 

However, the �̅� of TSEB with original coefficients is much greater than OSEB with 𝑘𝐵−1 =

3.7 (the “fit for a particular application” benchmark) indicating the need for improving the 

performance of original TSEB in semiarid and arid regions. The �̅� of TSEBKN with 𝑏 and 𝑐 

adjusted for site soil/vegetation roughness and TSEBHO are 1.81 and 1.89, respectively, 

which are much smaller than �̅� of the “better than another” benchmark (3.69) and of original 

TSEB (2.92), and slightly less than the �̅�   value of the “fit for a particular application” 

benchmark (1.91). This implies that both modifications to the soil resistance term (i.e. either 

adjusting coefficients in the original soil resistance formulation or introducing the new 

physically based soil resistance formulation in TSEB) are viable options for improving the 

performance of TSEB in semiarid and arid regions.  
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Table 6 Average rankings of benchmarks and TSEB models for the statistics (Bias, RMSE, 

MAPD, R
2
, and NSE) across all six study sites. 

 
TSEBKN with 

b=0.012 c=0.0025 

TSEBKN with 

adjusted b and c
a
 

TSEBHO 
OSEB with 

kB
-1

=7 

OSEB with 

kB
-1

=3.7 

Average 

ranking 
2.92 1.81 1.89 3.69 1.91 

a 𝑏 = 0.065 and 𝑐 = 0.0038 for Balsa Blanca, Lucky Hills, Kendall, and Desert Steppe, and 

𝑏 = 0.012 and 𝑐 = 0.0025 for Gobi and Sandy 

6. Summary and Conclusions 

This study evaluates the performance of thermal-based two source energy balance (TSEB) 

model applied to sparsely vegetated sites using eddy covariance (EC) measurements. 

Notwithstanding the many applications of TSEB model and its success in field tests, 

estimates of ET remain prone to bias in sparsely vegetated ecosystems where soil surface 

interactions are known to play a critical role. We implement insights from a newly proposed 

soil resistance formulation (Haghighi and Or, 2015b) (TSEBHO) that explicitly incorporates 

near-surface physical interactions governing surface heat fluxes and evaluate the performance 

of TSEB using original soil resistance formulation (Kustas and Norman, 1999) with 

coefficients modified for soil and canopy roughness (TSEBKN) and the new physically-based 

soil resistance scheme (TSEBHO) that requires minimal adjustments for soil and canopy 

properties.  

 

To evaluate the uncertainty in modeled sensible heat fluxes (H) from TSEBKN and TSEBHO 

incorporating the original and the newly proposed soil resistance formulations, respectively, a 

global sensitivity analysis was conducted for the key inputs and coefficients related to the 

resistance terms. The analysis indicated that TSEBKN has moderate sensitivity to vegetation 

parameters as well as TSEBHO. However, TSEBKN output is highly sensitive to the soil 

resistance coefficients while TSEBHO has relatively low sensitivity to virtually all of its soil 

resistance coefficients. In addition, interactions among the inputs and coefficients of TSEBKN 

had higher contributions to the variance in 𝐻 than that of TSEBHO. This result indicates that 

improving estimates of H in TSEBKN will require appropriate soil resistance coefficients 𝑏 

and 𝑐 estimated based on land cover information over sparely vegetated semiarid and arid 

regions. On the other hand, the new soil resistance formulation used in TSEB, TSEBHO, 

appears to require little if any modification to its model coefficients and thus is less sensitive 

to interactions among input variables and associated uncertainties in the key coefficients. 
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We further tested the performance of TSEBKN with modified soil resistance coefficients 

based on soil and vegetation roughness characteristics and TSEBHO for estimating H using 

EC measurements from six arid and semiarid study sites. By adjusting the 𝑏 and 𝑐 

coefficients for the clumped canopy layer with rough (rocky) soil surface as described in 

Kustas et al (2016), TSEBKN performed well over Balsa Blanca (Spain), Lucky Hills 

(Arizona, USA), Kendall (Arizona, USA), and Desert steppe (China), with differences in 

model versus observed H similar to the measurement uncertainty. For smooth soil surfaces 

with very sparse and open canopies at the Gobi and Sandy sites (China) TSEBKN produced 

reasonable estimates of H with default values of soil resistance coefficients. The estimates of 

H from TSEBHO without making any changes to the default values for the soil resistance 

coefficients agreed well with the observations over all the six study sites with MAPD values 

ranging from 20%-30% similar to or only slightly greater than the measurement uncertainty. 

The results of ranking TSEBKN with different soil resistance coefficients, TSEBHO, and two 

benchmarks based on the one-source energy balance (OSEB) model further confirms that 

TSEBKN with modified soil resistance coefficients and TSEBHO outperform OSEB models 

and TSEBKN using only the default values for the soil resistance coefficients for all semiarid 

and arid study sites.  

 

The default values for the coefficients 𝑏 and 𝑐 in the soil resistance algorithm in TSEBKN are 

currently applied over most landscapes in the satellite-based regional model --- Atmosphere 

Land-Exchange Inverse (ALEXI) and associated disaggregation scheme (DisALEXI) 

(Anderson et al., 1997; Anderson et al., 2011). The results here indicate that when using the 

TSEBKN land surface scheme, that ALEXI/DisALEXI will likely need to modify the soil 

resistance coefficients in arid and semiarid landscapes with rough soil surfaces combined 

with strongly clumped vegetation (Kustas et al., 2016). Alternatively, adopting the TSEBHO 

land surface scheme within the ALEXI/DisALEXI modeling framework can potentially 

enhance its operational capabilities, requiring minimal ground information and providing 

more reliable estimates in these sparsely vegetated regions. 

 

Future plans include evaluating the utility of TSEBKN and TSEBHO for estimating ET and soil 

evaporation (E) and canopy transpiration (T) over a wider range of climates and land cover 

types. This will require soil E observations using microlysimeters, and T estimates from sap-

flow, and E/ET partitioning from isotopic analyses. The flux partitioning method using high 

frequency EC data will also be employed (e.g., Scanlon and Kustas, 2012). Additionally, in 
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future studies estimates of ET and surface energy fluxes using land surface temperature 

derived from satellite platforms in ALEXI/DisALEXI over semiarid and arid landscapes 

based on TSEBHO will be implemented and compared with the TSEBKN soil resistance 

formulation along with flux tower measurements for validation. This will provide a physical 

framework for improving estimates of ET partitioning into E and T components which 

currently remote sensing-based models compute with significant uncertainty (Talsma et al., 

2018). 
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