

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 20, 2024

Co-Simulation of Cyber-Physical System with Distributed Embedded Control

Pedersen, Nicolai

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Pedersen, N. (2018). Co-Simulation of Cyber-Physical System with Distributed Embedded Control. Technical
University of Denmark.

https://orbit.dtu.dk/en/publications/218c1161-8488-4e12-b8e5-ca695f10f58b

Co-Simulation of Cyber-Physical
System with Distributed

Embedded Control

Nicolai Pedersen

Kongens Lyngby 2017

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

Cyber-Physical Systems (CPS) are integrations of computation and physical
processes, with distributed embedded computation units, connected by network,
controlling and monitoring a physical plant. The development of physical com-
ponents is essentially different from the object-oriented software of the compu-
tation units. A major challenge developing CPS, is the nonlinear interaction
between the discrete domain of the computational units and the continuous do-
main of the physical process. Model based development of both discrete and
continuous systems has significantly benefited from specialized modelling and
simulation tools in each domain. However, to realize the full potential of CPS,
the abstraction-level of models and simulation has to unify both computation
and physical dynamics. A solution to this, is a so called co-simulation where
the coupled problem is divided into sub-systems where each constituent model
can be solved by its optimum tool/solver in a distributed manner. This enables
domain expert to work in domain specific tools while being able to simulate the
complete CPS in a holistic manner.

This dissertation provides a solution for doing co-simulation of CPS with dis-
tributed embedded control. This research has been conducted in collaboration
with MAN Diesel & Turbo (MD&T) using their CPS, consisting of a two-stroke
low speed engine with a distributed engine control system, as case study. Adapt-
ing a distributed control system to enable co-simulation is not trivial. How the
lower layers of the embedded system software has been adapted to enable a
deterministic and temporally controlled simulation will be presented. This in-
cludes how multiple controllers are compiled to dynamic link libraries that can
be executed in parallel by a main process. A method for controlling execution
and time progression on each controller has been developed along with a schedul-

ii

ing and network communication solution. To enable co-simulation with tools for
modelling physical dynamics, the Functional Mockup Interface (FMI) standard
for co-simulation has been implemented in the control system simulation.

The solutions presented are validated through a set co-simulation experiments
using the MD&T engine control system and different physical dynamic mod-
elling tools. During the research new applications and requirements to the
co-simulation environment was discovered. In large organizations like MD&T,
tools, platforms and architecture used by different departments often deviate,
making co-simulation and model exchange difficult. In collaboration with the
EU Horizon 2020 project; Integrated Tool-chain for the model based design
of Cyber-Physical Systems (INTO-CPS), a distributed co-simulation was made
possible, that was able to co-simulate sub-systems of any architecture (32/64-
bit) and platform (Windows/Linux). Furthermore, when developing safety crit-
ical CPS that include a Human Machine Interface (HMI), the human interaction
and cognitive assessment is of great importance. However, it is often difficult to
obtain quantitative and evidence based data on the human in the loop. With an
extension to the co-simulation environment it is possible to connect the control
system simulation with the HMI in a hybrid co-simulation. In the hybrid co-
simulation scenarios requiring human interaction can be formulated and tracked.
The collected data can be used for analyzing the system applicability and intu-
itiveness, insuring correct and secure operation of MD&T engines.

Validation and verification on hardware and engine test-benches is a major
part of the development cost at MD&T. With the possibility of simulating the
complete distributed control system, engineers are able to verify more of the
component design before moving to the hardware test-bench. Furthermore, by
introducing co-simulation, engineers can investigate and validate the holistic
system dynamics during development before moving to the Engine test-bench
and do model sharing between departments, reducing redundant modelling ef-
forts. This research provides a solution for doing co-simulation of CPS with
distributed control and proves that co-simulation can improve the development
process, by reducing the amount of design and test loops during the design
phase, thereby reducing the overall verification and validation cost.

Summary (Danish)

Cyber-fysiske systemer (CPS) integrer computerbaserede og fysiske processer,
hvor distribuerede indlejrede computer-enheder, forbundet via netværk, kontrol-
lerer og monitorerer et fysisk anlæg. Udviklingsprocessen af fysiske komponenter
adskiller sig fundamentalt fra den objekt orienterede udvikling af software til
computer-enhederne (Controllerne). Den store udfordring ved udvikling a CPS
er den ulineære interaktion mellem computer enheder i det diskrete domæne,
og fysiske processer i kontinuert domæne. Specialiserede modellerings og simule-
rings værktøjer inden for hvert domæne, har markant forbedret den model base-
red udvikling af både diskrete- og kontinuere systemer. Kompleksiteten af CPS
gør imidlertid, at abstraktionsniveauet for modellerings- og simulerings værk-
tøjerne, bliver nødt til at forene begge domæner, for at realisere systemernes
fulde potentiale. En løsning på dette er co-simulering, hvor det sammenkoble-
de problem bliver opdelt i delsystemer, som kan løses distribueret og anvende
specialiserede værktøjer og solvere. Co-simulering gør det muligt for domæne
eksperter at arbejde i domæne specifikke værktøjer, og samtidig have mulighed
for en holistisk simulering af det fulde CPS.

Denne afhandling præsenterer en løsning på, hvordan et CPS, med distribueret
indlejret kontrol, kan co-simuleres. Forskningen er blevet udført i samarbejde
med MAN Diesel & Turbo (MD&T) of deres CPS blevet brugt grundlag for
løsningen. MD&Ts CPS er en to-takts lavhastigheds motor med dertilhørende
motor kontrol system. At co-simulere et distribueret kontrol system er ikke tri-
vielt og kræver tilpasning. Det vil blive præsenteret, hvordan de nedre lag af
det indlejrede systems software er blevet ændret for at kunne blive simuleret på
en både deterministisk og tidslig kontrolleret måde. Dette inkludere, hvordan
flere controllere kan blive kompileret til dynamisk linkede biblioteker, der kan

iv

eksekveres parallelt af en hovedproces. En metode hvorpå eksekveringen og den
tidslige fremdrift kan kontrolleres på hver enkelt kontroller vil blive præsenteret
sammen med en løsning på schedulering og netværks kommunikation. For at mu-
ligøre co-simulering af kontrol systemet sammen med andre modelleringsværk-
tøjer, er co-simulerings standarden Functional Mockup Interface (FMI) blevet
implementeret.

Løsningen er validret gennem en række co-simulering eksperimenter med MD&Ts
motor kontrol system og forskellige fysisk dynamik modellerings værktøjer. Un-
der forskningsforløbet, blev flere krav og anvendelser af co-simulering miljøet
identificeret. I større organisationer som MD&T, varierer værtøjer ofte i bå-
de platform(Windows/Linux) og arkitektur (32/64-bit). I samarbejde med EU
Horizon 2020 projektet Integrated Tool-chain for the model based design of
Cyber-Physical Systems (INTOCPS), blev en distribueret co-simulerings løs-
ning udviklet. Denne er i stand til at kombinere delsystemer, der varierer i både
arkitektur og platform. Ydermere, er udviklingen af sikkerhedskritiske CPS, som
inkluderer et Human Machine Interface (HMI), afhængig af menneskelige inter-
aktion og kognitive forståelse. Det er imidlertid svært at få kvantitativ og evi-
densbaserede data om den menneskelige faktor. En udvidelse til co-simulerings
miljøet gør det muligt at forbinde kontrol systems simulering med MD&Ts HMI,
i en hybrid co-simulering. I den hybride co-simulering kan scenarier blive formu-
leret som kræver menneskelig interaktion. Data fra simulering kan opsamledes
of bruges til at analysere systemets anvendelighed, og sikre at MD&Ts motorer
bliver opereret, på en korrekt og sikker måde.

Verifikation og validering på hardware og motor test opstillinger bærer en stor
del af udviklingsudgifterne hos MD&T. Med muligheden for, at simulere det
fulde distribuerede kontrol system, kan udviklere verificere størstedelen af deres
design, inden de behøver, at foretage test på hardware opstillinger. Ydermere gør
den holistiske tilgang med co-simuleringen det muligt, at analysere og validere
det samlede system, uden tilgang til motor test opstillinger. Co-simulering gør
det også muligt at dele modeller i mellem afdelinger og med underleverandører,
hvilket forbedrer samarbejde, og reducerer redundant udvikling. Resultaterne
fra dette projekt har bevist at co-simulering kan optimere udviklingsprocessen
af CPS, ved at reducere mængden af design og test løkker og derved den over-
ordnede udgift ved validering og test.

Preface

This dissertation is submitted as partial fulfillment of the requirements for the
degree of Doctor of Philosophy (Ph.D.) in Engineering at the Technical Univer-
sity of Denmark, Department of Applied Mathematics and Computer Science,
Section for Embedded Systems Engineering. The project has been founded
partly by the Danish branch of MAN Diesel & Turbo SE, The Confederation
of Danish Industry and the Danish Agency for Science, Technology and Inno-
vation. The research has been supervised by Professor Jan Madsen, Head of
ESE Section, and from MAN Diesel & Turbo, Morten Vejlgaard-Laursen, Head
of Emission Reduction System, followed by Senior Manager Henrik Rechnagel
Olesen, Head of Control & Monitoring.

This dissertation deals with co-simulation of Cyber-Physical Systems (CPS)
with distributed embedded control. The CPS at MAN Diesel & Turbo consisting
of an Engine Control System and a Two-stroke low speed engine has been used
as basis for the research.

The dissertation is a summary report consisting of 7 chapters and a collection
of research papers written and published during the period of 2014-2017.

Lyngby, 01-October-2017

vi

Nicolai Pedersen

Acknowledgements

First of all I would like to thank MAN Diesel & Turbo (MD&T) and the Tech-
nical University of Denmark (DTU) for giving me the opportunity of pursuing
my PhD within the Embedded Systems Engineering (ESE) group.

I especially would like to thank my advisor Professor Jan Madsen, Deputy Direc-
tor at DTU Compute and Head of the ESE Section. Jan has provided me with
valuable guidance and support, always pushing me to define my own ambitions
and direction of the research.

Moreover, my gratitude goes to my colleagues at MD&T; Enrique Vidal Sánchez
and Marco Fam for their immense support and providing a great working en-
vironment. Especially, I would like to thank Tom Bojsen for his indispensable
insights to MD&T software and countless hours of assistance, Morten Vejlgaard-
Laursen and Henrik Rechnagel Olesen for their confidence and guidance.

I am thankful for my collaboration with the INTO-CPS group at Aarhus Uni-
versity. In-particular to Professor Peter Gorm Larsen, Head of the Software
Engineering Group, for a great collaboration and many interesting discussions.

Finally, I would like to thank my family for their love and support; parents Jette
Pedersen and Hans Pedersen and my sister Signe Pedersen. Last but not least,
I am grateful to my girlfriend Nina Due Halvorsen, for hours of proof reading
and keeping my spirits up when things got tough.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Background and Research Objectives 2
1.2 Co-Simulation Survey . 3
1.3 Scope and Limitation . 5
1.4 List of Publications . 5
1.5 Structure of Dissertation . 6

2 MAN Diesel & Turbo 7
2.1 The ME-C Engine . 8
2.2 Engine Control System . 9

2.2.1 The Triton Controller . 10
2.2.2 Software Architecture . 12
2.2.3 Human Machine Interface 14
2.2.4 Distribution and Network Typology 15

2.3 Development Method . 17
2.3.1 Challenges with Current Method 18

2.4 Chapter Summary . 18

3 Simulation of Distributed Embedded Control Systems 20
3.1 Cross-Compiler for PC-x86 Execution 21
3.2 Multiple Controller SIL Simulation 22

CONTENTS x

3.2.1 Single Process Multiple Controllers 22
3.2.2 Manage execution of controllers 23
3.2.3 Operating System Clock Progression 24

3.3 Interrupt Implementation . 24
3.3.1 Idle Event Scheduler . 25
3.3.2 High Precision Timers . 26
3.3.3 Time Synchronized Pulse 26

3.4 Simulation Orchestration Manager 27
3.4.1 Network Simulation . 28
3.4.2 SystemC Network Simulation Library 30

3.5 Chapter Summary . 33

4 Embedded System Co-Simulation 34
4.1 Concept of Co-Simulation . 34

4.1.1 Co-Simulation Approach 35
4.2 The Functional Mock-up Interface 36

4.2.1 Model Description . 37
4.2.2 Application Interface . 39

4.3 FMI for Embedded System Software 40
4.3.1 Engine Control System FMI Implementation 41

4.4 Co-simulation of SCR Heating Model and ECS 42
4.4.1 SCR Heating Model . 43
4.4.2 Co-Simulation Configuration 44
4.4.3 Co-Simulation Results . 46

4.5 Chapter Summery . 48

5 Distributed Co-Simulation 49
5.1 Platform and Architecture Challenges 49
5.2 INTO-CPS . 50

5.2.1 Co-Simulation Orchestration Engine 51
5.3 Distributed Co-Simulation Orchestration Engine 51
5.4 Co-Simulation of Engine Control System and Physical Dynamic

Tools . 52
5.5 Distributed Co-Simulation of EGR Water Handling System . . . 53

5.5.1 EGR Water Handling System 53
5.5.2 Results of Traditional Development Process 55
5.5.3 Distributed Co-Simulation Configuration 58
5.5.4 Results of Distributed Co-Simulation 59

5.6 Chapter Summery . 60

6 Hybrid Co-Simulation 61
6.1 SW/HW Co-Simulation - HMI to ECS connection 62
6.2 Hybrid Co-Simulaiton Configuration 63
6.3 Human In the Loop Investigation 64

CONTENTS xi

6.3.1 Simulation and Results 66
6.4 Chapter Summery . 69

7 Conclusion 70

8 Paper A: Co-Simulation of Distributed Engine Controls System
with Thermodynamic Models using FMI & SCNSL 75

9 Paper B: FMI for Co-Simulation of Embedded Control Soft-
ware 83

10 Paper C: Co-Simulation of Cyber Physical Systems with HMI
for Human In the Loop Investigations 93

11 Paper D: Distributed Co-Simulation of Embedded Control Soft-
ware with Exhaust Gas Recirculation Water Handling System
using INTO-CPS 107

Bibliography 119

Chapter 1

Introduction

Designing the next generation of distributed embedded control systems, for the
control of Cyber-Physical Systems (CPS), require advanced modeling and sim-
ulation. Model-based development enables engineers to work at higher abstrac-
tion levels, making it possible to identify and verify an optimal solution at an
early stage of development. This limits the amount of test and redesign itera-
tions that the system has to go through and thereby the cost of verification and
validation, but also prevent damaging expensive equipment or committing to
inappropriate hardware or software solutions. Simulation of embedded systems
is not trivial due to the dependability of both software and hardware. Further-
more, most embedded systems are uniquely designed for specific purposes and
only a subset of components are similar across different systems, which limit
the amount of generic simulators available. In recent years, control systems are
becoming more distributed, interconnected and with increased algorithm com-
plexity, the control system dynamics are starting to significantly influence the
physical dynamics and vice versa. This nonlinear interaction between the dis-
crete domain, of the control system, and the continuous domain of the physical
process, is a major challenge when developing CPS. To realize the full potential
of a CPS, the abstraction-level of models and simulation has to unify both dis-
crete computation and physical dynamics. Where previously, control systems
could be developed with low fidelity models of the physical dynamics and phys-
ical plant with simplified control dynamics, it is now desirable to have a holistic
model of the coherent system. In practise this means, mixing of Discrete Event

1.1 Background and Research Objectives 2

(DE) models of the control algorithms and high fidelity Continuous Time (CT)
models of the physical dynamics. Multiple tools and frameworks exists for the
development of both DE and CT models each with their specific specialization
and validity. The tools and frameworks used by different engineering disciplines
deviate significantly in their implementation language, concept and integration
of time, mathematical solvers etc. making it very difficult to model the holistic
system in a single tool or environment. A solution for unifying the DT and
CT domains and overcoming this tool-chain deviations between engineering dis-
ciplines, is to simulate each of the sub-systems, of the coupled problem, in a
distributed manner, a so called co-simulation. Co-simulation makes it possible
for domain experts to work on their sub-subsystem in the tool of preference,
while still being able to simulate the complete CPS as one holistic model.

1.1 Background and Research Objectives

This research was conducted in collaboration with MANDiesel & Turbo (MD&T),
developing two-stroke low speed engines for marine vessel population and sta-
tionary applications, such as power plants. In recent years, legislation on en-
gine emissions and efficiency, along with a demand for alternative fuel types,
is increasing the system complexity and amount of distributed sub-systems for
the traditional two-stroke engine. This increased complexity and distribution,
makes the cooperation between engineers developing control systems and the
physical plant, vital for being able to deliver the future line of MD&T engines
with increased efficiency and lower emissions. Currently, low fidelity models of
the engine physics are used to develop control system algorithms, and on the
other hand simplified control dynamics are used for the engine performance cal-
culations for sizing and commissioning. Furthermore, the development of the
control system used to be based on a Software In the Loop (SIL) simulation
that only model the upper application layers of individual controllers without
valid modelling of the distributed aspect of the engine control system. These
challenges were dealt with using Hardware In the Loop (HIL) and engine test-
benches for verification and validation. However, with the increased system
complexity foreseen in the future, and the cost of both HIL and engine test-
benches, it is desirable for MD&T to increase their modelling and simulation
efforts to optimize their development process.

Two main objectives were identified as the basis for this research. First objec-
tive was to enable modelling and simulation of the distributed embedded control
system. The simulation should be deterministic to ensure reproducibility and
enable engineers to do e.g. regression testing and verify functionality at an ear-
lier stage of development. The second objective was to enable co-simulation

1.2 Co-Simulation Survey 3

of the control system together with a high fidelity physical dynamic model ex-
pressed in a dedicated tool. Co-Simulation will enable engineers to investigate
and validate holistic system dynamics during development and enable model
sharing between departments, reducing redundant modelling efforts.

1.2 Co-Simulation Survey

Cyber-Physical Systems integrate both physical and computational processes.
The development of physical components is based on CT models which is es-
sentially different from the DE modelling of the object-oriented software com-
ponents. To realize the potential of CPS, the abstraction-level of models and
simulation has to unify both computational and physical dynamics Lee (2008).
Co-simulation and co-modelling has been proposed as solutions to overcome
the challenges of unifying models and simulations from different domains in-
cluding DE and CS. Models used in co-modelling describe both physical and
computational components in a unified language and simulates the model as
one. While this approach has advantages, each domain has its own limitations
and particularities making it difficult to find a single language that fits all ap-
plications Gomes et al. (2017); Fitzgerald and Gorm (2014). In co-simulation
a coupled problem is divided into sub-systems where each constituent model is
solved in a distributed manner. This enable each sub-system to be developed
in domain specific tools by domain experts and simulated in a global holis-
tic simulation. Coordination and control of the simulation is orchestrated by
a co-simulation manager responsible for exchanging data-between sub-systems
and the progression of time Fitzgerald and Gorm (2014). Applications within
co-simulation has been published in multiple domains. Examples within the
automotive industry are Abel et al. (2012); Brezina et al. (2011); Li and He
(2011); Mews et al. (2012); Stoermer and Tibba (2014), within energy and grid
systems Elsheikh et al. (2013); Vanfretti et al. (2014); Bian et al. (2015); Lin
et al. (2011) and HVAC Nouidui et al. (2014); Dols et al. (2016); Hafner et al.
(2013), including other domains as well. The maritime industry share many
similarities with the other industries especially the automotive, however, there
are many significant differences. Besides from the obvious diversity of the phys-
ical engine like two-stroke vs four-stroke combustion, cooling system, electrical
system and fuel system, also the control system has some key differences. While
both systems consist of multiple microprocessors connected by a network, in
the automotive industry Electronic Control Units connected by a CAN bus, the
control challenges are very different. In modern automotive four-stroke engine
the piston revolution range roughly from 800-7000 RPM whereas a low-speed
two-stroke marine engine range on average from 50-100 RPM, this makes the
control strategies used in the different industries significantly different. Fur-

1.2 Co-Simulation Survey 4

thermore, the most important difference is the size of the two industries and
the consequences that follow. The automotive industry sold 88.1 million units
in 20161 divided on more than 50 car manufactures as compared to the around
2300 vessels sold by only a very few suppliers. This huge contrast makes the
amount of specialized tools, Original Equipment Manufacturers (OEM) and re-
search done in the different fields very unequal. The only publications on this
specific topic within the maritime industry is the publications originating from
this research Pedersen et al. (2017a); Pedersen et al. (2016); Pedersen et al.
(2017b); Pedersen et al. (2015).

Common for the publications mentioned above is that they, either use a multi-
domain tool like the commercial MATLAB/Simulink or Ptolemy II Eker et al.
(2003); Awais et al. (2013) from UC Berkeley, that can model both DE and CS
and connect a single specialized tool through a custom co-simulation interface
or use a co-simulation standard for coupling sub-systems. Several co-simulation
standards has been developed the past years. Most widely accepted is the
High Level Architecture (HLA) Dahmann (1997) and the Functional Mock-up
Interface (FMI) Blochwitz et al. (2009).

While multi-domain tools are very powerful, they force developers to commit to
the multi-domain tool to drive the co-simulation. This is especially troublesome
when dealing with sub-suppliers or large global organizations. The multi-domain
tools mentioned, MATLAB/Simulink and Ptolemy II, are state of the art and
also offer a vast variety of co-simulation capabilities, meaning the possibility of
connecting a simulation from another tool to the host simulation tool. These
co-simulation interfaces are either based on standards like the HLA and FMI or
custom made interfaces. With the large amount of tools available at MD&T no
multi-domain tool was found that offers all the interfaces required. Adapting
the tools that are not supported is possible, but would require a large amount
of change management and more maintenance then choosing a co-simulation
standard, while not committing to a single tool-chain.

The HLA is a platform independent standard interface for distributed co-simulation.
It uses a central manager, called the RTI (Run Time Infrastructure), that re-
ceives data from various sub-systems and sends them to other sub-systems in the
simulation. HLA provide a set of application interface functionality that sub-
systems use and is implemented by the RTI. HLA is widely used in the military
industry for inoperable distributed simulation of large scale simulations. While
the standard is widely accepted it focus mostly on networked data exchange
between sub-systems and not on the dynamic dependability and coupling of e.g.
an engine and its turbo-charger.

1Source: National car data, Macquarie Research, January 2017

1.3 Scope and Limitation 5

In recent years FMI has become a widely accepted standard. FMI was ini-
tially developed for the automotive industry, to enable better collaboration with
OEMs, an industry which MD&T shares many similarities, including many of
the same tools. 95 tools are currently supporting the FMI standard, many of
which MD&T departments currently use and could be part of the co-simulated
environment in the future. The Functional Mockup interface was chosen as
co-simulation standard and will be described further in chapter 4.

1.3 Scope and Limitation

This research aimed to provide an approach for doing co-simulation of Cyber-
Physical Systems with distributed control, by analyzing the CPS developed
at MD&T. The scope was to investigate how a distributed embedded control
system can be simulated in a deterministic manner to enable Co-simulation and
how the FMI standard can be implemented. The MD&T system is generic in
its architecture and the solutions proposed should be applicable to many other
systems. The co-simulation environment was verified by a set of experiments and
the development process at MD&T analyzed to investigate what requirements
and features are relevant for companies developing CPS.

1.4 List of Publications

The following articles has been peer-reviewed and published during the research:

1. Pedersen, N., Madsen, J., and Vejlgaard-Laursen, M. (2015). Co-Simulation
of Distributed Engine Control System and Network Model using FMI and
SCNSL. IFAC-PapersOnLine, 48(16):261–266

2. Pedersen, N., Bojsen, T., Madsen, J., and Vejlgaard-Laursen, M. (2016).
FMI for Co-Simulation of Embedded Control Software. In Linköping Elec-
tronic Conference Proceedings, number 124, pages 70–77. MAN Diesel
& Turbo, Copenhagen, Denmark, Linköping University Electronic Press,
Linköpings universitet

3. Pedersen, N., Bojsen, T., and Madsen, J. (2017a). CO-SIMULATION
OF CYBER PHYSICAL SYSTEMS WITH HMI FOR HUMAN IN THE
LOOP INVESTIGATIONS. Proceedings of the Symposium on Theory of
Modeling & Simulation, pages 1:1–1:12

1.5 Structure of Dissertation 6

4. Pedersen, N., Lausdahl, K. G., Sanchez, E. V., Larsen, P. G., Madsen, J.,
Vidal, E. S., Lausdahl, K. G., Madsen, J., Pedersen, N., and Larsen, P. G.
(2017b). Distributed Co-Simulation of Embedded Control Software with
Exhaust Gas Recirculation Water Handling System using INTO-CPS. In
Simultech 2017, pages 73–82

1.5 Structure of Dissertation

The dissertation will begin in chapter 2 with an introduction of the Cyber-
Physical System at MAN Diesel & Turbo to be modelled and simulated. How
the distributed engine control system has been adapted to enable modeling and
simulation of the software will be presented in chapter 3. Chapter 4 will de-
scribe the co-simulation interface chosen, FMI, and how the standard has been
implemented in the control system simulation. Platform and architecture devi-
ations within the MD&T tool-chain made a distributed co-simulation necessary,
as will be presented in chapter 5. The new simulation approach, opened up for
the possibility of simulating the engine control system together with the human
machine interface in a hybrid-co-simulation, and perform human in the loop
investigations, as illustrated in chapter 6. Chapter 7 will draw conclusions and
put the solution into perspective. Chapters 8, 9, 10, 11 gather the publications
originating from this research.

Chapter 2

MAN Diesel & Turbo

MAN Diesel & Turbo (MD&T) is the power engineering business unit of the
MAN Group, a subsidiary of MAN SE, which has been part of the Volkswagen
Group since 2011. MD&T develop two-stroke low speed and four-stroke medi-
um/high speed engines for marine population and stationary applications such
as power plants. Besides from the core engine, they also deliver complete marine
population systems, from propellers all the way to turbochargers. A separate
turbo-machinery department develop and produce compressors, gas and steam
turbines. MD&T also has its own service brand named MAN PrimeServ, who
provide global 24/7 service of OEM parts. This research focus on the two-stroke
low speed engines developed at the Copenhagen office of MD&T. Historically
speaking the two-stroke engine production was purchased by MAN AG from
the danish ship-yard and diesel engine producer Burmeister & Wien (B&W) in
1980. B&W had roots stretching back to 1846, building the world’s first ever
ocean-going diesel-powered vessel, M/S Selandia, and the world’s largest diesel
engine, at the time in 1933. The first turbocharged two-stroke diesel engine was
commissioned in 1952 with a design that laid the foundation for the engines
built today.

2.1 The ME-C Engine 8

Figure 2.1: MAN Diesel & Turbo 6 cylinder electronically controlled ME-C
engine.

2.1 The ME-C Engine

In 2002 the MD&T engines became electronically controlled and the company
moved into the field of Cyber-Physical Systems. The line of electronically con-
trolled engines are named ME-C, where the fuel injection and valve opening is
electronically controlled by the Engine Control System (ECS). The ME-C en-
gines brake power range from 4,350 kW to 82,440 kW with a stroke length and
cylinder diameter from 1,550mm stroke and 30cm diameter to 3,460mm stroke
and 98cm diameter over 4 to 12 cylinders. ME-C engines are powered by fuel
oil both distillate fuels and residual fuels. MD&T also delivers dual fuel engines
able to switch between fuel oil and a gas supply. ME-C-GI engines can run on
methane, ME-C-GIE on ethane, ME-C-LGIM on methanol and ME-C-LGIP on
LPG (mixture of liquid propane and butane). To comply with the International
Marine Organization’s (IMO) emission regulations on marine engines, currently
the Tier III emission protocol Organization. (2013), engines can be fitted with
either a Exhaust Gas Regulation (EGR) system or Selective Catalytic Reduction
(SCR) system for reduction of NOx emission.

2.2 Engine Control System 9

2.2 Engine Control System

Injection
& Valve Opening

Crankshaft Turbo-ChargerCylinder Lubrication

CCU-nCCU-3CCU-2CCU-1
(Cylinder Control Unit)

I/O Cabling (Analog & Digital)

TIUBTIUA
(Tacho Interface Unit)

SCU
(Scavenge Air Control Unit)

ECUBECUA
(Engine Control Unit)

EICUBEICUA
(Engine Interface Control Unit)

Network Connection (Ethernet)

HMI

Figure 2.2: The distributed engine control system.

The Engine Control System is a distributed embedded control system consisting
of between 14 to 33 individual controllers, depending on the amount of cylinders,
auxiliary systems installed and engine version. All controllers are hardware-wise
identical but have individual control objectives, determined by the software
running on the embedded system. Figure 2.2 illustrates a subset of controllers
in the ECS and the components they are controlling. Controllers interact with
the engine through sensors and actuators connected by IO cables both analog
and digital. An Ethernet network connects all controllers in the ECS and the
Human Machine Interface (HMI). The ECU, EICU and TIU controllers are
redundant as a fault tolerance measure.

The main objective of the ECS is to ensure an efficient and clean combustion
that delivers the population power requested. The Cylinder Control Unit (CCU)

2.2 Engine Control System 10

is responsible for calculating the injections profile and performing injection, the
opening of exhaust valves and cylinder lubrication. Each cylinder has a dedi-
cated CCU where the orchestration of timing between all cylinders is governed
by the Engine Control Unit (ECU). Information about position and velocity
of each cylinder is provided to the ECU by the Tacho Interface Unit (TIU),
which measures the engine crankshaft position. The Engine Interface Control
Unit (EICU) connects the HMI with the ECS. From the HMI, engine running
modes, load, emission modes, fuel calibration ect. is controlled. The Scavenge
Air Control Unit (SCU) regulate the turbo-charger by balancing sufficient scav-
enge air and exhaust pressures. Besides from the core engine controllers, also
auxiliary systems are controlled by the ECS; the Auxiliary Control Units (ACU)
are controlling e.g. hydraulics and start air blowers. If an emission reduction
system such as SCR/EGR is installed, dedicated SCR/EGR Control Units and
SCR/EGR Interface Units will be installed, ensuring correct emission reduction
while maintaining engine performance.

2.2.1 The Triton Controller

The Triton controller is the new generation of MAN Diesel & Turbo ECS con-
trollers. Triton controllers are modular and can be tailored to different engines
and control features by adding boards with different functionality.

Backplane

CPU Board

FPGA
Altera ArriaV

Power
Supervision

FPGA
Cyclone 5

IO
Board

FPGA
Cyclone 5

IO
Board

FPGA
Cyclone 5

Power Distribution
MAN-IO

MAN-IO

MAN-IO

Figure 2.3: The MD&T Triton controller.

As can be seen on figure 2.3, the design is based on a single crate with space for

2.2 Engine Control System 11

8 boards connected through a back-plane. There are three main types of boards
consolidating a Triton controller. The CPU board is where the software from
the control application is executed. IO boards can be either Analog or Digital
and handle communications with sensors and actuators installed on the engine.
The power supervision board distributes and monitors power to the controller.
Each controller in the ECS will contain a CPU and Power Supervision board,
but the amount of IO-boards are determined by the control objective of the
specific controller (e.g. a Cylinder Control Unit or Engine Interface Unit).

2.2.1.1 CPU Board

EEPROM

FLASHFPGA – Altera ArriaV

Soft Core CPU
NIOS II

MAN - IO

Ethernet A

Ethernet B

UART JTAG

Display IF LEDS

DDR

Figure 2.4: Diagram of the Triton CPU board.

The CPU boards main components are illustrated on figure 2.4. The FPGA is a
Altera ArriaV containing all the control functionality, a NIOS II soft-core CPU
and the MAN IO module that uses a star-typology to connect all the boards with
the CPU as center hub. The CPU board has two physical Ethernet ports and
runs the Parallel Redundancy Protocol (PRP). To show the status of the systems
to an operator, the controller has two LEDs and a small display connected to
the FPGA. The board has two flash memories, one containing the production
image to be loaded on the FPGA and the other holding the application and
driver software. Module information is stored in an EEPROM, this information
is e.g. used to tell the software and the rest of the control system what the
control objective of the controller is; a cylinder control unit or engine interface
control unit ect.. The DDR module is the CPU main memory. The JTAG unit
provides a debugging interface that can load images on the FPGA and connect
to chip-scope for debugging purpose. Finally the UART interface can be used
for terminal access to the system.

2.2 Engine Control System 12

2.2.1.2 IO Board

AO 1

EEPROM

FLASH

FPGA – Altera
Cyclone 5

ARM CPU

MAN - IO

JTAG

LEDS

AO 0

AI 0

AI 1

AI 6

DO 1

EEPROM

FLASH

FPGA – Altera
Cyclone 5

ARM CPU

MAN - IO

JTAG

LEDS

DO 0 DI 0

DI 1

DI 5

Analog IO Board Digital IO Board

DRO 0

DRO 3

Figure 2.5: Diagram of the Triton IO boards.

The IO boards are divided into either an Analog or Digital board. Each board
has an Altera Cyclone 5 FPGA with an ARM CPU containing all control func-
tionality and MAN IO CPU. LEDs are available to show system status and a
JTAG module for debugging. The flash contain the FPGA image to be loaded
on start-up and EEPROM the module information. Analog IO Boards have 2
analog output and 7 analog input signals. The digital IO Board has 2 digital
outputs, 4 digital relay outputs and 6 digital input signals.

2.2.1.3 Power Supervision board

The power supervision board is similar to the IO Board from 2.2.1.2, but without
the IO components. Instead it has a power supervision module that monitors
the input power and fuses for protecting the controller against power spikes and
short circuits.

2.2.2 Software Architecture

The architecture of the software running on the Triton controller, is illustrated
on figure 2.6. A Board Support Package (BSP) for the NIOS II soft-core on the

2.2 Engine Control System 13

Triton Controller HW

CPU Board

Board Support Package (NIOS)

RTOS (RTEMS)

MAN Application Framework (BES)

Application

MAN HAL Altera HAL

Figure 2.6: Illustration of software architecture.

FPGA provides the low level drivers for interfacing with the hardware. The Al-
tera Hardware Abstraction Layer (HAL) provides access to some of the regular
features of the FPGA. The MAN HAL layer is developed at MD&T and provides
access to customized features of the hardware which are specific to the MD&T
Triton controller. As most embedded systems the software runs a Real Time
Operating System (RTOS), the specific operating system used, is the Real-Time
Executive for Multiprocessor Systems (RTEMS). RTEMS was designed for real
time execution of embedded systems and support nearly all POSIX services.
Engineers designing control applications, work directly in C++ code that can
be directly deployed to the controller. An application framework between the
operating system and the application code has been created to ease the cod-
ing efforts required by application engineers. This framework is developed at
MD&T, in the department called Basic Electronic and Software (BES), thus
the name BES-framework. The BES-framework provides a simplified API for
application developers to e.g. create tasks, fix-point conversion, access hardware
such as timers, IO’s ect.. The application layer is where control algorithms are
developed and implemented.

2.2 Engine Control System 14

2.2.3 Human Machine Interface

Figure 2.7: The human machine interface.

The Human Machine Interface (HMI) of the MD&T ME-Engine consist of a
Engine Control Main Operating Panel (EC-MOP) and a 3rd party propulsion
control system with the main throttle handle, important gauges and manual
switches for specific pumps and other actuators. In this dissertation only the
EC-MOP connected to the ECS is relevant. The EC-MOP, also described in
Pedersen et al. (2017a) and chapter 10, is the main HMI for engineers oper-
ating the engine. The EC-MOP is a marine approved and certified PC with
a touch screen interface located on the engine control room panel. From the
EC-MOP operators can carry out engine commands, adjust engine parameters,
select running modes and observe the status of the control system. Communica-
tion between the EC-MOP and ECS is based on Ethernet Local Area Network
(LAN). A MAN Ethernet protocol driver connects the EC-MOP with the En-
gine Interface Control Unit, which is connected to the rest of the distributed
system through the Engine Control Unit. If, for some reason, the EC-MOP
is unavailable, the engine can also be operated directly from a local operating
panel located on the engine.

2.2 Engine Control System 15

 Engine Room

 Engine Control Room

Ethernet
Switch 1

Ethernet
Switch 2

Ethernet
Switch 3

Ethernet
Switch 4

Ethernet
Switch 5

Ethernet
Switch 6

EICU A

MOP A

MOP B

EICU B

TIU A

ACU(1-3)

ECUA

CCU (1-7)

TIUB

ECUB

CCU (8-12)

For engines with Less than
8 Cylinders, TIUB and EUCB

are attached to switch 3
and 4. And switches 5 and 6

will not be present.

Figure 2.8: HMI and engine control system network typology.

2.2.4 Distribution and Network Typology

The distributed engine control system is connected through LAN cables and
switches as seen on figure 2.8. The network is redundant as a safety critical
precaution with two network adapters on each controller in the network and
two EC-MOP (MOP A & B). To distinguish between the two networks the
Parallel Redundancy Protocol (PRP) is used. To ease CPU load a hardware
PRP component is embedded on the FPGA Ethernet module. Controllers and
switches are installed in electrical enclosures in the engine room and engine
control room. In the engine control room the EC-MOPs are located with the
Engine Interface Control Units. Depending on the engine size and amount of
auxiliary systems, the ECS have two or four switches that connects all the engine
specific controllers.

The network communication is illustrated on the Open Systems Interconnection
(OSI) model on table 2.1. On the physical layers (layer 1-2), the network is a

2.2 Engine Control System 16

Table 2.1: Network Protocols

Layers 5/6/7

Layer 4

Layer 3

Layer 2

Layer 1

OSI
Application

ARP
(Address Resolution

Protocol)

CNET
(MAN Protocol)

MAC

802.3

Ethernet

IEEE 1588
(Distributed Clock

Synchronization)

TACHO
(MAN Protocol)

wired Ethernet LAN, with at Media Access Control (MAC) data link layer. The
transport and network layer (layer 3-4) has four main protocols:

• The CNET (Control Network) is the MD&T developed protocol for com-
munication with the control software.

• The Address Resolution Protocol (ARP) is a communications protocol
used for mapping network addresses to physical MAC addresses.

• The IEEE 1588 Precision Time Protocol (PTP) is used for distributed
clock synchronization between network nodes (controllers). A IEEE-1588
time-stamping component is implemented in hardware on the Ethernet
module of the FPGA where it is connected to both the CPU and the
hardware clock. This makes high precision synchronization of the system
clock possible.

• The TACHO protocol is developed at MD&T and used to communicate the
high priority information about the engine crankshaft position from the
Tacho Interface Units. The FPGA Ethernet module contain a prioritizing
module that splits packages into two connections used by the CPU, one
for high priority packets, e.g. Tacho package, and one for all the other
packets.

The upper layers (layer 5-7) are implemented in the application and not pre-
sented here.

2.3 Development Method 17

2.3 Development Method

This research focuses on the benefits from simulation of distributed control
systems and co-simulation of Cyber-Physical systems, it is therefore important
to look at how new control applications are developed at MD&T.

System & Requirement
Engineering

Component Design

Preliminary investigations
(MATLAB, Python, etc.)

Detailed Design & Software
Implementation

Implementation in C++
(BES Framework)

Target Code Building Process

Integration Testing
(System Verification)

System Validation

Engine Test Bench
(Test-Engine or Test-Vessel)

System Testing

Component Testing

Automated

MIL

SIL

HIL

Figure 2.9: V model of development process

When a new subsystem is to be designed or functionality changed a development
process is initiated as seen on figure 2.9. The first step is a cross department
collaboration on system requirements and high-level design decisions. Once
requirements and surrounding system dependencies are clear the specific com-
ponent can be developed. For doing preliminary rapid modeling of components,
multiple tools are available to engineers at MD&T. Many would use e.g. MAT-
LAB/Simulink to do preliminary studies of the system to be designed and using
Model In the Loop (MIL) simulation, models can be iterated. Once the com-
ponent design is believed to be reliable, the control logic is implemented in the
C++ BES-framework, described in 2.2.2, and a detailed design implemented.
The software can be tested by cross-compiling the code to a PC platform where
Software In the Loop (SIL) simulation can be performed, described further in
3.1. Physical dynamic models, to test the control logic against, are formulated
in an internally developed tool for continuous time simulation called the Dy-
namic Simulation Environment(DSE) which extends the bes-framework. The
primary focus in DSE is SIL and Hardware In the Loop (HIL) simulation, and
the physical dynamic models implemented here are often an abstraction of high-
fidelity models developed during the component design. The main advantage

2.4 Chapter Summary 18

of this approach is that moving from development to production code is auto-
mated and applications created during development can be directly compiled to
target. Likewise, it is possible to compile the physical dynamic models, build
in DSE, to a dedicated controller, called the Engine Simulation Unit (ESU) to
be used during HIL testing. For system verification, a Hardware In the Loop
platform is available, where the newly developed software runs on the real con-
troller hardware. Here component and integration testing can be done using
the engine dynamic models running in the ESU controller. The final step in
the development process is to validate the new design on an engine test-bench,
either on the test engine at the MD&T research center in Copenhagen or on one
of the test vessel collaborating with MD&T.

2.3.1 Challenges with Current Method

While the development process described above, has been efficient for many
years, increased system complexity challenge this process. In the transition
between component design and software implementation, both control algo-
rithm and physical dynamic models are manually translated to the C++ BES-
framework. The DSE was initially intended for building models to run on HIL
and by design much lower fidelity than models developed in the preliminary
study, using tools such as MATLAB. System verification on the HIL test bench
is important for ensuring that the controller is able to execute the control soft-
ware with regards to temporal integrity and performance overhead. HIL test-
benches and the engine test-bench are very limited resources at MD&T, due
to the cost and size of the system. The more testing and validation that can
be done during the development phase in MIL and SIL simulation the cheaper
the complete validation and verification cost will become. By developing an
advanced simulation of the embedded control software that is able to simulate a
full distributed system, the amount of time spent on the HIL-test benches will
be significantly reduced. The advantage of looking into co-simulation is to be
able to connect models of high-fidelity to the ECS simulation and thereby do
rapid full system validation before moving to the actual engine test bench.

2.4 Chapter Summary

This chapter introduced the Cyber-Physical System being developed at MD&T.
A detailed description of the distributed embedded system was presented and
the development process at MD&T introduced and challenges discussed. The
cost of HIL and engine test-bench validation is immense and with the com-

2.4 Chapter Summary 19

plexity foreseen in the future, advanced modelling and simulation is required.
Overcoming these challenges are some of the results expected as an outcome
from this research by enabling co-simulation of the engine control system.

Chapter 3

Simulation of Distributed
Embedded Control Systems

Modelling and simulation have become standard practice when studying and
engineering complex systems. In engineering the concept of simulation requires
both a model and a solver. Where a model is an entity that imitate the key
characteristics, behaviors and functions of either a physical, abstract system or
process and a solver is a mathematical algorithm that calculates the solution to
the model states. When developing Cyber-Physical Systems we normally distin-
guish between continuous time simulation and discrete event simulation. Con-
tinuous simulation utilizes differential equation based models which are solved by
ordinary differential equation calculators. A continuous time model represents
a continuously changing system and do not require an explicit representation
of the state and time relationships. Discrete event simulation utilizes a mathe-
matical/logical model of a system that portrays state changes at precise points
in simulated time. Both the nature of the state change and the time at which
the change occurs mandate precise description. In general, the physical-part of
a CPS is modeled in continuous time, in our case the engine physics, and the
cyber-part in discrete time e.g. the engine control system. Currently the control
system development at MD&T allows the source code to be cross compiled to
a developers PC for SIL testing. This basically provides a discrete model of the
embedded software where the application layer is identical to the real system
and the lower hardware dependent layers are abstractions. This research aim

3.1 Cross-Compiler for PC-x86 Execution 21

to significantly improve the fidelity of this model by introducing determinis-
tic and temporal simulation of multiple controller models in a single coherent
simulation.

3.1 Cross-Compiler for PC-x86 Execution

When developing new software it is important to continuously be able to test
your work. Engineers at MD&T are working on PC workstation and with the
help of a cross-compiler they can execute and test their software locally.

Build Server (Linux)

GCC NIOS-Compiler

GCC PC-Compiler

GCC-SourceC++ Application

Developer PC
(Linux x86)

Application.exe

Application.hex

TRITON
(NIOS)

HAL (NIOS)

HAL (x86)

RTEMS (NIOS)

RTEMS (x86)

BSP (NIOS)

BSP (x86)

Figure 3.1: Compilation process for both PC and Controller.

The cross-compilation routine is illustrated on figure 3.1, where a build server
creates two versions of the GCC compiler using the same GCC source files, one
for building applications for an x86 architecture "GCC PC-Compiler", the other
for building applications for the Triton controller, with the NIOS II architec-
ture "GCC NIOS-Compiler". Each compiler uses its own version of the Board
Support Package (BSP), real-time operating system (RTEMS) and Hardware

3.2 Multiple Controller SIL Simulation 22

Abstraction Layers (HAL). A lot of effort has been put into modeling the PC
version of the MAN-HAL layer to give a valid representation of the real system.
The application C++ source files are identical for both compilers. This way it
is possible to execute and test the same application code on both a developer
PC and on target. The PC application is basically a SIL simulation of a single
controller software and a lot of functionality can be tested in this environment
before moving to the HIL test-bench. There are a lot of aspects that can not be
tested in the single controller SIL simulation, such as communication with other
controllers and all the temporal aspects of the distributed system. In the fol-
lowing sections we will describe how a multi-controller SIL simulation has been
made possible, making the SIL simulation even more powerful and reducing the
efforts spent on the HIL test-bench.

Figure 3.1 show how a build server distributes applications to both developer
PC and target. Another way to use the compilers is to have them distributed
to the Developer PC alongside all the source code. In this way engineers can
write code and compile locally without the Build server.

The cross compilers and large parts of the HAL layer has been developed prior
to this research. Our research show how the SIL simulation approach can be
extended to enable a controlled and deterministic execution of the operating
system, interrupts and network events. Where as the current simulation simply
lets the operating system execute. We will also describe how a model of the
complete distributed system with multiple controllers can be simulated in a
deterministic and temporally correct manner.

3.2 Multiple Controller SIL Simulation

This section will describe how the SIL single controller simulation has been
extended to handle the multiple controllers of the distributed ECS. One of the
main challenges when simulating a distributed system is making sure that all
timely aspects are valid both locally and globally.

3.2.1 Single Process Multiple Controllers

We wish to be able to run the complete software, including operating system,
of multiple controllers in a single process. This is achieved by exporting the
main function of RTEMS and compiling each of the controllers to a dynamic
link library, in our case shared libraries, since we are running Linux. Multiple

3.2 Multiple Controller SIL Simulation 23

shared libraries can be loaded by a process running on the Linux kernel and
their main function be activated in a dedicated thread.

3.2.2 Manage execution of controllers

The multiple controller simulation has to be deterministic and it must be pos-
sible to start and stop execution of individual controllers.

 Controller

 Shared Library

 Controller

 Shared Library

 Controller

 Shared Library

Board Support Package

RTOS (RTEMS)

MAN Application Framework (BES)

Application

MAN HAL Altera HAL

 Idle Thread

 Linux Process

 Executable

Main process

Load Shared
Libraries

Idle Callback Function
Void (*Idle_callback)(Context)

Lock

Release

Main()

Factory
IO

Parameter
Variables

Figure 3.2: Multiple controller simulation with idle-thread callback.

The RTEMS BSP has an Idle thread, which is the task that the system returns
to when all other tasks has been executed. It is by overwriting the idle thread
function "bsp_idle_thread()" with a function, that takes a function pointer
"bsp_idle_thread(uintptr_t context)", we can introduce a blocking callback
function from the main process to the controller as illustrated on 3.2. Executing
the callback function from the idle-thread will cause a context switching from
the Controller to the Linux main process. Here a mutual exclusion (mutex)
routine will prevent the context from returning to the controller until the mutex
is released, at which point the controller can continue until it once again returns
to idle.

In this way we are able start and stop execution on each controller in the simu-
lation. Starting and stopping execution is only relevant if we can interact with
the controller. ECS controllers have a tree structure of data-object with either
parameter or variable type. Furthermore, it connects to the engine through
Analog or Digital Input and Outputs (IO). When building a shared library con-

3.3 Interrupt Implementation 24

troller, a custom object factory is created that makes it possible for the Linux
main process to create proxies for data-object in the data tree. Parameter, vari-
able, analog and digital proxies are basically pointers to the BES/HAL instance
of the data-object, that makes it possible to manipulate the object.

3.2.3 Operating System Clock Progression

It is now possible to start and stop execution on individual controllers and inter-
act with them through proxy IOs, parameters and variables. To get a concept
of time in the simulation we need to control the progression of time on each
controller. The application code is scheduled by the RTEMS Operating System
(OS). On target, the OS clock is ticked by an interrupt from the main hard-
ware clock once every millisecond. In the simulation we can move the OS clock
progression from the interrupt context to the idle thread. Here it is possible to
execute the OS clock progression every time the program returns from the main
Linux process. When the system returns back to idle, meaning that all RTEMS
tasks has been executed, we determine that 1 millisecond has passed. Meaning
that every time the main process releases the mutex blocking a controller, 1 mil-
lisecond of simulated time will progress locally on the specific controller. This
is of course a very hard assumption, where we are basically assuming unlimited
processing power, meaning that all tasks will finish and never be interrupted be-
fore returning to idle. This could cause the simulation results to deviate from a
real stochastic execution. However, it ensures a deterministic simulation which
is important during control algorithm development and regression testing. Our
system is currently dimensioned with sufficient computational power for this
to have no significant consequences. And significant testing of computational
overhead and stochastic temporal aspects will still be performed on the HIL
test-bench.

Now the main Linux process is able to control the individual time on each node
with a resolution of one millisecond.

3.3 Interrupt Implementation

One of the ambitions with this project was to enhance the SIL simulation efforts
to increase early stage test coverage and reduce time spent on HIL test-benches.
With the simulated progression of the OS clock, we are able to test the appli-
cation and functional layers of the system, but there are many low-level aspects
of an embedded system that are also relevant to simulate. Interrupts are sig-

3.3 Interrupt Implementation 25

nals to the processor emitted by software or hardware indicating an event that
needs immediate action. When an interrupt occurs, the processor will finish its
current instruction and immediately switch to the interrupt routine. In the SIL
simulation we have no hardware that can produce these interrupts, so they will
have to be simulated. This section will show how some of the interrupt routines,
important to the ECS simulation, has been implemented and scheduled.

3.3.1 Idle Event Scheduler

Introducing multiple events in the simulation will require some sort of schedul-
ing. Our access to the controller execution is the idle thread as described pre-
viously. In the idle thread, we can create an event scheduler called the "Idle
Event Handler" that can be used to manipulate the execution and progression
of the controller simulation. The OS clock tick is converted to an event that
reoccur every millisecond. Interrupt routines will also be implemented as events
in the Idle Event Handler, as will be described in the sections below. To ensure
temporal execution of events, we need a simulated local concept of time on the
controller, from now on called System Time. The System Time is implemented
as a free running 64-bit counter, called the system clock, similar to the free
running counters available on the FPGA. The system clock is controlled by the
idle thread, which means that our re-implementation of the idle thread has full
control of the timely aspects in the simulation. The resolution of the system
clock was chosen to be 1 µs by analysing the frequency of the events to be sched-
uled, the resolution is simulated and could be changed if required. Every time
an event occur in idle, the system clock is progressed to the time instance of
the event e.g. an OS tick will progress the System Time with 1 ms and a higher
resolution event with a pulse of 200 MHz will progress the System Time with 5
µs.

On figure 3.3, we see how the Idle Event Handler is implemented as a Class with
an event element structure consisting of a Time; the system time of the event,
Context; context object of the event origin, and Callback; the callback function
the event should execute. The Idle Event Handler is accessible throughout
the controller code where modules can subscribe/unsubscribe/update their own
events to be scheduled in the idle thread and not the RTEMS scheduler. Every
time the system reach the idle thread, the callback to the main process will be
executed, blocking the controller and handing over control to the main Linux
process. The main process can access the Idle Event Handler on each controller
and get the System Time of the next local event. In this way the main process
can evaluate local time on each controller and schedule the execution of multiple
controllers in global time. When the idle callback is released the system clock
is progressed to the time of the event and the event callback is executed.

3.3 Interrupt Implementation 26

BSP_Idle_Thread()

While(!MainExit)

Idle_Callback()

Idle_Event_Handler::Event_execute()

When Released

Idle_Event_Handler::System_Clock_Increment()

Idle_Event_Handler Class

Public:

Private:
Struct Event_Element
{
 uint64_t Time;
 void* Context;
 Deletage<Void*,uint64_t> Callback;
}

uint64_t Get_Next_Event()
void System_Clock_Increment()
void Event_Subscription()
void Event_Unsubscribe()
void Event_Update()
void Event_Execute()

Main
Process

Release
Lock

Idle_Event_Handler::Get_Next_Event()

Figure 3.3: Idle Event Handler.

3.3.2 High Precision Timers

The engine control system has many control objectives that require a higher
frequency and priority than the 1 ms OS clock progression. Controlling com-
ponents like the FIVA-valve (Fuel Injection Valve Actuator), a 100 MHz high
precision timer is used to create interrupts. In the application, developers can
register a callback function to a high precision timer interrupt and define a spe-
cific interval or a certain time for the interrupt signal to occur. In hardware this
will result in the HAL setting up registers for the timer to create the electronic
alerting signal at the correct time. To simulate the same functionality, we have
replaced the register setup with an event subscription to the Idle Event Handler
in the idle thread. The subscribed event contains the System Time when the
interrupt should occur, the full context of the high precision timer class and a
callback function that is able to execute the high precision timer delegate from
the application.

3.3.3 Time Synchronized Pulse

The Time Synchronized Pulse (TSP) is a finite state machine based on a tran-
sition table defining the current, next and error states of a timer interrupt pulse
that the user can continuously regulate. TSPs are used e.g. on digital outputs
doing fuel injection. From the high frequency Tacho network packages (con-
taining crankshaft position information) and the fuel index requirement, the
application will calculate a pulse with a start time (microseconds in the future)
and pulse width for when a digital output needs to start injection and for how

3.4 Simulation Orchestration Manager 27

long the injection should last. When the calculated injection position of the pis-
ton gets closer, the application will continuously try to synchronize the pulse to
achieve an optimal injection profile. The TSP state machine monitors the pulse
request against the globally synchronized IEEE 1588 clock and moves the DO
activating through the different states; Idle → Prepare → Armed → Activated.
While the digital output is Armed the pulse can be corrected, but once the DO
is activated only the pulse width can be manipulated.

The simulated version of TSP has been implemented similar to the high precision
times. When a new TSP is created in the application, an event is subscribed to
the Idle Event Handler, instead of writing to registers in hardware. Whenever
the application wish to optimize the pulse, the event will be updated in the Idle
Event Handler.

The simulated version of the 1588 clock is connected to the system clock con-
trolled by the idle thread. This means that the idle thread has full control of the
timely aspects in the simulation, and the 1588 distributed clock synchronization
is not relevant to the simulation because the distributed clocks will always be
in sync. The TSP state machine does not need to constantly monitor the 1588
clock. We always know the exact time of either an TSP pulse optimization or
idle event execution, an therefore also the time when the state machine needs
to evaluate its state and make the transition required.

3.4 Simulation Orchestration Manager

For scheduling a temporal execution of multiple controllers a simulation orches-
tration manager has been developed in the main Linux process. On figure 3.4
the manager has been illustrated. First the controller shared libraries, called
nodes, are loaded into the process and stated in individual threads, enabling
multi-threaded execution. The idle callback functions are connected to the idle
thread and a simulation main loop is started. The simulation loop will wait for
all nodes to return to idle where they will execute the callback to the manager.
Once all nodes are stopped the manager ask for the next event time of all nodes.
The event time closest to the global time will be the next global event time. All
nodes who has an event occurring at the next global event time will be executed
in parallel. When all nodes are back in idle the next global event time will once
again be calculated.

3.4 Simulation Orchestration Manager 28

 Controller

 Shared Library

 Controller

 Shared Library

 Controller

 Shared Library

RTOS (RTEMS)

MAN Application Framework (BES)

Application

MAN HAL Altera HAL

 Simulation Orchestration Engine

 Main Linux Process Executable

Load Shared Libraries

Connect Idle Callback Delegate

Start Nodes in Dedicated Threads

Simulation Loop

Wait: All Nodes In Idle

Board Support Package

 Idle Thread

Idle Callback Function

Get Next EventGet Next Events

Execute Events

Lock

Release

Figure 3.4: The simulation orchestration manager.

3.4.1 Network Simulation

When simulating a distributed system the communication between nodes is
important. The main type of communication between nodes in the ECS is the
Ethernet network. With the possibility of introducing interrupts and replacing
hardware specific layers of the software, it is also possible to model the network.
We only need to replace the hardware network driver with a simulated version.
With this solution we maintain all the above layers of the network such as the
Ethernet Interface and the network protocols, including the MD&T developed
Control Net.

As illustrated on figure 3.5, the Ethernet interface is a OS task that contain
the network driver base class from which the simulated network driver is de-
rived. The driver inherits from the network receive class (Network RX). Net-
work RX is running as an OS task and protected by a semaphore. The sim-
ulation driver uses the class to dispatch packages into the application through
the "Process_Package" method when the OS is scheduled to receive packages.
The network simulation driver offers the same interface as the hardware driver
but instead of connecting to the physical network adapter we connect to a port
class located in the simulation manager of the Linux process. The connection
is created through a "Link_Callbacks()" method that has been exported from

3.4 Simulation Orchestration Manager 29

Port

std::list<Network Package*> port_to_switch
std::list<Network Package*> switch_to_node

Switch

void Connect_Port(Port)

void Package_Destination(Network Package)

Network Package

char Packet [1536]
unsigned Lengthvoid Disconnect_Port(Port)

void Process_Input_Packages()
void Process_Buffer()
bool Next_Delivery(uint64_t*)

uint64_t Transmission_Time

void Create_Callbacks()
void Send(char buffer[1536],unsigned length, void* context)
void Receive(char buffer[1536],unsigned* length, void* context)

std::map<MAC,Port*> port_map
std::list<Network_package*> package_buffer;

typedef void (*signal_net_isr_t)(uint64_t net_event_time)
signal_net_isr_t signal_net_isr

Manager Context - Linux Process

Controller Context - Shared Library

Network Driver Sim

void Init()

Network Driver (Base Class)

<<Interface>>

Ethernet

Network Driver* Driver

void Init()

OS task

int Priority
char ID

Network RX

Semaphore Netrx_sem

void Schedule_Poll(void* driver_context)
Nework Package* Process_Package(Nework Package)

Link_Callbacks()

void Send()
void Poll()
void Signal_net_isr(uint64_t net_event_time)

const char MAC_ADDRESS
typedef int(*receive_t)(char buffer[1536], unsigned* length, void* port_context);
typedef void(*send_t)(char buffer[1536],unsigned length, void* port_context);

int Frequency

void Start()
void Stop()

Network Driver (HW)

Semaphore Port_sem

Control Net (MAN Net Protocol)

Dispatch

Figure 3.5: Class diagram of network driver.

the controller shared library. This method enable the "Send()" method of the
driver to call the "Send()" method of the port, the "Poll()" method to call the
"Receive()" method and the port function pointer "signal_net_isr" to call the
"Signal_net_isr()" method of the driver. The Port class contains two lists of
network packages; one for packages coming from the node to the switch and an-
other from the switch going to the node. The lists are shared resources between
the nodes and the switch and have to be protected by the port semaphore.

It is important to notice that the manager and controller are running in two
different contexts. The manager is running in the Linux kernel with its own
memory space and the controller is running in the RTEMS context within its
own thread and predefined memory space. This essentially means that calling
the "Send()" method of the port from the controller context will make the
controller thread execute a Linux context method. The issue occur when the
controller wants to push a package on the "port_to_switch" list, which is in
the Linux memory space. We have solved this issue by passing the port object
as a void∗ though to the network driver. In the same way when the simulation
manager tells the controller that network packages are ready to be received, we
imitate a network interrupt signal routine by execution the "Signal_net_isr"
callback. The callback interrupt is not allowed to execute, as it comes from a
Linux context, instead it schedules a high priority OS task to receive network

3.4 Simulation Orchestration Manager 30

packages through the Network RX "Schedule_Poll". While doing this we need
to disable the OS thread dispatcher to make sure no underlying threads are
allowed to execute. The "Signal_net_isr" also subscribe an event to the idle
event handler of the controller, in this way the manager can release the idle
callback which will execute the newly scheduled network rx task and the driver
"Poll()" method will start receiving packages from the port and processing them
through the Network RX "Process_Package".

To distribute packages between nodes a virtual switch has been implemented in
the Switch class. During the simulation initialization, the ports of all nodes are
connected to the switch and added to a map with their MAC address as key.
From the simulation orchestration manager the "Process_Input_Packages()"
method can be executed which moves the network packages from the Port lists
"port_to_switch" to the "package_buffer" list of the switch. The manager can
evaluate the transmission time of the network packages in the buffer list and
schedule the moving of packages to the port list "switch_to_node" through the
"Process_buffer" method, according to their destination MAC address from
the Ethernet packet frame. This is followed by signaling the node to schedule
receiving of packages through "signal_net_isr".

3.4.2 SystemC Network Simulation Library

In the early stage of this research we focused on an independent model of the
network topology connecting nodes through the FMI co-simulation interface, as
will be described in further detail in chapter 4. This solution was disregarded
in favor of the network driver simulation described above.

The network model utilized the SystemC Network Simulation Library (SCNSL
Fummi et al. (2008)) to model the network. The SystemC Network Simulation
Library is an extension to SystemC Design Automation (2012) that makes it
possible to jointly design HW, SW and network in a single simulation tool.
Using the SCNSL simulation kernel, testers and developers would be able to
define simulation scenarios where protocols can be replaced and the connection
between nodes can be configured to alter propagation speed, delay and priority.
SCNSL handles the scheduling of the tasks and tracing of relevant reference
and output signals. The aim was to do validation and fault injection to test the
limits of the engine control system network.

The library provides 5 key elements, as described in Paper et al. (2015) and
chapter 8:

3.4 Simulation Orchestration Manager 31

• Kernel: The kernel is responsible for the execution of events in the correct
temporal order and behaviour of the communication channels with features
like propagation delay, byte-rate etc.. Since SCNSL is an extension to
SystemC it exploits the SystemC scheduler by mapping network events on
standard SystemC events.

• Node: A node is the active element of the network, it produces, trans-
forms and consumes transmitted data. The node implementation is de-
coupled from the network simulation which makes it possible for system
designers to e.g. change abstraction level, do fault injection, synthesis and
validation.

• Packet: In packet-switched networks the packet is the unit of data ex-
changed among nodes. In general the packet format is highly dependent
on the corresponding protocol. SCNSL does not provide a set of proto-
cols and packet formats, but uses an internal format and lets the designer
implement the protocol design on the specific node.

• Channel: A Channel represents the physical medium which connects two
or more nodes. It can be either a point-to-point link or a shared medium.
Multiple channel types are supported; Unidirectional, Half/Full-Duplex
and shared.

• Port: Every node uses ports to send and receive packets.

A model of the engine control system network was created as illustrated on Fig.
3.6. All nodes are connected, by Ethernet cables, to a switch located in either
the engine control room or engine room. Cables are represented by channels in
SCNSL, where bit-rate and delays can be adjusted between ports. Each con-
troller is implemented as a SCNSL-node-instance and consists of an input and
output controller. In this way it is possible for developers to implement differ-
ent protocols etc. and investigate the effects on the control system. Network
packages are delivered to the node through the simulation kernel, activating the
input controller thread upon arrival. Switches are implemented in the same
manner as node-instances. Standard switches simply forward communication,
but through simple customization they can become a key element for inves-
tigating network improprieties. The prioritization of the network packages is
done using the SCNSL-embedded channels that makes it possible to prioritize
packages on kernel level before arriving to the switch.

By implementing the FMI standard in the SystemC simulation kernel it was pos-
sible to distribute network packages between controllers implemented as inde-
pendent sub-systems in the co-simulation. The solution was disregarded mainly
because of improprieties with the FMI standard and the workload of imple-
menting already developed network protocols ect. in SCNSL. As will also be

3.4 Simulation Orchestration Manager 32

Engine Room

Ethernet
Switch

TIUACU ECU

CCU1 CCU2 CCU(n)

SCU

Ethernet
Switch

EICUMOP
Switch:

IEE 802.3, store
and-forward
Switching

IEE 802.1D/P
Priority

SCNSL Node:
Communicator
Priority Protocol

Switch Protocol
design

SCNSL Node:
Input/Output Controller

Network interupt:
Packet recived

Amount of CCU
units corresponds
to the amount of
cylinders (4-12)

Ethernet Cables

SCNSL Channel:
Adjustable bit-rate
and transmission

delay

Engine Control Room

Figure 3.6: Simplified Network model of the engine control system on a MD&T
engine.

described in chapter 4, the FMI standard limits the amount of data-types that
can be used. Transferring network packages through FMI was done as strings
(char*) with predefined size. It is not possible to stack packages in e.g. an array
or struct, and each package has to be received and sent through individual Get()
and Set() calls, which is not very efficient. The efficiency of the FMI standard is
in general very sensitive to the amount of inputs and outputs. The main reason
for not moving on with the model however, was the workload required by de-
velopers to translate already implemented functionality to SCNSL as compared
to the network driver simulation in section 3.4.1. The SCNSL Model developed
is not completely disregarded and could be used as mock-up for future inves-
tigations, if the ECS network has to undergo significant change. Results from
the SCNSL and FMI co-simulation are presented in chapter 8 and Paper et al.
(2015).

3.5 Chapter Summary 33

3.5 Chapter Summary

This chapter aimed to fulfill the first objective from section 1.1; To simulate
the distributed embedded control systems with multiple controllers and their
communication in a single coherent simulation. We have presented how the
application software is cross-compiled to either target or PC making it possi-
ble to execute the controller application on a developers PC. Cross-compilation
was part of the development process before this research. We showed how the
idle thread in the BSP layer of the embedded software architecture can be ma-
nipulated to control the execution of the controller instance. By introducing a
blocking callback function to a simulation orchestration engine it is possible to
control execution in deterministic manner. To ensure a deterministic and tempo-
rally correct simulation, an event handler was introduced in the idle thread. All
events, such as OS progression and interrupts, that normally would be scheduled
by hardware/software timer interrupts, can be subscribed to the event handler
and scheduled by the simulation orchestration engine. To get a concept of time
and ensure temporal integrity, a simulated system time is introduced as local
controller time. The system time is progressed by the event handler, that know
exactly at what time each event occur. Making the assumption that all tasks
can always finish execution and not be interrupted, we get a representation of
time that is deterministic and can be used to execute multiple controllers in a
temporally correct manner. A considerable part of a distributed system is com-
munication. In the engine control system the communication is Ethernet based.
With the ability of replacing hardware specific functionality and introduce in-
terrupt events in the idle event handler, it is possible to replace the controller
network driver. In the simulation orchestration engine a virtual switch was cre-
ated, distributing network packages between ports connected to the simulated
version of the network driver. With a delegate structure, the manager can move
packages between the controller and Linux context and signal a network inter-
rupts on the controller which processes packages thought the controller software
using original protocols ect. As a result of the solutions presented in this chap-
ter, it is possible to simulate the complete distributed embedded control system
and its communication in a deterministic simulation.

Chapter 4

Embedded System
Co-Simulation

Designing embedded systems for the control of a physical plant, the required
fidelity of the plant model is highly dependent on the complexity of the control
algorithms to be designed. Fundamental differences in the development process
and tool-chain of embedded control system development and physical dynamic
modelling makes it difficult to design both, in a single modeling and simulation
environment. At MD&T increased system complexity, require the control sys-
tem development to use higher fidelity models than previously, to achieve a well
performing design. The development philosophy at MD&T has always been,
that the right tool should be used for the given task. This makes the amount of
tools available for engineers very diverse. Rather than forcing engineers to use a
single multi-domain tool, able to simulate the complete system, a co-simulation
approach has been investigated.

4.1 Concept of Co-Simulation

In co-simulation, sub-systems of a coupled problem are modelled and simulated
in a distributed manner. The goal of co-simulation is to verify as much of the
system functionality as possible before committing to a design. The modelling

4.1 Concept of Co-Simulation 35

of each sub-system is performed in domain specific tools and by domain experts
without the coupled problem in mind. The coupled simulation exchange data be-
tween sub-systems and manage simulation progression without knowledge of the
sub-system dynamics. Co-simulation sub-systems are typically weak-coupled
with a discrete communication patterns either parallel or serial.

Co-Simulation Interface

Engine Dynamics Engine Control System Auxiliary Systems Vessel Dynamics

Department A
MATLAB

Department B
In-House Tool

Department C
GT-Suite

Department D
Modelica

Figure 4.1: Co-Simulation Concept.

Developing engines for marine vessel population include multiple domains. As
seen on figure 4.1, both engine dynamics and auxiliary systems such as emission
reduction systems, turbo-chargers etc. and sometimes even vessel dynamics
has to be taken into account when developing control systems. At MD&T the
different domains are developed in separate departments with different tools.
The aim of introducing co-simulation is to enable cross department collaboration
and to make it possible to share models reducing redundant modelling efforts.

4.1.1 Co-Simulation Approach

As discussed in the survey section 1.2 FMI has been chosen as co-simulation
standard. The main advantage of the FMI standard is its diversity and flex-
ibility. FMI is based on C-code, making it platform independent and require
nothing more then a C-compiler. Subsystem information is described in a simple
manner with an XML model description, making the interconnection configura-
tion between subsystems easy to manage. FMI provides an application interface,
with a state machine, that needs to be implemented. This state machine ensure
that each subsystem is simulated in a similar fashion and that execution and

4.2 The Functional Mock-up Interface 36

communication within the system is temporally correct. Even though a full ap-
plication interface needs to be implemented, it is only the function calls that are
required by the standard, how they are implemented is completely free. Imple-
menting the standard to a custom simulation requires some effort. This process
is, however, well documented and exemplified in the FMU SDK from QTronic
and the FMI++ library Widl et al. (2013), making the task manageable.

The high level of flexibility come with some constrains. Especially, the way
data is exchanged between subsystems is limited. Data types are restricted to
"Real","Integer","Boolean", "char", "Byte" and "String". It is not possible
to exchange e.g. arrays or any advanced data-objects, which can be inconve-
nient. In our embedded system software most data-types are fix-point types and
similar. This requires a conversion layer between FMI data-types and internal
data-types. Furthermore, the data-exchange is based on a Get/Set functional-
ity, when the system and connection amount grows this become a significant
execution overhead.

Conclusively, the FMI standard provides the flexibility needed to co-simulate
our distributed control system and opens up for interconnection with a vast
amount of tools already in our organization. The following section will describe
the FMI standard and how it has been implemented.

4.2 The Functional Mock-up Interface

The Functional Mock-up Interface (FMI) is a tool-independent standardized
interface for coupling of sub-models. Initiated by Daimler AG under the MOD-
ELISAR ITEA 2 ITEA Office Association (2015) European project, the FMI
development aimed to improve the exchange of simulation models between sup-
pliers and OEMs. The first version of FMI was published in 2010, followed by
FMI 2.0 in 2014. FMI 2.0 supports two ways of using the standard, FMI for
model exchange and FMI for co-simulation. In FMI for model exchange sub-
models are generated into Functional Mock-up Units (FMU) to be utilized by
another modeling and simulation environments. The holistic simulation is then
performed in a single tool and solver. FMI for co-simulation is used to couple
simulation environments instead of models. This means that both models and
solvers are compiled to the FMUs. Each sub-system is solved independently
with their own unique solver. Data-exchange between sub-models and synchro-
nization of all sub-system solvers is restricted to discrete communication points
and governed by a master algorithm. In this dissertation we will only discuss
the FMI for co-simulation standard.

4.2 The Functional Mock-up Interface 37

Functional Mock-up Units are the sub-system components of the FMI standard.
A FMU is an archive file consisting of a model description XML file (modelDe-
scription.xml) describing how the sub-system is connected to the rest of the
simulation, a compiled C dynamic link library of the FMI application interface
is wrapped around the actual sub-simulation to be executed. Besides from the
model description and the C library the FMU can also contain documentation
and any other resources, like libraries or configuration files, if needed by the
simulation.

4.2.1 Model Description

The model description is a XML schema that contains all the information about
the co-simulation setup, required to connect to the sub-system (slave). Fig. 4.2
show the top-level of the schema, it should be noticed that not all components of
the schema are required (Illustrated on figure 4.2 where boxes and connections
with – are required and - - optional). This dissertation will only discuss the re-
quired configurations, for further information please refer to FMI documentation
Blochwitz et al. (2012).

Figure 4.2: Model Description Schema.

All FMUs have to specify their FMI version, Model name and a Globally
Unique IDentifier (GUID). The essential part of the schema is the ModelVari-
ables, here all the variables exposed by the FMU to the simulation manager

4.2 The Functional Mock-up Interface 38

(master) are defined. The ModelStructure is necessary for handling the order
of outputs exposed, possible derivatives and states for linearization, together
with the unknowns during initialization. An important part of the schema
for co-simulation is the fmiModelDescription→CoSimulation→Attributes see
Blochwitz et al. (2012). Here the capability flags, that define the capabilities of
the co-simulation subsystem, are defined. The capabilities available are:

fmiModelDescription-CoSimulation-attributes:

- modelIndentifier
Unique name for the manager to distinguish between FMUs.

- needsExecutionTool
If the FMU need a tool to execute e.g. if the tool needs to access the
MATLAB MEX compiler to execute.

- canHandleVariableCommunicationStepSize
If the slave solver can handle variable step size.

- canInterpolateInputs
If the slave is able to interpolate continuous inputs.

- maxOutputDerivativeOrder
Maximum order of output derivatives.

- canRunAsynchronuously
If the slave allows for asynchronously call of the step function.

- canBeInstantiatedOnlyOncePerProcess
If the FMU can only exist in a single instance per process.

- canNotUseMemoryManagementFunctions
If the slave does not allow memory management functions.

- canGetAndSetFMUstate
If the manager can change the state of the slave.

- canSerializeFMUstate
If the FMU can be serialized.

- providesDirectionalDerivative
If the slave directional derivative can be calculated at communication
point.

These capabilities are used by the FMI manager to orchestrate the holistic
simulation between multiple FMUs.

4.2 The Functional Mock-up Interface 39

4.2.2 Application Interface

FMI provides a standardized application interface that defines how to execute
a FMU from a simulation manager. The purpose of the interface is to have
both textual and binary representation of a FMU that is similar across several
sub-systems. The interface is delivered as 3 header files:

fmi2TypesPlatform.h
Platform specific type definitions for all input and output arguments of
the functions. Instead of C types, alias types are defined to simplify port-
ing. Input and output types are limited to Real[double], Integer[int],
Boolean[int], Char[char], String[const char∗] and Byte[char].

fmi2FunctionTypes.h
Type definition of data types and all function prototypes.

fmi2Functions.h
The function prototypes of the API to be implemented in and exported
from a dynamic link library, and accessed in the FMI simulation manager.
The most important functions to be implemented are illustrated on figure
4.3 and will be described further below.

The FMI standard is contains a state machine illustration, as seen on 4.3, that
describe the calling sequence from the simulation manager (master) and the
sub-system FMU (slave).

Instantiated
The simulation manger calls the fmi2Instantiate function to bring the
FMU in the Instantiated state. Here all initial and approximated vari-
ables are determined and set with the fmi2Set functions. Simulation
configuration parameter are set by the fmi2SetupExperiment.

InitializationMode
Inputs and initially unknown variables are calculated and set by the fmi2Get
and fmi2Set functions.

SlaveInitialized
This state is initiated when the slave has been initialized. It is here that
the actual step calculations are performed. All inputs and outputs are
updated when the step function fmi2DoStep is executed. Depending on
the outcome of the step progress, the following state is either "stepCom-
plete","stepFailed" or "stepCanceled" which are self-explanatory.

4.3 FMI for Embedded System Software 40

Figure 4.3: State Machine Co-Simulation.

terminated
The simulation is terminated and the final results of the simulation can
be retrieved

The application-interface is compiled as a dynamic link library either a linux
shared library or microsoft DLL. The binary or multiple binaries for cross com-
patibility are placed in the binaries directory of the FMU archive file.

4.3 FMI for Embedded System Software

In order to co-simulate our engine control system together with any of our
physical dynamic tools we need to implement the FMI standard into the SIL
simulation of the ECS described in chapter 3.

4.3 FMI for Embedded System Software 41

4.3.1 Engine Control System FMI Implementation

The FMI application interface introduce a set of function prototypes to be imple-
mented and exported through a dynamic link library. In this section we describe
how the interface has been implemented within the engine control system sim-
ulation. The actual implementation of each function will not be described but
an overview of how the implementation connects to the ECS simulation will be
provided.

Simulation Orchestration EngineFMI API

DLL_EXPORT

fmi2Instantiate()

Load Shared Libraries

Connect Idle Callback Delegates

Start Nodes in Dedicated Threads

Controller API

DLL_EXPORT

Factory

Set_idle_callback

main_

Set_net_callback

Signal_net_isr

Connect Network Delegates

fmi2Get()

fmi2Set()

Proxy Data

Switch & Ports

fmi2DoStep()

Controller

Datatype

Convertion

Main()

Data Tree
Parameters & Variables & IO

 Idle Thread

Get Next Event

Simulation Loop
(Loop Condition from fmi2DoStep())

Wait: All Nodes In Idle

Get Next Events

Execute Events

NetworkDriver

Get_next_event

Idle Callback Function

Figure 4.4: FMI Implementation.

As seen on figure 4.4, the Simulation Orchestration Engine (SOE) from section
3.4 has been compiled to a shared library that exports the FMI API. This
library is the main library in the FMU. The fmi2Instatiate() function is the
one loading the shared libraries of all the controllers in the ECS simulation. Each
controller is started in a dedicated thread by calling their main function through
the Controller API exported from the controller shared library. Idle callbacks
and network ports are connected as described in chapter 3. The fmi2DoStep()
is the function that progress the simulation and is called between every discrete
communication point. From the FMI manager algorithm, the current time and
communication time step will be passed on to the SOE simulation loop. The
simulation loop will simply advance with the communication time step and
perform the events on all controllers that need to be executed, by accessing their
idle event handler and updating the network communication. Between every
step in the FMI simulation, communication between sub-systems should be

4.4 Co-simulation of SCR Heating Model and ECS 42

performed. The FMI standard introduce a Get/Set functionality, where a Get()
and Set() method has to be implemented for each FMI datatype (Real, Integer,
Boolean, Char, String, Byte). Like most embedded systems the controller data-
types are implicitly defined to make sure they fit the hardware. To translate
between FMI data-types and controller data-types a conversion layer has been
implemented. To map the FMI variables to ECS data-tree parameter, IO or
variables, we have put an extra constraint on the model description by requiring
the name of a scalar-variable to correspond with the unique ID of a data-object
in the data-tree of controllers. As can be seen on the model description xml
in listing 4.1, the ScalarV ariables in the ModelV aribles tag, has a name
attribute corresponding to a data-object ID in the ECS which maps to the
valueReference attribute used by FMI. When the FMI API calls the Get() or
Set() method with a valueReference, we can use the modelDescription.xml to
get the ECS ID. With the ECS ID it is possible to ask the controller what data-
type the specific ID has. Using a template implementation, a standard C map
can be created mapping between FMI an controller data-types e.g. controller
types; Fixpoint-16, float or double can be mapped to a FMI datatype Real. It
is also the ECS ID which is used to create the proxy instance of a data-object
in the SOE through the Factory of the Controller API.

1 <?xml version="1.0" encoding="utf-8"?>
2 <fmiModelDescription
3 fmiVersion="2.0"
4 modelName="ECS"
5 guid="{xxxx}">
6

7 <CoSimulation
8 modelIdentifier="ECS"
9 canHandleVariableCommunicationStepSize="true"/>

10

11 <ModelVariables>
12 <ScalarVariable name="ECS_ID" valueReference="0">
13 <Real start="1"/>
14 </ScalarVariable>
15 </ModelVariables>
16 </fmiModelDescription>

Listing 4.1: ModelDescription.xml

4.4 Co-simulation of SCR Heating Model and ECS

With the co-simulation setup, it is now possible to express physical dynamics in a
tool for continuous time simulation and co-simulate it with the ECS simulation.
In paper Pedersen et al. (2016) and chapter 9, a simple reactor heating model
of the Selective Catalyst Reduction (SCR) system was created in Ptolemy II

4.4 Co-simulation of SCR Heating Model and ECS 43

Liu et al. (2001); Brooks et al. (2010) and co-simulated with the Engine Control
System simulation as presented below.

4.4.1 SCR Heating Model

To comply with emission regulations, set forth by the IMO (Organization.,
2013), for reduction of NOx, a SCR emission-reduction system can be installed
on the vessel. The SCR system will redirect the exhaust gas from the exhaust
manifold through a vaporiser and mixing chamber, where a reducing agent (am-
monia/urea) is injected into the gas. This gas mixture is then passed through
the SCR Reactor of catalyst chambers where the selective catalytic reduction
process will be performed to significantly reduce the amount of NOx, as seen
on figure 4.5.

Figure 4.5: Air-path model of the Selective Catalytic Reduction.

The control system has to balance the air flow between the SCR system for emis-
sion reduction and the turbine-inlet of the turbo-charger for providing sufficient
scavenge-air pressure for the scavenge and combustion processes. To regulate
this balance the control system has three valves for the distribution of exhaust
gas. The Reactor Sealing valve (RSV) connects the exhaust receiver manifold
with the vaporiser and mixing chamber and the reactor. The Reactor Bypass
Valve (RBV) can redirect exhaust gas directly to the turbine-inlet. For the SCR
process to work properly the reactor has to reach an optimal temperature range

4.4 Co-simulation of SCR Heating Model and ECS 44

between 350 ◦C and 450 ◦C. To heat up the reactor, the Reactor Throttle Valve
(RTV) can reduce or increase the amount of gas leaving the reactor and thereby
control the heating of the reactor and balance the pressure to the turbine-inlet.

The control algorithm for the RTV valve, uses the error calculation between
the reactor input and output temperature as a reference-residual signal for con-
trolling the valve position. In this simplified model, the heating of the reactor
is modelled as a time delay and the resulting SCR output temperature passed
back to the SCR Controller. We will show that it is possible to co-simulate and
investigate the dynamic interaction between a physical dynamic model and the
actual control software.

The output temperature can be modelled as a relationship between the RTV
position, the flow through the reactor and the input temperature. Resulting in
two low-pass filters with a significant time constant. The inputs to the model is
provided by the control system simulation.

The mass flow into the reactor Ṁ is estimated from the engine load L.

Ṁn = Ṁn−1 +
L− Ṁn−1

1 + τScavenge · T
(4.1)

where T is the sampling frequency.

The time constant of the reactor output temperature, is estimated as the RTV
valve opening with the mass flow plus a time constant, converted into seconds.

τout = (Ṁn ·RTV + τreactor) · 3600 (4.2)

Finally the output temperature is calculated as:

Tscroutn = Toutn−1 +
Tscrin + Toutn−1

1 + τout · T
(4.3)

This is of course a simplified approach, however it proves to show, that it is
possible co-simulate the actual control system software together with a thermo-
dynamic model executing in a different tool.

4.4.2 Co-Simulation Configuration

On figure 4.6 the configuration of the co-simulation is illustrated. The open-
source simulation framework Ptolemy II was chosen due to its heterogeneous

4.4 Co-simulation of SCR Heating Model and ECS 45

SCRCU

Ptolemy II

SCRI2SCRI1

ESU

ECS FMU

Figure 4.6: Configuration of Ptolemy II and ECS co-simulation.

actor-oriented design and comprehensive support for different software compo-
nents including a FMI-interface as described in Broman et al. (2013). The ECS
FMU described in chapter 4.3 was imported as a co-simulation actor and auto-
matically configured by Ptolemy using its model description. The graphical user
interface of Ptolemy, ”V ergil”, was used to implement the equations from above
and connected to the FMU inputs and outputs. A simulation scenario, manip-
ulating the control system, is likewise described in Vergil and connected to the
input ports of the FMU. The scenario sets the internal reactor start tempera-
ture, engine speed set point and imitates operators interaction with the control
system through the HMI EC-MOP. After 700 seconds a simulated EC-MOP
command is sent to the SCR controller to activate the SCR control strategy.

4.4 Co-simulation of SCR Heating Model and ECS 46

A Synchronous dataflow (SDF) director was chosen to execute the simulation.
The SDF director is appropriate since we have a predictable and regular execu-
tion of the FMU. At regular communications points inputs/outputs are updated
in a predefined order.

In the ECS FMU four controllers have been included. The SCR control strat-
egy is implemented in the SCR Control Unit (SCRCU) and the SCR Interface
Units (SCRI1 & SCRI2) connects to the engine through I/O’s. To have a full
simulation of the SCR system, more models than the reactor heating model
is required. As described in 2.3 an Engine Simulation Unit (ESU) containing
multiple engine models is available for doing SIL and HIL testing. The ESU
has been used to provide the missing models required for doing a complete SCR
simulation. Ptolemy connects to the SCRCU, where it recived the engine load
and manipulate the speed set-point, reactor start temperature and engine com-
mands. The input temperature is given to the Ptolemy model from the SCRI1
and the RTV valve opening from SCRI2.

4.4.3 Co-Simulation Results

Figure 4.7: The in- and output temperature of the simulated SCR heating.

The result of the SCR reactor heating is presented on figure 4.7. Here we
see how the SCR start command is sent at 700 seconds and the SCR reactor
out temperature starts to increase. The simulation has the expected low-pass

4.4 Co-simulation of SCR Heating Model and ECS 47

behaviour and takes approximately 1.5 hours to heat up, which is expected.

Figure 4.8: Valve feedback from the SCR simulation.

The valve control signals from the ECS simulation is plotted on figure 4.81.
When the SCR activation occurs, the RTV and RSV valves start to open. The
RTV valve is clearly trying to heat the reactor by building up pressure while
balancing the flow to the turbocharger. This actuation is filtered from the
temperature output by the low-pass behaviour of the reactor, as expected. As
soon as the RTV valve is fully open the RBV valve can be closed, and output
temperature keeps increasing until it eventually reaches the inlet temperature.

We clearly see that the co-simulation is working as intended and it is possible to
implement part of the physical dynamic modelling in a tool like Ptolemy. With
this setup it is possible to implement higher fidelity models than those developed
for HIL in the ESU, in a tool appropriate for physical dynamic modelling.

1In the published paper Pedersen et al. (2016) the legends on Figure 10 are mixed up. The
results presented on figure 4.8 are correct.

4.5 Chapter Summery 48

4.5 Chapter Summery

This chapter discussed the reasons for choosing the Functional Mockup Interface
as co-simulation standard. It was described how the standard was implemented
in the engine control system simulation. The FMI application interface was
wrapped around the Simulation Orchestration Engine (SOE) and compiled as a
shared library with the FMI methods exported. The FMI step function provides
the loop conditions for the ECS main simulation loop, and controllers are loaded
as shared libraries within the SOE library. Inputs and outputs to the sub-system
are accessed through FMI Get() and Set/(methods in the SOE library and
mapped to proxy instances of controller variables. A conversion layer has been
implemented converting internal controller data-types to FMI data-types and
vice versa. An example using a SCR reactor heating model expressed in the
tool Ptolemy was co-simulated together with the ECS FMU. Results showed
that the co-simulation worked as intended and proved that it is possible to
have the control software simulated together with a physical dynamics model
expressed in a distributed simulator. As stated in the objectives from section
1.1, the co-simulation environment will enable engineers to better share models
and do more holistic system investigation and validation, utilizing a wider range
of tools. It is expected that the co-simulation approach will make it possible to
validate new systems and features at an earlier stage and reduce the time spent
on the expensive test-benches.

Chapter 5

Distributed Co-Simulation

Distributed simulation is the practise of executing a single simulation on a col-
lection of loosely coupled processors, e.g. multiple PCs interconnected by LAN
or WLAN. As compared to parallel simulation where the simulation is tightly
coupled e.g. like the ECS simulation from chapter 3, where each controller is
given an individual thread so the Linux kernel can distribute the execution of
multiple controllers to multiple processors. Distributed simulation is often used
for analysis of complex systems such as transportation networks, next genera-
tion internet, military and professional training etc. Dealing with large systems
that are time consuming to simulate, distributed simulation can reduce execu-
tion time and make it possible to run large simulations utilizing more memory.
Distributed simulation are mostly connected by network interfaces that are both
platform and architecture independent, meaning that processes that are other-
wise incompatible can be simulated together, e.g. a Linux 32-bit process and a
Windows 64-bit.

5.1 Platform and Architecture Challenges

AMD&T control system development is performed in the SIL environment using
the Dynamic Simulation Environment (DSE) for developing physical dynamic
models to test new control algorithms. The DSE and SIL environment can be

5.2 INTO-CPS 50

compiled to the 32-bit target or cross compiled to a Linux 32-bit object to be
executed on the developer Linux PC. The DSE was developed with the main
purpose of enabling physical dynamic models to be executed in the SIL and
HIL environment. While DSE is powerful and important for the HIL testing it
is by design limited to low fidelity modelling, since models have to be able to
run real-time on the target hardware. With the increasing system complexity,
it is desirable to connect modern modelling tools for performing co-simulation
with the ECS and high fidelity physical dynamics models. In large organiza-
tions, department tool-chain and development environments will often deviate.
At MD&T software and control system development is done in Linux where
as detailed engine performance modelling is done on Windows in tools such as
GT-Suite and MATLAB/Simulink along side in-house developed tools. This
deviation in platform is a challenge for the newly developed co-simulation envi-
ronment. As previously discussed, it is not desirable to force a single tool-chain
upon all development, but rather have a co-simulation approach. To be able
to co-simulate a high-fidelity model, developed by performance departments in
e.g. Window 64-bit MATLAB/Simulink, together with the ECS SIL simulation
in 32-bit Linux, we need to be able to do a distributed co-simulation where
sub-systems can be distributed to the correct platform.

5.2 INTO-CPS

Figure 5.1: INTO-CPS Tool Suite.

5.3 Distributed Co-Simulation Orchestration Engine 51

The Horizon 2020 project INTO-CPS (“Integrated Tool-chain for the model-
based design of Cyber-Physical Systems”) Fitzgerald et al. (2015,0) aim to cre-
ate an integrated tool chain for model based design of Cyber-Physical Systems
Larsen et al. (2016). The tool-chain is illustrated on figure 5.1, supporting ev-
erything from requirements to final realization through multidisciplinary and
collaborative modelling of CPS Bandur et al. (2016). At the core of the tool-
chain is the Co-Simulation Orchestration Engine (COE), which is a fully FMI
2.0 co-simulation compliant manager supporting both fixed and variable step
size simulations. With the INTO-CPS COE being a FMI compliant manager it
is possible to use COE for co-simulation of the ECS simulation FMU.

5.2.1 Co-Simulation Orchestration Engine

The COE is developed in a combination of Java and Scala, which makes it multi-
platform and provides the simulation service through HTTP. Currently, two
methods for time-stepping are implemented; one for fixed time steps, and one
for variable time steps. The COE is capable of switching on stability checking
as well as using parallelism Thule and Larsen (2016). In addition to the base-
line tools incorporated inside the tool-chain, a number of other modelling and
simulation tools have been tested with the COE. This includes both commercial
tools such as Dymola, Modelon, SimulationX and Unity as well as additional
open source tools such as 4Diac. While the COE is multi-platform, it does not
directly support mixed-architecture (combinations of 32bit and 64bit architec-
tures) or mixed-platform (combinations of e.g. Windows and Linux) simulations
as required at MD&T.

5.3 Distributed Co-Simulation Orchestration En-
gine

In collaboration with the INTO-CPS team, a project was initiated to enable
their COE to perform a multi-architecture and platform co-simulation, able to
mix 32bit and 64bit code on both Windows and Linux. To realize such a dis-
tributed simulation, two processes with inter-process communication is required
by the host system, where one of them acts as the simulation master.

An extension to the COE was developed which is capable of both simulating
across architectures and platforms. A solution, where an extension point in the
COE allowed a custom factory to be used for FMU instantiation, was chosen.
An overview of the extension was realized as shown on figure 5.2. The COE

5.4 Co-Simulation of Engine Control System and Physical Dynamic Tools52

COE

Factory

FMU

*.fmu

Distributed Factory

Proxy FMU

Host 1

Daemon

FMU

*.fmu

Host 2

Transferred

Figure 5.2: Distributed Extension Overview.

uses the distributed factory to instantiate FMUs that require execution with a
different host configuration, either architecture or platform deviation.

5.4 Co-Simulation of Engine Control System and
Physical Dynamic Tools

Windows HostLinux Host

FMU

Distributed
COE

Daemon

FMI ECS Implementation

Shared Library Linux 32-bit

Controller

Shared Library (.SO)

Controller

Shared Library (.SO)

Controller

Shared Library (.SO)

BSP

HAL

Application

BES

RTOS

FMI
API

ModelDescription.xml

FMU

ModelDescription.xml

Dynamic-link library Win 64-bit

MATLAB

COE

Master

FMI

FMI

JAVA
RMI

Config.json

SOE

GT-Suite

Tool_x

Figure 5.3: Distributed Co-Simulation using INTO-CPS.

Using INTO-CPS with the extended Distributed Co-simulation Orchestration
Engine (DCOE), it is possible to co-simulate the ECS simulation together with
the Windows tools available at MD&T compliant with the FMI standard. As

5.5 Distributed Co-Simulation of EGR Water Handling System 53

seen on figure 5.3, the distributed COE runs a deamon service on the Linux
host that can connect to the master COE on the Windows host. The JSON
configuration file on the Windows host describes the distribution of FMU across
all available host machines and using Java RMI Oracle Corporation (2004) the
sub-system FMUs and communication is distributed.

5.5 Distributed Co-Simulation of EGRWater Han-
dling System

At MD&T a new cleaning system for NOx emission reduction, the Exhaust Gas
Recirculation (EGR) Water Handling System (WHS), was developed using the
traditional development approach. During final system validation on the engine
test bench it was discovered that the new control strategy did not work prop-
erly. The control strategy was developed in the SIL environment with physical
dynamics expressed in the DSE extension and tested on the HIL test bench
with the DSE model running in the Engine Simulation Unit (ESU). During the
preliminary investigations a MATLAB model of the new systems was devel-
oped. When moving to the detailed design this model was translated to the
SIL environment as a DSE model. During this translation, some abstractions
were made to ensure that the model could execute real time for HIL testing.
In this section we will present the results from the publication Pedersen et al.
(2017b) also presented in chapter 11, where it was investigated if the MATLAB
model, developed in 64-bit Windows, could be co-simulated together with the
32-bit Linux ECS simulation. The hypothesis was that the higher fidelity model
developed in MATLAB, could have foreseen the defects of the control strategy
that occurred during the expensive engine test bench validation.

5.5.1 EGR Water Handling System

The EGR system works by redirecting the exhaust gas from the exhaust mani-
fold to the scavenge-air intake manifold, thereby lowering the in-cylinder oxygen
(O2) level due to the high concentration of carbon dioxide (CO2) in the exhaust
gas. The exchange of O2 with CO2 leads to a decrease of combustion speed,
resulting in lower peak temperatures during combustion. Furthermore, it also
results in a higher in-cylinder heat capacity of the gas which also lowers the com-
bustion temperature. Lower combustion temperatures and especially lower peak
temperatures result in lower formation of thermal NOx during the combustion
process. The recirculated exhaust gas is very polluted compared to the residual
ambient scavenge-air. The gas has to be cleaned to prevent Sulphur (SO2) and

5.5 Distributed Co-Simulation of EGR Water Handling System 54

other particles from damaging the engine. The gas is cleaned by spraying it
with water and by cooling the gas to collect the polluting practicals. A Water
Handling System (WHS) provides the water used for cleaning the exhaust gas
in the EGR unit. An EGR blower controls the flow of gas to a mixing cham-
ber. In the EGR Unit the gas is sprayed with water and cooled to form mist,
that can be collected by a Water Mist Catcher (WMC). Water from the EGR
unit is drained to a Receiving Tank Unit (RTU) and recirculated to the EGR
unit. Part of the recirculated water is led to a Water Treatment Unit (WTU)
to be cleaned and returned to the EGR unit. The surplus of water originating
from the combustion process is drained from the WTS as bleed-off water and
discharged to the sea. The residuals from the cleaning process are discharged
to the sludge tank. Depending on engine load and ambient conditions the com-
bustion process will accumulate water in the system, which must be discharged
as bleed-off water. If discharged to the sea, the bleed-off water must meet the
quality criteria required by Organization. (2013), presently defined in the 2015
Guidelines for Exhaust Gas Cleaning Systems, MEPC 259 (68). Bleed-off water,
which does not meet the discharge criteria or cannot be discharged to sea due
to local restrictions, is drained to a drain tank for delivery at port.

Run/Running

WTS

RTU

EGR Unit

Water Mist
Catcher

Cooler Buffer Tank

Circulation Pump

Receiving Tank

Pre-Spray

Exhaust Gas

EGR Blower

Mixing
Chamber

Cleaned Exhaust Air

Process Water
Sealing Valve

Receiving Tank
Level Valve

Spray Water
Sealing Valve

Supply Pump

Scavenge Air

Fresh Water

WTS Pump

WTU

Ocean

Drain
Tank

Sludge
Tank

Ambient Air

Externally Controlled

EGR Control Unit

Tank Level

Setpoint/Feedback

Run/Running

Setpoint/
Feedback

Setpoint/
Feedback

WTS Communication

Figure 5.4: EGR Water Handling System.

5.5 Distributed Co-Simulation of EGR Water Handling System 55

The WHS system is illustrated on figure 5.4 together with the EGR Control
Unit (EGRCU) responsible for controlling the cleaning process. The EGRCU
controls and monitors the WHS, with the objective of providing clean gas to
the scavenge air manifold. There are two main water loops to be controlled.
The recirculation loop, where the water from the EGR unit is sent to the RTU
and back again by the ’Circulation pump’ via the ’Process Water Sealing Valve’
and ’Spray Water Sealing Valve’. The other loop is where part of the water
from the recirculation loop is sent via the ’Receiving Tank Level Valve’ to the
WTS. The water from the WTS is sent back to the recirculation loop with the
’Supply Pump’. The WTS receives the processed water from the RTU and is
collected in the buffer tank. The WTS is a separate system, provided by a
MD&T OEM, that cleans the process water in the buffer tank and discharge
any residual waste water in either the sludge/drain tank or, if the water quality
parameters are fulfilled, sends the water overboard.

The objective of the control system is to maintain a clean water supply for
the cleaning process and a stable water level in the ’Receiving Tank’. During
start up and shutdown of the WHS the actuation timing of the components has
a direct impact on the water level. During running mode, the water level is
controlled by the ’Receiving Tank Level Valve’ and compensates for deviations
in the water flow due to e.g. engine load, exhaust gas and scavenge air pressure
changes.

5.5.2 Results of Traditional Development Process

The traditional development approach was used to create a control strategy
for the WHS. The control strategy consist of a PI controller that regulates the
process water tank level and a state machine for actuating valves and pumps
according to a number of states for starting, running and stopping the system.
After development in the SIL environment using a DSE model of the WHS
physics was finished, the system was tested on the HIL test bench with the real
EGRCU controller and the DSE model running in the ECU as illustrated on
figure 5.5.

As final validation a test session was performed on the engine test bench. The
test proved that the PI controller worked as intended, however, an unsuspected
situation occurred when stopping the WHS system.

On figure 5.6 the results from the engine test bed running the initial control
strategy is plotted. We see that after 100 seconds the EGR control system
is started by an operator which orders the WHS system to prepare for EGR
operation. 50 seconds after the state-machine has finished starting the different

5.5 Distributed Co-Simulation of EGR Water Handling System 56

SIL Simulation – Developer PC

EGRCU
(EGR Control Unit)

Share Library (.SO)

ESU
(Engine Simulation Unit)

Share Library (.SO)

Application

WHS Control

Application

DSE

WHS Physics
Virtual I/O

Simulation
Configuration

Simulation
Results

HIL Simulation – HIL Test Bench

EGR Control Unit Engine Simulation Unit

Target – Engine Test Bench

EGR Control Unit

I/O

I/O

BSP

HAL

BES

RTOS

BSP

HAL

BES

RTOS

Figure 5.5: Traditional validation process.

pumps and opening valves, Process Water Receiving Tank (PWRT) control is
fully engaged. The bottom plot on figure 5.6 show how the Receiving Tank
Level Valve (RTLV) is controlled for stabilizing the PWRT level and redirecting
water from the process circuit to the WTS for cleaning. The top plot on figure
5.8 shows the level of water in the PWRT. The water level became stable after
a transient period, proving that the PWRT control worked correctly during
WHS operation. The EGR system was ordered to shut-down by an operator
after 600 seconds, and we see that WHS state-machine starts to empty the
tank to reach a stable offline level around 20-25 %. However, at 676 seconds a
behaviour not seen in either the SIL or HIL validation was observed. When the
WHS system is started, water will flow and accumulate gradually in the WMC.
An equilibrium will be achieved due to increased water pressure resulting in
a consistent flow through the WMC (without increased water accumulation in
the WMC as a consequence). During shutdown, the control system will reach

5.5 Distributed Co-Simulation of EGR Water Handling System 57

0 100 200 300 400 500 600 700 800 900

Time [s]

0

10

20

30

40

50

60

70

80

90

100

W
a

te
r

le
v
e

l
[%

]

WHS control

PWRT
FB

PWRT
SP

Start EGR

Stop EGR

0 100 200 300 400 500 600 700 800 900

Time [s]

0

10

20

30

40

50

60

70

80

V
a

lv
e

 o
p

e
n

in
g

 [
%

]

RTLV
FB

RTLV
SP

Start EGR

Stop EGR

Figure 5.6: WHS Control results.

a desired water level in the PWRT and RTLV control will be stopped, at this
point the accumulated water in the WMC starts to flow to the PWRT tank. As
seen on figure 5.6, the amount of accumulated water in the WMC is so large
that it overfills the PWRT.

From the engine test bench validation, it was discovered that the controller
actuating the RTLV was working properly, but the state-machine was not prop-
erly handling the emptying of the WMC. Engine test bench sessions are very
costly and one of the ambitions with this research was to enable a more effi-
cient development process, where high fidelity physical dynamic models can be
used during control system development to holistically validate the system at an
earlier stage. The normal development approach would be to extend the DSE
model to correctly represent the accumulation of water in the WMC and make
the changes required to the control system. However, with the development of
the distributed co-simulation environment it is now possible to reuse the MAT-

5.5 Distributed Co-Simulation of EGR Water Handling System 58

LAB model developed during the initial investigations. This model included
element such as water accumulation in the WMC, but they were disregarded
when translated to the SIL DSE environment. The DSE is central to develop-
ment because it is designed for the target platform and directly enable validation
on the HIL test bench. Keeping this in mind it is rational to have a higher fi-
delity modelling tool for SIL investigations and DSE models for HIL validation.
The purpose of the HIL test is not to test functionality already verified in SIL,
but to ensure computational overhead and investigate temporal aspects. The
distributed co-simulation solution is generic and allows for multiple well known
modelling tools in the physical domain to be used without concerns of platform
and architecture compliance.

5.5.3 Distributed Co-Simulation Configuration

Windows HostLinux Host

FMU

Distributed
COE

Daemon

FMI ECS Implementation

Shared Library Linux 32-bit

EGRCU

Shared Library (.SO)

FMI
API

ModelDescription.xml

FMU

ModelDescription.xml

WHS Physical Dynamics Model

Dynamic-link library Win 64-bit

COE

Master

FMI

FMI

JAVA
RMI

Config.json

SOE

Application

WHS Control

BSP

HAL

BES

RTOS

WHS Physical Dynamics Model

MATLAB

Code Generation
(Modelon FMI-Toolbox)

Figure 5.7: Co-Simulation Configuration.

The WHS distributed co-simulation setup is illustrated on 5.7. On the Windows
host the master Co-simulation Orchestration Engine (COE) is running and the
DCOE-deamon on the Linux host. A JSON configuration file describes where
the FMUs are located and on which host-ip they should be executed. The con-
figuration file also contains information about connections between the inputs
and outputs of the FMUs, parameters and simulation algorithm: variable/fixed
time step. The WHS phyisical dynamic model from MATLAB is code generated
into an FMU using the Modelon FMI toolbox for MATLAB/simulink. The tool-

5.5 Distributed Co-Simulation of EGR Water Handling System 59

box compiles the MATLAB model to a 64-bit DLL including the FMI-API and
auto-generates the model description XML defining the interface to the FMU.
The ECS FMU with the EGRCU controller is created as described in chapter 4
and compiled into a Linux 32-bit shared library. The simulation can access the
SOE for scheduling and access variables of the WHS control component. The
distributed co-simulation is initiated through the COE and results delivered in
CSV format on the Windows host.

5.5.4 Results of Distributed Co-Simulation

0 100 200 300 400 500 600 700 800 900

Time [s]

0

10

20

30

40

50

60

70

80

W
a
te

r
le

v
e
l
[%

]

WHS control

PWRT
FB

PWRT
SP

Start EGR

Stop EGR

0 100 200 300 400 500 600 700 800 900

Time [s]

0

10

20

30

40

50

60

70

80

90

100

V
a
lv

e
 o

p
e
n
in

g
 [
%

]

RTLV
FB

RTLV
SP

Start EGR

Stop EGR

Figure 5.8: Results of the distributed co-simulation of the WHS.

Using the distributed co-simulation, where the DSE model of the WHS physical
dynamics have been replaced with at MATLAB model, control engineers at
MD&T were able to develop a new control strategy handling the WHS correctly.
The simulation results of the new controller is presented on figure 5.8. Here we
see that the PI controller for the PWRT level is still working properly and
that the new state machine is now able to handle accumulation of water in the
WMC. This prevents the water level in the PWRT from overflowing, but instead
stabilize at the desired level of approximately 20-25%.

5.6 Chapter Summery 60

This experiment proves that with the higher fidelity model formulated in MAT-
LAB developers where able to create working control strategy. Had the dis-
tributed co-simulation been used for initial control development, the issues seen
on the test engine would likely have been discovered at an earlier stage, saving
money and time.

5.6 Chapter Summery

In large organizations like MD&T multiple tools are available on different plat-
forms and architectures. This platform and architecture deviation is a challenge
when trying to enable cross department model sharing. The Integrated Tool-
chain for the model based design of Cyber-Physical Systems (INTO-CPS) was
used as co-simulation manager and in collaboration with the INTO-CPS de-
velopment team, an extension to their co-simulation orchestration engine was
created that enable distributed co-simulation across both platform and archi-
tecture. Using INTO-CPS with the newly developed distributed co-simulation
orchestration engine, it was possible to help the development of a new EGR
Water Handling System (WHS). The traditional development process was ini-
tially used to create a control strategy for the WHS control. The initial solution
did not successfully handle the shutdown of the system, which was discovered
during the integration test on the engine test bench. Using the distributed
co-simulation environment it was possible for engineers to express the physical
dynamics of the WHS in a higher fidelity model created in 64-bit MATLAB
on Windows and co-simulate that together with the 32-bit ECS Linux simula-
tion. They where then able to replicate the results experienced on the engine
test bench and correct the control strategy on design level using the MIL/SIL
distributed co-simulation. It is argued that, if the distributed co-simulation
environment had been available during the first phase of development, the im-
proprieties of the initial control strategy would have been discovered during the
design phase. Resulting in a significant cost saving on validation and verification
of the system.

Chapter 6

Hybrid Co-Simulation

The development of, especially, safety critical Cyber-Physical Systems is highly
dependent on human interaction and cognitive assessment. Despite this depen-
dency, the human in the loop is seldom an integrated part of CPS development
or tool chain. Most Human Machine Interfaces (HMI) are not representative
before connected to the actual hardware, making their development delayed
compared to the system development. Furthermore, real hardware and test
setups are often limited resources, especially when dealing with large or expen-
sive equipment. The combination of limited resources and delayed development
makes it difficult to thoroughly investigate human interaction and, therefore, to
design systems tolerant towards user error and misuse. This chapter presents
an extension to the co-simulation environment, where the HMI hardware can
be connected with the ECS SIL simulation in a hybrid co-simulation. The envi-
ronment makes it possible to investigate human interaction before new software
is released, making the HMI and control system development more concurrent.

6.1 SW/HW Co-Simulation - HMI to ECS connection 62

6.1 SW/HW Co-Simulation - HMI to ECS con-
nection

The HMI for the ECS is called the Engine Control Main Operating Panel (EC-
MOP), as presented in section 2.2.3. The EC-MOP is connected to the ECS
through an Ethernet LAN network. As presented in section 3.4.1, a virtual
switch has been implemented in the simulation orchestration engine, where
ports to the controllers network driver are connected and Ethernet packages
distributed on a MAC Address level. This solution ensures that network com-
munication during simulation is identical to the real network communication,
meaning that packages going to the EC-MOP are already part of the simula-
tion, however until this point has been disregarded. To enable communication
between the ECS simulation and the EC-MOP, all we need to do is connect the
virtual switch with the physical network adapter of the PC connected to the
EC-MOP.

Linux Kernel

Linux Process

Linux Network Bridge
(brctl)

Software Ethernet
Adapter

Virtual Switch

HMI (MOP)

Controller

Shared Library

Controller Port

Tap Port

Hardware Ethernet
Adapter (Eth0)

Ethernet Cable

Port_basePort_base

List Output
List Input

Send(...)
Receive(...)
typedef void (*signal_net_isr_t)(...)
signal_net_isr_t signal_net_isr

Tap PortTap Port

Tap Network DriverTap Network Driver

Controller PortController Port

Network Driver SimNetwork Driver Sim

Component Diagram Class Diagram

virtual void create_callbacks()

Figure 6.1: ECS Simulation with Tap Driver and Network Bridge to EC-MOP.

An additional Port class has been created, that makes it possible to add either
a controller port or a so called Tap port. A Tap Port contains the same compo-
nents and functionality as the controller port described in 3.4.1. It implements
the same callback delegates as the controller port, but instead of connecting to
the network driver of the controller it connects to a tap network driver imple-
mented in the SOE of the main Linux process. The tap network driver connects
the port to a tap interface, a software network adapter that only exists in the
Linux kernel. The interface works as a regular network adapter, where the ker-
nel exchanges full Ethernet frames from and to the network driver instead of a
regular wire. The signal_net_isr method is allowed to execute directly, since
the tap port is located within the Linux context, as opposed to the controller

6.2 Hybrid Co-Simulaiton Configuration 63

network driver that runs in the controller context. To connect the Tap inter-
face software Ethernet adapter with the physical Ethernet adapter connected
by LAN to the EC-MOP, a Linux software network bridge is created as seen in
figure 6.1. Multiple Tap interfaces and port instants can be created, making it
possible to connect the virtual switch to not only the EC-MOP and ECS simula-
tion but also other physical hardware. It would be relevant to connect a subset
of Triton controller to the remaining SIL controllers of the ECS by introducing
an additional "proxy" controller with the purpose to redirect IO data through
the virtual switch. This will be included in the future work and will not be
covered here.

It should be noticed that connecting real hardware will require that the system
is real-time compliant. The previously presented co-simulations were allowed
to run as fast as possible but the hybrid co-simulation has to execute real-
time if hardware is connected. This is achieved by letting the process sleep
after execution for the remaining amount of time in the simulation time step.
Furthermore, connecting a real Ethernet interface destroys the determinism of
the co-simulation, meaning that simulation reproducibility is no longer ensured
and the system is no longer appropriate for e.g. regression tests.

6.2 Hybrid Co-Simulaiton Configuration

With the virtual switch extension to the co-simulation it is now possible to
connect both MIL, SIL and HIL systems in a holistic co-simulation. On figure
6.2, the hybrid co-simulation has been illustrated with three main stakehold-
ers of the MOP. The marine engineer/operator is the main user of the HMI
interacting with the system according to bridge commands and in response to
information from the operating panel, alarm system, illustrations, etc. The con-
trol engineer developing control algorithms is also a stakeholder. The control
engineer is responsible for developing the correct interaction possibilities and
create alarms for new components. The work of the control engineer is, there-
fore, dependent on an understanding of the cognitive assessment of the operator.
Lastly, the Graphical User Interface (GUI) developer is responsible for the user
experience and the graphical representation of the system. All stakeholders are
interconnected and the communication and joint understanding between them
is important. If for example the operator needs to respond to an alarm, it
is equally important that the alarm text, formulated by the control engineer,
is explanatory and that the user interface, made by the GUI developer, suffi-
ciently attracts the attention of the operator. With the hybrid co-simulation
it is possible to create simulation scenarios in a physical dynamics model that
propagate through the control system to the operating panel and require user

6.3 Human In the Loop Investigation 64

Co-Simulation

Software Controller
Software Controller

Co-Simulation

Main Operating Panel

Hardware

Virtual SwitchFMIPhysics Modelling Environments

Hardware

Software Controller

Marine Engineer
/Operator

Control Enginner

GUI Developer

Network
Connection To
Control System

Real Hardware
(Cabled)

or
Co-Simulation

(Simulated)
or

Combination

SwitchesControllers

Two Stroke Large Bore Marine Engine

Connection To
Engine

 Real Hardware
(Cabled)

or

 Co-Simulation
(Simulated)

Reaction

The marine engineer
or operator makes

decitions in response
to the alarm system
and GUI illustrations.

The control engineer
designs GUI

componets and alarm
system.

The GUI developer
creates GUI panels

and verifies
appearance and

composition

Figure 6.2: Hybrid Co-Simulation setup.

interaction. In the SOE it is possible to track and store the operator interaction
when exposed to specific scenarios. Utilizing the collected data, the human in
the loop can be investigated during system development to gain quantitative
and evidence based data for designing safety critical CPS with human-machine
interaction.

6.3 Human In the Loop Investigation

This section presents an experiment that was published in Pedersen et al.
(2017a), and is available in chapter 10. Here a thermodynamic model of the
ME engine air-path with an exhaust gas bypass is co-simulated in an internal
MD&T tool together with the ECS simulation connected to the EC-MOP.

Figure 6.3 illustrates components with the dominating dynamics in the air-path
model, which focused on the mass flows and pressures through the system. The

6.3 Human In the Loop Investigation 65

 ṁ

Egb

Uload

ṁengOut

ṁengIn

Exhaust Manifold
(Pexh , Texh)

Scavenge-air
Manifold

(Pscav , Tscav)

 ṁturb

ṁcomp

ωt

Turbine

Compressor

Uegb

Figure 6.3: Engine air-path model.

model has previously been published and validated in Alegret et al. (2015) and is
based on research done by Wahlstrom and Eriksson (2011); Hansen et al. (2013).
In Alegret et al. (2015) the model also include an EGR system. The EGR is
not activated in the scenario presented here and will therefore not be covered.
A turbocharger consists of a turbine and a compressor connected by a common
shaft. The exhaust gas from the engine drives the turbine generating power
transferred through the shaft to the compressor forcing ambient air into the
scavenge-air manifold. The mass flows from the compressor ṁcomp and turbine
ṁtrub are dependent on pressure ratio and turbocharger velocity described in
the performance maps provided by the turbocharger manufacturer. The power
difference between the turbine and the compressor is used in the state equation
expressing the turbocharger velocity ωt. The scavenge air and exhaust gas
manifolds are modeled as control-volumes based on the ideal-gas law and mass
conservation with state equations describing the pressures Pscav and Pexh. The
engine is modeled as a flow through a restriction (ṁengIn, ṁengOut) with a
cylinder temperature Texh based on the Seiliger cycle. For further details of
the system refer to Alegret et al. (2015). The Exhaust Gas Bypass (EGB) is
not presented in Alegret et al. (2015) and will be described in detail here. The
objective of the EGB is to control the power delivered from the exhaust to the
turbine and provide energy for downstream systems such as waste heat recovery.
This is achieved by redirecting the exhaust flow from the turbine inlet to the
exhaust pipe by a EGB-valve. The mass flow leaving through the EGB ṁegb is

6.3 Human In the Loop Investigation 66

modeled as flow through a restriction.

ṁegb = Uegb Aegb
pexh√
ReTexh

√
2γe
γe − 1

[
pegb
pexh

2
γe − pegb

pexh

γe+1
γe

]
, (6.1)

where Aegb is the maximum EGB-valve orifice and Uegb the valve position, γe
is the ratio of specific heat, Re is the exhaust-gas constant and Pegb is the back
pressure from the subsequent system.

The model inputs are the EGB valve setpoint Uegb and engine load Uload, a
non-dimensional power defined as a percentage of the maximal power available
for the specific engine. The remaining components are assumed to have little
impact on the air flow dynamics and their dynamics disregarded. All cooling
in the system is assumed ideal meaning that the temperature of the gas leaving
and entering a manifold is assumed to have the exact same temperature. Heat
transfer is also neglected, meaning that there is no temperature drop, e.g. from
the cylinder to the exhaust gas receiver.

6.3.1 Simulation and Results

The aim of the hybrid co-simulation is to create an environment where a scenario
engaging the human operator can be formulated and user interacting recorded.
Scenarios that are potentially hazardous can be created and simulated without
endangering operators or expensive equipment.

FMUFMU

EICUECU

SCU

Engine
Model

HMI
(MOP)

TIU
CCU
1-4

EGB_setpoint

P_scav

EGB_position
EGB_position

EGB_setpoint

EGB_setpoint

EGB_position

ω _t

P_scav

ω _t

ALARM

Network Telegram

Virtual IO Cable

Figure 6.4: The two FMUs and the MOP are illustrated with relevant cable
and network connections.

6.3 Human In the Loop Investigation 67

A proof-of-concept scenario has been defined focusing on the EGB control. Clos-
ing the EGB-valve will cause the turbine to receive the full power of the exhaust
gas. This increases the angular velocity of the common shaft and, thereby, the
mass flow from the compressor, causing the scavenge-air pressure (Pscav) to
raise. Opposite when the EGB-valve is opened, the flow to the turbine decreases
and Pscav drops. In certain situations both scenarios can be very undesirable.
If the turbine velocity increases too much the turbine may be destroyed or even
explode with extreme danger to the crew. If Pscav drops significantly the engine
may suffocate and forcing operation to be stopped. These are of course extreme
situations, where the safety-critical system has not been working. With func-
tioning safety systems these scenarios would cause the alarm system to notify
the operator and if no action is taken send a slow-down or shut-down command
to the ECS bypassing the operator. A slow-down and shut-down command
severely limits the maneuverability of the vessel and are very undesirable mea-
sures. In the scenario presented here, the simulation is configured as seen in
Figure 6.4. The turbocharger velocity ωt and the scavenge air pressure Pscav

are provided by the engine model to the Engine Control Unit (ECU) through
virtual IO analog cables in the SOE as described in chapter 3. The EGB model
is connected to the Scavenge-air Control Unit (SCU) with a control set-point
EGBsetpoint and actual valve position EGBposition. Within the ECS simulation
data is transferred by network telegrams through the virtual switch between
the controllers and the EC-MOP. The Tacho Interface Unit (TIU) and the four
Cylinder Control Units (CCU) shown on figure 6.4 are required to properly sim-
ulate the system and are connected to the EC-MOP as well. The control signal
representing engine load Uload is normally a command from the bridge, here it
will be set at 40% load and provided internally in the engine model.

6.3 Human In the Loop Investigation 68

0 500 1000 1500
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

5

Time [s]

Pr
es

su
re

 [P
a]

P
scav

P
exh

Alarm level

0 500 1000 1500
1000

1100

1200

1300

1400

1500

1600

Time [s]

Ve
lo

cit
y [

RP
M

]

ω
t

EGB
open

EGB
close

Figure 6.5: Plot of pressures and tur-
bocharger velocity during
the simulation scenario.

Figure 6.6: Top: Alarm
panel,
Bottom: Scav-
enge Air panel

The simulation results are presented on figure 6.5. The scavenge-air and exhaust
pressures start at a stable level around 2.5× 105 Pa, but after 320 seconds the
EGB-valve is opened by the engine model. This causes the turbine velocity to
drop dramatically and as a consequence, both Pscav and Pexh will decrease to a
level below the alarm limit of 1.75× 105 Pa. An alarm will be triggered on the
SCU and displayed on the EC-MOP. The operator will see the alarm appear on
the top bar of the EC-MOP application and in the alarm list panel, as displayed
on the top of figure 6.6. The simulation will track the alarm and record when
and how the operator responds. To handle the scenario correctly the operator
should navigate to the Scavenge Air panel as seen on the bottom of figure 6.6.
Here he has the option of either changing the EGB-valve setpoint to 0% or set
the EGB-controller in automatic mode which will likewise close the valve. Both
actions will cause an increased exhaust gas flow to the turbine and Pscav will
return to a stable level. On figure 6.5 it is also shown how the MOP-command
has ordered the EGB-valve to close at 750 seconds, causing ωt to increase and
returning the pressures to a stable level. The effects of closing the EGB valve
are delayed due to the dynamics of the system.

This simple simulation scenario proves that it is possible to expose an operator
with at specific situation created with a thermodynamic model interacting with

6.4 Chapter Summery 69

the real software of the control system connected to the HMI. With a hybrid co-
simulation environment like this, it is possible to thoroughly investigate human
interaction with in cyber-physical systems to be used for development insights
otherwise difficult to come by.

6.4 Chapter Summery

As a result of this research an additional application of the co-simulation envi-
ronment was identified. When developing safety critical cyber-physical systems
the human interaction and cognitive assessment is of great importance. Quan-
titative and evidence based data on the human factor is difficult to collect.
With an extension to the co-simulation environment, it is possible to connect
the human machine interface and include the Human in the loop in a hybrid
co-simulation. An extension to the virtual switch in the ECS simulation makes
it possible to connect a Linux software network adapter called a Tap as a port.
The Tap exchanges full Ethernet frames with the virtual switch and thereby
connects to the controller network. Using a Linux network bridge the Tap
adapter can be connected with the physical network adapter of the developer
PC, which can then connect to the HMI. Using the hybrid co-simulation it was
possible to create a holistic simulation consisting of a physical dynamic model
co-simulated with the ECS software simulation connected to the MD&T HMI.
An experiment is presented, where a scenario is formulated in the physical dy-
namic engine model that require the attention of the human in the loop. The
experiment showed a potentially hazardous scenario where the operator has to
interact with the control system through the HMI to get the system back to sta-
ble operation. The operator interaction was tracked by the simulation and the
data recorded can be used later for analyzing the applicability and intuitiveness
of the system. With this hybrid co-simulation, it will be possible to base HMI
development on real quantitative data, it can also be used as an education tool
for engine operator training.

Chapter 7

Conclusion

This dissertation aimed to improve model based design of Cyber-Physical Sys-
tems with distributed embedded control through co-simulation. The first ob-
jective was to enable simulation of an entire distributed control system in a
single coherent and deterministic simulation. With the engine control system
at MAN Diesel & Turbo as case study, a simulation approach of distributed
embedded systems was presented. The embedded system software was first
cross-compiled to an x86 PC application by adapting the RTOS, BSP and HAL
layers of the software. Compiling the controller software into a dynamic link
library and overwriting the main function makes it possible to load multiple
controller instances into a main process and executing their main function in
individual threads. Control of execution on each controller can be made possible
by re-implementing the idle thread in the BSP of the controller, enabling the
main process to start and stop execution. In the idle thread, an event handler
can be created, which makes it possible to subscribe events such as operating
system clock progression and interrupts. Introducing a system time clock in the
event handler controlled by the timing of the events it was possible to have an
aspect of time on each controller. Through a custom factory exported from the
control library, delegates from the main process could be created and a Simula-
tion Orchestration Engine (SOE) built. The SOE is able to interact with each
controller and orchestrate a temporally correct execution of the complete sim-
ulation. Communication between the controllers in the engine control system
was based on Ethernet. A virtual switch was created in the SOE where port to

71

controllers could be attached and Ethernet packages distributed. A port imple-
ments a send and receive method through the factory, for transferring Ethernet
packages to and from the simulated version of the controller network driver.
The port also implement an interrupt delegate for signaling the controller to
process packages. With these adaptations to the control system software it was
now possible to simulate the complete distributed system in a single coherent
software in the loop simulation.

The second objective was to enable co-simulation of the distributed control sys-
tem simulation together with a tool for expressing high fidelity physical dynam-
ics. The standardized co-simulation interface, the Functional Mockup Interface
(FMI), was chosen due to its flexibility, wide acceptance in the industry and
compliance with a vast amount of tool already used at MD&T. FMI can be im-
plemented in the control system simulation by compiling the SOE to a dynamic
link library that exports the FMI application interface. The controller libraries
was loaded in the SOE by the FMI instantiate method and the FMI step func-
tion provides loop conditions for the main simulation loop in the SOE. Data
exchange was done through the FMI Get/Set methods where FMI data types
are converted to controller data types using a template implementation. Ac-
cess to variables in the ECS controller data tree is created through the factory
providing proxies in the SOE. With the FMI implementation it was possible
to co-simulate the ECS together with any other sub-system compliant with
the standard. During this research the ECS has been co-simulated with both
Ptolemy II, an in-house physical dynamic tool and MATLAB/Simulink using
INTO-CPS as manager. As proof of concept, a SCR reactor heating model was
expressed in Ptolemy II and co-simulated with the ECS, published in Peder-
sen et al. (2016). The results from this simulation proved that it was possible
to co-simulate the distributed control system software together with a physical
dynamics model in a tool optimal for building high fidelity models.

In large organizations like MD&T, multiple tools are available and tool-chains
used by different departments often deviate. Besides from using different tools,
also development platform and architecture deviate. At MD&T most engi-
neers developing physical dynamic models will work on a Windows platform
with an 64-bit architecture, whereas the control system is developed in 32-bit
Linux. This discrepancy makes it difficult to properly share model and do
co-simulation. Using the Integrated Tool-chain for the model based design of
Cyber-Physical Systems (INTO-CPS) as co-simulation manager and collaborat-
ing with the INTO-CPS development team to create an extension to their co-
simulation orchestration engine, it was possible to do distributed co-simulation
across both platforms and architectures. The co-simulation was distributed by
having a Distributed Co-simulation Orchestration (DCOE) running as a dae-
mon on the distributed host, with communication between the DCOE and the
COE, running on the main host, realized using Java Remote Method Invoca-

72

tion. With the distributed co-simulation it was possible to aid development of
a new system being developed at MD&T called the EGR Water Handling Sys-
tem (WHS), published in Pedersen et al. (2017b). WHS is a process plant used
for cleaning exhaust gas recirculated back to the intake-manifold. The WHS
had been developed using the traditional approach and during system valida-
tion on the engine test bench it was realized that the control strategy did not
properly handle shutdown of the system. Using the distributed co-simulation
environment it was possible for engineers to co-simulate the 32-bit ECS Linux
simulation together with at high-fidelity model of the WHS dynamics, created
in 64-bit MATLAB on Windows. The MATLAB model included dynamics that
had been disregarded in the DSE model, used for SIL and HIL. It was possible
to replicate the results seen on the engine test bench and correct the control
strategy on design level using the MIL/SIL distributed co-simulation. Had the
distributed co-simulation environment been available during the initial design
of the WHS, it is very likely that the model driven approach would have en-
abled developers to create a functioning control strategy before doing test on
the expensive test-engine.

As a result of this research a new application of the co-simulation environment
was identified. Developing cyber-physical systems with a human machine inter-
face, the human interaction and cognitive assessment is of importance for the
safety critical aspects of the design. It is often very difficult to obtain quanti-
tative and evidence based data on the human factor. With an extension to the
virtual switch, a Linux software network adapter could be implemented that
connects the MD&T HMI and the ECS simulation through a Linux network
bridge. With this hybrid co-simulation it was possible to create scenarios that
require operator interaction in a physical dynamic engine model propagating
through the ECS to the HMI. By tracking the human interaction it will be
possible to collect data to be used for analyzing the system applicability and
intuitiveness insuring correct operation of MD&T engines. An example of a
potentially hazardous scenario was presented in Pedersen et al. (2017a), where
operator interaction was needed to stabilize the system.

This dissertation contributes with a solution for co-simulation of cyber-physical
systems with a distributed control system. A detailed description of how em-
bedded system software can be adapted to enable deterministic simulation was
presented. Being able to simulate an entire distributed control system, with
the real software and network communication on a single PC, is very powerful
and enable engineers at MD&T to spend more time on design and less time on
the limited amount of HIL test benches. The FMI co-simulation standard en-
able the ECS to be simulated together with multiple other specialized modelling
and simulation tools. At MD&T increasing system complexity require higher
fidelity models of the engine physical dynamics than currently expressed in the
modelling tool used during control development DSE. With co-simulation it is

73

possible to use tools such as MATLAB, optimal for efficiently developing high-
fidelity models. System validation on engine test benches is extremely expensive
and significant cost saving is expected by using co-simulation for reducing the
amount of design and verification loops. Model sharing between departments
at MD&T has been difficult due to the deviation in tool-chain, platform and
architecture. With the extension to the INTO-CPS enabling distributed co-
simulation, model sharing has been done significantly easier. It is expected that
the distributed co-simulation environment will reduce the amount of redundant
modelling effort and enable both physical system developers to get a better in-
sight in the control system and vice versa. Furthermore, since the FMI is an
open standard, it is expected that closer collaboration with OEMs would be
possible in the future.

Human error and misuse is difficult to guard against and understanding of the
cognitive assessment of an operator can be very beneficial in this aspect. The
hybrid co-simulation environment can provide data otherwise hard to obtain,
when developing human machine interfaces. Another way of guarding a system
against human error is proper training and education. At the MAN Prime-
Serv Academy Copenhagen, marine engineers are educated in using the different
MD&T systems. However, the emulators and test-engines available to students
are very limited resources due to their size and immense cost. With the hybrid
co-simulation environment the cost of a simulator would be reduced to a single
PC per student. The environment can provide more sophisticated thermody-
namic models than the HIL models currently used in the academy. Partners
around the world, educating marine engineers, would benefit significantly from
using this hybrid co-simulation environment as an education tool, which in re-
turn would benefit MAN Diesel & Turbo and vessel owners with better operated
engines.

In conclusion, this research has improved the design phase of the development
process at MAN Diesel & Turbo. Resulting in significant cost savings on system
verification and validation with a simulation environment prepared for future
challenges.

This research has proved the relevance of simulating embedded control systems
as opposed to pure emulation. The work required to adapt the embedded system
software (RTOS, BSP and HAL) to enable simulation is significant but man-
ageable and we believe applications within embedded system simulation would
significantly increase if the developers of e.g. RTOS had more focus on making
simulation available. The hybrid co-simulation environment was not part of the
initial scope of this research, but provides multiple new applications and prod-
ucts from its mixture of MIL/SIL/HIL abilities. Educating the people operating
CPS is of huge importance and is becoming a large industry in itself. The hybrid
co-simulation environment could be an important addition to the education of

74

marine-engineers. Compared to the emulators currently available, it is possible
to provide e.g. cloud based remote education of operators and also education
of the MD&T service crew around the world. The co-simulation environment
could also be used as an online monitoring tool installed on vessels. Giving that
the fidelity of the engine model is sufficient, different signals could be moni-
tored and a residual analysis serve as indicator for worn parts or malfunctioning
systems. Finally, the co-simulation environment could also be used for fault
diagnostics or condition based maintenance where data from vessels, including
engine and sensor data, control system states, weather conditions ect. can be
feed to the holistic model and recommendation to clients provided. These and
many more applications such as virtual reality etc. could be developed based
on the co-simulation environment provided by this research.

Chapter 8

Paper A: Co-Simulation of
Distributed Engine Controls

System with
Thermodynamic Models

using FMI & SCNSL

ScienceDirect
IFAC-PapersOnLine 48-16 (2015) 261–266

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2015.10.290

Nicolai Pedersen et al. / IFAC-PapersOnLine 48-16 (2015) 261–266

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Co-Simulation of Distributed Engine
Control System and Network Model using

FMI & SCNSL

Nicolai Pedersen ∗,∗∗ Jan Madsen ∗

Morten Vejlgaard-Laursen ∗∗

∗ Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
∗∗ MAN Diesel & Turbo, Teglholmsgade 41 DK-2450 Copenhagen SV

Abstract: Increased legislations on engine pollution and efficiency, in the maritime industry,
has resulted in drastic changes of engine layout and the amount of interconnected systems.
With increased complexity and a more distributed control system, co-simulation and network
modelling tools become even more desired. This paper investigates how to co-simulate a
distributed cyber-physical system and its surrounding network. The Functional Mock-up
Interface (FMI) for co-simulation is used as a standard for interconnecting models and
solvers. A network model connecting all subsystem components is created using the SystemC
Network Simulation Library (SCNSL). Combining FMI and SCNSL makes it possible to
validate the interconnection between both physical and computational components together
with the network typology. The result is a more complete simulation environment with better
opportunities for investigating proper system behaviour in terms of dynamics and temporal
execution. A master algorithm for doing the networked co-simulation routine is proposed,
and a proof of concept example is presented, showing one of the many potentials of the
environment. With the more comprehensive simulation environment, developers will be able
to achieve improved modelling and validation processes, resulting in better applications.

Keywords: Functional Mockup Interface, SystemC Network Simulation Library,
Cyber-Physical Systems, Co-Simulation, Simulation Master.

1. INTRODUCTION

When designing the next generation of networked embed-
ded control systems for advanced physical processes, mod-
elling and simulation is essential. Model-based design en-
able engineers to work at a higher abstraction level, mak-
ing it possible to select and verify the optimal solution at
an early stage of development. Thereby prevent damaging
expensive equipment or committing to inappropriate hard-
ware or software solutions. With electronically controlled
engines even small variations in the control behaviour has
significant impact on the combustion process. Detailed
simulations of the engine process combined with high
fidelity models of the control system are therefore required.
The International Maritime Organization (IMO) often
introduce new legislations (Organization., 2013) causing
drastic changes to the engine layout. These have caused
ships to e.g. have power rating and emission reduction
systems, introducing a whole new dimension to the engine
design. Further new fuel types and dual fuel engines are
emerging, thus also increasing the system complexity. A
result of the increased complexity is a more distributed
control system with additional network communication.
In real-time systems the network performance is of great
importance and faults can have significant consequences.
At MAN Diesel & Turbo (MDT) these new challenges call
for a more collaborative model development than previ-
ously. Physical performance modelling will become more

dependent of the control system dynamic and the control
systems development will require access to comprehensive
and detailed engine models. It is therefore, more then ever,
desired to develop a co-simulation 1 tool, enabling depart-
ments to share models across solvers and environments.

This paper demonstrate how the Functional Mock-up In-
terface (FMI) (Blochwitz et al., 2012) can be used to co-
simulate a cyber-physical system, such as the MDT two-
stroke diesel engine with its engine control system. FMI
was the result of the ITEA2 project MODELISAR to
improve the design of embedded software in vehicles, orga-
nized by Daimler AG. FMI has mainly been used in the au-
tomotive industry (Abel et al., 2014; Stoermer and Tibba,
2014). Recently, academic applications within energy grid
systems (Elsheikh et al., 2013), control systems(Exel et al.,
2014) and HVAC systems (Nouidui et al., 2014) are start-
ing to emerge. The interface does not provide a master
for scheduling and execution, and only few examples have
been proposed (Bastian et al., 2013; Broman et al., 2013),
and using High Level Architecture (HLA) compliant Run
Time Infrastructure (RTI) in (Awais et al., 2013a,b). A
master algorithm will be introduced to organize the co-
simulation and a proof of concept example is presented. We
propose to use, the SystemC Network Simulation Library
(SCNSL)(Fummi et al., 2008) to model the network con-
necting the sub-systems. The network model can be used

1 Co-Simulation is the practice of modelling and simulating different
subsystems that form a coupled problem in a distributed manner.

10th Conference on Manoeuvring and Control of Marine Craft
August 24-26, 2015. Copenhagen, Denmark

Copyright © IFAC 2015 261

Co-Simulation of Distributed Engine
Control System and Network Model using

FMI & SCNSL

Nicolai Pedersen ∗,∗∗ Jan Madsen ∗

Morten Vejlgaard-Laursen ∗∗

∗ Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
∗∗ MAN Diesel & Turbo, Teglholmsgade 41 DK-2450 Copenhagen SV

Abstract: Increased legislations on engine pollution and efficiency, in the maritime industry,
has resulted in drastic changes of engine layout and the amount of interconnected systems.
With increased complexity and a more distributed control system, co-simulation and network
modelling tools become even more desired. This paper investigates how to co-simulate a
distributed cyber-physical system and its surrounding network. The Functional Mock-up
Interface (FMI) for co-simulation is used as a standard for interconnecting models and
solvers. A network model connecting all subsystem components is created using the SystemC
Network Simulation Library (SCNSL). Combining FMI and SCNSL makes it possible to
validate the interconnection between both physical and computational components together
with the network typology. The result is a more complete simulation environment with better
opportunities for investigating proper system behaviour in terms of dynamics and temporal
execution. A master algorithm for doing the networked co-simulation routine is proposed,
and a proof of concept example is presented, showing one of the many potentials of the
environment. With the more comprehensive simulation environment, developers will be able
to achieve improved modelling and validation processes, resulting in better applications.

Keywords: Functional Mockup Interface, SystemC Network Simulation Library,
Cyber-Physical Systems, Co-Simulation, Simulation Master.

1. INTRODUCTION

When designing the next generation of networked embed-
ded control systems for advanced physical processes, mod-
elling and simulation is essential. Model-based design en-
able engineers to work at a higher abstraction level, mak-
ing it possible to select and verify the optimal solution at
an early stage of development. Thereby prevent damaging
expensive equipment or committing to inappropriate hard-
ware or software solutions. With electronically controlled
engines even small variations in the control behaviour has
significant impact on the combustion process. Detailed
simulations of the engine process combined with high
fidelity models of the control system are therefore required.
The International Maritime Organization (IMO) often
introduce new legislations (Organization., 2013) causing
drastic changes to the engine layout. These have caused
ships to e.g. have power rating and emission reduction
systems, introducing a whole new dimension to the engine
design. Further new fuel types and dual fuel engines are
emerging, thus also increasing the system complexity. A
result of the increased complexity is a more distributed
control system with additional network communication.
In real-time systems the network performance is of great
importance and faults can have significant consequences.
At MAN Diesel & Turbo (MDT) these new challenges call
for a more collaborative model development than previ-
ously. Physical performance modelling will become more

dependent of the control system dynamic and the control
systems development will require access to comprehensive
and detailed engine models. It is therefore, more then ever,
desired to develop a co-simulation 1 tool, enabling depart-
ments to share models across solvers and environments.

This paper demonstrate how the Functional Mock-up In-
terface (FMI) (Blochwitz et al., 2012) can be used to co-
simulate a cyber-physical system, such as the MDT two-
stroke diesel engine with its engine control system. FMI
was the result of the ITEA2 project MODELISAR to
improve the design of embedded software in vehicles, orga-
nized by Daimler AG. FMI has mainly been used in the au-
tomotive industry (Abel et al., 2014; Stoermer and Tibba,
2014). Recently, academic applications within energy grid
systems (Elsheikh et al., 2013), control systems(Exel et al.,
2014) and HVAC systems (Nouidui et al., 2014) are start-
ing to emerge. The interface does not provide a master
for scheduling and execution, and only few examples have
been proposed (Bastian et al., 2013; Broman et al., 2013),
and using High Level Architecture (HLA) compliant Run
Time Infrastructure (RTI) in (Awais et al., 2013a,b). A
master algorithm will be introduced to organize the co-
simulation and a proof of concept example is presented. We
propose to use, the SystemC Network Simulation Library
(SCNSL)(Fummi et al., 2008) to model the network con-
necting the sub-systems. The network model can be used

1 Co-Simulation is the practice of modelling and simulating different
subsystems that form a coupled problem in a distributed manner.

10th Conference on Manoeuvring and Control of Marine Craft
August 24-26, 2015. Copenhagen, Denmark

Copyright © IFAC 2015 261

Co-Simulation of Distributed Engine
Control System and Network Model using

FMI & SCNSL

Nicolai Pedersen ∗,∗∗ Jan Madsen ∗

Morten Vejlgaard-Laursen ∗∗

∗ Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
∗∗ MAN Diesel & Turbo, Teglholmsgade 41 DK-2450 Copenhagen SV

Abstract: Increased legislations on engine pollution and efficiency, in the maritime industry,
has resulted in drastic changes of engine layout and the amount of interconnected systems.
With increased complexity and a more distributed control system, co-simulation and network
modelling tools become even more desired. This paper investigates how to co-simulate a
distributed cyber-physical system and its surrounding network. The Functional Mock-up
Interface (FMI) for co-simulation is used as a standard for interconnecting models and
solvers. A network model connecting all subsystem components is created using the SystemC
Network Simulation Library (SCNSL). Combining FMI and SCNSL makes it possible to
validate the interconnection between both physical and computational components together
with the network typology. The result is a more complete simulation environment with better
opportunities for investigating proper system behaviour in terms of dynamics and temporal
execution. A master algorithm for doing the networked co-simulation routine is proposed,
and a proof of concept example is presented, showing one of the many potentials of the
environment. With the more comprehensive simulation environment, developers will be able
to achieve improved modelling and validation processes, resulting in better applications.

Keywords: Functional Mockup Interface, SystemC Network Simulation Library,
Cyber-Physical Systems, Co-Simulation, Simulation Master.

1. INTRODUCTION

When designing the next generation of networked embed-
ded control systems for advanced physical processes, mod-
elling and simulation is essential. Model-based design en-
able engineers to work at a higher abstraction level, mak-
ing it possible to select and verify the optimal solution at
an early stage of development. Thereby prevent damaging
expensive equipment or committing to inappropriate hard-
ware or software solutions. With electronically controlled
engines even small variations in the control behaviour has
significant impact on the combustion process. Detailed
simulations of the engine process combined with high
fidelity models of the control system are therefore required.
The International Maritime Organization (IMO) often
introduce new legislations (Organization., 2013) causing
drastic changes to the engine layout. These have caused
ships to e.g. have power rating and emission reduction
systems, introducing a whole new dimension to the engine
design. Further new fuel types and dual fuel engines are
emerging, thus also increasing the system complexity. A
result of the increased complexity is a more distributed
control system with additional network communication.
In real-time systems the network performance is of great
importance and faults can have significant consequences.
At MAN Diesel & Turbo (MDT) these new challenges call
for a more collaborative model development than previ-
ously. Physical performance modelling will become more

dependent of the control system dynamic and the control
systems development will require access to comprehensive
and detailed engine models. It is therefore, more then ever,
desired to develop a co-simulation 1 tool, enabling depart-
ments to share models across solvers and environments.

This paper demonstrate how the Functional Mock-up In-
terface (FMI) (Blochwitz et al., 2012) can be used to co-
simulate a cyber-physical system, such as the MDT two-
stroke diesel engine with its engine control system. FMI
was the result of the ITEA2 project MODELISAR to
improve the design of embedded software in vehicles, orga-
nized by Daimler AG. FMI has mainly been used in the au-
tomotive industry (Abel et al., 2014; Stoermer and Tibba,
2014). Recently, academic applications within energy grid
systems (Elsheikh et al., 2013), control systems(Exel et al.,
2014) and HVAC systems (Nouidui et al., 2014) are start-
ing to emerge. The interface does not provide a master
for scheduling and execution, and only few examples have
been proposed (Bastian et al., 2013; Broman et al., 2013),
and using High Level Architecture (HLA) compliant Run
Time Infrastructure (RTI) in (Awais et al., 2013a,b). A
master algorithm will be introduced to organize the co-
simulation and a proof of concept example is presented. We
propose to use, the SystemC Network Simulation Library
(SCNSL)(Fummi et al., 2008) to model the network con-
necting the sub-systems. The network model can be used

1 Co-Simulation is the practice of modelling and simulating different
subsystems that form a coupled problem in a distributed manner.

10th Conference on Manoeuvring and Control of Marine Craft
August 24-26, 2015. Copenhagen, Denmark

Copyright © IFAC 2015 261

Co-Simulation of Distributed Engine
Control System and Network Model using

FMI & SCNSL

Nicolai Pedersen ∗,∗∗ Jan Madsen ∗

Morten Vejlgaard-Laursen ∗∗

∗ Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
∗∗ MAN Diesel & Turbo, Teglholmsgade 41 DK-2450 Copenhagen SV

Abstract: Increased legislations on engine pollution and efficiency, in the maritime industry,
has resulted in drastic changes of engine layout and the amount of interconnected systems.
With increased complexity and a more distributed control system, co-simulation and network
modelling tools become even more desired. This paper investigates how to co-simulate a
distributed cyber-physical system and its surrounding network. The Functional Mock-up
Interface (FMI) for co-simulation is used as a standard for interconnecting models and
solvers. A network model connecting all subsystem components is created using the SystemC
Network Simulation Library (SCNSL). Combining FMI and SCNSL makes it possible to
validate the interconnection between both physical and computational components together
with the network typology. The result is a more complete simulation environment with better
opportunities for investigating proper system behaviour in terms of dynamics and temporal
execution. A master algorithm for doing the networked co-simulation routine is proposed,
and a proof of concept example is presented, showing one of the many potentials of the
environment. With the more comprehensive simulation environment, developers will be able
to achieve improved modelling and validation processes, resulting in better applications.

Keywords: Functional Mockup Interface, SystemC Network Simulation Library,
Cyber-Physical Systems, Co-Simulation, Simulation Master.

1. INTRODUCTION

When designing the next generation of networked embed-
ded control systems for advanced physical processes, mod-
elling and simulation is essential. Model-based design en-
able engineers to work at a higher abstraction level, mak-
ing it possible to select and verify the optimal solution at
an early stage of development. Thereby prevent damaging
expensive equipment or committing to inappropriate hard-
ware or software solutions. With electronically controlled
engines even small variations in the control behaviour has
significant impact on the combustion process. Detailed
simulations of the engine process combined with high
fidelity models of the control system are therefore required.
The International Maritime Organization (IMO) often
introduce new legislations (Organization., 2013) causing
drastic changes to the engine layout. These have caused
ships to e.g. have power rating and emission reduction
systems, introducing a whole new dimension to the engine
design. Further new fuel types and dual fuel engines are
emerging, thus also increasing the system complexity. A
result of the increased complexity is a more distributed
control system with additional network communication.
In real-time systems the network performance is of great
importance and faults can have significant consequences.
At MAN Diesel & Turbo (MDT) these new challenges call
for a more collaborative model development than previ-
ously. Physical performance modelling will become more

dependent of the control system dynamic and the control
systems development will require access to comprehensive
and detailed engine models. It is therefore, more then ever,
desired to develop a co-simulation 1 tool, enabling depart-
ments to share models across solvers and environments.

This paper demonstrate how the Functional Mock-up In-
terface (FMI) (Blochwitz et al., 2012) can be used to co-
simulate a cyber-physical system, such as the MDT two-
stroke diesel engine with its engine control system. FMI
was the result of the ITEA2 project MODELISAR to
improve the design of embedded software in vehicles, orga-
nized by Daimler AG. FMI has mainly been used in the au-
tomotive industry (Abel et al., 2014; Stoermer and Tibba,
2014). Recently, academic applications within energy grid
systems (Elsheikh et al., 2013), control systems(Exel et al.,
2014) and HVAC systems (Nouidui et al., 2014) are start-
ing to emerge. The interface does not provide a master
for scheduling and execution, and only few examples have
been proposed (Bastian et al., 2013; Broman et al., 2013),
and using High Level Architecture (HLA) compliant Run
Time Infrastructure (RTI) in (Awais et al., 2013a,b). A
master algorithm will be introduced to organize the co-
simulation and a proof of concept example is presented. We
propose to use, the SystemC Network Simulation Library
(SCNSL)(Fummi et al., 2008) to model the network con-
necting the sub-systems. The network model can be used

1 Co-Simulation is the practice of modelling and simulating different
subsystems that form a coupled problem in a distributed manner.

10th Conference on Manoeuvring and Control of Marine Craft
August 24-26, 2015. Copenhagen, Denmark

Copyright © IFAC 2015 261

262 Nicolai Pedersen et al. / IFAC-PapersOnLine 48-16 (2015) 261–266

to simulate and test different communication scenarios in
respect to latency, transit-time, assertion ect..

Connecting FMI with other simulation-tools have previ-
ously been done, e.g. with SIEMENS SIMIT 7 to include
Shared Memory Gateway (Exel et al., 2014) and integrat-
ing Functional Digital Mock-up (FMDU) with FMI has
been suggested in (Enge-rosenblatt et al., 2013). Many
tools support FMI out of the box or through third party
add ons; Dymola, MATLAB/Simulink, SimulationX, GT-
Power amongst others. Network modelling within a single
tool is common, however combing co-simulation through
FMI with a network simulation tool such as the SCNSL
has not previously been done.

This paper will start by introducing the cyber-physical sys-
tem in section 2. Section 3 outlines the FMI 2.0 standard
for co-simulation, followed by a description of the SCNSL
network model in section 4. In section 5 the implemen-
tation of a master algorithm is presented. Results from a
proof of concept example is shown in section 6. Finally in
section 7 conclusions will be drawn.

2. CYBER-PHYSICAL SYSTEM

CCU
CCU

CCU
CCU

CCU
CCU

SCU

ACU
ACU

ACU

TIU
TIU

ECU ECU EICU EICU

Network

Fig. 1. Illustration of the MAN Diesel & Turbo Engine
with distributed engine control System.

The system investigated is the standard layout of a MAN
Diesel & Turbo two-stroke diesel engine as seen on Fig. 1,
acronyms used can be seen in table A.1. The physical layer
is presented by the sensors and actuators connecting the
engine with the controllers. The cyber layer is the commu-
nication between controllers together with the HMI(alarm
system, operating panels, etc.). The engine is electronically
controlled by a engine control system, consisting of several
embedded controllers. Each controller composes a power
module, I/O chassis, DC/DC converter and a FPGA. All
controllers are hardware-wise identical, but the software
running on the FPGA-core, determines the specific control
objective. On Fig. 1, 16 controllers are shown performing
6 different functions/control objectives. The crankshaft

position is registered by the TIU, this information is pro-
cessed by the ECU which schedules tasks for the CCU,
SCU and ACU e.g. ingestion timing, wastegate control,
blowers, hydraulics and lubrication. The EICU is the
interface between the operator and the control system,
from here change of engine load, running modes, etc is
controlled. Due to fault tolerance measures, many of the
controllers are redundant, TIU and EICU on Fig. 1.

The engine is modelled using various commercial tools and
self developed environments. These environments are not
compatible with the control system, which results in a
significant deviation between the thermodynamic models
used for control system development and control logic
used when developing thermodynamics models. Another
challenge of simulating the control system is the identical
nature of the software architecture across controllers. Each
application has to follow a strict singleton structure,
ensuring only one instance of a class, which renders it
impossible to compile more than one controller in the same
executable.

To properly co-simulate the entire system, an interface
is required. The interface will have to support multi-
ple platforms and have a clear and organized way of
connecting model inputs and outputs. Furthermore it is
required that the binaries of the controller software, is
handled in a segregated manner to overcome the singleton
structure, FMI does exactly this. Using a standardized
simulation routine, the interface permits multiple platform
compatibility and optimal opportunity for integration with
third party commercial tools. FMI also introduce a XML-
schema for describing the subsystems and their inputs,
outputs and relevant variables. Furthermore, the binaries
of each subsystem are packet in dynamic-link libraries,
which solves the issue with the singleton nature of the
controller software.

On Fig. 2 the system has been divided into three layers.
The physical layer with sensors and actuators, cyber
layer with communication across controllers and the top
layer, test & development, where simulation and test
scenarios are defined. FMI is illustrated as the grey area
connecting the boarder between the physical- and the
cyber-layer. SCNSL is at the cyber level directing all the
communication between components and with the user.

With FMI, a complete co-simulation of the control system
with various thermodynamic models is made possible.
Deterministic simulations are very appropriate when ver-
ifying algorithms and unit-testing reliable parts of a sys-
tem. Cyber-physical, especially real-time control systems,
are very dependent and sensitive to communication both
between hardware components and computational units.
Communication is often LAN or WAN based and does not
guarantee determinism witch may lead to inappropriate
system behaviour, due to assertion and varying time de-
lays on reference signals. These challenges are commonly
solved by ensuring sufficient overhead in the computation
scheduling. The correct system behaviour is then verified
through comprehensive stress tests on actual hardware.
Though immediate sufficient, this approach is not very ef-
fective and increased overhead does not guarantee correct
execution. Additionally only few failures caused by com-
munication faults are captured through hardware tests.

IFAC MCMC 2015
August 24-26, 2015. Copenhagen, Denmark

262

 Nicolai Pedersen et al. / IFAC-PapersOnLine 48-16 (2015) 261–266 263

to simulate and test different communication scenarios in
respect to latency, transit-time, assertion ect..

Connecting FMI with other simulation-tools have previ-
ously been done, e.g. with SIEMENS SIMIT 7 to include
Shared Memory Gateway (Exel et al., 2014) and integrat-
ing Functional Digital Mock-up (FMDU) with FMI has
been suggested in (Enge-rosenblatt et al., 2013). Many
tools support FMI out of the box or through third party
add ons; Dymola, MATLAB/Simulink, SimulationX, GT-
Power amongst others. Network modelling within a single
tool is common, however combing co-simulation through
FMI with a network simulation tool such as the SCNSL
has not previously been done.

This paper will start by introducing the cyber-physical sys-
tem in section 2. Section 3 outlines the FMI 2.0 standard
for co-simulation, followed by a description of the SCNSL
network model in section 4. In section 5 the implemen-
tation of a master algorithm is presented. Results from a
proof of concept example is shown in section 6. Finally in
section 7 conclusions will be drawn.

2. CYBER-PHYSICAL SYSTEM

CCU
CCU

CCU
CCU

CCU
CCU

SCU

ACU
ACU

ACU

TIU
TIU

ECU ECU EICU EICU

Network

Fig. 1. Illustration of the MAN Diesel & Turbo Engine
with distributed engine control System.

The system investigated is the standard layout of a MAN
Diesel & Turbo two-stroke diesel engine as seen on Fig. 1,
acronyms used can be seen in table A.1. The physical layer
is presented by the sensors and actuators connecting the
engine with the controllers. The cyber layer is the commu-
nication between controllers together with the HMI(alarm
system, operating panels, etc.). The engine is electronically
controlled by a engine control system, consisting of several
embedded controllers. Each controller composes a power
module, I/O chassis, DC/DC converter and a FPGA. All
controllers are hardware-wise identical, but the software
running on the FPGA-core, determines the specific control
objective. On Fig. 1, 16 controllers are shown performing
6 different functions/control objectives. The crankshaft

position is registered by the TIU, this information is pro-
cessed by the ECU which schedules tasks for the CCU,
SCU and ACU e.g. ingestion timing, wastegate control,
blowers, hydraulics and lubrication. The EICU is the
interface between the operator and the control system,
from here change of engine load, running modes, etc is
controlled. Due to fault tolerance measures, many of the
controllers are redundant, TIU and EICU on Fig. 1.

The engine is modelled using various commercial tools and
self developed environments. These environments are not
compatible with the control system, which results in a
significant deviation between the thermodynamic models
used for control system development and control logic
used when developing thermodynamics models. Another
challenge of simulating the control system is the identical
nature of the software architecture across controllers. Each
application has to follow a strict singleton structure,
ensuring only one instance of a class, which renders it
impossible to compile more than one controller in the same
executable.

To properly co-simulate the entire system, an interface
is required. The interface will have to support multi-
ple platforms and have a clear and organized way of
connecting model inputs and outputs. Furthermore it is
required that the binaries of the controller software, is
handled in a segregated manner to overcome the singleton
structure, FMI does exactly this. Using a standardized
simulation routine, the interface permits multiple platform
compatibility and optimal opportunity for integration with
third party commercial tools. FMI also introduce a XML-
schema for describing the subsystems and their inputs,
outputs and relevant variables. Furthermore, the binaries
of each subsystem are packet in dynamic-link libraries,
which solves the issue with the singleton nature of the
controller software.

On Fig. 2 the system has been divided into three layers.
The physical layer with sensors and actuators, cyber
layer with communication across controllers and the top
layer, test & development, where simulation and test
scenarios are defined. FMI is illustrated as the grey area
connecting the boarder between the physical- and the
cyber-layer. SCNSL is at the cyber level directing all the
communication between components and with the user.

With FMI, a complete co-simulation of the control system
with various thermodynamic models is made possible.
Deterministic simulations are very appropriate when ver-
ifying algorithms and unit-testing reliable parts of a sys-
tem. Cyber-physical, especially real-time control systems,
are very dependent and sensitive to communication both
between hardware components and computational units.
Communication is often LAN or WAN based and does not
guarantee determinism witch may lead to inappropriate
system behaviour, due to assertion and varying time de-
lays on reference signals. These challenges are commonly
solved by ensuring sufficient overhead in the computation
scheduling. The correct system behaviour is then verified
through comprehensive stress tests on actual hardware.
Though immediate sufficient, this approach is not very ef-
fective and increased overhead does not guarantee correct
execution. Additionally only few failures caused by com-
munication faults are captured through hardware tests.

IFAC MCMC 2015
August 24-26, 2015. Copenhagen, Denmark

262

Tacho Interface

Unit

Cylinder Control

Unit
Engine Control

Unit

FMI

Cylinder Model Crankshaft Model
Thermodynamic

Models

fs

SCNSL

Bandwith Delay ProtecolsSwitch Model Priority

Simulation Scenario:

Algorithm verification

Fault injection

Temporal verification

Design space exploration

Different abstraction

levels and Modeling

environments

XXX Control/Interface

Units

Test & Development

Cyber

Physical

Fig. 2. Cyber Physical System

Introducing a network simulation model, makes it possible
to, at an early stage of development, simulate network
latency, delay and alternative protocols to determine the
optimal overhead on the computational units, minimizing
the chance of incorrect temporal execution.

With SCNSL it is possible to model a network represen-
tation of the communication between nodes in the engine
control system. SCNSL makes it easy to implement and
replace protocols and the connection between nodes can be
configured to alter propagation speed, delay and priority.

Using the SCNSL simulation kernel, testers and developers
can easily define simulation scenarios, do verification and
fault injection to test the limits of the system. SCNSL
handles the scheduling of the tasks and tracing of relevant
reference and output signals.

Combining SCNSL and FMI it is possible to simulate
the actual control software with any abstraction of the
thermodynamic engine models, combined with a realistic
representation of the network connection.

3. FUNCTIONAL MOCK-UP INTERFACE FOR
CO-SIMULATION

FMI 2.0 for co-simulation, is a standardized interface for
coupling simulation tools, in a co-simulation environment.
Each subsystem is solved independently by its individual
solver and with data exchange occurring in-between calcu-
lations at so called discrete communication points. A Func-
tional Mock-up Unit (FMU) is a subsystem implementing
the FMI standard assembled as an archive file containing
all the necessary components required to utilize the unit.

Two main components are required to created a FMU; a
description schema and an application-interface.

3.1 Description Schema

The description Schema is a XML-file which contain all
the information required to connect the subsystems to the
co-simulation. Fig. 3 show the top-level of the schema, it
should be noticed that optional components are marked
with dashed lines, and only their root level is shown on
Fig. 3.

Fig. 3. FMU description schema. Solid-lines are required
components, dashed-line are optional. (Blochwitz
et al., 2012)

FMUs are required to specify their FMI version, model
name and a globally unique identifier (GUID). The essen-
tial part of the schema is the ModelVariables, where all
FMU variables exposed to the environment, are defined.
The ModelStructure is necessary for handling the order of
outputs, derivatives and states, together with the variables
which are unknown during initialization.

3.2 Application-Interface

FMI defines a number of executable C-function-prototypes
that are to be implemented in the FMU. It insures that
the definition of types are identical across the entire envi-
ronment by prepending a prefix to all functions and having
type definitions for inputs and outputs. The standard also
define data and function types for the interface, which
must be used both when compiling FMUs and the FMI
master.

The application-interface should be compiled as a dynamic-
link library either a Linux shared library or Microsoft DLL.
The binary or multiple binaries for cross compatibility are
archived in the FMU file together with the description
schema.

4. NETWORK MODEL

The network model is created using the SCNSL extension
to SystemC. Even before SystemC became an IEEE stan-
dard in 2006 (Sys, 2012) it had proven highly efficient when
it comes to modelling of virtual platforms. SystemsC is a
system-level modelling language that consists of a set of
C++ classes and macros which provide an event-driven

IFAC MCMC 2015
August 24-26, 2015. Copenhagen, Denmark

263

264 Nicolai Pedersen et al. / IFAC-PapersOnLine 48-16 (2015) 261–266

simulation. SystemC is continuously being improved in
order to achieve better modelling capabilities and ease
advanced embedded development. Some of these improve-
ments have become extensions such as Transition Level
Modelling, Analog/Mixed-Signal (Grimm and Fraunhofer,
2014; Einwich, 2010), Asynchronous SystemC (Koch-Hofer
et al., 2007), SystemC Verification Library and finally
SystemC Network Simulation Library (SCNSL) (Fummi
et al., 2008) used in this project.

4.1 SystemC Network Simulation Library

The SystemC Network Simulation Library as an extension
to SystemC makes it possible to jointly design HW, SW
and network in a single simulation tool. The library
provides 5 key elements:

• Kernel: The kernel is responsible for the execution
of events in the correct temporal order and behaviour
of the communication channels with features like
propagation delay, byte-rate etc.. Since SCNSL is
an extension to SystemC it exploits the SystemC
scheduler by mapping network events on standard
SystemC events.

• Node: A node is the active element of the network,
it produces, transforms and consumes transmitted
data. The node implementation is decoupled from
the network simulation which makes it possible for
system designers to e.g. change abstraction level, do
fault injection, synthesis and validation.

• Packet: In packet-switched networks the packet is
the unit of data exchanged amongst nodes. In general
the packet format is highly dependent on the corre-
sponding protocol. SCNSL does not provide a set of
protocols and packet formats, but uses an internal
format and lets the designer implement the protocol
design on the specific node.

• Channel: A Channel represents the physical medium
which connects two or more nodes. It can be ei-
ther a point-to-point link or a shared medium. Mul-
tiple channel types are supported; Unidirectional,
Half/Full-Duplex and shared.

• Port: Every node uses ports to send and receive
packets.

4.2 MAN Diesel & Turbo Network Model

A Simplified model of the engine control system network is
illustrated on Fig. 4. All nodes are connected, by Ethernet
cables, to a switch located in either the engine control
room or engine room. Cables are represented by channels
in SCNSL, where bit-rate and delays can be adjusted be-
tween ports. Each controller is implemented as a SCNSL-
node-instance and consists of an input and output con-
troller, implementing the current protocol designers would
like to investigate. Network packages are delivered to the
node through the simulation kernel, activating the input
controller thread upon arrival. Switches are implemented
in the same manner as node-instances. Standard switches
simply forward communication, but through simple cus-
tomization they can become a key element for investigating
network improprieties. The prioritizing of the network
communication is done using the SCNSL-embedded chan-

Engine Room

Ethernet

Switch

TIUACU ECU

CCU1 CCU2 CCU(n)

SCU

Ethernet

Switch

EICUMOP
Switch:

IEE 802.3, store

and-forward

Switching

IEE 802.1D/P

Priority

SCNSL Node:

Communicator

Priority protecol

Switch Protocol

design

SCNSL Node:

Input/Output Controller

Network interupt:

Packet recived

Amount of CCU

units corresponds

to the amount of

cylinders (4-12)

Ethernet Cables

SCNSL Channel:

Adjustable bit-rate

and transmission

delay

Engine Control Room

Fig. 4. Simplified Network model of the engine control
system on a MDT engine. Acronyms are found in table
A.1

nels that makes it possible to prioritize packages on kernel
level before arriving to the switch.

5. CO-SIMULATION MASTER

Co-simulation is the discipline of jointly simulating models
developed with different tools, where each tool solve parts
of a modular coupled problem. Data exchange between
subcomponents, is restricted to discrete communication
points. In between communication points the subsystems
are solved independently. To coordinate temporal execu-
tion between subsystems, a simulation master is required.
FMI does not provide a master algorithm and no standard
FMI co-simulation master has been widely accepted. The
master developed for this project implements FMI and
links all the FMUs used. Since FMI only support C, and
the MDT control software is developed in C++, a wrapper
had to be written. The master utilises the SystemC sim-
ulation kernel and implements the SCNSL network model
as described in Sec. 4. The master is the executable of the
simulation environment and here the simulation scenario
is defined and executed.

5.1 Simulation Sequence

The co-simulation master is divided into three parts; ini-
tialization, simulation and shut-down. A sequence diagram
of the master algorithm is seen on Fig. 5 and described
below.

Initialization The initialization must be realised in a
specific order to correctly instantiate the simulation. First
step is to create the network model, here all nodes of

IFAC MCMC 2015
August 24-26, 2015. Copenhagen, Denmark

264

 Nicolai Pedersen et al. / IFAC-PapersOnLine 48-16 (2015) 261–266 265

simulation. SystemC is continuously being improved in
order to achieve better modelling capabilities and ease
advanced embedded development. Some of these improve-
ments have become extensions such as Transition Level
Modelling, Analog/Mixed-Signal (Grimm and Fraunhofer,
2014; Einwich, 2010), Asynchronous SystemC (Koch-Hofer
et al., 2007), SystemC Verification Library and finally
SystemC Network Simulation Library (SCNSL) (Fummi
et al., 2008) used in this project.

4.1 SystemC Network Simulation Library

The SystemC Network Simulation Library as an extension
to SystemC makes it possible to jointly design HW, SW
and network in a single simulation tool. The library
provides 5 key elements:

• Kernel: The kernel is responsible for the execution
of events in the correct temporal order and behaviour
of the communication channels with features like
propagation delay, byte-rate etc.. Since SCNSL is
an extension to SystemC it exploits the SystemC
scheduler by mapping network events on standard
SystemC events.

• Node: A node is the active element of the network,
it produces, transforms and consumes transmitted
data. The node implementation is decoupled from
the network simulation which makes it possible for
system designers to e.g. change abstraction level, do
fault injection, synthesis and validation.

• Packet: In packet-switched networks the packet is
the unit of data exchanged amongst nodes. In general
the packet format is highly dependent on the corre-
sponding protocol. SCNSL does not provide a set of
protocols and packet formats, but uses an internal
format and lets the designer implement the protocol
design on the specific node.

• Channel: A Channel represents the physical medium
which connects two or more nodes. It can be ei-
ther a point-to-point link or a shared medium. Mul-
tiple channel types are supported; Unidirectional,
Half/Full-Duplex and shared.

• Port: Every node uses ports to send and receive
packets.

4.2 MAN Diesel & Turbo Network Model

A Simplified model of the engine control system network is
illustrated on Fig. 4. All nodes are connected, by Ethernet
cables, to a switch located in either the engine control
room or engine room. Cables are represented by channels
in SCNSL, where bit-rate and delays can be adjusted be-
tween ports. Each controller is implemented as a SCNSL-
node-instance and consists of an input and output con-
troller, implementing the current protocol designers would
like to investigate. Network packages are delivered to the
node through the simulation kernel, activating the input
controller thread upon arrival. Switches are implemented
in the same manner as node-instances. Standard switches
simply forward communication, but through simple cus-
tomization they can become a key element for investigating
network improprieties. The prioritizing of the network
communication is done using the SCNSL-embedded chan-

Engine Room

Ethernet

Switch

TIUACU ECU

CCU1 CCU2 CCU(n)

SCU

Ethernet

Switch

EICUMOP
Switch:

IEE 802.3, store

and-forward

Switching

IEE 802.1D/P

Priority

SCNSL Node:

Communicator

Priority protecol

Switch Protocol

design

SCNSL Node:

Input/Output Controller

Network interupt:

Packet recived

Amount of CCU

units corresponds

to the amount of

cylinders (4-12)

Ethernet Cables

SCNSL Channel:

Adjustable bit-rate

and transmission

delay

Engine Control Room

Fig. 4. Simplified Network model of the engine control
system on a MDT engine. Acronyms are found in table
A.1

nels that makes it possible to prioritize packages on kernel
level before arriving to the switch.

5. CO-SIMULATION MASTER

Co-simulation is the discipline of jointly simulating models
developed with different tools, where each tool solve parts
of a modular coupled problem. Data exchange between
subcomponents, is restricted to discrete communication
points. In between communication points the subsystems
are solved independently. To coordinate temporal execu-
tion between subsystems, a simulation master is required.
FMI does not provide a master algorithm and no standard
FMI co-simulation master has been widely accepted. The
master developed for this project implements FMI and
links all the FMUs used. Since FMI only support C, and
the MDT control software is developed in C++, a wrapper
had to be written. The master utilises the SystemC sim-
ulation kernel and implements the SCNSL network model
as described in Sec. 4. The master is the executable of the
simulation environment and here the simulation scenario
is defined and executed.

5.1 Simulation Sequence

The co-simulation master is divided into three parts; ini-
tialization, simulation and shut-down. A sequence diagram
of the master algorithm is seen on Fig. 5 and described
below.

Initialization The initialization must be realised in a
specific order to correctly instantiate the simulation. First
step is to create the network model, here all nodes of

IFAC MCMC 2015
August 24-26, 2015. Copenhagen, Denmark

264

Fig. 5. Calling sequence of FMI Co-Simulation C functions
and SCNSL network model.

the network are instantiated. Channels between nodes are
created and bound according to the scenario to be tested.
When the network is ready the FMUs can be loaded. This
is done by first importing the description XML-schema and
then loading to the dynamic-link library. The FMUs can
then link to the Model libraries, either control software or
physical model. After successfully linking to a library, the
application will have access to relevant data and the clock
of the specific solver 2 . Last is the FMU-initialization, here
the inputs and initially unknown variables are set.

Simulation The simulation is a loop terminated either
when the scenario is completed or if a FMU returns
an error state. The loop step-size corresponds to the
distance between discrete communication points. At next
communication point all variables are updated, followed by
a step on each FMU. On the controller a step corresponds
to a relative amount of ticks on the operating system clock.
The simulation step and ticks have to match, so time is
consistent across nodes. When the step has finished all
variables are updated so the parameter bank on the master
matches the FMUs. The SCNSL model is simulated with
the same step size as the FMU step. If a FMU-output has
been updated, a packet will be sent through the network
model to the appropriate node. At the first communication
point following the reception of a packet, the relevant FMU
variable will be updated.

2 On MAN control software the idle thread of a RTEMS operating
system, scheduling the controller-software, is overwritten to provide
a hook for the main clock.

Shut-down Here all memory is freed, threads are closed
and links released.

6. RESULTS

A proof of concept is presented to show one of the many
opportunities resulting from the enhanced simulation en-
vironment. The example is configured as illustrated on
Fig. 6, and consist of seven FMUs, six of them controllers
and one a physical model. A SCNSL-model is representing
the network between all the control-nodes connected by a
switch. The physical connections between the crankshaft
model and controllers are considered immediate and data-
exchange is carried out at every communications point.
The master has a communication point every 0.5 millisec-
ond, and the network channels have a bite-rate of 100
Mbit/s with priority on packages arriving to the switch.
The simulation scenario starts by the crankshaft model

SystemC Master

SCNSL

Crankshaft FMU ECU_FMU

TIU_FMU

CCU1_FMU CCU2_FMUCCU3_FMU

Switch

TIU

ECU

CCU1

CCU2

CCU3
CCU4_FMU

CCU4

FMI

Packet Send

Packet Recive

Fig. 6. Example of the simulation configuration

affecting the TIU FMU. The TIU FMU reinterprets the
I/O signal into a telegram that is sent from the TIU
through the network model. The switch receives and for-
wards the telegram to the ECU node that delivers it to the
ECU FMU at next communications point. The ECU FMU
uses the TIU telegram to calculate the engine speed and
piston positions. This information is used to calculate in-
jection commands etc. and the commands are sent through
the network to all of the four cylinders CCU1-4.

On the top of Fig. 7 the network communication timing
is illustrated. The TIU node receives a signal from the
crankshaft model and immediately sends the telegram
through the network model. Shortly after the telegram is
received by the ECU. At the next communication point
the ECU sends its commands to the four cylinders CCU1-
4. Chronologically the commands reach the CCUs as fast
as the switch allows, in time for the next TIU activation.
The bottom image of Fig. 7 show the same system, but
with a 50% lower bit rate from the ECU to CCUs. This
results in the ECU not being able to send its commands
to all the cylinders before a new TIU signal is received.

This is a very simple example of what is possible with the
combination of FMI and SCNSL. Many more aspects of
timing in the system can be challenged, and the effects of

IFAC MCMC 2015
August 24-26, 2015. Copenhagen, Denmark

265

266 Nicolai Pedersen et al. / IFAC-PapersOnLine 48-16 (2015) 261–266

Fig. 7. Top: Timing diagram of well behaving system.
Bottom: Inappropriate timing due to lowering of
communication speed

network faults on the entire system can be seen directly
within a single environment.

7. CONCLUSION

This paper presented a method for co-simulation of a
distributed engine control system with thermodynamic
models and their surrounding network. To organize the
co-simulation, the FMI for co-simulation standard was
used, and to model the network the SystemC network
simulation library. A master algorithm for doing the sim-
ulations was presented and a simple example of how to
investigate assertion showed how easy the systems can
be used. The combination of network and co-simulation
makes for a more complete environment where developers
can investigate both communications performance and its
dynamics effects across the entire system. Having a stan-
dardized simulation interface eases communication across
departments and OEMs, making it easier to verify third
part solutions. The result being better models and control
algorithms leading to better solutions when facing new
challenges.

REFERENCES

(2012). Ieee standard for standard system c language reference
manual. doi:10.1109/IEEESTD.2012.6134619.

Abel, A., Blochwitz, T., Eichberger, A., Hamann, P., and Rein, U.
(2014). Functional mock-up interface in mechatronic gearshift
simulation for commercial vehicles.

Awais, M.U., Palensky, P., Elsheikh, A., Widl, E., and Matthias,
S. (2013a). The high level architecture rti as a master to the
functional mock-up interface components. 2013 International
Conference on Computing, Networking and Communications,
Icnc 2013, Int. Conf. Comput., Networking Commun., Icnc, 315–
320. doi:10.1109/iccnc.2013.6504102.

Awais, M.U., Palensky, P., Mueller, W., Widl, E., and Elsheikh,
A. (2013b). Distributed hybrid simulation using the hla and
the functional mock-up interface@ait.ac.at. Iecon Proceedings

(industrial Electronics Conference), Iecon Proc, 7564–7569. doi:
10.1109/iecon.2013.6700393.

Bastian, J., Clau, C., Wolf, S., and Schneider, P. (2013). P.: Master
for co-simulation using fmi.

Blochwitz, T., Otter, M., Åkesson, J., Arnold, M., Clauss, C.,
Elmqvist, H., Friedrich, M., Junghanns, A., Mauss, J., Neumerkel,
D., et al. (2012). Functional mockup interface 2.0: The standard
for tool independent exchange of simulation models. In 9th
International Modelica Conference.

Broman, D., Brooks, C., Greenberg, L., Lee, E.A., Masin, M., Tri-
pakis, S., andWetter, M. (2013). Determinate composition of fmus
for co-simulation. 2013 Proceedings of the International Confer-
ence on Embedded Software, Emsoft 2013, Proc. Int. Conf. Em-
bedded Softw., Emsoft, 1–12. doi:10.1109/emsoft.2013.6658580.

Einwich, K. (2010). Systemc ams extensions. 1. doi:
10.1049/ic.2010.0170.

Elsheikh, A., Awais, M.U., Widl, E., and Palensky, P. (2013).
Modelica-enabled rapid prototyping of cyber-physical energy sys-
tems via the functional mockup interface. 2013 Workshop
on Modeling and Simulation of Cyber-physical Energy Systems,
Mscpes 2013, Workshop Model. Simul. Cyber-phys. Energy Syst.,
Mscpes, 6623315. doi:10.1109/mscpes.2013.6623315.

Enge-rosenblatt, O., Clau, C., Schneider, A., and Schneider, P.
(2013). Functional digital mock-up and the functional mock-
up interface two complementary approaches for a comprehensive
investigation of heterogeneous systems.

Exel, L., Frey, G., Wolf, G., and Oppelt, M. (2014). Re-use of existing
simulation models for dcs engineering via the functional mock-up
interface. 1–4. doi:10.1109/ETFA.2014.7005261.

Fummi, F., Quaglia, D., and Stefanni, F. (2008). A systemc-based
framework for modeling and simulation of networked embedded
systems. Proceedings - 2008 Forum on Specification, Verification
and Design Languages, Fdl’08, Proc. - Forum Specif., Verif. Des.
Lang., Fdl, 49–54. doi:10.1109/fdl.2008.4641420.

Grimm, C. and Fraunhofer, K.E. (2014). Analog and mixed signal
modelling with systemc-ams.

Koch-Hofer, C., Renaudin, M., Thonnart, Y., and Vivet, P. (2007).
Asc, a systemc extension for modeling asynchronous systems, and
its application to an asynchronous noc. Proceedings - Nocs 2007:
First International Symposium on Networks-on-chip, Proc. First
Int. Symp. Netw.-on-chip, 295–303. doi:10.1109/nocs.2007.12.

Nouidui, T.S., Wetter, M., and Zuo, W. (2014). Functional mock-
up unit for co-simulation import in energyplus. JOURNAL
OF BUILDING PERFORMANCE SIMULATION, 7(3), 192–
202. doi:10.1080/19401493.2013.808265.

Organization., I.M. (2013). MARPOL : Annex VI and NTC 2008
with guidelines for implementation. International Maritime Or-
ganization London, third edition 2013. edition.

Stoermer, C. and Tibba, G. (2014). Powertrain co-simulation using
autosar and the functional mockup interface standard. 1. doi:
10.1109/DAC.2014.6881372.

Appendix A. NOMENCLATURE

Table A.1. Acronyms

Acronym Definition

FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
SCNSL SystemC Network Simulation Library
MDT MAN Diesel & Turbo
ECU Engine Control Unit
EICU Engine Interface Control Unit
TIU Tacho Interface Unit
ACU Auxiliary Control Unit
CCU Cylinder Control Unit
SCU Scavenge Air Unit
MOP Main operating panel

IFAC MCMC 2015
August 24-26, 2015. Copenhagen, Denmark

266

Chapter 9

Paper B: FMI for
Co-Simulation of Embedded

Control Software

FMI for Co-Simulation of Embedded Control Software

Nicolai Pedersen1,2 Tom Bojsen2 Jan Madsen1 Morten Vejlgaard-Laursen2

1 Technical University of Denmark, Embedded Systems Engineering, Kgs. Lyngby DK-2800,Denmark ,
{nicp, jama}@dtu.dk

2MAN Diesel & Turbo, Teglholmsgade 41 Copenhagen DK-2450, Denmark,
{nicolai.pedersen , tom.bojsen, morten.laursen}@man.eu

Abstract

Increased complexity of cyber-physical systems within
the maritime industry demands closer cooperation be-
tween engineering disciplines. The functional mockup
interface (FMI) is an initiative aiding cross-discipline in-
teraction by providing, a widely accepted, standard for
model exchange and co-simulation. The standard is sup-
ported by a number of modelling tools. However, to im-
plement it on an existing platform requires adaptation.
This paper investigates how to adapt the software of an
embedded control system to comply with the FMI for
co-simulation standard. In particular, we suggest a way
of advancing the clock of a real time operating system
(RTOS), by overwriting the idle thread and waiting for
a signal to start execution until return to idle. This ap-
proach ensures a deterministic and temporal execution
of the simulation across multiple nodes. As proof of
concept, a co-simulation is conducted, showing that the
control system of an SCR (selective catalyst reduction)
emission reduction system can be packed in a functional
mockup unit (FMU) and co-simulated with a physical
model, built in Ptolemy II. Results show that FMI can be
used for co-simulation of an embedded SCR control soft-
ware and for control software development. Keywords:
Co-Simulation, RTOS, FMI, FMU, Embedded Systems

1 Introduction

Designing the next generation of embedded cyber-
physical systems (CPS) requires close collaboration be-
tween physical model developers and the engineers im-
plementing the computation, communication and con-
trol. The amount of sub-systems, deviation in the tool
chain and standards are often barriers between these dis-
ciplines. Teams are divided into different departments
within organisations or in cross-company collaborations,
further complicating the cooperation. One of the re-
cent initiatives to lower this barrier is the functional
mockup interface (FMI) (Blochwitz et al., 2009). It is
a tool-independent standard for model exchange and co-
simulation. FMI was initiated by the automotive industry

and released in a version 1.0 in 2010 followed by a 2.0
version in 2014. This paper does not explain the stan-
dard, but aims to show the process of adapting an embed-
ded system to comply with FMI. Implementing the FMI
standard on an existing modelling platform is straightfor-
ward, especially since many of the open-source and com-
mercial tools already support it. Forcing a specialised
embedded system to comply is, however, a demanding
task that requires adaptation.

At MAN Diesel & Turbo, legislation on pollution and
a demand for support of alternative fuel types are in-
creasing the amount of distributed sub-systems and the
complexity of the traditional two-stroke diesel engine.
The increased distributed complexity makes the coop-
eration between cyber and physical parts of the system
even more crucial. Currently, simplified physical models
are used for control algorithm development, and only es-
timations of the control system dynamics is considered
when modelling the physical behaviour. The objective
of this project is to enhance the modelling development
and distribution at MAN Diesel & Turbo by introducing
a more comprehensive system simulation. We wish to
simulate both physical behaviour and control dynamics,
combined with a model of the software. The software
model will enable us to investigate system behaviour
such as alarm handling, IO scaling and network com-
munication/protocols. The main challenge is to adapt
the embedded engine control system into a functional
mockup unit (FMU). The process of this adaptation is
what will be presented in this paper. As use case, a
simple model of the SCR (Selective Catalyst Reduction)
emission reduction system and its control software will
be co-simulated.

FMI 2.0 for co-simulation has been chosen due to its
strict type/execution structure combined with its freedom
of implementation. The standard is highly recognised
and applied within the automotive industry (Abel et al.,
2012; Stoermer and Tibba, 2014), which has many simi-
larities with the maritime. Recently, applications within
energy and grid systems (Vanfretti et al., 2014; Elsheikh
et al., 2013) and HVAC systems (Nouidui et al., 2014)
are emerging as well. FMI applications within the mar-
itime industry, like this, is limited (Pedersen et al., 2015).

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

70 DOI
10.3384/ecp1612470

__

This project uses the heterogeneous simulation software
framework Ptolemy II (Liu et al., 2001; Brooks et al.,
2010) to co-simulate a simple physical model with an im-
ported FMU. Ptolemy II has been used for various FMI
applications (Broman et al., 2013; Liu et al., 2001; Lee
et al., 2015) Much attention has been put on implement-
ing the standard, such as FMI++ (Widl et al., 2013) the
FMI Library from (Modelon) and the FMU SDK from
(QTronic). Examples of how to build an FMI master al-
gorithm has been provided as well (Bastian et al., 2011;
Broman et al., 2013). In (Bertsch et al., 2015) a pro-
totypical realisation of an FMU executing on a Bosch
electronic control unit was presented. However, the non-
trivial process of adapting the software of an embedded
system, with at real-time operating system (RTOS), into
a co-simulation FMU, has not yet been described, but
will be in this paper.

First the cyber-physical system at hand will be intro-
duced in Section 2. Section 3 shows how to move from
a target embedded application to an FMU running in a
regular Linux environment. A use-case implementation
is presented in Section 4 and conclusions are drawn in
Section 5

2 Cyber-Physical System

Cylinder Control Unit
Tacho Interface Unit

Engine Control Unit

Engine Interface Unit

SCR Control Unit

Scavenge Air Control Unit

Network

SCR Interface Unit

Figure 1. An MAN Diesel & Turbo two-stroke low-speed
diesel engine with the SCR and the engine control system il-
lustrated

MAN Diesel & Turbo designs large-bore diesel en-
gines and turbomachinery for marine propulsion systems
and stationary applications, such as power plants. With
the introduction of the electronically controlled line of
ME engines in 2002, MAN Diesel & Turbo moved into
the development of Cyber-Physical System. In recent

years, the demand for new emission reduction systems
and alternative fuel types have made the core engine
even more dependent on the surrounding control system.
This dependency demands a more advanced simulation
environment including co-simulation. The engine con-
trol system consists of numerous distributed controllers
with each their specific control objective connected by
a wired network. Figure 1 illustrates a 6-cylinder two-
stroke ME-engine with an SCR system and engine con-
trol system. The main controllers are the engine interface
units communicating with the operator, and the scavenge
air control unit ensuring that pressures are balanced be-
tween the turbocharger and scavenging. The engine con-
trol units ensure that the cylinder control units perform
the correct temporal injection ect. according to the infor-
mation about the crankshaft position from the tacho in-
terface units. Finally, if the engine is fitted with an auxil-
iary system e.g. an SCR system, it will be controlled and
monitored by its own SCR units.

3 From Embedded Target to FMU

Figure 2. A multi-purpose controller of the MAN Diesel &
Turbo engine control system

To achieve the objective of co-simulating the soft-
ware control system together with a physical model, in
a different environment(Ptolemy II), we need to make
our target application code run in a functional mockup
unit 0(FMU). It should be noted that the main objection
of this solution is to aid physical modelling and con-
trol algorithm development. The solution will therefore
demonstrate a deterministic simulation of both compu-
tational execution and network. Despite the previously
described system behaviour investigation benefits, of in-
cluding a software model in the FMU, the decision is
also based on future ambitions and the current control
system development at MAN Diesel & Turbo. Future

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612470

71
__

plans include a stochastic network model and HIL-nodes
combined with FMI nodes.

3.1 Configuration Abstractions

Ptolemy Envorinment

Ptolemy Envorinment

FMU_1

Node_1

Ptolemy Model

M_In_1

FMU_2

Node_2

M_Out_1
M_In_2

M_Out_2

X_1
X_2
Y_1
Y_2

FMU

Ptolemy Model

ModelDescribtion.xml

 - X_1 : Ouput
- X_2 : Input

 - Y_1 : Ouput
- Y_2 : Input

 - M_Out_1 : Ouput
- M_In_1 : Input

ModelDescribtion.xml

 - X_1 : Input
- X_2 : Ouput
 - Y_1 : Input
- Y_2 : Ouput

 - M_Out_2 : Ouput
- M_In_2 : Input

Node_1 Node_2

X_1
X_2
Y_1
Y_2

M_Out_1

M_In_1

M_In_2

M_Out_2

ModelDescribtion.xml

 - M_Out_1 : Ouput
- M_In_1 : Input

 - M_Out_2 : Ouput
- M_In_2 : Input

Figure 3. It is possible to change the level of configuration
complexity exposed to the user. The top figure shows how each
control system node can be packed in an FMU for maximal
configuration flexibility. The bottom figure shows how multi-
ple nodes can be packed and configured in a single FMU for a
simpler user configuration setup.

One of the most important concerns when introduc-
ing FMI was the configuration complexity. The system
is to be used by different disciplines, and it is impor-
tant that the configuration level can be abstracted to fit
the user objective - meaning that if a hydraulic engineer
wishes to investigate the dynamic effects of the control
system on his model, he should not have to connect all
the wires of the control system to get started, but rather
have one FMU with only relevant variables and parame-
ters exposed. We found it beneficial to maintain the pos-
sibility of interconnecting multiple nodes of the control
system before wrapping them into the functional mockup
interface. As shown in Figure 3, this allows for different
levels of configuration complexity. If we are interested
in both the interaction between two nodes and a physi-
cal model, we can provide all variables, parameters and
IOs through multiple FMUs and connect them in our en-
vironment, see top Figure 3. However, if we are only

interested in the variables interacting with our external
model, it is possible to connect the nodes internally, and
only expose the relevant variables, bottom figure 3. The
latter option provides a much simpler configuration and
"ModelDescription.xml" for the user and lets the control
system experts ensure that nodes are connected correctly.

3.2 Target to PC simulation

The target controllers used are multi-purpose, meaning
e.g. that cylinders and SCR-control units are identi-
cal. The only deviation determining the specific con-
troller objective is the software executed on the embed-
ded system. A controller interfaces with sensors and
other computational units, using the information to in-
teract with the system through actuators. A controller
contains a CPU module with an FPGA-based embedded
system utilising a real-time operating system. The strat-
egy for simulating our embedded system is to model the
entire embedded system from the operating system and
up, wrapping this into an FMU. Conclusively, our model
is not simulating the behaviour of the embedded proces-
sor, but builds the target code for an x86 architecture in
a so called PC-simulation application (PCSIM).

3.3 FMI implementation of PC simulation

To implement FMI 2.0 for co-simulation, we need fur-
ther access to some main functionality embedded in the
PCSIM. Looking at the FMI co-simulation state machine
(Blochwitz et al., 2009), we need to access relevant data
for f mi2Set() and f mi2Get() and a way of stepping
the simulation according to the f mi2DoStep() function.
Furthermore, the network communication is to be recon-
nected and the FMI functions implemented.

3.3.1 Hook to OS clock

For the co-simulation to work correctly, we need to con-
trol the execution between the discrete communication
points on each node. The approach is to access the
clock of the operating system and let a simulation man-
ager control the temporal execution. This is made possi-
ble by building the target code as a shared library and
overwriting the idle thread method of the RTOS. The
RTOS used in this project supports an x86 architecture
and provides the board support package, which includes
a bsp_idle_thread to be manipulated. The solution pro-
posed will require customisation to work with different
RTOS versions, however, the concept is generic. Be-
sides the idle thread hook, we need to be able to start and
stop the application by calling the main function through
the library. The main function is executed in a separate
thread until we force it to stop, having the main func-
tion return. The new idle thread function has an idle
callback function that implements ticking of the RTOS
clock. Each tick lasts for a simulated 1 ms, implemented

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

72 DOI
10.3384/ecp1612470

__

PCSIM.SO

Node API

RTOS

Virtual idle_thread()

&DataTree

idle_thread()

Tick on RTOS Clock Implement

Factory

_main()

Call/returnpcsim_main()Run()

set_idle_callback()

Get_factory()

Tick

Run/Return

&Network

Lists

Create Proxy()

Variables, Parameter,
IO

Implement

FMI Implementation

LINUX.SO

FMI API

DLL_EXPORT

fmi2Instantiate()

fmi2Instantiate()

PCSIM_2.SONode API

PCSIM_N.SONode API

fmi2DoStep()

fmi2DoStep()

fmi2Get()

fmi2Set()

fmi2Get()

fmi2Set()

Load Library

Create

Proxies

Proxy Data

Pointer to Proxy

Connect

Network
Tick Node

Update

Network

Start node

Tick

Run/Return

Network

lists

Pointer to Network lists

Figure 4. The implementation of FMI on the MAN engine
control system

by assuming unlimited CPU power - thus an execution
time of zero for every node, followed by a 1 ms delay. A
node will run until it returns to idle, meaning for every
tick, all task will finish and never be interrupted. This
guaranties a common perception of time across nodes.
The assumption of unlimited processing power will ob-
viously make the simulation results deviate slightly from
a real stochastic execution. However, it ensures a de-
terminism which is important during control algorithm
development and regression testing. All interrupts are
currently software simulated and scheduled as regular
tasks. Further work will aim to implement a more tem-
poral scheduling of especially high frequency interrupts.

Having a hook to the clock and a joint time perception
makes it possible for a manager to call the f mi2DoStep()
function and orchestra a correct temporal execution of
the co-simulation.

3.3.2 Connecting variables, parameters and IO
channels

On the target application all variable, parameters and
IO channels are organised in a component-oriented data
tree structure with unique IDs. Using a factory method
design, we make it possible to create proxies for both
variables, parameters and IO channels, providing a
Proxy.Get() and Proxy.Set() function that will effect the
source on the specific node. For IO channels, we com-
municate on micro-ampere level, so prober conversion is
needed.

The f mi2Set() and f mi2Get() functions will write
and return the value of the proxies. The instantiation
of proxies are done in the f mi2Instantiate() function
and is based on the ”ModelDescription.xml”. One of
the advantages of FMI is the strict data type definition.
However, the target application utilises more data types
than the ones allowed by FMI, such as fix-point and un-
signed short. As a result, a type conversion layer had to
be added.

3.3.3 Solving network communication

To simulate the network communication between nodes,
we replace the RTOS network driver with a determin-
istic input/output queue implementation. Each node is
given an address corresponding to the unique node_id
already provided by the controller. Through the factory
design from 3.3.2 input and output lists are made avail-
able across nodes. A network manager then redirects
packages from output to input queues according to net-
work address. The network manager support both uni-
cast, multicast and broadcast. Communication is done
at every discrete communication point, and the network
driver is activated every ms tick of the OS clock, if any
data is available in the input or output queue. Currently,
the network is only available with interconnected nodes
and not as an output through the FMU. However, this is
something we are working on.

3.3.4 FMI implementation

Target.cpp

PCSIM.SO

GCC–PC x86

RTOS

Cross – Compiler

GCC

Cross – Compiler

GCC

FMI.SO

GCC–LINUX

FMI_model.cpp

fmi_model.fmu

MODEL SOLVER

Dynamic Load

Figure 5. The compiling routine from target to functional
mock-up unit.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612470

73
__

According to the FMI standard the application should
be compiled into a shared library with the FMI functions
exported. As described, we are able to build each of
our control nodes into PC shared libraries (PCSIM.so)
including a, x86 RTOS. We now need to wrap these
into a Linux shared library (FMI.so) implementing the
FMI application interface. One or more PCSIM.so are
loaded into the FMI.so which is the main binary in the
co-simulation FMU, see figure 5. A MAN Diesel &
Turbo FMU will have the 2.0 FMI for Co-simulation
API. The f mi2Instantiate() will load the PCSIM.so’s
required for the specific scenario and create the rele-
vant parameters, inputs and outputs according to the
ModelDescription.xml and start each node executing.
The f mi2DoStep() is able to call the idle callback func-
tion on each node, signalling the idle thread to tick the
RTOS. If an FMU contains more than one node the net-
work will be updated at every communication point. The
remaining FMI functions have been implemented but not
illustrated in Figure 4.

4 Use Case: SCR Temperature Dy-
namics and Control

Figure 6. Diagram of the SCR system

As a simple use case, we look at the dynamics and
control of heating up the SCR reactor. When a vessel is
to comply with the Tier III emission limits (IMO, 2008)
for NOx reduction, a command is sent from the opera-
tor to activate the SCR control. The SCR control unit
will then redirect the exhaust gas through the reactor by
opening the reactor sealing valve (RSV) and the reac-
tor throttle valve(RTV). The controller has to balance the
RTV opening, to ensure that the flow to the turbine inlet
of the turbocharger is sufficient. As soon as the reac-
tor is properly heated, the reactor bypass valve (RBV)
can be closed; consequently, only cleaned air from the
reactor leaves the system as exhaust. A diagram of the
SCR control is illustrated in Figure 6. The SCR con-
troller uses the difference between the reactor input and

output temperature as a reference residual signal for con-
trolling the position of the RTV valve. By modelling the
time delay of heating the reactor and passing the result-
ing output temperature back to the SCR controller, we
will show that it is possible to investigate the dynamic
interaction between a physical model and the actual con-
trol software.

Many additional observations regarding the engine
physics are required for all aspects of the SCR controller
to perform correctly. An advantage of being able to con-
nect more nodes within a single FMU is that the so-called
engine simulation unit (ESU) used for hardware in the
loop test can be included. The ESU contains numer-
ous physical models executing within the embedded con-
troller environment. Model execution on the ESU must
comply with real-time requirements and should therefore
not be too complex. With FMI, it is possible to make a
hybrid simulation of the engine physics where ESU mod-
els can be combined with Ptolemy models. In this use
case, the reactor heating model provides physical insight
into the SCR controller together with the ESU.

4.1 SCR Heating Model
The reactor heating model chosen as proof of concept is
described below. The output temperature can be mod-
elled as the relationship between the RTV position, the
flow through the reactor and the input temperature, re-
sulting in two low-pass filters with a significant time con-
stant. The inputs to the model is provided by the SCR
controller and ESU.

The mass flow into the reactor Ṁ is estimated from the
engine load L.

Ṁn = Ṁn−1 +
L− Ṁn−1

1+ τScavenge ·T
(1)

where T is the sampling frequency.
The time constant of the reactor output temperature, is

estimated as the RTV valve opening with the mass flow
plus a time constant, converted into seconds.

τout = (Ṁn ·RTV + τreactor) ·3600 (2)

Finally, the output temperature is calculated as

Toutn = Toutn−1 +
Tin+Toutn−1

1+ τout ·T
(3)

This is naturally a simplified approach, however, it
goes to show, that it is possible to distribute the control
system and co-simulate with other thermodynamic mod-
els regardless of the abstraction level.

4.2 Ptolemy II as simulation framework
As simulation framework, the open-source Ptolemy II
was chosen due to its heterogeneous actor-oriented

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

74 DOI
10.3384/ecp1612470

__

Figure 7. FMU import in Ptolemy II and simple physical
model implementation

design and comprehensive support for different soft-
ware components and the FMI interface as described
in (Broman et al., 2013). The FMU is imported as
a co-simulation actor automatically configured by the
”ModelDescribtion.xml”. Using ”Vergil”, the graphical
user interface shipped with Ptolemy, the equations from
4.1 are created and connected to the FMU outputs. A
simulation scenario is likewise defined in Vergil and con-
nected to the input ports of the FMU, see Figure 7. The
scenario sets a reactor start temperature and an engine
speed set point. After 700 seconds, a simulated bridge
command is send to the SCR controller, activating the
SCR control strategy.

To execute the simulation, a synchronous dataflow
(SDF) director was chosen. The SDF director is appro-

priate because we have a predictable and regular exe-
cution (firing) of the FMU. At regular communication
points, inputs/outputs are updated in a predefined order.

4.3 Results

Figure 8. The use-case example of a functional mock-up unit
containing the MAN SCR control nodes

To run the simulation, an FMU was build as seen
in Figure 8. Here four PCSIM.so corresponding to
the code of four embedded controllers, are packet
into ”resources/lib”. The engine simulation unit
(esu_target.so) models the entire engine, except the SCR
heating model, using the target solver ect. An SCR Con-
trol Unit (scrcu_target.so) containing all the control al-
gorithms for the reactor control and two SCR interface
controllers (scri1_target.so,scri2_target.so) redirecting
all the sensor values connected as simulated cables from
the ESU to the SCRCU by network. Configuration of the
PCSIM applications are provided via the MAN parame-
ter files located at ”resources/par”

Figure 9. The in- and output temperature of the simulated SCR
heating

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612470

75
__

The simulation of the FMU and reactor heating model
is presented in Figure 9. Here we see that the SCR
reactor out temperature start to increase after 700 sec-
onds when the SCR start command is sent. The heating
has the expected low-pass behaviour and takes approxi-
mately 1.5 hours to heat up.

Figure 10. Valve feedback from the SCR simulation

In Figure 10, we clearly see that the SCR control
works as intended, even though we have replaced the
SCR heating model from the original ESU and replaced
it by a Ptolemy implementation. As soon as the SCR ac-
tivation occurs, the RTV and RSV valves start to open.
The RTV valve is clearly controlled to balance the flow
to the turbocharger. This actuation is filtered from the
temperature by the low-pass behaviour of the reactor, as
expected. As soon as the RTV valve is fully open the
RBV valve can be closed, and output temperature keeps
increasing until it eventually reaches the inlet tempera-
ture.

Each node in the simulation executes an application
task running on top of the RTOS, updating variables at a
specific sampling frequency. From Figure 11, we clearly
see how the SCR control unit runs at 5 Hz and the engine
control unit at 10 Hz. The SCR temperature is calcu-
lated in Ptolemy, resulting in the same frequency as the
simulation time step of 1 ms.

5 Conclusion

This paper showed the non-trivial process of implement-
ing FMI for co-simulation of an embedded system. We
proposed to compile a target platform RTOS into an x86
architecture, which most RTOS systems support. By re-
placing the idle thread of the RTOS, a hook for the sys-
tem clock can be provided and used to advance through
the application. To match the ”Get()/Set()” structure of
the standard, the same was implemented through sim-

Figure 11. Illustration of the different sub-system sampling
frequencies

ulation proxies identified by unique ID numbers of tar-
get variables. The FMI API is wrapped around the x86
RTOS by loading it as a shared library, with the FMI
step function ” f mi2DoStep()” activate the RTOS clock
through a callback function. The configuration of an en-
tire control system results in a vast amount of connec-
tions, not necessary relevant for all modelling purposes.
One of the advantages of the proposed method is that the
configuration abstraction can be varied. If relevant, each
node of the control system can be packed in individual
FMUs, or all nodes can be enclosed in a single FMU,
with all configuration and data/network exchange done
internally. We have provided a use case where part of the
engine control system is packed in an FMU and imported
into Ptolemy II. By connecting the FMU to a physical
model, we proved that the system could be co-simulated
with an external tool, resulting in correct control system
behaviour.

References
Andreas Abel, Torsten Blochwitz, Alexander Eichberger, Pe-

ter Hamann, and Udo Rein. Functional mock-up inter-
face in mechatronic gearshift simulation for commercial
vehicles. 9th Int. Model. Conf., pages 775–780, 2012.
doi:10.3384/ecp12076775.

Jens Bastian, Christoph Clauß, Susann Wolf, and Pe-
ter Schneider. Master for Co-Simulation Using FMI.
8th Int. Model. Conf. 2011, pages 115–120, 2011.
doi:10.3384/ecp11063115.

Christian Bertsch, Jonathan Neudorfer, Elmar Ahle,
Siva Sankar Arumugham, Karthikeyan Ramachandran, and
Andreas Thuy. FMI for Physical Models on Automotive
Embedded Targets. Proc. 11th Int. Model. Conf., pages
43–50, 2015. doi:10.3384/ecp1511843.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

76 DOI
10.3384/ecp1612470

__

T Blochwitz, M Otter, M Arnold, C Bausch, C Clauß,
H Elmqvist, A Junghanns, J Mauss, M Monteiro, T Nei-
dhold, D Neumerkel, H Olsson, J V Peetz, and S Wolf.
The Functional Mockup Interface for Tool independent Ex-
change of Simulation Models. In 8th Int. Model. Conf. 2011,
pages 173–184, 2009. doi:10.3384/ecp12076173.

David Broman, Christopher Brooks, Lev Greenberg, Ed-
ward A. Lee, Michael Masin, Stavros Tripakis, and
Michael Wetter. Determinate composition of FMUs for co-
simulation. 2013 Proc. Int. Conf. Embed. Software, EM-
SOFT 2013, 2013. doi:10.1109/EMSOFT.2013.6658580.

Christopher Brooks, Edward A Lee, and Stavros Tripakis. Ex-
ploring Models of Computation with Ptolemy II. 10 Proc.
eighth IEEE/ACM/IFIP Int. Conf. Hardware/software code-
sign Syst. Synth., pages 331–332, 2010.

Atiyah Elsheikh, Muhammed Usman Awais, Edmund Widl,
and Peter Palensky. Modelica-enabled rapid prototyp-
ing of cyber-physical energy systems via the functional
mockup interface. 2013 Work. Model. Simul. Cyber-
Physical Energy Syst. MSCPES 2013, pages 1–6, 2013.
doi:10.1109/MSCPES.2013.6623315.

IMO. MARPOL : Annex VI and NTC 2008 with guidelines
for implementation. Technical report, 2008.

Edward A. Lee, Mehrdad Niknami, Thierry S. Nouidui, and
Micheal Wetter. Modeling and Simulating Cyber-Physical
Systems. 2015 Int. Conf. Embed. Softw., pages 115–124,
2015. doi:doi: 10.1109/EMSOFT.2015.7318266.

Jie Liu, Xiaojun Liu, and Edward A Lee. Modeling Distributed
Hybrid Systems in Ptolemy II. Proc. 2001 Am. Control
Conf., 6:4984–4985, 2001. doi:10.1109/ACC.2001.945773.

Modelon. FMI Library. URL http://www.jmodelica.
org/FMILibrary.

Thierry Nouidui, Michael Wetter, and Wangda Zuo. Func-
tional mock-up unit for co-simulation import in Energy-
Plus. J. Build. Perform. Simul., 7(3):192–202, 2014.
doi:10.1080/19401493.2013.808265.

Nicolai Pedersen, Jan Madsen, and Morten Vejlgaard-Laursen.
Co-Simulation of Distributed Engine Control System and
Network Model using FMI and SCNSL. 10th IFAC Conf.
Manoeuvring Control Mar. Cr. MCMC 2015, 48(16):261–
266, 2015. doi:10.1016/j.ifacol.2015.10.290.

QTronic. FMU SDK. URL https://www.qtronic.de/
en/fmusdk.html.

Christoph Stoermer and Ghizlane Tibba. Powertrain Co-
Simulation using AUTOSAR and the Functional Mockup
Interface standard. Proc. 51st Annu. Des. Autom. Conf.
Des. Autom. Conf. - DAC ’14, (March):1–1, 2014.
doi:10.1145/2593069.2602975.

Luigi Vanfretti, Tetiana Bogodorova, and Maxime Baudette.
Power system model identification exploiting the Modelica
language and FMI technologies. 2014 IEEE Int. Conf. Intell.
Energy Power Syst. IEPS 2014 - Conf. Proc., pages 127–
132, 2014. doi:10.1109/IEPS.2014.6874164.

Edmund Widl, Wolfgang Muller, Atiyah Elsheikh,
Matthias Hortenhuber, and Peter Palensky. The
FMI++ library: A high-level utility package for FMI
for model exchange. 2013 Work. Model. Simul.
Cyber-Physical Energy Syst. MSCPES 2013, 2013.
doi:10.1109/MSCPES.2013.6623316.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612470

77
__

Chapter 10

Paper C: Co-Simulation of
Cyber Physical Systems

with HMI for Human In the
Loop Investigations

CO-SIMULATION OF CYBER PHYSICAL SYSTEMS WITH HMI FOR HUMAN IN
THE LOOP INVESTIGATIONS

Nicolai Pedersen
Department of Embedded Systems Engineering

Technical University of Denmark
Richard Petersens Plads, 2800 Kgs. Lyngby , Denmark

nicp@dtu.dk

Tom Bojsen
MAN Diesel & Turbo

Teglholmsgade 35
2450 Copenhagen, Denmark

tom.bojsen@man.eu

Jan Madsen
Department of Embedded Systems Engineering

Technical University of Denmark
Richard Petersens Plads , Building 324

DK-2800 Kgs. Lyngby , Denmark
jama@dtu.dk

ABSTRACT

The development of safety critical Cyber-Physical Systems (CPS) is highly dependent on human interaction
and cognitive assessment. Despite this dependency, the human in the loop is seldom an integrated part
of CPS development or tool chain. In this paper we propose a hybrid co-simulation environment, where
hardware, software and models can be interconnected, making it possible to connect a human machine
interface with a software representation of a control system and thermodynamic engine models. Scenarios
that require user interaction can be formulated and propagate from engine physics through the control system
to the engine operator. The environment makes it possible to investigate human interaction during system
development and gain more quantitative and evidence based data for designing safety critical CPS with
human-machine interaction.

Keywords: Co-simulation, HMI, FMI, Cyber-physical system, Embedded systems.

1 INTRODUCTION

Most Human Machine Interfaces (HMI) are not representative before connected to the actual hardware,
making their development delayed compared to the system development. Furthermore, real hardware and
test setups are often limited resources, especially when dealing with large or expensive equipment. The com-
bination of limited resources and delayed development makes it difficult to thoroughly investigate human
interaction and, therefore, to design systems tolerant towards user error and misuse. This paper proposes
an environment, where engineers can choose to connect both hardware, software and models in a hybrid
co-simulation. The environment makes it possible to connect the HMI to a software representation of the
control system before it is released to the hardware platform, in which case HMI and control system devel-

SpringSim-TMS/DEVS 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)

Pedersen, Madsen, and Bojsen

Co-Simulation

Software ControllerSoftware Controller

Co-Simulation

Main Operating Panel

Hardware

Virtual SwitchFMIPhysics Modelling Environments

Hardware

Software Controller

Marine Engineer
/Operator

Control Enginner

GUI Developer

Network
Connection To
Control System

Real Hardware
(Cabled)

or

Co-Simulation
(Simulated)

or

Combination

SwitchesControllers

Two Stroke Large Bore Marine Engine

Connection To
Engine

 Real Hardware
(Cabled)

or

 Co-Simulation
(Simulated)

Reaction

e

C

Co-Simulation

Virtual SwitchController

Switchesontrollers

Hardware

Marine

The marine engineer
or operator makes

decitions in response
to the alarm system
and GUI illustrations.

r

Contro

The control engineer
designs GUI

componets and alarm
system.

r

GUI D

The GUI developer
creates GUI panels

and verifies
appearance and

composition

Figure 1: Co-simulation connection options.

opment becomes more concurrent. Furthermore, the control system software can be combined with physics
models through the Functional Mockup Interface (FMI) co-simulation standard. It is possible to investigate
the human behavior during system development by tracking the user interaction. The hybrid co-simulation is
based on the work being done at MAN Diesel & Turbo, where the physics of a large bore two-stroke marine
engine is connected with the surrounding distributed control system and the human machine interface.

The HMI is shown in Figure 1 together with the three stakeholders. The marine engineer/operator is the
main user of the HMI interacting with the system according to bridge commands and in response to infor-
mation from the operating panel, alarm system, illustrations, etc. The control engineer developing control
algorithms for the control system is also a stakeholder.

The control engineer is responsible for developing the correct interaction possibilities and creates alarms
for new components. The work of the control engineer is, therefore, dependent on an understanding of the
cognitive assessment of the operator. Lastly, the Graphical User Interface (GUI) developer is responsible
for the user experience and the graphical representation of the system. All stakeholders are interconnected
and the communication and joint understanding between them are important. If for example the operator
needs to respond to an alarm, it is equally important that the alarm text, formulated by the control engineer,
is explanatory and that the user interface, made by the GUI developer, sufficiently attracts the attention of
the operator.

The hardware platform for the HMI is called the Main Operating Panel (MOP), it is a touch-screen interface
connected to the engine control system through the Ethernet. The switches connecting the MOP with the
controllers are in the co-simulation environment replaced with a SW implementation, which is termed a
virtual switch. The virtual switch is responsible for directing all network traffic between both simulated
controllers and real HW. To simulate an embedded controller is not trivial, how the Real Time Operating
System (RTOS) has been adapted to enable this will be described in Section 3. HW controllers and SW
controllers can be connected by introducing an additional "proxy" controller with the purpose to redirect IO
data through the virtual switch, this will not be covered in the present paper. Finally, the control system can
be connected to either the physical engine or to the engine models. The latter is achieved by implementing
the co-simulation version of the FMI standard (Blockwitz et al. 2012).

Pedersen, Madsen, and Bojsen

One of the aims with the proposed environment is to track the human interaction, when the user is presented
with specific scenarios. The interaction provides significant information to system developers regarding
operator behavior and may also be useful, when educating operators and marine engineers.

A comprehensive survey of the current state of human in the loop CPS efforts has been performed in (Nunes
et al. 2015). In (Gopalakrishna et al. 2017), dealing with machine-learning for human in the loop CPS, a new
way of determining the accuracy of an output based on a relevance score taking into account the variability
and bios of the human perception. Similar for most research in Human CPS (Gopalakrishna et al. 2017,
Nunes et al. 2015, Lieber and Fass 2011), is the acknowledgement of multidisciplinary technical challenges
and argument that the traditional development process, where human impact is not an integrated part of
the process, will not be sufficient for future products. Multiple co-simulation frameworks and tools for
investigating CPS are available. Commercial tools like MATLAB, Dymola and GT-Suite are widely known
but limited in their interconectivity. The Ptolemy project from Berkeley (Eker et al. 2003, Awais et al.
2013) and INTO-CPS (Larsen et al. 2016) aims to create a streamlined tool chain for the multidisciplinary
development of CPS. More specific projects like (Zhang et al. 2013) and (Zeller et al. 2010) work with
embedded systems using tools such as SystemC to produce co-simulations that can supplement HIL testing
and result in faster prototyping. An advanced co-simulation environment for development of HMI including
the human factor was presented in (Sixto et al. 2015). Here a new HMI aiding efficient human behaviour
in electrical vehicles was developed through a set of clinical user experiments, with good results. The
environment comprises a number of high-end automotive tool some connected by standard interfaces others
adapted to the environment, with no information regarding how the tool and simulation were connected.
Significant work has been aimed at co-simulation of different aspects of CPS development, however, very
limited research has been put into how to connect the human in the loop within a co-simulation environment.

This paper starts with an introduction of the HMI in Section 2 followed by a description of how the control
system has been adapted to enable co-simulation in Section 3. Section 4 describes the virtual switch, which
has been developed for connecting the HMI and the simulated control system. The FMI standard used
to connect the control system with thermodynamic engine models is explained in Section 5. Finally, the
thermodynamic models used in the proof-of-concept simulation are explained in Section 6. A simulation
scenario and the results following from it are presented in Section 7.

2 MAIN OPERATING PANEL

The Main Operating Panel (MOP) is the main HMI for engineers operating the engine. The MOP is a
marine approved and certified PC with a touch screen interface located on the engine control room panel.
From the MOP the engineer can carry out engine commands, adjust engine parameters, select running mode
and observe the status of the control system.

Auxiliary Units
(Not Covered)

Main Operation Panel
MOP

EICU A EICU B ECU A ECU B

Local Operation Panel
LOP

CCU
Cylinder 1

CCU
Cylinder n SCUTIU

ACU EGR SCR

Engine Control Room Engine Room/on Engine Network

IO/ Cable

Figure 2: Engine control system communication diagram.

Pedersen, Madsen, and Bojsen

The communication between the MOP and engine control system controllers is Ethernet based. A MAN
Ethernet protocol driver connects the MOP with the Engine Interface Control Unit (EICU) as seen in Figure
2. The EICU is connected to the rest of the distributed system through the Engine Control Unit (ECU),
both EICU and ECU units are redundant for safety reasons. If for some reason the MOP is unavailable, the
engine can also be operated directly from a local operating panel located on the engine. Auxiliary systems
such as blowers, hydraulic pumps, exhaust gas recirculation and selective catalytic reduction units will not
be discussed in this paper. Every cylinder has a dedicated Cylinder Control Unit (CCU), which controls
the actuators responsible for fuel injection, valve opening/closing, lubrication, etc., according to sensor
feedback. Timing of the engine is governed by the ECU, which receives the crankshaft position by the
Tacho Interface Unit (TIU). The results presented in this paper are based on an example, where the operator
manipulates the exhaust gas bypass valve through the Scavenge air Control Unit (SCU).

3 SOFTWARE CONTROLLER

Embedded controllers installed on MAN Diesel & Turbo engines are multipurpose controllers, this implies
that they are hardware-wise identical only the software executed on the target determines the specific control
objective. The controllers interface with sensors and other computational units through network and cabling
and interact with the system through actuators. The controller contains a CPU module with an FPGA-based
embedded system running a RTOS. Our strategy for doing software in the loop simulations of the embedded
controllers is to replace the embedded board support package (BSP) with an x86 platform version and
to rewrite part of the functionality. This approach is partly discussed in (Pedersen et al. 2016). As a
consequence the simulation does not include the behavior of the embedded processor instead it will include
the target code executed on an x86 platform. Further abstractions and deviations will be presented below.

Controller

Shared Library

BSP

Embedded Corex86 Architecture

RTOS Kernel

Control Application

Idle Thread

Simulation I/O Handler Simulation Network Driver

Simulation Manager

Linux Process

Load controllers and start in individual
POSIX threads

Idle Event Handler

List Events(*callback,context*,time)

-(*OS_tick)(context)
-(*Net_interrupt)(context)
-(*Timer_interrupt)(context)

(*OS i k)()
-uint64_t next_event();

P

Simulation Loop

Get Next Event

Tick controllers waiting to run

Wait for controlleres to return
to Idle

Simulation Datatree Proxys

Update I/O
(Virtual Cables)

Update Datatree Variabels

Update Network
(Virtual Switch)

Simulation Port

Idle_callback()

Kernel Scheduler

Figure 3: The software model of the embedded system and connection to the simulation manager.

3.1 System Clock

By modeling the controller software with an x86 BSP it is possible to execute the model on a regular
developer PC, however, controlling the execution is not possible. To gain control of the execution requires
access to the clock of the embedded system. Overwriting the BSP_idle_thread of the RTOS and introducing
a blocking idle_callback function to the simulation manager enable us to lock execution every time the

Pedersen, Madsen, and Bojsen

system is in idle. In this way a hook to the system clock is provided. When the controller reaches idle,
the execution is stopped and started again by releasing the callback that resembles a clock tick. To get a
concept of time we utilize that the OS execute every millisecond. By assuming that the system has sufficient
computational power to return to idle between every tick, we know that a millisecond has passed between
each OS tick. This guaranties a common perception of time across multiple controllers and a temporal
execution of the model.

Remark. Note, that we are basically assuming unlimited processing power so all tasks will finish and
never be interrupted before returning to idle. This could cause the simulation results to deviate from a
real stochastic execution. However, it ensures a deterministic simulation which is important during control
algorithm development and regression testing. Our system is currently dimensioned with sufficient computa-
tional power for this to have no significant consequences. The purpose of the co-simulation is not to replace
HIL testing but to aid engineers before doing hardware test.

3.2 Idle Event Scheduler

Overwriting the idle thread not only enables us to control the system clock, it also makes it possible to
introduce simulation functionality on the controller. An event scheduler is introduced in the idle thread to
execute external events not scheduled by the OS itself. Events consist of a call-back function to the interrupt
that needs to be executed, and the execution time for when the event needs to occur. In this way we are
able to schedule events such as network interrupt, IO observer timers and other high precision timers with
a resolution down to one microsecond on individual controllers. The event scheduler communicates with
the simulation manager and tells when the next event is due. This makes it possible for the manager to
orchestrate the simulation and maintain a common perception of time across the entire system.

3.3 Variables and IOs

On the target application all variables, parameters and IOs are organized in a component-oriented data tree
structure with unique IDs. We can create proxies for variables, parameters and IO channels by using a factory
method design and by rewriting part of the application functionality. This provides a get/set functionality
that will effect the source on the specific controller. The IO cabling is achieved by the simulation manager
by connecting virtual cables using the module and port typology of the embedded target. Communication
between controller input and output is done on a microampere level, simulating a real cable and activating
the conversion layers of the software.

3.4 Simulation Manager

The simulation manager illustrated in Figure 3 is responsible for orchestration of execution and data ex-
change. Each controller is compiled to a shared library and dynamically loaded by the manager, where it is
assigned an individual thread. The simulation is a loop, where the network is updated through the virtual
switch presented in Section 4. The factory method enables the manager to update data tree variables and
IOs. The manager can access the idle event handler and get information about when a specific controller
needs to execute. Controllers that need to execute can be stated by releasing the semaphore, blocking their
idle callback. The controllers run in parallel and return to the manager, when returning to idle. The global
time is updated on the entire system and loop repeated.

A simulation without hardware is allowed to run as fast as possible but the simulation has to run in real-time
if hardware is connected. This is achieved by letting the process sleep after execution for the remaining

Pedersen, Madsen, and Bojsen

amount of time of the simulation time step.

Remark. Note, that simulating in real-time requires all models in the system to be able to run in real-time.
Highly complex physics models might not be able to fulfill this requirement. All models presented in this
paper are real-time compliant with the desktop hardware available to engineers at MAN Diesel & Turbo.

4 VIRTUAL SWITCH

Linux Kernel

Linux Process

Linux Network Bridge
(brctl)

i N t k B id

Software Ethernet
Adapter

Virtual Switch

HMI (MOP)

RTOS (Controller)

Shared Library

Simulation Port

Tap Port

()
Hardware Ethernet

Adapter (Eth0)

Ethernet Cable

Port_base

List Outputp
List Input
Virtual (*send)(package)()(p g)
Virtual (*recive)(package)()(p g)
Virtual (*net_interrupt)()

Virtual Switch

Map Port

void Process_packages

p
Map Mac_address

id P k

p _
List Package_buffer

_p g

Tap_port (Linux)

Tap_network_driver

Simulation_port (RTOS)

Controller_network_driver

Component Diagram Class Diagram

Figure 4: Illustration of the virtual switch connecting the co-simulation with the HMI.

The virtual switch is the component that enables the co-simulation to connect with the MOP. The purpose
of the switch is to mimic a real switch. It runs in the simulation manager process and redistributes network
packages to ports according to a mac-address table. The switch has two types of ports, a simulation port for
the simulated controllers and a tap port for connected hardware. The components are illustrated in Figure 4.

4.1 Simulation Port

The simulation port instance contains input and output lists for network packages to and from the port. The
port is instantiated on the controller and a pointer is given to the switch running in the simulation manager.
This process is a Linux process. Data must be transferable between the manager and the shared library
RTOS controller. This is achieved by implementing three port delegates, these connect the RTOS network
driver and the switch described in Table 1.

Table 1: Port delegates

void(*send)(package) A method called from the RTOS network driver that moves a network
package from the controller to the output list of the port. The switch
can then access this package from within the Linux process and place
it in its own package buffer.

void(*net_interrupt)() A method called from the switch that simulates a network interrupt
on the controller. The interrupt is not allowed to execute, as it comes
from a Linux context. The interrupt schedules a high priority task
on the RTOS. The manager then allows the controller to run and the
network package can be received within the correct context.

Pedersen, Madsen, and Bojsen

void(*receive)(&package) A method called from the RTOS network driver that moves a network
package from the input list of the port to the controller.

The switch is responsible for receiving packages from the port-output lists and moves them to the input lists
of the correct port according to the destination mac-address of the package Ethernet-header. The input and
output lists are protected by a semaphore to ensure that the lists are not accessed simultaneously.

4.2 Tap Port

The tap port is also an instance of the port class with the same components and functionality as the
simulation port described in Table 1. It implements the delegates to link the tap network driver instead of
the controller network driver. The net_interrupt() is allowed to execute directly, since the tap port is within
the Linux context. The tap network driver connects the port to a tap interface, a software network adapter
that only exists in the Linux kernel. The interface works as a regular network adapter, where the kernel
exchanges full Ethernet frames from and to the network driver instead of a regular wire. A Linux software
network bridge connects the tap interface with the physical Ethernet adapter that can be connected to the
MOP by wire as seen in Figure 4. Multiple tap interfaces can be created and ports instantiated making
it possible to connect the virtual switch to both the network of simulated controllers and the actual hardware.

Remark. It is important to notice that connecting an Ethernet interface destroys the determinism of the
co-simulation. This means that we can no longer ensure simulation reproducibility and that the system is no
longer appropriate for regression tests, etc.

5 FMI

The Functional Mockup Interface (FMI) for co-simulation provides a standardized way of doing co-
simulation. In the FMI each subsystem model is solved independently with individual solvers and data
exchange occurring in-between calculations at so-called discrete communication points. A subsystem that
implements FMI is called a Functional Mockup Unit (FMU) and it is assembled as a zip-file containing all
the necessary components required to utilize the FMU. This paper will not explain the FMI standard in fur-
ther detail, see instead (Blockwitz et al. 2012, Pedersen et al. 2015). In (Pedersen et al. 2016) it is described
how our simulation manager complies with the FMI standard.

The simulation presented in this paper contains two FMUs. Firstly, the engine control system co-simulation
is wrapped as an FMU. It contains the simulation manager and 10 embedded controllers: EICU A/B, ECU
A/B, TIU, CCU 1-4 and the SCU as presented in Figure 2. Secondly, the thermodynamic engine model
presented in the following section is also an FMU. The engine model is developed in an internal C++
modeling tool that has been made compliant with the FMI standard.

6 THERMODYNAMIC ENGINE MODEL

The engine model is based on the MAN Diesel & Turbo 4T50ME-X test engine, a two-stroke compression-
ignition engine. It has four cylinders of 50 cm bore and a stroke of 2.2 m, and it generates 7,080 kW at
123 rpm. The model is an air-path model focused on the mass flows and pressures through the system. The
model has previously been published and validated in (Alegret et al. 2015) and is based on research done
by (Wahlstrom and Eriksson 2011, Hansen et al. 2013). In (Alegret et al. 2015) the model also include an
exhaust gas recirculation system (EGR). The EGR is not activated in the scenario presented here and will
therefore not be covered.

Pedersen, Madsen, and Bojsen

 ṁ
Egb

Uload

ṁengOut

ṁengIn

Exhaust Manifold
(Pexh , Texh)

Scavenge-air
Manifold

(Pscav , Tscav)

ṁturb

ṁcomp

ωt

Turbine

Compressor

Uegb

Figure 5: Engine air-path model.

The components with dominating dynamics are seen in Figure 5 and described below. The turbocharger
consists of a turbine and compressor connected by a common shaft. The turbine is driven by the exhaust gas
from the engine and the generated power is transferred through the shaft to the compressor. The purpose
of the turbocharger is to balance the mass flow of air to the scavenge air manifold. The mass flows ṁcomp
and ṁtrub are described in maps provided by the turbocharger producer. The maps show the mass flows as a
function of pressure ratio and turbocharger velocity. The power delivered from the turbine and compressor
is used to setup a state equation expressing the turbocharger velocity ωt . Scavenge air and exhaust gas mani-
folds are modeled as control-volumes based on the ideal-gas law and conversion of mass with state equations
describing the pressure Pscav and Pexh. The engine is modeled as flow through a restriction (ṁengIn, ṁengOut)
with a cylinder temperature Texh based on the Seiliger cycle. The Exhaust Gas Bypass (EGB) is the only
component not presented in (Alegret et al. 2015). The EGB is redirecting the flow ṁegb from the turbine
inlet and is modeled as flow through a restriction.

ṁegb = Uegb Aegb
pexh√
ReTexh

√
2γe

γe −1

[
pegb

pexh

2
γe − pegb

pexh

γe+1
γe

]
, (1)

where Aegb is the maximum EGB-valve orifice and Uegb the valve position, γe is the ratio of specific heat,
Re is the exhaust-gas constant and Pegb is the back pressure from the subsequent system. The purpose of the
EGB is both to control the turbocharger equivalent area and to increase the energy for downstream systems
such as waste heat recovery.
The input to the model is EGB valve setpoint Uegb and engine load Uload , a non-dimensional power defined
as a percentage of the maximal power available for the specific engine. The remaining components are
assumed to have little impact on the air flow dynamics and are, therefore, disregarded. All cooling in the
system is assumed ideal meaning that the temperature of the gas leaving and entering a manifold is assumed
to have the exact same temperature. Heat transfer is also neglected, meaning that there is no temperature
drop, e.g. from the cylinder to the exhaust gas receiver.

7 SIMULATION & RESULTS

The aim of this project and the presented simulation scenario are to engage the human operator and track
the interaction with the simulation in a potentially hazardous situation.

The presented proof-of-concept scenario focuses on EGB control. When the EGB-valve is closed, the
turbine receives the full power from the exhaust gas. This increases the angular velocity of the common shaft
and, thereby, the compressor, causing the scavenge-air pressure (Pscav) to raise. This is opposite to when the

Pedersen, Madsen, and Bojsen

FMUFMU

EICUECU

SCU

Engine
Model

HMI
(MOP)

TIU CCU
1-4

EGB_setpoint

P_scav

EGB_position
EGB_position

EGB_setpoint

EGB_setpoint

EGB_position

ω _t

P_scav
ω _t

ALARM

Network Telegram

Virtual IO Cable

Figure 6: The two FMUs and the MOP are illustrated with relevant cable and network connections.

EGB-valve is opened, where the flow to the turbine decreases and Pscav drops. In certain situations both
scenarios can be very undesirable. If the turbine velocity increases too much the turbine may be destroyed
or even explode with extreme danger to the crew. If Pscav drops significantly the engine may suffocate and
operation has to be stopped. These are of course extreme situations, where the safety-critical system has
not been working. With working safety systems these scenarios would cause the alarm system to notify the
operator and if no action is taken send a slow-down or shut-down command bypassing the operator. Slow-
down and shut-down commands are still very undesirable measures that severely limits the maneuverability
of the vessel. In this scenario the signals are sent between the units as seen in Figure 6. The scavenge air
pressure Pscav and the turbocharger velocity ωt will be provided by the engine model to the engine control
unit through simulated analog cables. The control setpoint of the EGB valve EGBset point and the actual
EGB-valve position EGBposition are connected directly to the scavenge air control unit. Within the control
system data is transferred by network telegrams between the controllers and the MOP. The tacho interface
unit and the four cylinder control units shown in Figure 6 are required to simulate the system properly. They
are connected to the MOP and running, however, they are not relevant for the presented scenario and will
not be covered. The control signal representing engine load Uload is normally a command from the bridge,
here it will be set at 40% load and provided internally in the engine model.

The simulation can be seen in Figure 7. The pressures start out stable at around 2.5×105 Pa, at 320 seconds
the EGB-valve is opened by the engine model. The turbine velocity then drops dramatically and with that
both Pscav and Pexh, when Pscav drops below the alarm limit of 1.75×105 Pa an alarm will be triggered on
the SCU and displayed on the MOP. The operator will see an alarm appear on the top bar and the alarm
list panel, which will look like the top figure of Figure 8. The simulation manager will track the alarm and
record how and when the operator responds. The operator will have to navigate to the Scavenge Air panel
as seen in the bottom figure of Figure 8. Here he has the option of either changing the EGB-valve setpoint
to 0% or set the EGB-controller in automatic mode which will likewise close the valve. Both actions will
cause an increased exhaust gas flow to the turbine and Pscav will return to a stable level. In Figure 7 we see
how a MOP-command has ordered the valve to close at 750 seconds causing ωt to increase and the pressure
returning to a stable level. The effects of closing the valve are delayed due to the dynamics of the system.

This is a simple example showing how it is possible to create scenarios in a valid thermodynamic model that
interacts with the complex control system connected to the HMI. Additional scenarios could be formulated
and information regarding interacting tracked.

Pedersen, Madsen, and Bojsen

0 500 1000 1500
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8 x 105

Time [s]

Pre
ssu

re
[Pa

]

P
scav

P
exh

Alarm level

0 500 1000 1500
1000

1100

1200

1300

1400

1500

1600

Time [s]

Ve
loc

ity
 [R

PM
]

ω
t

EGB
open

EGB
close

Figure 7: Plot of pressures and turbocharger velocity
during the simulation scenario.

Figure 8: Top: Alarm system panel, Bot-
tom: Scavenge Air panel

8 DISCUSSION

In this section we will discuss the lessons learned from the experiment presented. To properly incorporate
the human in the loop, we believe that investigation of human interaction has to be an integrated part of the
CPS development. The traditional way of model based development, where human investigations are not
taking into account before the HIL stage, could be optimized using the hybrid co-simulation presented here.
With the hybrid co-simulation, human interaction can be investigated at any point of development.
From a survey of current research, it is clear that the multi-disciplinary nature of CPS development is the
main challenge. We believe that the solution to this is standardized interfaces for connecting the tools
each discipline prefer. The FMI standard plays a major part in this solution. Having a streamlined tool-
chain optimal for every engineering discipline, and with a convenient transition between every stage of
development, is very seldom and will often force companies to commit to a single tool provider. With the
FMI standard, every tool and simulation environment would, in principle, be connectable.
The main advantage of the FMI standard is its diversity and flexibility. FMI is based on C-code making it
platform independent and require nothing more then a C-compiler. Subsystem information is described in a
simple manner in an XML model description, making the interconnection configuration between subsystems
easy to manage. FMI provides an application interface, with a state machine, that needs to be implemented.
This state machine ensure that each subsystem is simulated in a similar fashion and that execution and
communication within the system is temporally correct. Even though you are forced to implement the
application interface, it is only the function calls FMI require, how they are implemented is completely
free. Implementing the standard to a custom simulation require some effort. This process is, however, well
documented and exemplified in (QTronic , Widl et al. 2013), making the task manageable. This level of
flexibility of cause come with some constrains. Especially, the way of exchanging data between subsystems

Pedersen, Madsen, and Bojsen

is limited. The only data types that can be exchanges are "Real","Integer","Boolean" and "String". There
is no possibility to exchange e.g. arrays or any advanced data-objects, which can be inconvenient. In
our case when adapting our SIL simulation environment, most of our data-types were fix-point types and
similar. This required us to create a complete conversion layer between FMI data-types and internal data-
types. Furthermore, the data-exchange is based on a Get/Set functionality, when the system and connection
amount grow this become a significant execution overhead. In resent years FMI has become a widely
accepted standard with multiple applications in automotive, energy systems, HVAC and more. The standard
was initially developed for the automotive industry, an industry that MAN Diesel & Turbo share many
similarities with including many of the same tools. 95 tools are currently supported the FMI standard, many
of which departments in our company currently use and could be interfaced to in the future. Conclusively
the FMI standard provided the flexibility we needed to co-simulate our custom environments and opens
up for interconnection with a vast amount of tools already in our organization. The implementation of the
standard required work, but once done, the interface has proven stable and shown more possibilities then
first anticipated.

9 CONCLUSION

This paper presented a way of connecting a human machine interface with a software model of an embedded
control system and thermodynamic models in a hybrid co-simulation. The real time operating system of the
embedded target software was compiled to an x86 architecture to enable execution on a developer PC. The
idle thread of the board support package was adapted to create a hook for the embedded system clock,
making it possible to orchestrate a temporal execution across multiple controllers. An event scheduler was
introduced in the idle thread simulating higher resolution events like network interrupts. The connection
to the human machine interface is achieved by creating a virtual switch that connects the network ports of
the software controllers with a software Ethernet interface. This interface is connected to a Linux Ethernet
bridge communicating with the HMI. Engine dynamics are simulated in a separate tool with its own solver,
which is made possible by the FMI co-simulation standard. A scenario requiring user action was formulated
in the advanced thermodynamic model and propagated through the control system software to an operator,
who interacted with the human machine interface.

Human error and misuse are difficult to guard against but an understanding of the cognitive assessment of an
operator can be very beneficial. A hybrid co-simulation environment as the one presented can provide data
otherwise hard to obtain, when building systems that take human interaction into account. Another way of
guarding a system against human error is proper training. At the MAN PrimeServ Academy Copenhagen,
marine engineers are educated in using the system. However, testing resources are very limited due to the
immense system cost. With the hybrid co-simulation environment the cost would be reduced to the cost of
the PC used by the students. The environment even provides much more sophisticated thermodynamic mod-
els than the HIL models currently used in the academy. Furthermore, partners around the world educating
marine engineers could benefit from the environment as an education tool, which in return would benefit
MAN Diesel & Turbo with better operated engines.

REFERENCES

Alegret, G., X. Llamas, M. Vejlgaard-Laursen, and L. Eriksson. 2015. “Modeling of a large marine two-stroke diesel engine with
cylinder bypass valve and EGR system”. IFAC Proceedings Volumes (IFAC-PapersOnline) vol. 48 (16), pp. 273–278.

Awais, M. U., P. Palensky, W. Mueller, E. Widl, and A. Elsheikh. 2013, 11. “Distributed hybrid simulation using the HLA and
the Functional Mock-up Interface”. In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, pp.
7564–7569, IEEE.

Blockwitz, T., M. Otter, J. Akesson, M. Arnold, C. Clauss, H. Elmqvist, M. Friedrich, A. Junghanns, J. Mauss, D. Neumerkel,
H. Olsson, and A. Viel. 2012, 11. “Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simu-
lation Models”. In 8th International Modelica Conference 2011, pp. 173–184.

Pedersen, Madsen, and Bojsen

Eker, J., J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong. 2003. “Taming heterogeneity
- The ptolemy approach”. Proceedings of the IEEE vol. 91 (1), pp. 127–143.

Gopalakrishna, A. K., T. Ozcelebi, J. J. Lukkien, and A. Liotta. 2017, 2. “Relevance in cyber-physical systems with humans in the
loop”. Concurrency and Computation: Practice and Experience vol. 29 (3), pp. e3827.

Hansen, J. M., C.-G. Zander, N. Pedersen, M. Blanke, and M. Vejlgaard-Laursen. 2013. “Modelling for Control of Exhaust Gas
Recirculation on Large Diesel Engines”. IFAC Proceedings Volumes vol. 46 (33), pp. 380–385.

Larsen, P. G., J. Fitzgerald, J. Woodcock, P. Fritzson, J. Brauer, C. Kleijn, T. Lecomte, M. Pfeil, O. Green, S. Basagiannis, and
A. Sadovykh. 2016, 4. “Integrated tool chain for model-based design of Cyber-Physical Systems: The INTO-CPS project”. In
2016 2nd International Workshop on Modelling, Analysis, and Control of Complex CPS (CPS Data), pp. 1–6, IEEE.

Lieber, R., and D. Fass. 2011. “Human Systems Integration Design: Which Generalized Rationale?”. In Human Centered Design:
Second International Conference, HCD 2011, Held as Part of HCI International 2011, Orlando, FL, USA, July 9-14, 2011.
Proceedings, edited by M. Kurosu, pp. 101–109. Berlin, Heidelberg, Springer Berlin Heidelberg.

Nunes, D. S., P. Zhang, and J. Sá Silva. 2015. “A Survey on Human-in-the-Loop Applications Towards an Internet of All”. IEEE
COMMUNICATION SURVEYS & TUTORIALS vol. 17 (2).

Pedersen, N., T. Bojsen, J. Madsen, and M. Vejlgaard-Laursen. 2016. “FMI for Co-Simulation of Embedded Control Software”.
In The First Japanese Modelica Conferences, May 23-24, Tokyo, Japan, Number 124, pp. 70–77. MAN Diesel & Turbo,
Copenhagen, Denmark, Linköping University Electronic Press, Linköpings universitet.

Pedersen, N., J. Madsen, and M. Vejlgaard-Laursen. 2015. “Co-Simulation of Distributed Engine Control System and Network
Model using FMI and SCNSL”. 10th IFAC Conference on Manoeuvring and Control of Marine Craft MCMC 2015 vol. 48
(16), pp. 261–266.

QTronic. “FMU SDK”.

Sixto, V., P. Lopez, F. Sanchez, S. Jones, E. Kural, A. F. Parrilla, and F. Le Rhun. 2015. “Advanced co-simulation HMI environment
for fully Electric Vehicles”. In 2014 IEEE International Electric Vehicle Conference, IEVC 2014.

Wahlstrom, J., and L. Eriksson. 2011. “Modelling diesel engines with a variable-geometry turbocharger and exhaust gas recir-
culation by optimization of model parameters for capturing non-linear system dynamics”. Proceedings of the Institution of
Mechanical Engineers, Part D: Journal of Automobile Engineering vol. 225 (7), pp. 960–986.

Widl, E., W. Muller, A. Elsheikh, M. Hortenhuber, and P. Palensky. 2013. “The FMI++ library: A high-level utility package for
FMI for model exchange”. 2013 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, MSCPES 2013.

Zeller, M., G. Weiss, D. Eilers, and R. Knorr. 2010. “Co-simulation of self-adaptive automotive embedded systems”. Proceedings
- IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, EUC 2010, pp. 73–80.

Zhang, Z., E. Eyisi, X. Koutsoukos, J. Porter, G. Karsai, and J. Sztipanovits. 2013. “Co-simulation framework for design of time-
triggered cyber physical systems”. 2013 ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS 2013, pp.
119–128.

AUTHOR BIOGRAPHIES

NICOLAI PEDERSEN is an industrial Ph.D. student at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark. His Ph.D. is in collaboration with MAN Diesel &
Turbo in the department of Basic Software Platform. He holds a M.Sc. in Electrical Engineering and his
research interests lie in embedded systems and optimization of development process through co-simulation.

TOM BOJSEN is a software engineer at MAN Diesel & Turbo. He holds a Bachelor in Electronic Engi-
neering form the Technical University of Denmark. Tom has more than 20 years of experience in embedded
software with special interest in network engineering.

JAN MADSEN is Full Professor in Computer-Based Systems at Department of Applied Mathematics and
Computer Science (DTU Compute), Technical University of Denmark (DTU). His research interests in-
clude methods and tools for systems engineering of computing systems. Present research covers embedded
systems, wireless sensor networks (Internet-of-Things), microfluidic biochips (Lab-on-Chip) and synthetic
biology.

Chapter 11

Paper D: Distributed
Co-Simulation of Embedded

Control Software with
Exhaust Gas Recirculation

Water Handling System
using INTO-CPS

Distributed Co-Simulation of Embedded Control Software with Exhaust
Gas Recirculation Water Handling System using INTO-CPS

Nicolai Pedersen1,3, Kenneth Lausdahl2, Enrique Vidal Sanchez1,
Peter Gorm Larsen2 and Jan Madsen3

1MAN Diesel & Turbo, Teglholmsgade 41, 2450 Kbenhavn SV, Denmark
2Department of Engineering, Aarhus University, Finlandsgade 22, Aarhus N, Denmark

3Embedded Systems Engineering, Technical University of Denmark, Anker Engelunds Vej 1, Kgs. Lyngby, Denmark
{nicp, jama}@dtu.dk, {lausdahl, pgl}@eng.au.dk, {nicolai.pedersen, enrique.sanchez}@man.eu

Keywords: INTO-CPS, Cyber-Physical-Systems, Co-Simulation, Parallel Simulation, Distributed Simulation, Embedded
Control System, Exhaust Gas Recirculation.

Abstract: Engineering complex Cyber-Physical Systems, such as emission reduction control systems for large two-stroke
engines, require advanced modelling of both the cyber and physical aspects. Different tools are specialised for
each of these domains and a combination of tools validating different properties is often desirable. However, it
is non-trivial to be able to combine such different models of different constituent elements. In order to reduce
the need for expensive tests on the real system it is advantageous to be able to combine such heterogeneous
models in a joint co-simulation in order to reduce the overall costs of validation. This paper demonstrates how
this can be achieved for a commercial system developed by MAN Diesel & Turbo using a newly developed tool
chain based on the Functional Mock-up Interface standard for co-simulation supporting different operating
systems. The generality of the suggested approach also enables future scenarios incorporating constituent
models supplied by sub-suppliers while protecting their Intellectual Property.

1 INTRODUCTION

With increased complexity in physical dynamics, con-
trol and communication, the development of Cyber-
Physical Systems (CPS) require more advanced mod-
elling and specialized tools. For differential-equation
based continuous models, multiple tools are avail-
able (MathWorks, 2011; SYSTÈMES, 2017; Kleijn,
2006), each with their specific specialization and va-
lidity. Discrete event models are often developed
within companies own software frameworks, or cre-
ated in one of the many tools available. The inter-
connection between the physical and cyber parts of
CPS is becoming more dependent and dynamical in-
fluences have to be considered. The main challenge
connecting these models comes from the fundamen-
tal differences in the underlying mathematical frame-
works, their simulation tools and how they are devel-
oped. In this regard one typically distinguishes be-
tween Discrete Event (DE) models based on discrete
mathematics and Continuous-Time (CT) models that
are based on differential equations. Many initiatives
for connection tools in a so called co-simulation have
been published (Fitzgerald et al., 2014; ITEA Office

Association, 2015). However, connecting the specific
tools making up the holistic simulation is often not the
only issue. Deviations in development platforms and
performance is as often the issue. A solution for this
is a distributed co-simulation, where models can be
executed, not only in the tool where they were devel-
oped, but also on the correct platform. Furthermore, a
distribution of the simulation makes it possible to in-
crease performance by utilizing additional hardware,
given that the models are prepared for it.

At MAN Diesel & Turbo (MDT) the conventional
approach for developing two-stroke combustion en-
gines with a distributed embedded control system is
being challenged. In particular for diesel engines pol-
lution is a key element that it is desirable to reduce
from a competitive perspective. New emission leg-
islation focuses on the reduction of especially NOx
emission. Widely known emission reduction tech-
nologies for reducing NOx are selective catalytic re-
duction and Exhaust Gas Recirculation (EGR), both
being developed at MDT (MAN Diesel & Turbo,
2016). These systems require advanced algorithms
to control the complexity of the physical dynamics
of large engines. Historically, in the same way as

Pedersen, N., Lausdahl, K., Sanchez, E., Larsen, P. and Madsen, J.
Distributed Co-Simulation of Embedded Control Software with Exhaust Gas Recirculation Water Handling System using INTO-CPS.
In Proceedings of the 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2017), pages 73-82
ISBN: 978-989-758-265-3
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

73

many other large organisations, MDT is divided into
different departments with different responsibilities.
In the control department at MDT, control algorithms
are created directly in the target software framework
with the possibility of performing Software In the
Loop (SIL) simulation during development. Models
of the physical behaviour are created in other depart-
ments of MDT using the tools most suitable for the
specific constituent system. For control system de-
velopment, the physical dynamics models are imple-
mented in an internally developed tool for CT simula-
tion called Dynamic Simulation Environment (DSE)
which is part of the software framework. The primary
focus in DSE is SIL/Hardware In the Loop (HIL),
and the physics models implemented here are often
an abstraction of high-fidelity models. Historically it
has been challenging inside MDT to enable heteroge-
neous collaborations between the different teams pro-
ducing models in different departments.

The software framework and DSE are based on
C++ and run on a 32-bit Linux platform while
the physical modelling tools often require Win-
dows. In this paper the current simulation process
at MDT is compared with an alternative using co-
simulation utilizing the Functional Mock-up Inter-
face (FMI) standard and the Co-simulation Orches-
tration Engine (COE) from the Integrated Tool Chain
for Model-based Design of Cyber-Physical Systems
(INTO-CPS) project. The aim with the approach sug-
gested in this paper is to reduce redundancy in the
development process and reuse models from differ-
ent departments. One of the main challenges is to
enable co-simulation across different hardware archi-
tectures and Operating System (OS) platforms due to
constraints from software frameworks, physical sim-
ulation tools and version compatibility.

In section 2 the overall system is presented. sec-
tion 3 describes the previous simulation of a specific
subsystem for EGR, and section 4 describes the ap-
proach taken to enable co-simulation. Afterwards,
section 5 describes the co-simulation results for the
EGR system. Finally, the paper concludes with sec-
tion 6.

2 EXHAUST GAS
RECIRCULATION WATER
HANDLING SYSTEM

The EGR system presented in this paper recirculates
exhaust gas to the intake manifold thereby reduc-
ing environmental impact while maintaining efficient
combustion. The unclean exhaust gas is potentially

Run/Running

WTS

RTU

EGR Unit

Water Mist
Catcher

Cooler Buffer Tank

Circulation Pump

Receiving Tank

Pre-Spray

Exhaust Gas

EGR Blower

Mixing
Chamber

Cleaned Exhaust Air

Process Water
Sealing Valve

Receiving Tank
Level Valve

Spray Water
Sealing Valve

Supply Pump

Scavenge Air

Fresh Water

WTS Pump

WTU

Ocean

Drain
Tank

Sludge
Tank

Ambient Air

Externally Controlled

EGR Control Unit

Tank Level

Setpoint/Feedback

Run/Running

Setpoint/
Feedback

Setpoint/
Feedback

WTS Communication

Figure 1: Water Handling System Setup.

damaging to the engine and has to be cleaned before
return, which is the purpose of the Water Handling
System (WHS). The system is shown in Figure 1
where the exhaust gas is drawn into the EGR Unit
using an EGR blower, it is then sprayed with water
and cooled so that a Water Mist Catcher (WMC) can
collect the damaging particles. Before the gas is re-
turned, the water is collected in the WMC and led to
a receiving tank. The water level in this tank is one of
the important variables that the WHS controls, as dis-
cussed in section 3.4. The water is pumped from the
receiving tank to an external constituent system (Wa-
ter Treatment System (WTS)) for processing where
the water is either cleaned and pumped back to the
EGR Unit, pumped overboard or stored for treatment
at a harbour.

At the chemical level, EGR is based on exchange
of the in-cylinder oxygen (O2) with carbon dioxide
(CO2) from the exhaust gas, which is re-circulated
into the scavenged air. The exchange of O2 with CO2
leads to a decrease of combustion speed, resulting
in lower peak temperatures during combustion. Fur-
thermore the exchange of O2 with CO2 results in a
higher in-cylinder heat capacity of the gas which also
lowers the combustion temperature. Lower combus-
tion temperatures and especially lower peak temper-
atures result in lower formation of thermal NOx dur-
ing the combustion process. The recirculated exhaust
gas is hotter and not as clean as the residual ambient
scavenge-air. To prevent Sulphur (SO2) and other par-

SIMULTECH 2017 - 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

74

ticles from damaging the engine, cleaning and cool-
ing of the recirculated exhaust gas is required. A
WHS provides the water used for cleaning the ex-
haust gas in the EGR unit. To control the flow of
exhaust gas to the mixing chamber, an EGR blower
is installed. Water from the EGR unit is drained to
the Receiving Tank Unit (RTU) and recirculated to
the EGR unit. Part of the recirculated water is led
to the WTS to be cleaned and returned to the EGR
unit. The surplus of water originating from the com-
bustion process is drained from the WTS as bleed-
off water and discharged to the sea. The residuals
from the cleaning process are discharged to the sludge
tank. Depending on engine load and ambient condi-
tions the combustion process will accumulate water
in the system, which must be discharged as bleed-
off water. If discharged to the sea, the bleed-off wa-
ter must meet the quality criteria required by Interna-
tional Maritime Organization (IMO)1, presently de-
fined in the 2015 Guidelines for Exhaust Gas Clean-
ing Systems, MEPC 259 (68). Bleed-off water, which
does not meet the discharge criteria or cannot be dis-
charged to sea due to local restrictions, is drained to a
drain tank for delivery at port.

Vessels operating within an emission control area
have to comply with the Tier III emission require-
ments (IMO, 2015). This is achieved by activating
EGR, at which point the water handling system is re-
quired to run. The control system for the WHS is di-
vided into two parts, the EGR control which is part
of the distributed engine control system and the WTS
control which is delegated to the producer of the aux-
iliary system. The engine control system consists of
several multi-purpose controllers. Each controller is
composed of a power module, multiple I/O chassis
and an Field-Programmable Gate Array (FPGA). All
controllers on the engine are identical but the software
running on the FPGA determines the specific con-
trol objective. The controller controlling the WHS is
called the EGR Control Unit (EGRCU) and is seen in
Figure 1, with the connections relevant for this simu-
lation. This paper focuses on the control of the WHS.
The remaining control of the EGR system will not be
covered.

The WHS is controlled and monitored by the EGR
control, so that water can be provided to clean and
cool the exhaust gas. There are two main water
loops that can be distinguished. The recirculation
loop where the water from the EGR unit is sent to
the RTU and back again by the ’Circulation pump’
via the ’Process Water Sealing Valve’ and ’Spray Wa-
ter Sealing Valve’. The other loop is where part of
the water from the recirculation loop is sent via the

1http://www.imo.org.

’Receiving Tank Level Valve’ to the externally con-
trolled system, the WTS. The water from the WTS
is sent back to the recirculation loop with the ’Supply
Pump’. The WTS receives the processed water from
the RTU and is collected in the buffer tank. A separate
system in the WTS treats the water of the buffer tank.
Any excess of water is either sent to the sludge/drain
tank or, if the water quality parameters are met, the
water can be sent overboard.

The objective of the control loop discussed in this
paper is to maintain the water level of the ’Receiv-
ing Tank’ within specified limits. During start up
and shutdown of the WHS the actuation timing of the
components has a direct impact on the water level.
During running mode, the water level is controlled by
the ’Receiving Tank Level Valve’ and compensates
for deviations in the water flow due to e.g. engine
load, exhaust gas and scavenge air pressure changes.

3 WHS SIMULATION

This section describes the development process of the
primary WHS control strategy. The approach and
tools used for the first edition of the control system
are described and the solution is evaluated.

3.1 Software Application Framework

Application development at MDT is carried out in
a comprehensive in-house C++ software application
framework. The framework is developed to enable
development of DE control models. The main ad-
vantage of the software application framework is the
possibility of cross compiling the same application to
both SIL, HIL and target platform, see Figure 2. SIL
simulation of target code is made possible by compil-
ing the Board Support Package (BSP) and the Real
Time Operating System (RTOS) to an x86 platform.
With the SIL simulation, engineers are able to test
their application on their own PC. When moving to
HIL or target, the same application code, the BSP and
the RTOS, are simply cross-compiled to the embed-
ded core of the controller. The primary focus of the
framework is control development, where algorithms
are directly implemented in C++ with a vast amount
of reusable components and macros available, aiding
engineers. For CT models, an extension to the frame-
work can be utilized, called DSE. DSE includes a ker-
nel for execution, an ODE solver and a model library
of physical components. Models created in DSE are
executable on both PC (SIL) and the HIL platform,
given that the abstraction of the models allow for real-
time execution.

Distributed Co-Simulation of Embedded Control Software with Exhaust Gas Recirculation Water Handling System using INTO-CPS

75

BSP
(Board Support Package)

x86-Core Embedded Core

Cross CompilerSIL HIL & Target

Application Environment

RTOS
(Real Time Operating System)

Control
Component

Library

DSE
Execution Kernel

ODE Solver
Model Library

Control Application

Figure 2: Software Application Framework.

When challenged with a new application, con-
trol engineers at MDT often start studying the phys-
ical dynamical challenges of the system in MAT-
LAB/Simulink. When a sufficient understanding of
the system is achieved, the control strategy is formu-
lated in the software application framework and tested
against a DSE model implementation of the MAT-
LAB model. DSE is designed with HIL execution in
mind, and while it can simulate complex CT systems,
the models implemented are often at a lower abstrac-
tion level than e.g. the MATLAB models.

3.2 WHS Model

The WHS model is divided into a control algorithm
created in the software application framework and
a model of the physical components in DSE. The
control algorithm is created as a component in the
controller EGRCU along side the additional compo-
nents that comprise the entire engine control. The
control model consists of a Proportional Integral
(PI)-controller regulating the ’Receiving Tank Level
Valve’ set-point from the ’Process Water Receiving
Tank’ level sensor feedback. Besides controlling the

receiving tank level, the control algorithm also has to
ensure that transitions between states in the system is
possible, according to signals from engine operators
and the WTS control system. This control strategy is
formulated in a state-machine running in the EGRCU.
The DSE model describes the pressures and flow of
all the components illustrated in Figure 1. The model
resembles the preliminary model developed in MAT-
LAB but without details such as pressure build-up in
piping, water accumulation in components and pres-
sure loss over valves. The main purpose of the DSE
is to test the control strategy, ensuring that all state
transitions are possible and that the regulator works
correctly. To prepare for HIL simulation, the DSE
model is placed in a separate controller called the En-
gine Simulation Unit (ESU), shown in Figure 3. The
ESU controller is installed in the HIL platform as a
representation of the real engine. Data exchange be-
tween the EGRCU and ESU imitate the actual com-
munication with the real engine through analog and
digital IOs. In SIL, a software implementation of vir-
tual IOs and network simulate the communication.

SIL Simulation Manager – Developer PC

EGRCU
(EGR Control Unit)

Share Library (.SO)

ESU
(Engine Simulation Unit)

Share Library (.SO)

BSP (x86)

RTOS (x86)

Application

Component X

Component Y

WHS Control

BSP (x86)

RTOS (x86)

Application

DSE

WHS PhysicsVirtual I/O

Network

Simulation
Configuration

Simulation
Results

HIL Simulation – HIL Test Bench

EGR Control Unit Engine Simulation Unit

Target – Engine Test Bench

EGR Control Unit

I/O

Network

I/O

Figure 3: SIL WHS Simulation setup.

3.3 Simulation and Verification Process

SIL simulation is achieved by compiling controllers
to an x86 platform and into shared libraries. The

SIMULTECH 2017 - 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

76

shared libraries are executed by a simulation man-
ager ensuring temporal execution and correct data ex-
change between controllers. How the embedded con-
trol software has been adapted to enable determinis-
tic simulation has been described in (Pedersen et al.,
2016) and will not be further explained in this paper.
A simulation scenario is provided to the DSE model
through a simulation configuration file and the results
are delivered in a simulation results file.

When the system has been properly tested in the
SIL environment, the models are moved to the HIL
platform by cross-compiling to the embedded system.
On the HIL test bench additional tests of computation
overhead, communication and additional temporal is-
sues are performed.

For final testing, an engine test bench is physi-
cally available at the MDT research center in Copen-
hagen. Only a single test bench is available due to
the immense cost and sheer size of the engine. Avail-
able time-slots on the test engine are very limited and
extremely costly, due to the fuel consumption and
amount of operators required, so the proper modelling
and testing of the previous steps is desirable.

3.4 Simulation Evaluation

The SIL simulation was used to develop a function-
ing PI controller that regulates the process water tank
level and a state machine for actuating valves and
pumps according to a number of states for starting
and stopping the WHS system. The system was
tested on the HIL test bench, ensuring that the systems
worked properly on the controller hardware. Finally,
a test session was performed on the engine test bench.
This test showed that the PI controller worked as in-
tended, however, an unsuspected situation occurred
when stopping the WHS system.

Figure 4 shows the results of running the initial
control strategy on the real system. After 100 seconds
the EGR control system ordered the WHS system to
prepare for EGR operation. Then after 50 seconds the
state-machine was finished starting different pumps
and opening of valves. At this point the Process Wa-
ter Receiving Tank (PWRT) control is fully engaged.
The bottom figure in 4 shows how the Receiving Tank
Level Valve (RTLV) is regulated to redirect water
from the process circuit to the WTS for cleaning and
stabilizing the PWRT level. The top figure in Figure 4
shows the water level in the PWRT and how it became
stable after a transient period, proving that the PWRT
control worked correctly during WHS operation. Ves-
sels are not always required to use EGR, so shut-down
of the system should be possible during engine oper-
ation. After 600 seconds a command from the engine

0 100 200 300 400 500 600 700 800 900

Time [s]

0

10

20

30

40

50

60

70

80

90

100

W
a

te
r

le
v
e

l
[%

]

WHS control

PWRT
FB

PWRT
SP

Start EGR

Stop EGR

0 100 200 300 400 500 600 700 800 900

Time [s]

0

10

20

30

40

50

60

70

80

V
a

lv
e

 o
p

e
n

in
g

 [
%

]

RTLV
FB

RTLV
SP

Start EGR

Stop EGR

Figure 4: WHS Control results.

operator was ordered, from an operating panel, for the
EGR system to shutdown and WHS to stop operation.
The state machine started emptying the tank to reach
a stable offline level around 20-25% in the tank. At
676 seconds a behaviour not seen in either the SIL or
HIL simulation was observed. When the WHS system
started, water in the WMC started to accumulate grad-
ually. At a point in time an equilibrium was achieved
due to increased water pressure resulting in a consis-
tent flow through the WMC (without increased water
accumulation in the WMC as a consequence). During
shutdown, when the desired water level in the PWRT
was achieved and RTLV control stopped, the accumu-
lated water in the WMC started to flow to the PWRT
tank. As seen in Figure 4, the amount of residual wa-
ter in the WMC is so large that it overfills the PWRT.

From the engine test bench it was discovered that
the controller actuating the RTLV was working prop-
erly, but the state-machine was not properly handling
the emptying of the WMC. Engine tests are very
costly and MDT would like to investigate if a more
efficient development process can be achieved. In
the DSE model used for development of the state-
machine, the accumulation of water in the WMC had
not been modelled. To improve the control strategy of
the WHS, a higher-fidelity model should be used. In-
stead of simply extending the DSE model to include a

Distributed Co-Simulation of Embedded Control Software with Exhaust Gas Recirculation Water Handling System using INTO-CPS

77

more detailed WMC model, a co-simulation solution
was chosen (Gomes et al., 2017). The co-simulation
should not only include a detailed WMC model but be
so generic that changes to the system layout and more
advanced models of components can be easily imple-
mented. The argument for the choice of co-simulation
is given in the following section.

4 TARGETING CO-SIMULATION

The software application framework and DSE is cen-
tral for development because they are designed for the
target platform of the final system, and directly enable
validation through both SIL and HIL. Keeping this in
mind it is rational to keep the control systems in the
framework. However, there are a number of options
for enhancing physics modelling that would be bene-
ficial:

• Porting the controller software to a notation that
can be used in the MATLAB environment, where
it is easier to express the physical model. This
would however, just shift the issue to the con-
troller, that then needs to be ported back to the
software application framework.

• Enhancing the physical model in DSE, while the
standard approach, it is more time consuming than
using a dedicated modelling tool like MATLAB,
but it enables faster simulation speeds.

• Use a generic solution that enables co-simulation
between the control system expressed in the soft-
ware application framework and a physical mod-
elling tool like MATLAB. This will not require
any changes to software development at MDT, but
would enable physical models to be created using
the desired modelling tool. It would potentially
run slower than a complete model expressed in
DSE but would be more flexible. This solution
would make the representation of the physical dy-
namics more detailed in SIL simulation. The co-
simulation model would not be able to run on the
HIL platform, however. The purpose of the HIL
test is not to test functionality already verified in
the SIL simulation, but to ensure computational
overhead and investigate temporal aspects.

The latter approach was chosen because it is
generic and it allows well known modelling tools in
the physical domain to be used. To interface between
models, the FMI is used, which provides a standard-
ised model interface. The last constraint on the co-
simulation is that it needs to be performed across ar-
chitectures and platforms. The software application

framework is required to run as a Linux 32bit pro-
cess. The reason for this is, as previously mentioned,
because the framework is developed to build directly
to the embedded system which is a 32bit architec-
ture. It is also a requirement that the physical mod-
elling environment be a Windows 64bit application.
The control developers working in e.g. MATLAB do
so in Windows 64bit and management-wise, introduc-
ing co-simulation to the current tool-chain would be
preferable. Another reason for the choice of deviation
in platform is the lack of 32bit support for MATLAB
on Linux.

It must be possible to run the simulation using
Linux 32bit for the software application framework
and Windows 64bit for MATLAB. Therefore a solu-
tion is to use the free FMI COE from the INTO-CPS
research project since it supports both. However, the
co-simulation cannot span architectures or platforms.
Therefore an extension is presented in section 5.1 that
enables co-simulation in a distributed setting, span-
ning both architectures and platforms.

4.1 Functional Mock-up Interface

FMI is a tool independent standard developed within
the MODELISAR project (ITEA Office Association,
2015). It supports both model exchange and co-
simulation and exists as Version 1, released in 2010
and Version 2, released in 2014. It was developed to
improve exchange of simulation models between sup-
pliers and Original Equipment Manufacturers (OEM).
The standard describes how simulation units are to be
exchanged as ZIP archives called a Functional Mock-
up Unit (FMU) and how the model interface is de-
scribed in an XML file named modelDescription.xml.
The functional interface of the model is described as
a number of C functions that must be exported by the
library that implements the model inside the FMU.
Since the FMU only contains a binary implementa-
tion of the model it offers some level of intellectual
property protection. The focus of this work is on co-
simulation, where each FMU is capable of participat-
ing in a co-simulation without the need of an external
solver, i.e. each FMU includes the required solvers
needed for simulation.

4.2 The INTO-CPS Tool Chain

While individual tools and formalisms for the de-
velopment of controllers, including simulation, test-
ing and code generation, are very mature, the de-
sign workflow is only partially integrated. The Hori-
zon 2020 project INTO-CPS (Fitzgerald et al., 2015;
Fitzgerald et al., 2016) aims at closing this gap, by

SIMULTECH 2017 - 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

78

Figure 5: The INTO-CPS Tool Chain.

creating an Integrated Tool-chain for the model-based
design of Cyber-Physical Systems (Larsen et al.,
2016). The chain of tools are connected as illus-
trated in Figure 5, moving all the way from require-
ments to final realisations (Bandur et al., 2016). One
of the core tools of this chain is a newly developed
COE, which is a fully FMI 2.0 co-simulation com-
pliant Master supporting both fixed and variable step
size simulations. It was decided to use FMI as the in-
terface for the different simulation and testing tools,
since it is a mature standard2 created in the MOD-
ELISAR project (ITEA Office Association, 2015)
with an active community.

The COE is developed in a combination of Java
and Scala, which makes it multi-platform and pro-
vides the simulation service through HTTP. Currently,
two methods for time-stepping are implemented; one
for fixed time steps, and one for variable time steps.
The COE is capable of switching on stability check-
ing as well as using parallelism (Thule and Larsen,
2016). In addition to the baseline tools incorpo-
rated inside the tool chain, a number of other mod-
elling and simulation tools have been tested with the
COE. This includes both commercial tools such as
Dymola, Modelon, SimulationX and Unity as well as
additional open source tools such as 4Diac. While
the COE is multi-platform it does not directly sup-
port mixed-architecture (combinations of 32bit and

2http://fmi-standard.org

64bit architectures) or mixed-platform (combinations
of e.g. Windows and Linux) simulations as required
for the WHS system as discussed next in section 5.

5 WHS CO-SIMULATION

To co-simulate the WHS from section 3 using FMI, it
is required that both constituent models must support
FMI, and that a suitable orchestration engine that sup-
ports FMI and the required platform and architecture
combination is available. Since no such simulator is
available an extension to the COE is described in sec-
tion 5.1. To enable FMI for the constituent models,
an extension was developed for the MDT software
application framework which has been published in
(Pedersen et al., 2016; Pedersen et al., 2015). The
model of the WHS is exported from MATLAB to
an FMU using the Modelon FMI Toolbox for MAT-
LAB/Simulink (Modelon, 2015). The complete co-
simulation model is shown in section 5.2, and evalu-
ated in section 5.3.

5.1 Distributed COE Extension

To enable multi-architecture co-simulation, the chal-
lenge of mixing 32bit and 64bit code needs to be ad-
dressed. Essentially, two processes with inter-process

Distributed Co-Simulation of Embedded Control Software with Exhaust Gas Recirculation Water Handling System using INTO-CPS

79

COE

Factory

FMU

*.fmu

Distributed Factory

Proxy FMU

Host 1

Daemon

FMU

*.fmu

Host 2

Transferred

Figure 6: Distributed Extension Overview.

communication are required by the host system to re-
alize this, where one of them acts as the simulation
master. A similar challenge arises when different plat-
forms need to interact in a co-simulation.

An extension to the COE was developed that is
capable of both simulating across architectures and
platforms. The solution chosen was to utilize an ex-
tension point in the COE that allows a custom factory
to be used for FMU instantiation. An overview of the
extension is realized and shown in in Figure 6. The
COE uses the distributed factory to instantiate FMUs
that require execution with a different host configura-
tion, either architecture or platform deviation.

The extension is realized using Java-Remote
Method Invocation (JAVA-RMI) to provide cross-
platform communication (JavaRMI, 2004). It consists
of a distribution factory and an FMU proxy that is
plugged into the COE. It uses a daemon that must run
on the remote host to provide a service that enables
the COE to remotely load and control FMUs. The
COE configuration is also extended to specify which
remote daemon a specific FMU should be executed
by. When a co-simulation is started the COE will
communicate with the specified remote daemons to
configure the co-simulation by first pushing FMUs to
the remote daemons that then in turn load and setup a
communication channel for the loaded FMUs. These
will then be connected to the FMU proxy in the COE,
which is responsible for handling remote communi-
cation.

5.2 Co-Simulation Setup

The co-simulation setup is illustrated in Figure 7. The
master COE is running on the Windows host, and the
COE-deamon on the Linux host. A JSON configura-
tion file describes the co-simulation setup to the COE.
The configuration file tells the COE where the FMU-
archives are located and on which host-ip they should
be executed. The configuration file also contains in-
formation about connections between the inputs and
outputs of the FMUs, parameters and simulation al-

Windows Host

Linux Host

FMU

Distributed
COE

Daemon

FMI Wrapper

Shared Library Linux 32-bit

EGRCU
(EGR Control Unit)

Share Library (.SO)

BSP (x86)

RTOS (x86)

Application

Component X

Component Y

WHS Control

FMI API

Data
Exchange

Simulation
Execution

ModelDescription.xml

FMU

ModelDescription.xml

Code Generation
(Modelon FMI-Toolbox)

WHS Physics Model

Dynamic-link library Win 64-bit

WHS Physics Model

MATLAB

COE

Master

FMI

FMI

JAVA
RMI

Config.json

Figure 7: Co-Simulation Configuration.

gorithm: variable/fixed time step.
The WHS MATLAB model is code generated into

an FMU using the Modelon FMI toolbox for MAT-
LAB/simulink. The toolbox compiles the MATLAB
model to a 64-bit DLL including the FMI-API and
auto-generates the model description XML defining
the interface to the FMU. The control system FMU
has been created by wrapping the FMI Application
Programming Interface (API) around the SIL simula-
tion and compiling it to a Linux 32-bit shared library.
The simulation can access the RTOS for scheduling
and a hook to the clock in the BSP, all described in
(Pedersen et al., 2016). Accessing the variables of the
WHS control is done through a proxy interface that
provides pointers to internal variables to be manipu-

SIMULTECH 2017 - 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

80

lated. Furthermore, the proxy interface introduces a
conversion layer between internal types such as FIX-
POINT16 and FMI-types. The SIL simulation only
includes the EGRCU controller, which contains the
WHS control. The ESU controller, containing the
DSE models, has been replaced with the MATLAB
model in the co-simulation.

The simulation is initiated through the COE and
results delivered in Comma-Separated Values (CSV)
format on the Windows host.

5.3 Co-Simulation Evaluation

Figure 8 shows the simulation results with the pro-
posed Co-Simulation setup, where the DSE physical
model has been replaced with the more detailed MAT-
LAB model. Being able to anticipate the behaviour
of the accumulated water in the Water Mist Catcher,
it is now possible to address it and to modify the state
machine accordingly to control the components in a
more appropriate way during WHS shutdown. The
first 600 seconds show the same response as in Fig-
ure 1. However, the new state machine now ensures

Figure 8: WHS Control results.

that the WMC is drained before shutting down RTLV
control. This prevents the water level in the PWRT
from overflowing, but instead stabilize at a desired
level of approximately 20-25%.

6 CONCLUDING REMARKS

This paper shows how the control development pro-
cess at MAN Diesel & Turbo could benefit from in-
troducing co-simulation. The conventional approach,
where control algorithms and strategy are formulated
using simplified models of the physical dynamics, is
not always able to properly represent the complex-
ity of the system. Importantly, with this approach,
defects are typically not found before moving to the
expensive engine test bench. With the co-simulation
approach proposed in this paper, higher-fidelity con-
stituent models of physical dynamics, formulated in
dedicated tools, can be simulated together with a SIL
simulation of the control software, at an earlier stage
of development. In the example presented, the ac-
cumulation of water in a water mist catcher was ne-
glected in the initial model, essentially resulting in
a water tank overflow during shutdown. With the
co-simulation, a more detailed model, formulated in
MATLAB, could be used for developing a working
control strategy. Had the co-simulation been used for
initial control development, the issues seen on the test
engine would likely have been discovered at an earlier
stage, saving money and time.

The main challenge enabling co-simulation at
MDT was the deviation in both OS platform and hard-
ware architecture of the simulation tools used. The
SIL simulation of the control software is constrained
to a 32-bit Linux platform and the MATLAB environ-
ment was required to run on a 64-bit Windows plat-
form due to change management concerns. In coop-
eration with the INTO-CPS-project, the INTO-CPS
Co-simulation Orchestration Engine for executing co-
simulations complying with the Functional Mock-up
Interface standard was adapted to enable distributed
co-simulation. With the distributed COE it was possi-
ble to conduct the co-simulation despite the platform
and architecture deviation.

Besides the promising results shown in this paper,
additional benefits form the INTO-CPS co-simulation
tool chain are anticipated. The extensions developed
to the MDT frameworks and development processes
enable not only co-simulation of the EGR system, but
also of any other system to be developed in the future
by MDT, with minimal effort. In the future it will
be explored when it makes sense to also make use of
more capabilities from the INTO-CPS tool chain.

Distributed Co-Simulation of Embedded Control Software with Exhaust Gas Recirculation Water Handling System using INTO-CPS

81

In the EGR Water Handling System presented
here, a subsystem called Water Treatment System is
delivered by an MDT OEM and neither modelled nor
controlled by MDT. One of the main advantages of
the Functional Mock-up Interface standard used by
INTO-CPS is that models are exchanged on a binary
level offering protection of intellectual property. One
of the future ambitions is to be able to share models
with OEMs so systems like the WHS and WTS can be
simulated together, improving both companies prod-
ucts. Part of the high-fidelity models developed at
MDT are very complex and require time to simulate,
especially if co-simulated with several other models.
One of the additional advantages of the distributed co-
simulation is that the simulation process can be par-
allelized and perhaps distributed to centralized high-
performance hardware. This could potentially speed
up simulation execution times and enable more ad-
vanced system investigations, previously deemed too
time consuming. Initial work on using the COE in
a cloud setting has already been initiated, in particu-
lar in relation to design space exploration in situations
where there is large room for different alternative so-
lutions.

ACKNOWLEDGEMENTS

The work presented here is partially supported by the
INTOCPS project funded by the European Commis-
sion’s Horizon 2020 programme under grant agree-
ment number 664047. In addition we would like to
thank Victor Bandur for inout on an earlier draft of
this article.

REFERENCES

Bandur, V., Larsen, P. G., Lausdahl, K., Thule, C.,
Terkelsen, A. F., Gamble, C., Pop, A., Brosse, E.,
Brauer, J., Lapschies, F., Groothuis, M., Kleijn, C.,
and Couto, L. D. (2016). INTO-CPS Tool Chain User
Manual. Technical report, INTO-CPS Deliverable,
D4.2a.

Fitzgerald, J., Gamble, C., Larsen, P. G., Pierce, K., and
Woodcock, J. (2015). Cyber-Physical Systems de-
sign: Formal Foundations, Methods and Integrated
Tool Chains. In FormaliSE: FME Workshop on For-
mal Methods in Software Engineering, Florence, Italy.
ICSE 2015.

Fitzgerald, J., Gamble, C., Payne, R., Larsen, P. G.,
Basagiannis, S., and Mady, A. E.-D. (2016). Collab-
orative Model-based Systems Engineering for Cyber-
Physical Systems – a Case Study in Building Automa-
tion. In INCOSE 2016, Edinburgh, Scotland.

Fitzgerald, J., Larsen, P. G., and Verhoef, M., editors
(2014). Collaborative Design for Embedded Systems
– Co-modelling and Co-simulation. Springer.

Gomes, C., Thule, C., Broman, D., Larsen, P. G., and
Vangheluwe, H. (2017). Co-simulation: State of the
art. Technical report.

IMO, I. M. O. (2015). MARPOL ANNEX VI and NTC
2008 with Guidelines for Implementation - Supple-
ment. Technical Report September 2015.

ITEA Office Association (2015). Itea 3 project 07006
modelisar. https://itea3.org/project/modelisar.html.
(Visited on 12/06/2015).

JavaRMI (2004). Java remotemethodinvocation specifica-
tion 1.5.0. http://java.sun.com/j2se/1.5/pdf/rmi-spec-
1.5.0.pdf.

Kleijn, C. (2006). Modelling and Simulation of Fluid Power
Systems with 20-sim. Intl. Journal of Fluid Power,
7(3).

Larsen, P. G., Fitzgerald, J., Woodcock, J., Fritzson, P.,
Brauer, J., Kleijn, C., Lecomte, T., Pfeil, M., Green,
O., Basagiannis, S., and Sadovykh, A. (2016). Inte-
grated Tool Chain for Model-based Design of Cyber-
Physical Systems: The INTO-CPS Project. In CPS
Data Workshop, Vienna, Austria.

MAN Diesel & Turbo (2016). Emission Project Guide,
MAN BW Two-stroke Marine Engines. Technical re-
port, MAN Diesel & Turbo.

MathWorks (2011). http://www.mathworks.com. Matlab
official website.

Modelon (2015). http://www.modelon.com/products/fmi-
tools/fmi-toolbox-for-matlabsimulink/. Modelon FMI
Toolbox for MATLAB/Simulink official website.

Pedersen, N., Bojsen, T., Madsen, J., and Vejlgaard-
Laursen, M. (2016). FMI for Co-Simulation of Em-
bedded Control Software. In Linköping Electronic
Conference Proceedings, number 124, pages 70–77.

Pedersen, N., Madsen, J., and Vejlgaard-Laursen, M.
(2015). Co-Simulation of Distributed Engine Control
System and Network Model using FMI and SCNSL.
10th IFAC Conference on Manoeuvring and Control
of Marine Craft MCMC 2015, 48(16):261–266.

SYSTÈMES, D. (2017). https://www.3ds.com/products-
services/catia/products/dymola. 3ds official website.

Thule, C. and Larsen, P. G. (2016). Investigating con-
currency in the co-simulation orchestration engine
for into-cps. In Alexander S. Kamkin, A. K. P.
and Terekhov, A. N., editors, Preliminary Proceed-
ings of the 10th Anniversary Spring/Summer Young
Researchers’ Colloquium on Software Engineering
(SYRCoSE 2016), Krasnovidovo, Russia, May 30-
June 1, 2016), pages 223–228. ISP RAS.

SIMULTECH 2017 - 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

82

Bibliography

Abel, A., Blochwitz, T., Eichberger, A., Hamann, P., and Rein, U. (2012). Func-
tional mock-up interface in mechatronic gearshift simulation for commercial
vehicles. 9th International MODELICA Conference, pages 775–780.

Alegret, G., Llamas, X., Vejlgaard-Laursen, M., and Eriksson, L. (2015). Mod-
eling of a large marine two-stroke diesel engine with cylinder bypass valve and
EGR system. IFAC Proceedings Volumes (IFAC-PapersOnline), 48(16):273–
278.

Awais, M. U., Palensky, P., Mueller, W., Widl, E., and Elsheikh, A. (2013).
Distributed hybrid simulation using the HLA and the Functional Mock-up In-
terface. IECON Proceedings (Industrial Electronics Conference), pages 7564–
7569.

Bandur, V., Larsen, P. G., Lausdahl, K., Thule, C., Terkelsen, A. F., Gamble,
C., Pop, A., Brosse, E., Brauer, J., Lapschies, F., Groothuis, M., Kleijn, C.,
and Couto, L. D. (2016). {INTO-CPS} Tool Chain User Manual. Technical
report, {INTO-CPS} Deliverable, D4.2a.

Bian, D., Kuzlu, M., Pipattanasomporn, M., Rahman, S., and Wu, Y. (2015).
Real-time co-simulation platform using OPAL-RT and OPNET for analyzing
smart grid performance. IEEE Power and Energy Society General Meeting,
2015-Septe:1–5.

Blochwitz, T., Otter, M., Åkesson, J., Arnold, M., Clauss, C., Elmqvist, H.,
Friedrich, M., Junghanns, A., Mauss, J., Neumerkel, D., others, Blockwitz,
T., Otter, M., Akesson, J., Arnold, M., Clauss, C., Elmqvist, H., Friedrich,
M., Junghanns, A., Mauss, J., Neumerkel, D., Olsson, H., and Viel, A. (2012).
Functional mockup interface 2.0: The standard for tool independent exchange

BIBLIOGRAPHY 120

of simulation models. In 9th International Modelica Conference, pages 173–
184.

Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clauß, C., Elmqvist, H.,
Junghanns, a., Mauss, J., Monteiro, M., Neidhold, T., Neumerkel, D., Olsson,
H., Peetz, J. V., and Wolf, S. (2009). The Functional Mockup Interface for
Tool independent Exchange of Simulation Models. 8th International Modelica
Conference 2011, pages 173–184.

Brezina, T., Hadas, Z., and Vetiska, J. (2011). Using of Co-simulation ADAMS-
SIMULINK for development of mechatronic systems. 14th International Con-
ference Mechatronika, pages 59–64.

Broman, D., Brooks, C., Greenberg, L., Lee, E. A., Masin, M., Tripakis, S., and
Wetter, M. (2013). Determinate composition of FMUs for co-simulation. 2013
Proceedings of the International Conference on Embedded Software, EMSOFT
2013, pages 1–12.

Brooks, C. X., Lee, E. A., and Tripakis, S. (2010). Exploring models of com-
putation with ptolemy II. Proceedings of the eighth IEEE/ACM/IFIP in-
ternational conference on Hardware/software codesign and system synthesis -
CODES/ISSS ’10, page 331.

Dahmann, J. (1997). High Level Architecture for simulation. Proceedings First
International Workshop on Distributed Interactive Simulation and Real Time
Applications, pages 9–14.

Design Automation, S. C. (2012). IEEE Std 1666-2011, IEEE Standard for
Standard SystemC R© Language Reference Manual, volume 2011.

Dols, W. S., Emmerich, S. J., and Polidoro, B. J. (2016). Coupling the multizone
airflow and contaminant transport software CONTAM with EnergyPlus using
co-simulation. Building Simulation, 9(4):469–479.

Eker, J., Janneck, J. W., Lee, E. A., Liu, J., Liu, X., Ludvig, J., Neuendorffer,
S., Sachs, S., and Xiong, Y. (2003). Taming heterogeneity - The ptolemy
approach. Proceedings of the IEEE, 91(1):127–143.

Elsheikh, A., Awais, M. U., Widl, E., and Palensky, P. (2013). Modelica-enabled
rapid prototyping of cyber-physical energy systems via the functional mockup
interface. 2013 Workshop on Modeling and Simulation of Cyber-Physical En-
ergy Systems, MSCPES 2013, pages 1–6.

Fitzgerald, J., Gamble, C., Larsen, P. G., Pierce, K., and Woodcock, J. (2015).
Cyber-Physical Systems design: Formal Foundations, Methods and Integrated
Tool Chains. In FormaliSE: FME Workshop on Formal Methods in Software
Engineering, Florence, Italy. ICSE 2015.

BIBLIOGRAPHY 121

Fitzgerald, J., Gamble, C., Payne, R., Larsen, P. G., Basagiannis, S., and Mady,
A. E.-D. (2016). Collaborative Model-based Systems Engineering for Cyber-
Physical Systems – a Case Study in Building Automation. In INCOSE 2016,
Edinburgh, Scotland.

Fitzgerald, J. and Gorm, P. (2014). Collaborative Design for Embedded Systems.

Fummi, F., Quaglia, D., and Stefanni, F. (2008). A SystemC-based framework
for modeling and simulation of networked embedded systems. 2008 Forum on
Specification, Verification and Design Languages, pages 49–54.

Gomes, C., Thule, C., Broman, D., Larsen, P. G., and Vangheluwe, H. (2017).
Co-simulation: State of the art. Technical report.

Hafner, I., Heinzl, B., and Rössler, M. (2013). An Investigation on Loose
Coupling Co-Simulation with the BCVTB. Simulation Notes Europe SNE,
23(1):45–50.

Hansen, J. M., Zander, C.-G., Pedersen, N., Blanke, M., and Vejlgaard-Laursen,
M. (2013). Modelling for Control of Exhaust Gas Recirculation on Large
Diesel Engines. IFAC Proceedings Volumes, 46(33):380–385.

ITEA Office Association (2015). ITEA 3 Project 07006 MODELISAR.
\url{https://itea3.org/project/modelisar.html}.

Larsen, P. G., Fitzgerald, J., Woodcock, J., Fritzson, P., Brauer, J. J., Kleijn, C.,
Lecomte, T., Pfeil, M., Green, O., Basagiannis, S., and Sadovykh, A. (2016).
Integrated Tool Chain for Model-based Design of Cyber-Physical Systems:
The INTO-CPS Project. In CPS Data Workshop, pages 1–6, Vienna, Austria.
IEEE.

Lee, E. A. (2008). Cyber Physical Systems: Design Challenges. 11th IEEE Int.
Symp. on Object and Component-Oriented Real-Time Distributed Computing,
pages 363–369.

Li, S. and He, L. (2011). Co-simulation study of vehicle ESP system based on
ADAMS and MATLAB. Journal of Software, 6(5):866–872.

Lin, H., Sambamoorthy, S., Shukla, S., Thorp, J., and Mili, L. (2011). Power
system and communication network co-simulation for smart grid applications.
IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT
Europe, pages 1–6.

Liu, J., Liu, X., and Lee, E. A. (2001). Modeling Distributed Hybrid Systems in
Ptolemy I1. Proceedings of the 2001 American Control Conference, 6:4984–
4985.

BIBLIOGRAPHY 122

Mews, M., Svacina, J., and Weißleder, S. (2012). From AUTOSAR models to co-
simulation for MiL-testing in the automotive domain. Proceedings - IEEE 5th
International Conference on Software Testing, Verification and Validation,
ICST 2012, pages 519–528.

Nouidui, T. S., Wetter, M., and Zuo, W. (2014). Functional mock-up unit
for co-simulation import in EnergyPlus. Journal of Building Performance
Simulation, 7(3):192–202.

Oracle Corporation (2004). Java Remote Method Invocation Specification 1.5.0.
http://java.sun.com/j2se/1.5/pdf/rmi-spec-1.5.0.pdf.

Organization., I. M. (2013). MARPOL : Annex VI and NTC 2008 with guide-
lines for implementation. International Maritime Organization London, third
edit edition.

Paper, C., Durak, U., and Aerospace, G. (2015). MOKA : An Object-Oriented
Framework for FMI MOKA : An Object-Oriented Framework for FMI. 47th
Summer Computer Simulation Conference 2015, (July).

Pedersen, N., Bojsen, T., and Madsen, J. (2017a). CO-SIMULATION OF CY-
BER PHYSICAL SYSTEMS WITH HMI FOR HUMAN IN THE LOOP
INVESTIGATIONS. Proceedings of the Symposium on Theory of Modeling
& Simulation, pages 1:1–1:12.

Pedersen, N., Bojsen, T., Madsen, J., and Vejlgaard-Laursen, M. (2016). FMI
for Co-Simulation of Embedded Control Software. In Linköping Electronic
Conference Proceedings, number 124, pages 70–77. MAN Diesel & Turbo,
Copenhagen, Denmark, Linköping University Electronic Press, Linköpings
universitet.

Pedersen, N., Lausdahl, K. G., Sanchez, E. V., Larsen, P. G., Madsen, J., Vidal,
E. S., Lausdahl, K. G., Madsen, J., Pedersen, N., and Larsen, P. G. (2017b).
Distributed Co-Simulation of Embedded Control Software with Exhaust Gas
Recirculation Water Handling System using INTO-CPS. In Simultech 2017,
pages 73–82.

Pedersen, N., Madsen, J., and Vejlgaard-Laursen, M. (2015). Co-Simulation
of Distributed Engine Control System and Network Model using FMI and
SCNSL. IFAC-PapersOnLine, 48(16):261–266.

Stoermer, C. and Tibba, G. (2014). Powertrain Co-Simulation using AUTOSAR
and the Functional Mockup Interface standard. Proceedings of the The 51st
Annual Design Automation Conference on Design Automation Conference -
DAC ’14, (March):1.

BIBLIOGRAPHY 123

Thule, C. and Larsen, P. G. (2016). Investigating Concurrency in the Co-
Simulation Orchestration Engine for INTO-CPS. In Alexander S. Kamkin,
A. K. P. and Terekhov, A. N., editors, Preliminary Proceedings of the 10th
Anniversary Spring/Summer Young Researchers’ Colloquium on Software En-
gineering (SYRCoSE 2016), Krasnovidovo, Russia, May 30-June 1, 2016),
pages 223–228. ISP RAS.

Vanfretti, L., Bogodorova, T., and Baudette, M. (2014). Power system model
identification exploiting the Modelica language and FMI technologies. 2014
IEEE International Conference on Intelligent Energy and Power Systems,
IEPS 2014 - Conference Proceedings, pages 127–132.

Wahlstrom, J. and Eriksson, L. (2011). Modelling diesel engines with a variable-
geometry turbocharger and exhaust gas recirculation by optimization of model
parameters for capturing non-linear system dynamics. Proceedings of the In-
stitution of Mechanical Engineers, Part D: Journal of Automobile Engineer-
ing, 225(7):960–986.

Widl, E., Muller, W., Elsheikh, A., Hortenhuber, M., and Palensky, P. (2013).
The FMI++ library: A high-level utility package for FMI for model exchange.
2013 Workshop on Modeling and Simulation of Cyber-Physical Energy Sys-
tems, MSCPES 2013.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Background and Research Objectives
	1.2 Co-Simulation Survey
	1.3 Scope and Limitation
	1.4 List of Publications
	1.5 Structure of Dissertation

	2 MAN Diesel & Turbo
	2.1 The ME-C Engine
	2.2 Engine Control System
	2.2.1 The Triton Controller
	2.2.2 Software Architecture
	2.2.3 Human Machine Interface
	2.2.4 Distribution and Network Typology

	2.3 Development Method
	2.3.1 Challenges with Current Method

	2.4 Chapter Summary

	3 Simulation of Distributed Embedded Control Systems
	3.1 Cross-Compiler for PC-x86 Execution
	3.2 Multiple Controller SIL Simulation
	3.2.1 Single Process Multiple Controllers
	3.2.2 Manage execution of controllers
	3.2.3 Operating System Clock Progression

	3.3 Interrupt Implementation
	3.3.1 Idle Event Scheduler
	3.3.2 High Precision Timers
	3.3.3 Time Synchronized Pulse

	3.4 Simulation Orchestration Manager
	3.4.1 Network Simulation
	3.4.2 SystemC Network Simulation Library

	3.5 Chapter Summary

	4 Embedded System Co-Simulation
	4.1 Concept of Co-Simulation
	4.1.1 Co-Simulation Approach

	4.2 The Functional Mock-up Interface
	4.2.1 Model Description
	4.2.2 Application Interface

	4.3 FMI for Embedded System Software
	4.3.1 Engine Control System FMI Implementation

	4.4 Co-simulation of SCR Heating Model and ECS
	4.4.1 SCR Heating Model
	4.4.2 Co-Simulation Configuration
	4.4.3 Co-Simulation Results

	4.5 Chapter Summery

	5 Distributed Co-Simulation
	5.1 Platform and Architecture Challenges
	5.2 INTO-CPS
	5.2.1 Co-Simulation Orchestration Engine

	5.3 Distributed Co-Simulation Orchestration Engine
	5.4 Co-Simulation of Engine Control System and Physical Dynamic Tools
	5.5 Distributed Co-Simulation of EGR Water Handling System
	5.5.1 EGR Water Handling System
	5.5.2 Results of Traditional Development Process
	5.5.3 Distributed Co-Simulation Configuration
	5.5.4 Results of Distributed Co-Simulation

	5.6 Chapter Summery

	6 Hybrid Co-Simulation
	6.1 SW/HW Co-Simulation - HMI to ECS connection
	6.2 Hybrid Co-Simulaiton Configuration
	6.3 Human In the Loop Investigation
	6.3.1 Simulation and Results

	6.4 Chapter Summery

	7 Conclusion
	8 Paper A: Co-Simulation of Distributed Engine Controls System with Thermodynamic Models using FMI & SCNSL
	9 Paper B: FMI for Co-Simulation of Embedded Control Software
	10 Paper C: Co-Simulation of Cyber Physical Systems with HMI for Human In the Loop Investigations
	11 Paper D: Distributed Co-Simulation of Embedded Control Software with Exhaust Gas Recirculation Water Handling System using INTO-CPS
	Bibliography

