Fuel shift for improving urban integrated energy system operation and efficiency

Cai, Hanmin; You, Shi; Bindner, Henrik W.

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Fuel shift for improving urban integrated energy system operation and efficiency

Mr. Hanmin Cai*, Dr. Shi You, Dr. Henrik W. Binder
Department of Electrical engineering, Technical University of Denmark, Elektrovej, 2800 Kgs. Lyngby, Denmark
Mobil: 93 51 18 72, Email: hacai@elektro.dtu.dk

Keywords—energy integration; domestic hot water; fuel-shift; low-temperature-district-heating; flexibility; ancillary service

A large amount of literature has been focusing on low-temperature district heating (LTDH) in order to reduce heat loss reduction and facilitate renewable energy integration. Yet, LTDH alone is insufficient for domestic water heating, which requires 50 °C for circulation and 60 °C as set point temperature for the storage tank due to hygiene concern. Our work from last year’s 4dh conference contributed to this research area [1] and this abstract intends to extend our previous effort.

Previous analysis on fuel shift technology shows substantial benefits and the potential to provide more services in an integrated energy system. It was based on a hypothetical district with 23 terraced single-family houses supplied by both a low-temperature district heating (LTDH) network and a low-voltage network (LVN), as shown in Fig 1 to Fig 4. It was shown that district heating network (DHN) losses can be reduced by 35% if the supply temperature is reduced from 70 °C to 50 °C, but the LVN peak power will have to be increased by up to 2% using heat boosting. It further aggregated EHBs to provide a fuel shift (FS) service for the DHN. The results show that while LVN peak power was increased by up to 4.3%, the basic power production and peak boiler usage for DHN could be reduced by as much as 15% and 48%, respectively. In summary, lower supply temperatures and intelligent components can improve system efficiency and turn the DHN into an integrated part of a SES.

We will extend previous analysis and further study fuel-shift solution and investigate the possibility to provide ancillary services to distribution network. We will conclude the research with fuel-shift feasibility and implications for industrial application.

Figure 1. Building’s connection to heat and power system

Figure 2. Electric heat booster and its energy sources

Figure 3. District heating network

Figure 4. Low voltage distribution network


* Mr. Hanmin Cai will be corresponding author and presenter