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Abstract 

The amount of marketed therapeutic glycoproteins is increasing steadily and so does the 

knowledge about the importance and effects of N-glycosylation for patient safety, drug efficacy 

and pharmacokinetics. Unlike many other expression platforms, chinese hamster ovary (CHO) 

cell  lines possess the ability to provide biopharmaceuticals with N-glycans similar to humans 

and are therefore the preferred expression host for the majority of glycoproteins.  

However, the N-glycan profile of CHO is very heterogeneous and only human-similar, but not 

human-identical. For some therapeutic products a more homogeneous sugar profile with certain 

human-identical N-glycan structures is desired. Therefore, it is a fundamental aim to re-design 

the N-glycan machinery of CHO to produce tailored homogeneous N-glycan structures. 

The overall purpose of the thesis was to engineer CHO cells towards specific N-glycan 

structures. To save time during the cell line development, we examined CRISPR/Cas9 

multiplexing to target several genes simultaneously. By this we aimed to provide cell lines for 

the production of biopharmaceuticals with homogeneous product quality and human-identical N-

glycan structures. 

The first part of the thesis is a review introducing to the topic and displays how genetic 

engineering tools as CRISPR are widely used for N-glycan engineering in CHO but also other 

expression platforms. Following this is an explorative study of CRISPR/Cas9 multiplexing ten 

gene targets in CHO presenting observed advantages and limitations of the applied protocol.  

In the main part of the thesis, the successful production of non-galactosylated glycoproteins 

(mAb and EPO) after generating cell lines with disruption of B4GALT1, 2, 3 and 4 are depicted. 

The decrease of galactosylation and heterogeneity of N-glycans was also found on total 

secreted proteins of the developed cell lines. Furthermore, the generation of a cell line with ten 

gene disruptions and overexpression of a human glycosyltransferase allowed the production of 

recombinant A1AT and C1INH with human-like N-glycosylation and in vitro activity. The 

generated cell lines allow the study of possibly novel applications for non-galactosylated 

glycoproteins and a sustainable and safe production platform to provide recombinant A1AT and 

C1INH. Finally, we conclude and discuss future perspectives of the obtained results in this 

thesis. 
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Dansk sammenfatning 

Antallet af terapeutiske glykoproteiner tilgængeligt på markedet er støt stigende og ligeledes gør 

viden om effekten og betydningen af N-glykosylering for patientsikkerhed, lægemiddel-effekt og 

farmakokinetik. Kinesiske hamsterovarie-celler (CHO) besidder, ulig mange andre 

ekspressions-platforme, evnen til at forsyne biofarmaceutiske lægemidler/proteiner med N-

glykaner der ligner humane og er derfor den foretrukne ekspression svært for størstedelen af 

glykoproteiner.  

CHOs N-glykan profil er yderst heterogen og human-lignende, men ikke human-identisk. Ved 

nogle terapeutiske proteiner er en mere homogen sukker profil, med bestemte human-identiske 

N-glykan strukturer, tilstræbt. Derfor er det et fundamentalt mål at omdesigne CHO’s N-glykan 

maskineri for at producere skræddersyede homogene N-glykan strukturer.  

Det overordnede formål med afhandlingen var at konstruere CHO-celler med specifikke N-

glykan strukturer. Vi undersøgte CRISPR/Cas9-multiplexing for at målrette flere gener samtidigt. 

Herved tilstræbte vi at tilvejebringe cellelinier til produktion af glykoproteiner med homogen 

produktkvalitet og human-identiske N-glykan strukturer. 

Den indledende del af denne afhandling består af et review, der introducerer emnet om og 

belyser hvorledes genteknologiske redskaber som CRISPR er vidt anvendt for N-glykan 

optimering af CHO cellelinjer, men også andre ekspressions-platforme. Efterfulgt af denne, ses 

et eksplorativt studie om CRISPR/Cas9 hvor målet var simultant at afbryde ti gen-targets i en 

CHO cellelinie, hvori der også præsenteres observerede fordele og ulemper ved anvendte 

protokol.  

I hovedteksten af denne afhandling afbildes den succesfulde produktion af ikke-galaktosylerede 

glykoproteiner (mAb og EPO) ved generering af cellelinier med afbrydelse af  generne 

B4GALT1, -2, -3 og -4. Den aftagende N-glykan galaktosylering og heterogenitet blev også 

afspejlet i de totale secernerede proteiner af de udviklede cellelinier.  Derudover tillod 

generationen af en cellelinie, med ti gen-afbrydelser og overekspression af en human 

glykosyltransferase, produktionen af rekombinant A1AT og C1INH med human-identiske N-

glykosylering og in vitro aktivitet. Afslutningsvist konkluderes og diskuteres fremtidige 

perspektiver af de opnåede resultater i denne afhandling. 
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Thesis objectives and structure 

A steady increase in the demand of recombinant biopharmaceuticals for the treatment of             

numerous diseases has been observed during the last decades1. To meet these demands             

there are several cell platforms available, which include yeast cells, insect cells, plant             

cells as well as mammalian cells and bacterial expression systems. Many recombinant            

biopharmaceuticals require post-translational modifications to fulfill their in vivo activities          

or to prevent immunological reactions or fast clearance in the human body.            

N-glycosylation is undisputed the single most important post-translational modification         

and has a sincere influence on immunogenicity, pharmacodynamics and -kinetics of           

biopharmaceuticals 2. The choice of expression system has a direct impact on           

N-glycosylation and varies tremendously between plants, bacteria, yeast and mammalian          

expression systems. Mammalian expression systems display a human-like glycosylation         

machinery. Recombinant proteins produced in mammalian cell systems are therefore          

similarly glycosylated as native human proteins. Chinese hamster ovary (CHO) cells are            

the predominant working horse for the production of biopharmaceuticals within          

mammalian expression platforms1. Advantages of working with CHO cells are relatively           

easy scale-up, efficient DNA transfection, long history of approved biopharmaceuticals          

and N-glycosylation close to humans. However CHO N-glycosylation harbours two main           

challenges, (i) heterogeneous N-glycosylation leading to inconsistent product quality         

and (ii) missing human-like sialylation , both being addressed in this thesis. 

Attempts of controlling heterogeneous CHO N-glycosylation are often made by process or            

medium design3,4. These attempts are however limited and can not generate           

biopharmaceuticals with a single predominant N-glycan structure. The availability of          

genetic engineering tools allows the design of cells with specific N-glycan structures by             

disrupting the DNA sequence of undesired glycosyltransferases, the enzymes of the           

N-glycan machinery. With the usage of zinc-finger nucleases (ZFN), Yang et al.            

successfully demonstrated a protocol to generate CHO cells with designed homogeneous           

N-glycan structures, mostly by step-wise disruption of several glycosyltransferases5.         
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However, stacking gene knockouts in several steps is time-consuming and laborious           

leading to (iii) long and complex CHO cell line development (CLD) protocols , another             

challenge when working with CHO cell line engineering.  

The presence of glycosyltransferase-isoforms is furthermore contributing to the need of           

stacking several targets to achieve homogeneous N-glycans via target gene disruption.           

Moreover, those isoforms represent an additional challenge for the design of           

homogeneous N-glycans in CHO. The (iv) level of contribution of each isoform to the              

overall CHO N-glycosylation of proteins is not completely understood yet. It is furthermore             

necessary to investigate if designing certain N-glycan structures via the disruption of            

glycosyltransferases (v) interferes with CHO cell growth. Thereby the challenges of           

CHO N-glycan engineering are listed as: 

(i) presence of heterogeneous N-glycosylation 

(ii) lack of human alpha-2,6-sialylation 

(iii) long and complex CLD protocols 

(iv) presence of glycosyltransferase-isoforms 

(v) effect of N-glycan engineering on cell growth 

The thesis approaches above mentioned challenges by identifying suitable gene targets           

and by developing protocols for efficient gene disruption via CRISPR/Cas9 multiplexing. It            

has previously been shown that up to three CHO genes can be disrupted simultaneously              

applying CRISPR/Cas96. Such a multiplexing approach allows a faster disruption of           

several target genes compared to repeated rounds of gene target disruptions via ZFN             

technology as described earlier. By CRISPR/Cas9 multiplexing it is furthermore possible           

to investigate the contribution of CHO glycosyltransferase-isoforms on overall         

N-glycosylation.  

https://paperpile.com/c/jmOZRk/IKUt


Figure 1 outlines how above challenges are approached by the objectives of the thesis,              

which are: 

1) Providing an overview of gene targets for N-glycan engineering in CHO cells

2) Shortening CHO CLD by developing CRISPR/Cas9-multiplexing protocols for       

simultaneous KO of >3 gene targets

3) Multiplexing glycosyltransferase-isoforms to reduce N-glycan heterogeneity,     

study their contribution to N-glycosylation and analysis of cell growth

4) Mimicry of human glycosylation on recombinant human glycoproteins       

expressed in CHO cells and analysis of cell growth

Figure 1: Objectives of the thesis. Flowchart of the thesis objectives within the thesis chapters 1 - 4 (round                   
circles). The approached challenges (i) - (v) are illustrated in red and partially covered by more than one                  
chapter.  



The four parts of the thesis all focus on the overarching goal of my project: design and                 

development of CHO cell lines with optimal N-glycan profiles. Chapter 1 is a review              

introducing to the field of genetic engineering in recombinant production platforms and            

discusses engineering approaches towards improved N-glycosylation and other product         

quality attributes. It includes an overview of suitable gene targets for N-glycan            

engineering and other PTM. The target list became a valuable source for the selection of               

gene targets within the work of Chapters 2 - 4. The study presented in Chapter 2 was an                  

explorative attempt to investigate the feasibility of knocking out ten targets by            

simultaneous CRISPR/Cas9 multiplexing. The objective of this chapter was mainly to           

reduce the length of CHO CLD by providing a protocol for the simultaneous disruption of               

more than three gene targets. We expected to gain insight into the advantages and              

drawbacks of targeting a high number of genes. The work of Chapter 3 was based on the                 

learnings from Chapter 2. We successfully disrupted up to four galactosyltransferase-           

isoforms by applying the protocol from Chapter 2. The objective was to investigate the              

enzymatic activities of the targeted isoforms. Thereby we also aimed to produce            

therapeutic proteins with decreased N-glycan galactosylation and N-glycan heterogeneity.         

Examination if decreased galactosylation and decreased N-glycan heterogeneity is         

interfering with CHO cell growth was a further goal of this chapter. In Chapter 4 the                

objective was to design CHO cell lines capable of producing recombinant proteins with a              

fully humanized and homogeneous N-glycan profile. Based on the target list of Chapter 1              

and the multiplexing protocol of Chapter 2 we aimed to generate a 10x knockout cell line                

producing recombinant human plasma proteins with fully humanized N-glycan structures          

and in vitro activities similar to the human counterparts. Fully humanized           

alpha-2,6-sialylation was designed by disrupting CHO-specific sialyltransferases and        

stable integration of human ST6 beta-galactoside alpha-2,6-sialyltransferase 1.        

Identification of clones with correct N-glycosylation by lectin staining was a further part of              

the design. The final Chapter 5 contains concluding remarks about the results and future              

perspectives for the research presented in this thesis. The research and results presented             

in this thesis were completed in a collaborative effort between me and my colleagues. 
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CHAPTER 1 

Genetic engineering to improve 
the quality of biopharmaceuticals 

1

- Chapter 1 -



This chapter introduces different genetic engineering tools, recombinant production 

platforms and discusses engineering approaches to improve important protein quality 

attributes whereof N-glycosylation is the main subject. We highlight the importance of 

CRISPR/Cas9 in the field of cell line development and how the technology can boost N-

glycan engineering to aim for cell lines with designed homogeneous N-glycan profiles which 

is the overall objective of this thesis. 
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Genetic engineering approaches to improve biopharmaceutical quality 

attributes in different production platforms 

Thomas Amann1, Valerie Schmieder2,3, Helene Faustrup Kildegaard1, Nicole Borth3, Mikael Rørdam 

Andersen4

1The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark 
2ACIB GmbH, Austrian Center of Industrial Biotechnology, Graz, Austria 
3Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria 
4Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby,  Denmark 

Abstract 

The number of approved biopharmaceuticals is increasing steadily while product quality attributes 

remain of major importance. Within the available variety of expression hosts, the production of 

biopharmaceuticals faces diverse limitations for post-translational modifications (PTM). However, 

different biopharmaceuticals demand a different degree of certain PTMs for proper functionality. 

Besides PTMs, product quality can also be affected by host-specific proteases, product aggregation or 

undesired impurities. With the growing toolbox of genetic engineering technologies it is possible to 

address general, host- or biopharmaceutical-specific product quality obstacles. 

In this review we present diverse expression systems derived from mammalian, bacteria, yeast, plants, 

and insects as well as available genetic engineering tools. We list genes for knockout / knockdown and 

overexpression from meaningful approaches improving biopharmaceutical quality attributes and 

discuss their applicability as well as future trends in the field.  

Keywords: Chinese Hamster Ovary, Cell Engineering, PTM, Expression system, CRISPR 
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1. Introduction

The demand for recombinant biopharmaceuticals is steadily increasing and so does the proportion of 

molecules which harbor post-translational modifications (PTMs) e.g. monoclonal antibodies (mAbs) and 

blood factors1. With increasing size of the desired product, mostly also the amount of PTMs is 

increasing too, giving rise to highly complex proteins. Correct PTMs, in particular N-glycosylation, can 

be substantial for in-vivo functions, appropriate plasma half-lifes or prevent immunological reactions 

after injection. While for instance non-glycosylated drugs are mostly produced in bacteria and yeast2, 

glycosylated proteins demand expression in mammalian cell lines. Therefore, the increasing number of 

approved biopharmaceuticals produced in mammalian expression systems aligns with the trend for the 

growing need for proper PTMs and other quality attributes. However, microbial production is 

quantitatively still dominating and both expression systems, mammalian and nonmammalian, represent 

certain advantages but also challenges as reviewed previously2,3. At the same time plant-based and 

insect cell expression systems are catching up slowly.   

Many cell platforms are engineered towards human-like glycosylation since human N-glycan profiles 

are preferred on many therapeutics4. At the same time certain therapeutic proteins with for humans 

untypical N-glycosylation are beneficial too5. Mimicking other human-like PTMs as gamma (γ)-

carboxylation, phosphorylation and tyrosine sulfation can also be challenging during the production of 

therapeutic proteins. Several regulatory agencies across the world like the US Food and Drug 

Administration (FDA) and the European Medicines Agency (EMA) consider quality attributes, especially 

glycosylation, as one of the most critical requirement during biopharmaceutical production6-11. In 

addition, product degradation and undesired impurities often hinder high-yield processes during cell 

cultivation or downstream protocols.  

The increase of characterized and sequenced host cell platforms as well as efficient genetic 

engineering tools are speeding up the process to produce protein products with elevated qualities. In 

this review we present (i) the variety of expression platforms with their strengths and drawbacks, (ii) 

available genetic engineering tools and (iii) a comprehensive retrospect of successful synthetic biology 

approaches to enhance product qualities.  

4

- Chapter 1 -



2. Available expression platforms for the production of different
biopharmaceuticals 

Nowadays, numerous pro- and eukaryotic cells are available for the expression of biopharmaceuticals 

in industrial scale. Those expression platforms can be mainly grouped into mammalian, bacteria, yeast, 

plant and insect systems12,13. In addition to correct post-translational modification of the desired 

bioproduct, the selected species and production hosts have to fulfil requirements to meet the needs of 

bioprocessing. In detail, accessibility towards genetic engineering with an available molecular tool box, 

genomic stability, a functional secretion machinery, high growth and productivity rates, easy bioprocess 

handling, downstream purification, and scalability are beneficial features of production systems14. 

Additionally, the history of biopharmaceutical approvals produced in a certain cell line plays an 

important role when it comes to the process of choosing the right expression platform1,15. In the 

following section, different cellular platforms are described with their advantages and disadvantages, 

highlighting why they are used for the manufacturing of certain biopharmaceuticals. 

2.1 Mammalian expression platforms 
The class of mammalian expression platforms is divided into human and non-human derived cell lines 

with Chinese Hamster Ovary (CHO) being the most dominant manufacturing system16. Human 

Embryonic Kidney 293 (HEK293) and CEVEC’s Amniocyte Production (CAP) cells are examples of cell 

lines isolated from humans17,18. The main advantage of human cell lines is the potential for human 

identical PTMs18. Non-human cell lines commonly used are for instance CHO, Baby Hamster Kidney 

(BHK), and murine myeloma cells like NS0, which all have the ability to perform human-like PTMs15. 

Furthermore, these and in particular CHO have the benefit of being resistant towards human viruses 

resulting in reduced viral inactivation and clearance efforts during downstream processing19. Since 

sufficient protein modulation, folding and secretion can be achieved in mammalian cells, they are the 

prefered choice for the production of large and complex biopharmaceuticals15. Mammalian cells are 

mostly growing adherently in their native form with moderate growth rates and requiring complex media 

in some cases supplemented with Fetal Calf Serum (FCS)20-22. Indeed, this generally increases the cost 

as well as the complexity of bioprocessing. Those limitations are overcome by the use of CHO cells, 

which can be adapted to serum-free suspension growth with a doubling rate of 20-24 h depending on 

the process23,24. Also the long list of approved therapeutics manufactured in CHO and processes that 

were established for this cell line during the last decades are emphasizing why CHO is the working 

horse of biopharma1. Nevertheless, genetic instability and intensive cell line generation as well as 

process development timelines are the major bottleneck of this system25-27. 
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2.2 Bacterial expression systems 

Bacterial expression systems, mainly Escherichia coli (E. coli), are widely used for the generation of 

smaller drugs including hormones, growth factors and even more innovative therapeutic agents like 

peptibodies / peptide-fragment crystallizable region (Fc) fusions28,29. Unlike mammalian cells, bacterial 

microorganisms miss the ability to perform most of the PTMs, including glycosylation, predominantly 

essential for the production of active biopharmaceuticals30,31. Additionally, correct protein folding as well 

as proper secretion is not a given in most bacterial species leading to the formation of inclusion 

bodies32. Using an appropriate signal sequence, the product of interest can be directed to the periplasm 

where a reducing environment allows protein oxidation for disulfide bond formation, thus, enabling 

folding33,29. However, this approach is only realizable in gram-negative bacteria33. Notably, Bacillus 

subtilis possess very efficient secretion routes due to the lack of the outer cell membrane as reviewed 

previously34. In short, high expression levels, less expensive and less complex bioprocessing, as well 

as well characterized genetics giving rise to the establishment of a extensive molecular tool box are the 

benefits of manufacturing in bacteria35.           

2.3 Yeast expression platforms  
Pichia pastoris (P. pastoris) and Saccharomyces cerevisiae (S. cerevisiae) are the most important 

representatives of the yeast protein expression platforms. Yeast microorganisms have the ability to 

perform typical eukaryotic PTMs including N- and, to some extent, O-linked glycosylation, 

ubiquitination, sumoylation, and myristoylation36,37. Heterologous protein secretion can be achieved by 

the use of an appropriate signal peptide38,39. In contrast to N-glycosylation in mammalian cells, yeast 

perform mammalian-atypical hyper-mannosylation, and lack the ability of generating sialylated N-

glycans40. Nevertheless, glycosylation of the biopharmaceutical facilitates further protein processing 

and secretion41. Similar to bacterial expression systems, well characterized genomes, the availability of 

a molecular and synthetic tool box, moderately rapid and cost-efficient expression, and the absence of 

endotoxins as well as human virus-resistance are emphasizing yeast as a host for biologics 

manufacturing of mainly smaller proteins, hormones and vaccines41-43. 

2.4 Plant-derived expression systems 
Plant-based systems are in the focus for adaptation as alternative hosts for the production of 

biopharmaceuticals for many years where the trend has moved to rather use plant cells than the whole 

plant or plant tissues/organs44,45. Therefore, bioprocessing in plant cell lines e.g. tobacco cultivars 

Bright Yellow 2 (BY-2), Nicotiana tabacum 1 cell (NT-1), carrot or rice cells combines the advantages 
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from plant farming and mammalian manufacturing procedure46. On one hand, advantages of the 

system are growth in simple medium, good scalability, and the given safety since plant cells are not 

affected by human pathogens. On the other hand, complex downstream purification and low product 

yields remain to be the major bottlenecks of this host class46-47. Plant platforms are engineered to 

express complex Abs, low molecular weight products like enzymes, hormone, growth factors and 

cytokines or macromolecules like virus-like particles (VLPs)45,48. Hence, transformation of the gene of 

interest (GOI) and/or engineering tools is done by Agrobacterium infiltration49. So far, only one 

biopharmaceutical recombinantly produced in carrot-derived cells got approval by FDA45,50. In plants 

the performance of PTMs, correct assembly and folding of complex therapeutics, as well as their 

secretion into the cell culture medium is possible47. In terms of N-glycosylation, biopharmaceuticals 

generated from plant-based systems show plant-specific glycan structures and lack mammalian-

specific sialyl acids, which can result in immunogenicity and poor pharmacokinetics, respectively47,51,52. 

Another drawback of manufacturing in plant hosts is the relatively high level of bioproduct proteolysis 

induced by endogenous proteolytic enzymes, indeed, lowering recombinant protein stability and 

yields52-54.    

2.5 Insect expression platforms 
For the production of recombinant biopharmaceuticals, insect cells go hand in hand with baculovirus 

infection building the baculovirus-insect cell system (BICS)55,56.  Trichoplusia ni from cabbage looper or 

the “gold standard” Spodoptera frugiperda (Sf), derived from fall armyworm, are examples for insect cell 

lines55. Since the BICS is kind of a “plug-and-play” system in which only the baculovirus vector has to 

be modified for each product prior transduction of the insect cells, BICS is flexible, fast, and simple to 

use55,56. Even the simultaneous production of several protein subunits is realisable57. Moderate 

expression and difficulties during scale-up are reasons why production in insect cells is still quite rare, 

thus improving cell line development and bioprocessing are still ongoing in this field58. Mainly vaccines / 

VLPs are generated from insect cell lines, with Cervarix, a vaccine against different cancer types 

caused by human papillomavirus, as the first drug being approved in 200959. Especially for vaccine 

manufacturing the BICS is of benefit because the turnover to produce and approve new vaccines is 

streamlined, thereby assessing the annually need of vaccines due to the seasonally and epidemic 

character of viruses60. As for most eukaryotic expression platforms, insect cells are capable to provide 

different PTM, whereas protein processing, folding, and secretion of secreted and membrane-bound 

products are limited and need to be initiated54,61. Therapeutics often occur insoluble and poorly 

processed in the cytoplasm of the insect cells61. Similar to yeast expression systems, insect cells build 
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simple, inconsistent paucimannose N-glycan structures58. The low expression of most 

glycosyltransferases in combination with the presence of many active glycosidases leads to the 

incompatibility of generating human-like N-glycans in non-engineered insect cell lines62. Furthermore, 

reduced cell viability and declined titers are often an effect from proteolysis induced by baculovirus-

derived enzymes, especially in later phases of cultivation63. Recently, a insect-specific virus 

contamination problem caused by the rhabdovirus was reported. Although no evidence that the 

contamination might be harmful for humans was communicated so far, the biosafety of the BICS has to 

be questioned and investigated55. 

3. Reported complications within critical product quality attributes
The number of approved biopharmaceuticals is increasing steadily. The predominant indications for 

biopharmaceuticals are cancer, inflammation-related conditions, hemophilia, metabolic disorders, 

diabetes and vaccinations against various infectious diseases1. The classes of recombinant 

biopharmaceuticals include monoclonal antibodies (mAbs), hormones, blood-related proteins, 

enzymes, vaccines, fusion proteins, growth factors and interferons where the distribution of necessary 

PTMs for proper pharmacodynamics and -kinetics varies within and between the classes. 

3.1 Product glycosylation    

Recombinant hormones, growth factors and interferons as insulin, recombinant human (rh) growth 

hormone (rhGH), rh granulocyte-colony stimulating factor (rhG-CSF) and interferon-α (IFN-α) demand 

rather uncomplex PTMs and therefore can be produced in E. coli or S. cerevisiae1,64. An example is the 

E. coli-derived IFN-α with missing O-glycosylation, however, the bioactivity is comparable to the human 

counterpart65. Similarly, most recombinant vaccines do not need human-like PTMs to fulfill 

their functions and are predominantly produced in S. cerevisiae1. 

Recombinant DNAse (enzyme), rh C1 inhibitor (rhC1INH) (plasma protein), etanercept 

(Immunoglobulin G (IgG)-Fc fusion protein) are examples for proteins from different product classes 

which require very specific and complex human-like N-glycans and are therefore produced in 

mammalian expression platforms4,66-68. 

Within mammalian hosts, the choice of cell platform can also directly impact immunogenic properties of 

the therapeutic protein. As recently reported, rh coagulation factor (rhF) VIII expressed in BHK cells is 

more immunogenic than that produced in CHO cells69. 

Rh erythropoietin (rhEPO) demands a high degree of sialylation and branching to achieve the desired 

biological potency70. As for rhFVIII, CHO platforms are the preferred host to achieve human-like N-

glycosylation on rhEPO1. 
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Correct glycosylation is also important in the main product class of biopharmaceuticals, mAbs. The 

composition of the sugar moieties often has a direct impact on pharmacokinetics, -dynamics and 

immunogenicity71 and is therefore a major target for cell engineering.  

An example for a product that does not need complex N-glycosylation, but instead requires mannose 

N-glycans is the recombinant enzyme glucocerebrosidase. Produced in mammalian cell lines, N-

glycans of purified glucocerebrosidase are too complex and need downstream enzymatic treatment to 

ensure the biological uptake. Expression of rh glucocerebrosidase in engineered carrot root cell culture 

makes this in vitro treatment unnecessary72.  

3.2 Carboxylation, phosphorylation and tyrosine sulfation 
However, meeting certain N-glycosylation profiles is not the only PTM challenge faced by many 

biopharmaceutical producers. For some proteins of the class of blood related products e.g. rhFIX and 

Protein C, γ-glutamyl carboxylation is crucial for efficacy and proper pharmacokinetics and represents a 

challenge during recombinant production73-76. 

Compared to N-glycosylation, phosphorylation and tyrosine sulfation are rather unexplored PTMs 

although phosphorylation is very common and more than 2100 mammalian proteins are predicted to 

harbor sulfotyrosine77. Since natural E. coli and other prokaryotic expression platforms are not capable 

to perform tyrosine sulfation, mammalian cell systems are chosen to produce biopharmaceuticals with 

needed sulfotyrosine as the case for rhFVIII78.  

3.3 Product aggregation and degradation 
Although protein expression in prokaryotic systems as E. coli has advantages for some products it can 

also lead to undesired aggregation of recombinant proteins. The incompatibility of folding proteins of 

eukaryotic origin and the lack of compartmentalization, PTMs and suitable chaperones are the major 

contributors to protein aggregation79. In general, protein aggregation is less a problem in mammalian 

expression platforms. However, protein products from mammalian cells can face proteolytic 

degradation before secretion or due to the presence of host proteases in the cell culture medium81-84. 

This in particular is a major hurdle for the development of an increasing number of non-antibody 

formats but can be addressed by host cells with protease gene deletions85.  

To address the hurdles for desired product quality, it is important to choose a suitable type of 

expression host which is capable to perform needed protein modifications without compromising 

product yield or other economical factors. Lacking capabilities however can be encountered by several 

available genetic engineering tools which are described in the next section. 
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4. Genetic engineering tools
For reasonable and sufficient genetic engineering of cells, knowing the genomic sequence as well as 

the expression level of endogenous proteins and their functions is of fundamental importance86-91. 

Therefore, the rapid improvements in terms of next-generation sequencing (NGS) techniques92 and 

data generation via several omics approaches including all cellular levels from genome, epigenome, 

transcriptome, proteome and reactom, are of benefit when talking about cell line editing for the proper 

post-translational modulation of desired biopharmaceuticals93-95.  

Host cell lines are engineered by the overexpression (OE) or disruption of individual enzymes or 

proteins of entire pathways to mediate naturally occurring PTMs to in the end being able to produce 

functional biopharmaceuticals96-98. Following this approach, the GOI are integrated randomly into the 

genome resulting in heterogeneous cell populations, and most likely flux imbalances in the cells99. With 

numerous omics data and functional studies arising, while at the same time cell line engineering 

techniques are improving rapidly, endogenous PTM alteration to meet biopharmaceutical-specific 

requirements becomes more and more feasible in a targeted manner100-105. Nowadays, several 

molecular editing tools are available for this purpose. Treating cells with non-coding RNAs (ncRNAs) 

like small hairpin RNA (shRNA), microRNA or small interfering RNA (siRNA) is one way of control on 

transcriptomic level without affecting the genome106-109. Those RNA molecules can either bind the 

mRNA target perfectly, which results in direct mRNA cleavage, or with incomplete complementary 

conducting translational repression and further mRNA degradation110. Thus, both mechanisms induce 

gene down regulation, respectively. Since engineering by microRNA or RNA interference (RNAi) 

approaches impacts the post-transcriptional cell stage, the resulting effect is only temporary as long as 

the RNA molecules are present in the cells. Furthermore, some ncRNAs have multiple targets, which 

could be of benefit when multiple enzymes need to be altered simultaneously, or also being a major 

bottleneck of the system if unwanted side-effects occur111. Moreover, genome editing methods 

including meganucleases, zinc finger nucleases (ZFN) and transcription activator-like effector 

nucleases (TALEN) have emerged in the field. These endonucleases can be programmed to build a 

DNA-enzyme-complex at any desired spot in the genome inducing a double-stranded-break (DSB), 

which will be repaired by the cell’s own mechanisms112-114. DSBs are either corrected by the error-prone 

non-homologous end joining (NHEJ) pathway resulting in small insertions/deletions (InDels) of 

nucleotides, thus, most likely in a frame-shift/loss-of-function mutation115 or in the presence of a suitable 

homology-mediating template the DNA cut is repaired through the homology directed repair (HDR) 

pathway116. Inducing the NHEJ mechanism is the prefered way if one wants to knockout (KO) a gene 

and the corresponding function whereas initiating HDR is the method of choice to introduce new 
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sequences into the host’s genome117,118. In contrast to NHEJ, sequence knockin (KI) via HDR is 

occuring at a much lower frequency in most if not all available expression systems119,120. 

Meganucleases, TALENs and ZFNs are protein-based genome engineering techniques. Thereof, for 

each target site new proteins have to be designed and produced, indeed, making the application of 

those tools time-consuming, expensive and laborious121. Here, the clustered regularly interspaced short 

palindromic repeats (CRISPR) system has been developed lately as a new technology for targeted 

genome editing. In nature, the RNA-protein-complex is part of the the adaptive immune system of 

different bacterial strains to protect these from an infection caused by bacteriophages122. The original 

tool consists out of the CRISPR-associated (Cas) endonuclease - with Cas9 from Streptococcus 

pyogenes as the most extensively used derivative - and a short RNA molecule, which is guiding the 

CRISPR enzyme to any DNA sequence to specifically induce a molecular change at the 5’-primer 

region upstream of a protospacer adjacent motif (PAM), an essential component for CRISPR activity 

and target recognition123.  The guiding RNA (gRNA) molecule consists of two parts. (I) A CRISPR RNA 

(crRNA) sequence containing the variable target sequence (20 nt) followed by a repetitive part (nt). (II) 

A trans-acting CRISPR RNA (tracrRNA) sequence, which is binding the crRNA repeats by their 

complementarity124. By doing so, a hairpin structure is formed leading to the attraction of the CRISPR 

enzyme125. In 2012, Jinek et al. implemented a synthetic whole-in-one transcribed single guide RNA 

(sgRNA) for CRISPR/Cas9122. Since only the guide sequence of the molecule has to be modified for 

each new target gene, the technology is very flexible, easy to handle, and the application forms are 

diverse126. By the synchronous delivery of a sgRNA pair, entire gene bodies or even non-coding 

regions can be removed from the cell system allowing proper gene function characterization without a 

potential interference of truncated protein versions and the study of the untranslated part of the 

genome127-129. So far, CRISPR/Cas9 has successfully been used in a wide range of organisms and cell 

lines for genome alteration by stable gene KO or KI. Additionally, reversible gene activation as well as 

repression can be achieved by using a catalytically dead Cas9 (dCas9) fused to an effector domain130. 

Currently, this technique enables for instance gene transcription activation or deactivation by de- or 

methylation of CpG islands within a promoter131-133. Moreover, during the last years the Cas9 alternative 

enzyme CRISPR-associated endonuclease in Prevotella and Francisella (Cpf1) - but mainly from the 

two organisms Acidaminococcus sp BV3L6 and Lachnospiraceae bacterium ND2006 - revealed its high 

potential for further accelerating the CRISPR tool box127-134. Since Cpf1 recognizes a PAM sequence 

(5’-TTTN-gRNA) different than Cas9 (5’-gRNA-NGG), one can switch between the two CRISPR 

systems depending on whether the sequence to be tackled is T- or G-rich. Also, Cpf1 requires a shorter 

sgRNA and has an additional RNase activity allowing to transcribe sgRNAs from an array if 

simultaneous editing of multiple genes is requested135. A current trend to enhance the CRISPR 
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technology is the combination of various techniques. In 2015 Lee et al. showed a boosted HDR-

mediated KI in CHO by additionally using classical cell line development methods136. Another 

innovative CRISPR approach was demonstrated by Eisenhut et al. in 2018 allowing multiple gene 

activation by the subsequently deletion of repressor elements using sgRNA pairs137. CRISPR-based 

genetic screenings are the state-of-the-art approach to investigate cellular processes or identify new 

potential cell line engineering targets as reviewed by Shalem et al., in 2015138. Therefore, a subset of 

proteins up to the entire proteome are covered by an appropriate number of gRNAs to create gene 

disruptions139,140. Moreover, by applying gRNA pairs genomic deletions are induced allowing the 

characterization of the untranslated part of the genome141. By using a gRNA library along with dCas9, 

coding or non-coding genes can be activated or inactivated142. After altering the genome, one can 

select for a desired phenotype and investigate the changes introduced on the genomic level. 

Nowadays, numerous CRISPR libraries are commercially available, however, online tools are 

accessible to design and generate customized gRNA libraries, respectively143. Genetic screens are 

performed in array144 or pooled format145. Arrayed CRISPR screens require automatized plate 

processes and thus are complex to handle. In comparison, genetic screens using CRISPR in pooled 

format can be easily performed in a controllable high-throughput manner146. Overall, CRISPR screens 

are powerful methods to link the genome to a generated phenotype.   

5. Genetic engineering improves product quality attributes
Traditional approaches to improve product quality are based on medium and process design in addition 

to in vitro treatment of the purified therapeutic protein147,148. Depending on the medium additives and 

enzymes for in vitro treatments, these strategies are rather expensive, especially in production scales. 

With the earlier described genetic tools, it is however possible to change the product quality via 

targeted engineering of the production host149. In this section, we describe selected examples of cell 

line engineering that contributed to improved product quality in eukaryotic and prokaryotic expression 

platforms. All described engineering examples are summarized in Table 1, divided by the respective 

PTM. 

5.1 N-glycosylation  

Glycosylation is the single most important PTM influencing product quality and may differ by sugar 

chain length, sequence as well as branching sites and branching numbers150,151. Glycosylation is not 

only species- and cell-specific but also affected by culture conditions152 causing differences between 

recombinant human glycoproteins and their endogenous counterparts. The N-glycan composition can 
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have tremendous impact on immunogenicity, pharmacodynamics and -kinetics of biopharmaceuticals71. 

An example is the lacking ability of yeast, plants and insects to produce complex N-glycans with 

terminal sialylation52,153,154, which often has negative consequences for pharmacokinetics155 and 

therefore is a major reason for the small number of approved biopharmaceuticals from these 

platforms1.  

5.1.1 CHO, the main representative of mammalian expression hosts 
A major strength of CHO cells is their capability to produce biopharmaceuticals with human-like N-

glycans. However, there are attempts to engineer CHO towards a fully humanized N-glycosylation 

profile. A small proportion of CHO N-glycans for instance consists of N-Glycolylneuraminic Acid 

(Neu5Gc) which is immunogenetic for humans. Knockdown (KD) of Cytidine Monophospho-N-

Acetylneuraminic Acid Hydroxylase (CMAH) with antisense RNA (asRNA) reduced the formation of 

Neu5Gc156 (Table 1). 

Other approaches to transform CHO N-glycosylation into human N-glycosylation include the expression 

or activation of the ST6 beta (β)-Galactoside alpha (ɑ)-2,6-Sialyltransferase (ST6GAL) 1, which is 

encoded in the CHO genome without being active19. Overexpression of ST6GAL1 cDNA or stable, but 

reversible, endogenous ST6GAL1-activation via epigenetic editing with CRISPR are possibilities to 

generate CHO cell lines with humanized sialylation profiles157,158. 

Besides approaches towards humanized N-glycans, it is well known that certain sugar residues can 

improve the activity and/or serum half-life of particular biopharmaceuticals. A well-known example 

therefore is the KO/KD of Fucosyltransferase (FUT) 8 to reduce mAb core-fucosylation for significantly 

enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) which was achieved by applying 

different genetic engineering tools (including ZFN, CRISPR and siRNA)159-161. Similarly, the clearance 

rate of rhEPO in the human body is affected by the degree of sialylation where under-sialylated EPO is 

degraded in the liver162. Zhang et al. reported enhanced IFN-γ sialylation after sh- and siRNA silencing 

the genes N-Acetyl-ɑ-Neuraminidase (NEU) 1 and 3, making them promising KO targets to generate a 

host cell for the production of highly-sialylated EPO163.  

To address heterogeneous product N-glycosylation in mammalian cells, which is particularly a problem 

in CHO cell lines, different groups applied ZFN-technology and CRISPR/Cas9 for simultaneous 

multiplexing of several target genes. The researchers successfully engineered CHO cells for 

homogeneous N-glycans on biopharmaceuticals and additionally investigated the impact of the 

generated gene disruptions on cell cultivation performance164,165. For a detailed insight into CHO N-

glycan engineering, we refer to a recently published review166. 
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Another successful engineering attempt introduced a plant-derived β1,2-Xylosyltransferase (XYLT) into 

a CHO cell line to improve vaccine efficacy via N-xylosylation167 emphasizing that the transfer of certain 

glycosylation genes between species can result in promising PTM of biopharmaceuticals. 

5.1.2 Bacterial expression systems 
Many bacterial expression systems including E. coli are incapable of protein glycosylation. However, 

researchers identified bacteria which are able of glycosylation168-170 and could transfer this ability into 

the industrially relevant E. coli171 showing for the first time that bacteria can be an alternative source for 

recombinant glycoproteins. While this first study produced bacterial N-glycans with great structural 

difference to their eukaryotic counterparts, a more advanced study reported that OE of yeast N-

Acetylglucosaminyltransferase (ALG) 1, 2, 13 and 14 resulted in eukaryotic N-glycans on single-chain 

variable fragment (scFv) from E. coli172. This system can be used as a starting point to create novel 

glycoconjugates within bacterial expression platforms. 

 5.1.3 Yeast expression systems  
Yeast high-mannose N-glycans are often engineered towards more human-like N-glycans by first 

decreasing high-mannose proportions to then introduce genetic elements for complex N-glycosylation. 

First, hyper-mannosylation is eliminated by disruption of α-1,6-Mannosyltransferase (OCH1), ALG3 

and ALG11173-176 or expressing Mannosidase (MAN) genes177. In the second step, glycosyltransferases, 

-transporters and sugar-synthesis enzymes are introduced (e.g. N-Acetylglucosaminyltransferase 

(GNT) and II, β-1,4-Galactosyltransferase (B4GALT) 1, ST6GAL, Glucosamine (UDP-N-Acetyl)-2-

Epimerase (GNE), Cerebroside Sulfotransferase (CST)). Based on this strategy, Hamilton and co-

workers introduced 14 elements and reported yeast strains producing complex glycoproteins with >90% 

terminal sialylation178. 

Besides engineering towards human-like sugar residues, the reduction of N-glycan macroheterogeneity 

to ensure homogenous products is also of major interest. OE of Dolichyl-Diphosphooligosaccharide 

Protein Glycosyltransferase Subunit STT3 (STT3D) has been shown to increase side occupancy and 

therefore reduced macro-heterogeneity during the production of rh Granulocyte-macrophage colony-

stimulating factor (GM-CSF) and mAb179. 

5.1.4 Plant-based expression systems 
Plants contain β-hexosaminidases, which give rise to N-glycan structures with terminal mannoses179,180 

and thus are far from their human counterparts. However, this is not only a drawback and can be used 
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for the production of biopharmaceuticals with efficient drug internalization by mannose receptors in e.g. 

Gaucher´s disease patients52. One approved drug for Gaucher´s disease, rh glucocerebrosidase (GC) 

(taliglucerase alfa), is produced in carrot root cell culture with mainly xylosylated paucimannose N-

glycans181,182. Non-engineered plants create the possibly immunogenic sugar residues β1,2-xylose and 

core α1,3-fucose180 and can be engineered to lack the two sugar residues via KO/KD strategies. The 

use of RNAi resulted in the production of rhGC in Nicotiana benthamiana (N. benthamiana) without 

immunogenic sugar residues183 and several mAb formats with engineered N-glycans were produced 

with the help of siRNA184, CRISPR/Cas9185 and RNAi technologies186.  

5.1.5 Insect-based expression systems  
Overexpression of human glycosyltransferases MGAT2, B4GALT and ST6GAL1 has been shown to 

reduce insect-typical oligo- and paucimannose residues and introduced complex type N-glycans on 

recombinant proteins produced in insect cell lines187,188. As for previously described expression 

systems, CRISPR tools are also used for insect cell lines to design N-glycans more similar to the 

human counterparts. An example therefore is the disruption of β-N-Acetylglucosaminidase (GalNAc) / 

fused lobes gene (FDL) to produce EPO with reduced oligo- and paucimannose structures in Sf9 

cells189. 

5.2 O-glycosylation  
Similar to N-glycosylation, O-glycosylation is a very common PTM in mammalian cells, yeast and plants 

where different types of O-glycosylation (e.g., O-linked fucose, glucose, mannose, xylose, or GalNAc) 

have been described on secreted proteins190. Immunoglobulin A (IgA) class molecules, rhEPO and 

Etanercept are examples of therapeutic proteins with O-glycosylation. However, the contribution of O-

glycan moieties to therapeutic properties is still not well understood and suitable targets for O-glycan 

engineering are more difficult to identify than for N-glycan engineering as reviewed previously191. 

In mammals, numerous and often differentially expressed glycosyltransferases give rise to complex O-

glycan pathways and highly heterogeneous O-glycans192-194. In contrast, O-glycan patterns from non-

mammalian cell platforms are often more simple and less heterogeneous, allowing for the expression of 

proteins where non-human like O-glycans are acceptable195. On the background of such rather 

uncomplex O-glycosylation structures in S. cerevisiae and plants, researchers successfully built up 

different core O-glycans by de novo engineering as presented in Table 1196-200. For some products the 

O-mannosylation of P. pastoris is undesired and can be counteracted by overexpression of an α-

mannosidase enabling further elongation with mammalian-type modifications as reported by Hamilton 

et al201.  
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Engineering of O-glycosylation in mammalian cell lines mostly aims to either simplify the sugar moieties 

to reduce product heterogeneity or to design distinct O-glycans for superior protein functions. Yang et 

al. reported decreased O-glycan heterogeneity after disruption of Core 1 Synthase Glycoprotein-N-

Acetylgalactosamine 3-β-Galactosyltransferase 1 (C1GALT1) Specific Chaperone 1 (COSMC) and 

Protein O-Linked Mannose N-Acetylglucosaminyltransferase 1 (β1,2-) (POMGNT1)192 whereas other 

groups achieved engineering of defined and elongated O-glycans in CHO202,203.  

Within prokaryotes, the rising bacterial glycoengineering could help to produce vaccine glycoconjugates 

with immunogenic bacterial glycans as discussed in a previous review204. 

5.3 Carboxylation 
Efficient γ-carboxylation of recombinant proteins is another challenge when aiming for human-like 

PTMs. Similar to N-glycosylation, γ-carboxylation currently requires the usage of mammalian cell 

platforms. Correct carboxylation is of elementary importance to obtain high yields and functional 

molecules, especially in the context of vitamin K-dependent coagulation factor production205. Most 

difficult-to-express clotting factors - except for FVIII and Von Willebrand Factor - are carboxylated by 

the vitamin K-dependent γ-carboxylation mechanism as reviewed by Kumar in 2015206. In 2005 Wajih et 

al. achieved an almost 3-fold increase in carboxylated rhFIX by OE of Vitamin K Epoxide Reductase 

Complex Subunit 1 (VKORC1), while overexpression of γ-carboxylase lead to the inhibition of functional 

rhFIX production207 (Table 1). The study was performed in BHK cells. One year later, the same 

research group engineered BHK21 cells by siRNA silencing of calumenin, an inhibitor of the γ-

carboxylation system, resulting in a downregulation of the gene by ~80%. As an effect, ~80% more 

functionally active rhFIX was produced by the modified host compared to the untreated control208. 

Although it is known that Drosophila melanogaster and S2 cells derived from this insect do express γ-

Glutamyl Carboxylase (GGCX) and have a vitamin K processing ability, successful blood coagulation 

factor manufacturing was not able in these systems yet. Recently, co-expression of mammalian GGCX, 

VKORC1 and/or Protein Disulfide Isomerase Family A Member 2 (PDIA2) enabled recovery of active 

rhFVII209.       

5.4 Phosphorylation 
Although protein phosphorylation is a very common PTM, it is predominantly associated with 

intracellular and not with therapeutic proteins149. However, proteomic and computational analysis 

revealed a large number of extracellular phosphorylated proteins including FIX210,211. Interestingly, 

recombinant FIX produced in CHO cells is lacking phosphorylation212, which does not seem to affect 

clotting activity. The absence of proof for the importance of phosphorylation of therapeutic proteins 

16

- Chapter 1 -



might be one reason why there are so less reports on improving the phosphorylation capacity in 

industrial expression platforms. 

In contrast to mammalian cells, prokaryotes have only a low number of phosphorylated proteins213,214. 

The prokaryotic phosphorylation machinery can be enhanced by overexpressing product-specific 

protein kinases as presented in E. coli by Yue et al. where overexpression of Serine/Threonine-Protein 

Kinase 1 (SRPK1) increased pre-mRNA-splicing factor SF2 (ASF/SF2) phosphorylation215 (Table 1). 

Based on this approach it might also be possible to produce relevant therapeutic proteins with 

increased phosphorylation in E. coli or other expression platforms. 

5.5 Sulfation  
Recombinant biopharmaceuticals containing sulfation, which are only very few, are generally difficult to 

express due to molecule and modification complexities206,216. Eukaryotic expression platforms are 

capable to perform this kind of PTM217. Heparin is the most famous example for a sulfated difficult-to-

express biopharmaceutical and clotting factors rhFVIII and rhFIX have also tyrosine sulfation sites 

present206,218. Currently, Heparin-based drugs are obtained from animal-sources with a contamination 

crisis in 2008 in the US showing the need for a proper transgenic expression system. Whereas, rhFVIII 

and rhFIX are mainly produced in CHO, BHK and HEK292 cells with almost fully sulfation219. In the 

study of Datta et al. in 2013, CHO-S cells were engineered to express Golgi-targeted Heparan Sulfate 

Glucosamine 3-O-Sulfotransferase (HS3ST) 1 resulting in more 2-O, 6-O- and N-sulfo group containing 

disaccharides in Heparan sulfate (HS), a molecule that is sharing the biosynthesis pathway with 

Heparin. Thus, the main idea of the researchers was to generate Heparin from HS. Additionally, by the 

OE of the respective Golgi-bound sulfotransferase an increase of anti-Thrombin activity was achieved 

at the binding site220. Zhang and colleagues overexpressed 2-O-Sulfotransferase (2-OST) as well as 

C5-epimerase (C5-epi) in transgenic E.coli and used the generated enzymes to produce heparin by bio- 

and chemically processing of HS221. The sulfated glycosaminoglycan chondroitin sulfates, which is used 

fo the treatment of arthritis, was expressed in metabolically engineered E.coli BL21. To achieve the 

desired tyrosine sulfation, UDP-Glucose-4-Epimerase (kfo) genes A, C and F - enzymes/proteins as 

part of the capsular polysaccharide production - were transferred from the pathogenic E.coli strain K4 

into the non-pathogenic strain BL21222. 

5.6 Aggregation & Impurities  

5.6.1 Aggregation 
Product aggregation can occur at different steps during manufacturing, including fermentation (at intra- 

and extracellular levels), purification, as well as formulation and storage. The protein aggregates can 
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lead to adverse side effects after administration223. Many efforts therefore have aimed to reduce 

product aggregation by changing conditions for cultivation224,225, purification, formulation and storage226. 

A number of genetic engineering approaches decreased intracellular aggregation. In mammalian cells, 

these strategies include OE of components of the secretion pathway227, various protein disulfide 

isomerases and the X-Box-Binding Protein 1 (XBP1)228-230 or the chaperones Endoplasmic Reticulum 

Resident Protein 57 (ERp57), Calnexin (CNX) and Calreticulin (CRT)231,232 which also improve 

secretion and therefore productivity. 

Increasing intracellular chaperone concentration is also a widely used strategy to improve solubility of 

recombinant proteins in bacterial expression systems. This can be achieved by (i) stimulating bacteria 

by “heat-shock”, (ii) supplementation of chemical chaperones233,234 or (iii) OE of certain chaperones 

(Thiol:Disulfide Interchange Protein (Dsb) A and C) to promote disulfide bond formation and decrease 

product aggregation235.  

5.6.2 Impurities 
During the production of biopharmaceuticals, the cultivation medium might not only contain the 

recombinant product but also impurities as endogenous host cell proteins (HCP). These HCP must be 

removed from the therapeutic protein to ensure product quality and prevent adverse health 

consequences for the patient81,236–239. The removal is successful for the majority of impurities during 

typical downstream purification processes240.   

For mammalian cells, the culture supernatant contains a complex population of HCPs wherein 116 

difficult-to-remove HCP were identified by different approaches in CHO cells241-243. Based on these 

target HCPs, Chiu et al. reported the successful CRISPR- and TALEN-guided removal of lipoprotein 

lipase, a difficult-to-remove HPC244 (Table 1). Similarly, other HCPs could be KO to generate “cleaner” 

host cells with decreased protein impurities for improved product quality and simplified downstream 

purification processes. 

Within bacterial expression systems, the contamination with HCPs is not taking place by secretion but 

during cell lysis to access the recombinant protein. For instance, endotoxins of gram-negative bacteria 

as E. coli need to be removed to ensure the safety of the final product. Similar to the above mentioned 

example from CHO cells, it is possible to generate bacterial strains lacking certain impurities as 

presented by a mutated E. coli strain with severely low endotoxin levels245. 
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5.7 Proteolytic degradation  
Proteolytic degradation of biopharmaceuticals induced by host cell-derived proteases is a common 

problem during bioprocessing occurring throughout all available types of expression systems246. Site-

specific or -unspecific cleavage of the recombinant product appears intra- and extracellular, 

respectively, and varies between cell and product types, as well as process conditions81,246. Product 

heterogeneity, clipping of fusion proteins, decreased product titer and quality, a more challenging and 

complex downstream processing, and potential immunogenicity in patients are the major concerns 

arising from proteolysis85. Site-specific mutagenesis of the recombinant product, changing the host cell 

system, supplementation with protease inhibitors, and optimization of bioprocessing are options to 

prevent degradation81,85. However, resulting in time-consuming, tedious, and expensive modulation and 

bioprocessing efforts to in the end obtain a product with characteristics close to the original product82. 

So far, little is known which cell-specific proteases are responsible for product-dependent degradation, 

thus engineering target selection is more complicated. Nevertheless, a couple of studies are available 

showing successful engineering of host-specific proteases. 

5.7.1 CHO, the main representative of mammalian expression hosts 
In 2016, Hu et al. identified Carboxypeptidase D (CpD) as the main source for C-terminal lysine 

cleavage in a mAb producing CHO cell line247 (Table 1). By transcription analysis, five 

carboxypeptidases were investigated in terms of their expression levels in producer cells and their 

respective parental cell lines. shRNA induced KD of CpD  in  DUXB-11 and DHFR-positive CHO 

producers resulted in the absence of C-terminal lysine degradation of the heavy chain. Moreover, high 

percentage of C-terminal lysine of the mAb were maintained by bi-allelic CpD gene deletion via 

CRISPR/Cas9. More recently, Laux and colleges achieved decreased non-antibody (Ab) glycoprotein 

degradation in CHO-K1 cells by TALEN- and ZFN-mediated KO of Matriptase-1 (MT-SP1)85. 

5.7.2 Bacterial expression systems 
Endogenous proteases levels are higher in bacterial cytoplasm than in the periplasm of gram-negative 

bacteria rising the risk for proteolytic degradation of biopharmaceuticals248. However, the well 

established E. coli BL21 strain with deletions in two major proteases, the periplasmic outer membrane 

protease T and the cytoplasmic lon protease, demonstrates the possibility to design bacterial strains 

with decreased protein degradation249.  
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5.7.3 Yeast expression systems 
Already in 1998, Kerry-Williams et al. reported reduced proteolytic degradation of recombinant human 

albumin (rHA) secreted from S. cerevisiae250. This was reached by classical gene disruption of Yeast 

Aspartyl Protease 3 (YAP3) alone or in combination with turn-off of Kexin 2 Protease (Kex2p). Wu et 

al., disrupted encoding Proteinase A (PEP4) and Yapsin Family Member 1 (YPS1) by homologous 

recombination successfully improving intact hHA and human parathyroid hormone expression levels in 

P. pastoris251.      

5.7.4 Insect-based expression systems 
Proteolytic degradation of recombinant therapeutics produced in BICS is often induced by virus-

encoded proteases like the Cathepsin L-like Protease (v-cath). By post-transcriptional v-cath silencing 

in baculovirus-infected Sf-9 cells via double-stranded RNA (dsRNA), Kim et al. achieved an almost 3-

fold increase in product yield63. Lower level of v-cath-induced proteolysis and a delay in cell lysis were 

concluded as the reasons for improved productivity. Although green fluorescence protein (GFP) was 

produced in this study, the engineering strategy can be adapted for a biopharmaceutical producing 

insect cell line.   

5.7.5 Plant-based expression systems 
Protein stability and functionality limitations due to degradation, as well as  proteolysis during up- and 

downstream processing in plant-based expression systems are occasions for generally low yields252. 

The high number of proteolytic genes encoded in plant genomes and the lack of proper 

characterization of those are reasons therefore53. Co-expression of tomato cystatin SICYS8, a C1A 

cysteine-protease inhibitor, along with the murine IgG C5-1 in NT-1 almost doubled the antibody yield 

in young leaves253. By applying asRNA, four endogenous proteases were silenced simultaneously in 

tobacco BY-2 cells. Hence, Mandal et al., achieved a 4-fold increase in accumulation of a full length 

IgG1 Ab against a human immunodeficiency virus (HIV)-1 surface protein254. Human interleukin (IL)-10 

production in transgenic whole-plant Nicotiana tabacum (N. tabacum) was found to be below the critical 

expression level as reported by Duwadi and others255. Here, transient as well as stable downregulation 

of the Cysteine Protease 6 (CysP6) by RNAi silencing resulted in accumulation of the total soluble 

protein fraction in transgenic IL-10 producing tobacco plants. 
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6. Conclusion
We described the diversity of expression platforms which all represent certain advantages for the 

production of biopharmaceuticals. However, there is room for optimization since many PTMs are not 

present in some hosts and because impurities, product aggregation and degradation can have a 

negative impact on product quality. The availability of sequence information and genetic tools for 

targeted engineering rapidly speeds up the generation of expression platforms capable to produce 

biopharmaceuticals with improved product qualities. KD and KO of one or several targets is achieved 

easier, cheaper and more controlled than ever whereas the OE of transgenes is still a frequent strategy 

to add certain functions to host cells. Additionally, the possibility to activate silent, or silence active 

endogenous genes by e.g. CRISPRa/CRISPRi is expanding the genetic toolbox. 

Unlike engineering towards improved glycosylation profiles, engineering other quality attributes as 

carboxylation and phosphorylation are comparably underrepresented with only few targets described. 

However, novel CRISPR-based screening methods can promote the identification of new targets for 

improved phenotypes. 

The identification and characterization of genes involved in the modification and quality of therapeutic 

proteins during their production is only one major challenge. The exploration of the relationship 

between different quality attributes, PTMs as well as the actual in vivo function and mode of action of 

therapeutic proteins is of similar importance. While CHO is superior to the other platforms with regards 

to most of the PTMs, yeast is catching up with e.g. humanized N-glycosylation and yeast-based 

therapeutic protein expression can be expected to become a serious contender in any manufacturing 

strategy256. 

In the authors opinion, there is a trend towards the design of “cleaner” host cells where e.g. the major 

part of secreted mammalian HCPs are removed to encounter product degradation and complex 

purification protocols or the “clean-up” of enzyme isoforms maintaining only the one isoform, which is 

the most important one and capable to retain the function. 

Additionally, cell-free systems might enable a fully controlled design of product quality without facing 

interfering host cell pathways. The cell-free systems can be an alternative to generate therapeutic 

proteins with homogeneous and improved product quality based on cell lysates from E. coli and 

CHO257-259. 

We conclude that the available genetic engineering tools contribute to a faster and more precise design 

of expression systems with improved product qualities than ever before. Yet, there is the need for the 

discovery of novel targets, especially to encounter product degradation and impurities, but also to 

engineer protein sulfation and phosphorylation. 
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Table 1. Genetic engineering approaches to improve product quality attributes in different expression 
platforms (superscript numbers refer to abbreviation index below the table). 

Product Organism Engineering tool (target) Described effect Reference 

N-glycosylation 

HCP CHO (UH) asRNA KD (CMAH) Neu5GC ↓ 156 

EPO CHO (DuxB11) CRISPRa (ST6GAL1) ɑ-2,6-sialylation ↑ 157 

mAb CHO, BHK OE (ST6GAL1) ɑ-2,6-sialylation ↑ 158 

mAb CHO (DG44) siRNA KD (FUT8) Fucosylation ↓ 159 

mAb CHO (K1) ZFN KO (FUT8) Fucosylation ↓ 160 

HCP CHO (K1) CRISPR KO (FUT8) Fucosylation ↓ 161 

IFN-ɣ CHO (DG44) siRNA/shRNA KD (NEU1, NEU3) Sialylation ↑ 163 

EPO, mAb CHO (S) CRISPR KO (B4GALT1,B4GALT2,B4GALT3,B4GALT4) Galactosylation ↓ 164 

EPO, mAb CHO (K1) ZFN KO (19 genes); OE (ST6GAL1) Fucosylation ↓ 
ɑ-2,6-sialylation ↑ 
Galactosylation ↓ 
Microheterogeneity ↓ 

165 

Vaccine (RSV-F1) CHO (DG44) OE (XYLT) Xylosylation ↑ 167 

HCP E. coli OE (pglB2/STT3D) Complex type ↑ 171 

scFv E. coli OE (ALG1,ALG2,ALG13,ALG14) Complex type ↑ 172 

HCP P. pastoris KO (OCH1); 
OE (GNTI,GNTII,B4GALT,MANI,MANII) 

High-mannose ↓ 173 

mAb S. cerevisiae KO (ALG3,ALG11,MNN);  
OE (GNTI,GNTII,STT3D,FLC26) 

High-mannose ↓ 174 

Glucose oxidase H. polymorpha4 KO (ALG3,ALG11,OCH1); OE (GNTI,GNTII,B4GALT) High-mannose ↓ 175 

Lipase 2 Y. lipolytica3 KO (ALG3); OE (ALG6) High-mannose ↓ 176 

GC Y. lipolytica KO (OCH1,MNN59); OE (MAN) High-mannose ↓ 177 

rhEPO P. pastoris OE of 14 genes, KO of 4 genes >90% terminal 
sialylation; 
Complex type ↑ 

178 

mAb, rhGM-CSF P. pastoris OE (STT3D) Macroheterogeneity ↓ 179 

GC N. 
benthamiana 

RNAi (GNTI) Immunogenic plant 
sugar residues ↓ 

183 

mAb L. minor7 siRNA KD (XYLT/FUT) Immunogenic plant 
sugar residues ↓ 

184 
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mAb N. tabacum CRISPR/Cas9 KO (XYLT/FUT) Immunogenic plant 
sugar residues ↓ 

185 

mAb N. 
benthamiana 

RNAi (XYLT/FUT) Immunogenic plant 
sugar residues ↓ 

186 

mAb B. mori8 OE (MGAT2,B4GALT) Complex type ↑ 187 

GST-SfManI, β-
Trace9

Sf9 OE (MGAT2,B4GALT,ST6GAL1) Complex type ↑ 188 

EPO Sf9 CRISPR/Cas9 KO (FDL) paucimannose  ↓ 189 

O-glycosylation 

EPO CHO (K1) ZFN KO (COSMC, POMGNT1) O-glycan heterogeneity↓ 192 

YFP10, IFNα2B N. benthamiana, 
A. thaliana11

OE (GALNT212, WBPP13) O-glycosylation ↑ 196 

YFP, IFNα2B N. benthamiana OE (GALNT2,  GALNT4, WBPP) O-glycosylation ↑ 197 

EPO-Fc N. benthamiana OE (GALNT2, ST3GAL,ST6GAL, B3GALT14) di-sialylated core 1 O-
glycans ↑ 

198 

IgA1 N. benthamiana KO (XYLT,FUT), OE (GALNT2, C1GALT1) Core 1 O-glycan ↑ 199 

podplanin S. cerevisiae OE (GALE15, SLC35A216, GALNT1, C1GALT1) Core 1 O-glycan ↑ 200 

TNFR217-Fc P. pastoris OE (MAN1B1, POMGNT1, ST6GAL1, B4GALT) Sialylation ↑ 201 

PSGL118/mIgG2b CHO (K1) OE (B3GNT193, C2GNT201, C3GNT216) Elongated O-glycans  ↑ 203 

PSGL1/mIgG2b CHO (K1) OE (C2GNT1, C3GNT5, C3GNT6, FUT1, FUT2, GALT, 
GALNT) 

matured O-glycans  ↑ 202 

γ-Carboxylation 

rhFIX BHK OE (VKORC1) carboxylation ↑ 207 

rhFIX BHK21 siRNA (calumenin) carboxylation ↑ 208 

rhFVII S2 OE (GGCX,VKORC1 and/or PDIA2) carboxylation ↑ 209 

Phosphorylation 

ASF/SF2 E. coli OE (SRPK1) Phosphorylation  ↑ 215 
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Sulfation 

HS CHO-S OE (Golgi-targeted HS3ST1) Tyrosine sulfation ↑ 220 

HS pathway enzymes E.coli OE (2-OST, C5-epi) Recombinant expression 
of enzymes for 
downstream application 

221 

Chondroitin E.coli OE (kfoA,kfoC,kfoF) Tyrosine sulfation ↑ 222 

Aggregation 

mAb CHO (K1) OE (SRP1422) Intracell. aggregation ↓ 
Secretion ↑ 

227 

SEAP23 CHO (K1) OE (XBP1) Secretion ↑ 228 

mAb CHO OE (PDI24) Secretion ↑ 229 

mAb CHO OE (PDI, ERO1L25) Secretion ↑ 230 

TPO26 CHO (DuxB11) OE (CNX, CRT) Productivity ↑ 231 

TPO CHO (DuxB11) OE (ERp57) Productivity ↑ 232 

MBP27 E. coli OE (Dna28K-DnaJ-Grp29E,CLPB30, GroE31L-
GroES,Ibp32A/B) 

Intracell. aggregation ↓ 233 

EGF33 E. coli OE (DsbA,DsbC,FKPA34,SurA35) Intracell. aggregation ↓ 235 

Impurities 

mAb CHO KO CRISPR/TALEN HCP ↓ 244 

APOA136, HSP7037 E. coli KO (KDSD38,GUTQ39,LPXL40,LPXM41,PAGP42,LPXP43, 
EPTA44) 

Endotoxin ↓ 245 

Product degradation 

GFP Sf-9 KD dsRNA (v-cath) Degradation ↓ 63 

non-Ab glycoprotein CHO (K1) KO TALEN/ZFN (MT-SP1) Degradation ↓ 85 

mAb CHO (DUXB-11 and 
DHFR-positive) 

KD/KO shRNA/CRISPR (CpD) Degradation ↓ 247 

 HCP E.coli Gene disruption (OmpT, lon) Degradation ↓ 249 
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rHA S. cerevisiae Gene disruption (YAP3, Kex2p) Degradation ↓ 250 

hHA and human 
parathyroid hormone 

P. pastoris Gene disruption (PEP4, YPS1) Degradation ↓ 251 

Ab IgG C5-1 NT-1 OE (SICYS8) Degradation ↓ 253 

α-HIV-1 IgG1 Ab BY-2 KD RNAi (four proteases) Degradation ↓ 254 

IL-10 N. tabacum KD RNAi (CysP6) Degradation ↓ 255 

1 RSV-F - respiratory syncytial virus protein F; 2 pglB - Oligosaccharyltransferase pglB; 3 Y. lipolytica - Yarrowia 
lipolytica; 4 H. Polymorpha - Hansenula polymorpha; 5 MNN - ɑ-1,3-Mannosyltransferase; 6 FLC2 - Flavin Carrier 
Protein 2; 7 L. minor - Lemna minor; 8 B.mori - Bombyx mori; 9 GST-SfManI, β-Trace - GST-tagged soluble 
domain of the Sf class I Golgi mannosidase; 10 YPF - yellow fluorescent protein; 11 A. thaliana - Arabidopsis 
thaliana; 12 GALNT2 - Polypeptide N-Acetylgalactosaminyltransferase 2; 13 WBPP - UDP-GlcNAc C4 Epimerase; 
14 B3GALT - β-1,3-Galactosyltransferase; 15 GALE - UDP-Galactose-4-Epimerase; 16 SLC35A2 - Solute Carrier 
Family 35 Member A2; 17 TNFR2 - Tumor Necrosis Factor Receptor 2; 18 PSGL1 - Selectin P ligand; 19 B3GNT - β 
-1,3-N-acetylglucosaminyltransferase; 20 C2GNT - Glucosaminyl (N-Acetyl) Transferase, Core 2; 21 C3GNT - 
Glucosaminyl (N-Acetyl) Transferase, Core 3; 22 SRP14 - Signal Recognition Particle 
14; 23 SEAP - secreted embryonic alkaline phosphatase; 24 PDI - Protein Disulfide Isomerase; 25 ERO1L - 
Endoplasmic Reticulum Oxidoreductase 1 α; 26 TPO - thrombopoietin; 27 MBP - mannose binding protein; 28 Dna - 
Chaperone protein Dna; 29 Grp - protein Grp; 30 CLPB - Caseinolytic Peptidase B Protein Homolog; 31 GroE - heat 
shock protein; 32 Ibp - Small Heat Shock Protein; 33 EGF - epidermal growth factor; 34 FKPA - FKBP-Type 
Peptidyl-Prolyl Cis-Trans Isomerase; 35 SurA - Peptidyl-Prolyl Cis-Trans Isomerase; 36 APOA1 - apolipoprotein 
A1; 37 HSP70 - heat shock protein 70; 38 KDSD - Arabinose 5-phosphate isomerase KDSD; 39 GUTQ - Arabinose 
5-Phosphate Isomerase GUTQ; 40 LPXL - Lipid A Biosynthesis Lauroyltransferase; 41 LPXM - Lipid A Biosynthesis 
Myristoyltransferase; 42 PAGP - Proliferation-Associated Gene B; 43 LPXP - Lipid A Biosynthesis 
Palmitoleoyltransferase; 44 EPTA - Phosphoethanolamine Transferase EPTA 

Abbreviations: 
α, alpha; β, beta; γ, gamma; 2-OST, 2-O-Sulfotransferase; A. thaliana, Arabidopsis thaliana; Ab, antibody; 
ADCC, antibody-dependent cell-mediated cytotoxicity; ALG, N-Acetylglucosaminyltransferase; APOA1, 
apolipoprotein A1; asRNA, antisense RNA; B.mori, Bombyx mori; B3GALT, β-1,3-Galactosyltransferase; 
B3GNT, β -1,3-N-acetylglucosaminyltransferase; B4GALT, β-1,4-Galactosyltransferase BHK, Baby Hamster 
Kidney; BICS, baculovirus-insect cell system; BY-2, Bright Yellow 2; C1GALT1, Core 1 Synthase Glycoprotein-N-
Acetylgalactosamine 3-β-Galactosyltransferase 1; C2GNT, Glucosaminyl (N-Acetyl) Transferase, Core 2; C3GNT, 
Glucosaminyl (N-Acetyl) Transferase, Core 3 C5-epi, C5-epimerase; CAP, CEVEC’s Amniocyte Production; Cas, 
CRISPR-associated; CHO, Chinese Hamster Ovary; CLPB, Caseinolytic Peptidase B Protein Homolog; CNX, 
Calnexin; CpD, Carboxypeptidase D; CRT, Calreticulin; CMAH, Cytidine Monophospho-N-Acetylneuraminic Acid 
Hydroxylase; COSMC, C1GALT1 Specific Chaperone 1; CST, Cerebroside Sulfotransferase; Cpf1, CRISPR-
associated endonuclease in Prevotella and Francisella; CRISPR, clustered regularly interspaced short 
palindromic repeats; crRNA, CRISPR RNA; dCas9, dead Cas9; CysP6, Cysteine Protease 6; Dna, Chaperone 
protein Dna; DSB, double-strand break; Dsb, Thiol:Disulfide Interchange Protein; dsRNA, double-stranded RNA; 
E. coli, Escherichia coli; EGF, epidermal growth factor; EMA/EMEA, European Medicines Agency; EPTA, 
Phosphoethanolamine Transferase EPTA; ERO1L, Endoplasmic Reticulum Oxidoreductase 1 α; ERp57, 
Endoplasmic Reticulum Resident Protein 57; Fc, fragment crystallizable; FCS, Fetal Calf Serum; FDA, US Food 
and Drug Administration; FKPA, FKBP-Type Peptidyl-Prolyl Cis-Trans Isomerase FLC2, Flavin Carrier Protein 2; 
FDL, fused lobes gene; FUT, Fucosyltransferase; GalNAc, N-Acetylgalactosamine; GALE, UDP-Galactose-4-
Epimerase; GALNT2, Polypeptide N-Acetylgalactosaminyltransferase 2; GC, glucocerebrosidase; GFP, green 
fluorescent protein; GGCX, γ-Glutamyl Carboxylase; GM-CSF, Granulocyte-Macrophage Colony-Stimulating 
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Factor; GNE, Glucosamine (UDP-N-Acetyl)-2-Epimerase; GNT, N-acetylglucosaminyltransferase GOI, gene of 
interest; GroE, heat shock protein Grp, protein Grp; GST-SfManI, β-Trace, GST-tagged soluble domain of the Sf 
class I Golgi mannosidase; GUTQ, Arabinose 5-Phosphate Isomerase GUTQ; gRNA, guide RNA; H. 
Polymorpha, Hansenula polymorpha; HCP, host cell proteins; HDR, homology directed repair; HEK293, Human 
Embryonic Kidney 293; HeLa, Henrietta Lack’s; HIV, human immunodeficiency virus; HS, Heparan sulfate; 
HS3ST, Heparan Sulfate Glucosamine 3-O-Sulfotransferase; HSP70, heat shock protein 70; Ibp, Small Heat 
Shock Protein; IFN-α, interferon-α; IFN-γ, interferon-γ; IgA, Immunoglobulin A; IgG, Immunoglobulin G; IL, 
interleukin; InDel, insertion/deletion; KD, knockdown; KDSD, Arabinose 5-Phosphate Isomerase KDSD; kfo, 
UDP-Glucose-4-Epimerase; KI, knockin; KO, knockout; Kex2p, Kexin 2 Protease; L. minor, Lemna minor; LPXL, 
Lipid A Biosynthesis Lauroyltransferase; LPXM, Lipid A Biosynthesis Myristoyltransferase; LPXP, Lipid A 
Biosynthesis Palmitoleoyltransferase; mAb, monoclonal antibody; MAN, Mannosidase; MBP, mannose binding 
protein; MGAT2, α-1,6-Mannosyl-Glycoprotein β-1,2-N-Acetylglucosaminyltransferase 2; MNN, α-1,3-
Mannosyltransferase; MT-SP1, Membrane Type Serine Protease 1; N. benthamiana, Nicotiana benthamiana; N. 
tabacum, Nicotiana tabacum; ncRNA, non-coding RNA; NEU, N-Acetyl-α-Neuraminidase; Neu5GC, N-
Glycolylneuraminic Acid; NGS, next-generation sequencing; NHEJ, non-homologous end joining; NT-1, Nicotiana 
tabacum 1 cell; OCH1, α-1,6-Mannosyltransferase; OE, overexpression; ompT, Outer Membrane Protease T; P. 
pastoris, Pichia pastoris; PAGP, Proliferation-Associated Gene B; PAM, protospacer adjacent motif; PDI, Protein 
Disulfide Isomerase; PDIA2, Protein Disulfide Isomerase Family A Member 2; PEP4, Proteinase A; pglB, 
Oligosaccharyltransferase pglB; POMGNT1, Protein O-Linked Mannose N-Acetylglucosaminyltransferase 1 (β-
1,2-); PSGL1, Selectin P ligand; PTM, post-translational modification; rh, recombinant human; rHA, recombinant 
human albumin; rhC1INH, recombinant human C1 inhibitor; rhEPO, recombinant human erythropoietin; rhF, 
recombinant human coagulation factor; rhG-CSF, recombinant granulocyte colony-stimulating factor; rhGH, 
recombinant human growth hormone; RNAi, RNA interference; RSV-F, respiratory syncytial virus protein F; S. 
cerevisiae, Saccharomyces cerevisiae; scFv, single-chain variable fragment; SEAP, secreted embryonic alkaline 
phosphatase; Sf, Spodoptera frugiperda; sgRNA, single guide RNA; shRNA, small hairpin RNA; siRNA, small 
interfering RNA; SLC35A2, Solute Carrier Family 35 Member A2; SRP14, Signal Recognition Particle 14; SRPK1, 
Serine/Threonine-Protein Kinase 1; ST6GAL, ST6 β-Galactoside ɑ-2,6-Sialyltransferase; STT3D, Dolichyl-
Diphosphooligosaccharide Protein Glycosyltransferase Subunit STT3; SurA, Peptidyl-Prolyl Cis-Trans Isomerase; 
TALEN, transcription activator-like effector nuclease; TNFR2, Tumor Necrosis Factor Receptor 2; TPO, 
thrombopoietin; tracrRNA, trans-acting RNA; v-cath, Cathepsin L-like Protease; VKORC1, Vitamin K Epoxide 
Reductase Complex Subunit 1; VLPs, virus-like particles; WBPP,UDP-GlcNAc C4 Epimerase; XBP1, X-Box-
Binding Protein 1; XYLT, Xylosyltransferase; Y. lipolytica, Yarrowia lipolytica; YAP3, Yeast Aspartyl Protease 3; 
YFP, yellow fluorescent protein; YPS1, Yapsin Family Member 1; ZFN, zinc finger nuclease; 
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Right before I started my PhD, our research group established a method for efficient 

CRISPR/Cas9 multiplexing of up to three CHO gene targets1. The simultaneous disruption 

of multiple target genes speeds up rational cell line development processes and is 

therefore more cost-effective than repetitive single knockout strategies. For the design of 

homogeneous N-glycan structures, often more than three genes are subject to 

engineering. Based on the above cited protocol we attempted the simultaneous disruption 

of ten gene targets in CHO cells. The results of the explorative study described in Chapter 

2 were used as a guidance for upcoming cell line development strategies presented in 

Chapter 3 and Chapter 4.  

1. Grav, L. M. et al. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnol. J.
10, 1446–1456 (2015).
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Abstract 

CRISPR/Cas 9 multiplexing for simultaneous disruption of several target genes is a low-cost and time-

saving method to generate genome-edited cell lines. Within N-glycosylation, there is a high number of 

possible gene targets and researches often have to disrupt all active isoforms within one protein class 

to remove certain enzymatic activities. Within CHO cells it was previously shown that multiplexing can 

be highly efficient for the disruption of up to three genes. In the presented study we performed 

multiplexing of 10 gene targets by simultaneous transfection of 10 sgRNA vectors and a 

GFP_2A_Cas9 encoding plasmid in a mAb-producing cell line. We then determined the efficiency of 

each sgRNA and sequenced the targeted genomic regions of 92 clonal cell lines. The sequence 

information revealed 20 clones with indels in one or more targets and one clone with indels in eight 

targeted genes. However the majority of gene-edited clones harboured a mixture of in-frame and out-

of-frame shifts. Our study highlights that multiplexing several genes is a time saving, yet highly 

complex process challenged by transfection efficiency, sgRNA efficiency, and occurence of in-frame 

indels. 
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1 Introduction 

As highlighted in chapter 1, the usage of genetic engineering tools in different expression platforms is 

steadily increasing and empowers the targeted design of superior host cell lines for the production of 

biopharmaceuticals with improved product qualities. Out of the available genetic engineering tools, 

CRISPR is very efficient for targeting single genes but also for simultaneous multiplexing of several 

targets during a single transfection. In 2015 Grav et al. reported the successful simultaneous 

generation of indels in three targeted genes in chinese hamster ovary (CHO) cells1. Within N-glycan 

engineering, researchers often aim to target more than three genes (typically in a sequential manner) 

in order to decrease N-glycan heterogeneity or to design very specific N-glycan structures2. The 

presence of numerous isoforms within glycosyltransferases calls for the disruption of more than one 

gene if a certain phenotype is desired. One example therefore is the class of β-1,4-

galactosyltransferases (B4GALTs), consisting of B4GALT1–T7, which all transfer galactose from 

uridine diphosphate galactose (UDP-Gal) to N-Acetylglucosamine (GlcNAc) and GlcNAc-

terminated oligosaccharides (EC 2.4.1.38)3,4.

Step-wise disruption of several gene targets is often time consuming and therefore expensive. Within 

this study, the aim was to simultaneously disrupt ten CHO gene targets by CRISPR/Cas9 and thus 

to explore the limitations of the applied protocol. The ten selected target genes include genes 

involved in N-glycosylation (SPPL3, B4GALT1, B4GALT2, B4GALT3, B4GALT4, B4GALT5, TSTA3) 

and apoptosis/metabolism related genes (BAX, BAK, GLUL).

After co-transfection of a Cas9_2A_GFP encoding vector and ten sgRNAs encoding vectors, indel 

efficiencies for each sgRNA were analyzed on cell pool level before and after fluorescence-

activated cell sorting (FACS) of GFP-positive cells. Additionally, 92 single cell clones from the same 

transfection were sequenced for disruptions in the targeted genes. In-frame and out-of-frame indel 

distribution of these clones as well as cell growth, mAb productivity and N-glycosylation of 

selected clones are presented. 

2 Materials and methods 

2.1 sgRNA and GFP_2A_Cas9 plasmid design 

GFP_2A_Cas9 and single guide RNA (sgRNA) plasmids were constructed as previously described1 

and the sgRNA design was performed using CRISPy5. The target sites for BAX, BAK1, GLUL, SPPL3, 

B4GALT1, B4GALT2, B4GALT3, B4GALT4, B4GALT5, TSTA3 and the oligos for sgRNA cloning are 
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listed in Supporting Information, Table S1 and Table S2, respectively.  

2.2 Cell cultivation, transfection and FACS for multiplexed genome editing 

Rituximab producing CHO-S cells (generated by a protocol described earlier6) were cultivated, 

transfected for multiplexing and sorted for single cell clones via GFP-signal as previously described7. 

The GFP_2A_Cas9 / sgRNA plasmid ratios are presented in Table S3. To measure transfection 

efficiency, pmaxGFP® vector (Lonza, Basel, Switzerland) transfection was performed. Cells were 

harvested for fluorescence-activated cell sorting (FACS) 48 h after transfection. 

2.3 Sampling for cell pool sequencing 

Cell pools of transfections were sampled as pellets from ~200.000 cells by centrifugation (200 g, 5 

minutes) 48 hours after transfection. A further sample of transfected cell pools was taken 48 hours 

after transfection by generating a cell pool (~200.000 cells) of GFP-positive cells via FACS.  

2.4 Deep sequencing analysis 

Cell pool samples and confluent colonies from 96-well flat-bottom replicate plates were prepared for 

sequencing and analyzed on a MiSeq Benchtop Sequencer (Illumina, San Diego, CA) as described 

previously1. PCR primers are presented in Supporting information, Table S4.  

2.5 Batch cultivation to study cell growth and secretome N-glycan analysis 

Cells were seeded in duplicates at 3.0 x 105 cells/mL in Corning vent cap shake flasks (Sigma-Aldrich, 

St. Louis, MI) in 30 mL CD CHO medium supplemented with 8 mM L-glutamine and 1 µL/mL anti-

clumping agent (Life Technologies). Cells were incubated for seven days in a humidified incubator at 

120 rpm, 37°C and 5% CO2. Cell densities and cell viabilities were determined daily using the 

NucleoCounter NC-250 Cell Counter (ChemoMetec). Additionally rituximab titers were assessed daily 

and a 5 mL N-glycan sample was pooled within duplicates at day 4 for secretome (total secreted host 

cell protein) analysis.  

2.6 Rituximab quantification and secretome N-glycan analysis 

Secretome samples were analyzed for N-glycan structures via a LC-MS as previously described7. 

Rituximab quantification was performed with an Octet RED96 (Pall, Menlo Park, CA) as previously 

described8. 
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2.7 Batch cultivation to study cell growth in L-gln-free medium 

Clones were seeded in duplicates at 3 x 105  cells/mL in 96 half-deepwell plates (CR1496c, 

Enzyscreen, Haarlem, the Netherlands). Cell cultivation and daily determination of cell viability and cell 

density was performed as previously described6,9. For cultivation, CD CHO medium was supplemented 

with 8 mM L-glutamine and 1 µL/mL anti-clumping agent (Life Technologies) or only supplemented 

with 1 µL/mL anti-clumping agent.  

3 Results 

3.1 Indel efficiencies of sgRNAs within sorted and unsorted cell pools 

48 hours after the transfection of GFP_2A_Cas9 and ten sgRNAs GFP-positive cells were bulk sorted 

(~32% of total population). Afterwards, samples of unsorted and GFP-sorted cell pools were analyzed 

for insertions or deletions (indels) in the targeted sequences. The comparison of indel efficiencies for 

each target before and after sorting are presented in Figure 1. Indel efficiency in unsorted cells ranged 

from 0.8% (GLUL) to 38.2% (TSTA3) and was elevated to a range from 1.6% (GLUL) to 80.1% 

(TSTA3) after FACS. By sorting for GFP-positive cells, the frequency of indel generation increased at 

least one-fold for all sgRNAs. Compared to the indel efficiencies in other targets, GLUL indel 

percentage was relatively low whereas sgRNAs targeting BAX, BAK, TSTA3, B4GALT2, B4GALT3 

and B4GALT4 lead to indels in >50% of the sorted cells. 

Figure 1. Indel efficiency within cell pools. The sgRNA indel efficiency for each target before (blue) 
and after (orange) FACS is presented. Values represent the percentage of identified indel sequences 
within the total cell population. 
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3.2 Disruption of targeted genes in single cell clones 

Besides analyzing cell pools, single cell clones were also investigated for gene disruptions. After 

transfection and FACS-based single cell cloning, the target sites of 92 clones were sequenced, 

whereof 20 clones were found to harbour indels in one or more targeted genes (Figure 2 and 

Supporting Information, Table S5). No clone was identified to have an indel in GLUL. However four 

clones that were not able to grow in L-glutamine-free medium were identified, indicating a successful 

disruption of GLUL. The amount of disrupted target genes per clone ranged from one to eight (clone 

68). A total of 53 indels were found in the 20 clones, thereof 34 were out-of-frame (blue) and 19 in-

frame (grey) indels. For BAX, BAK, B4GALT3 and B4GALT4 more out-of-frame than in-frame 

disruptions were identified. Thereof the sgRNA against BAX generated the highest amount of out-of-

frame indels. For B4GALT1 there were no indels found. sgRNAs against TSTA3, B4GALT2, B4GALT5 

and SPPL3 generated more in-frame than out-of-frame indels or no out-of-frame indels at all. We 

selected three clones for further characterization: clone 36 with indels in four targeted genes, clone 68 

in eight targeted genes plus the GLUL disruption, and clone 90 with indels in six targeted genes 

(asterisk clones in Figure 2).  

 

 

Figure 2. Analysis of target gene disruptions. MiSeq analysis identified out-of-frame (blue) and in-
frame (grey) indels in the targeted genes. Assumed gene disruption of GLUL (no growth in L-Gln-free 
medium) is indicated in green. Clones that were selected for further analysis are marked by an 
asterisk. 
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3.3 Growth and productivity of single cell clones 

To investigate whether the multiplexing interfered with cell growth or mAb productivity, selected clones 

with indels, two control clones without any indels (CTR1, CTR2) and the parental cell line were 

cultivated in batch format for seven days. As displayed in Figure 3A, maximum viable cell densities 

(VCD) ranged from 2 x 106 cells/mL (CTR1, CTR2, clone 68) to 6 x 106 cells/mL (clone 36). With 

exception of clone 36 and the parental cell line, all clones maintained their maximum VCD two to four 

days. 

Figure 3. Cell growth and mAb productivity during batch cultivation. (A) Daily viable cell densities and 
cell viabilities. The grey area displays the slow decline in viabilities for clones with indels in BAX and 
BAK1. Targets with identified indels are shown in brackets. Bold target names represent out-of-frame 
indels. (B) Specific mAb productivities qp. Rituximab productivity was determined for each cell line 
during the exponential growth phase and is displayed as pg/cell*day. Error bars indicate range of 
shake flask duplicates. 
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For the parental cell line, CTR1 and CTR2 the cell viabilities declined rapidly after four days of 

cultivation. In contrast, the clones with indels in BAX and BAK (clone 36, 68 and 90) revealed a slow 

decline in cell viabilities between day four and seven (grey area, Fig. 3A). 

After daily quantification of mAb in the culture supernatants, the specific productivity (qp) was 

calculated for each clone during the exponential growth phase (Figure 3B). The assessed qp for both 

control clones was similar to the parental clone (10.88 pg/cell*day) whereas the three clones with gene 

target indels had decreased qp (clone 68: 4.46 pg/cell*day, clone 90: 6.21 pg/cell*day) or lost mAb 

productivity completely (clone 36: 0.05 pg/cell*day). 

3.4 N-glycan analysis of single cell clones 

In order to assess whether the generated indels in the N-glycosylation-related target genes had an 

effect on the N-glycan profile of the cell lines and if the protocol for cell line development (CLD) 

influences overall N-glycosylation, supernatant samples harboring total secreted protein were analyzed 

for N-glycan structures.  

It was shown that the secretome N-glycans of control clones were similar to the counterpart of the 

parental cell line (Supporting Information, Figure S1). The three clones with indels revealed slightly 

less N-glycan heterogeneity, but similar core-fucosylation to the control cell lines as exemplified in the 

direct comparison of annotated N-glycans from CTR1 and clone 68 with indels in BAX, BAK, SPPL3, 

B4GALT2/3/4/5 and TSTA3 (Figure 4). The dominant N-glycan found in all cell lines was the fully 

capped and core-fucosylated bi-antennary A2FS2 structure, followed by the A2FS1 N-glycan.  

42

- Chapter 2 -



Figure 4. N-glycan analysis of secretome. Released N-glycans from total secreted proteins were 
analysed and annotated for CTR1 (no indels) and clone 68 (indels in 8 targeted genes) (SA=sialic 
acid). 
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4 Discussion 

In this study we present CRISPR/Cas9 multiplexing of ten gene targets in CHO cells. The motivation 

for the study was to save time and therefore resources during CLD towards improved cell lines for 

biopharmaceutical production. We explored the feasibility of simultaneous transfection of 11 DNA 

vectors (10 sgRNA and one Cas9-encoding plasmid), high-throughput sequencing of 10 target 

sequences in 92 clones and following characterization of multi-indel clones. 

The average ratio between in-frame : out-of-frame indels of the targeted sequences from all 92 clones 

was as expected close to 1 : 2 (19 : 34). Therefore, by planning multiplexing several gene targets, the 

theoretical amount of clones to screen in order to identify one clone with pure out-of-frame indels can 

be calculated with equation (1) of Figure 5. 

Figure 5. Theoretical determination of clone screening volume via equation (1). The amount of clones 
to screen to identify one clone with exclusively out-of-frame indels (n) is dependent on the average 
indel frequency (x̄), number of targeted genes (t) and uptake rate of all genetic elements by the 
transfected cell (p). For above illustration the transfection efficacy was set to p=1.

Figure 5 highlights the importance of indel frequency and number of chosen target genes, where 

equation (1) enables an estimation of the amount of clones to screen to identify a clone with out-of-

frame disruptions in all targeted genes. Additionally, the increasing plasmid number for transfection 

during the multiplexing is negatively correlated to the probability (p) of cells that successfully took up all 

transfected plasmids. 
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As presented in section 3.1, the event of indel generation can be boosted by sorting for transfected 

cells expressing GFP_2A_Cas9. Using the indel frequencies of the GFP sorted cell pools in this study 

(x̄=0.446) and p = 1, a number of 2.04 x 105 cells needs to be sequenced to hypothetically identify one 

clone with exclusively out-of-frame indels in all ten targeted genes. Without GFP-sorting (x̄=0.173) this 

number increases to 2.66 x 109 cells. If, again hypothetically, the indel frequency could be increased to 

100% for each sgRNA (x̄=1.0) the amount of clones to screen to identify a 10x KO clone with 

exclusively out-of-frame indels would drop to only 64 (Figure 5).  

However 100% indel frequencies are not realistic yet. To successfully generate cell lines with out-of 

frame indels in up to ten targets we suggest a step-wise approach. For instance, one possible strategy 

is 3 rounds of multiplexing, where 3 - 5 genes are targeted in each round. The number of clones to 

screen would then decrease from 2.04 x 105 (10 targets) to 455 (5 targets) or 30 (3 targets) per round. 

Sakuma et al. reported that efficient indel generation during multiplexing seven gene targets can be 

enhanced by encoding all sgRNAs with the Cas9 protein on a single vector10. However the study did 

not distinguish between in-frame and out-of-frame indels or generate and characterize single cell 

clones. As published recently, easily customizable, reliable and cost-effective protocols for the 

generation of  vectors with high numbers of sgRNAs are available for multiplexing approaches11,12. 

Also, the frequency of indel generation in CHO can be doubled by increasing the expression levels of 

both, Cas9 and sgRNA13. 

The importance of correct sequence annotation and information for the optimal design of sgRNAs is 

highlighted in this study by the example of targeting the GLUL gene. Although we could not confirm the 

presence of indels in the targeted GLUL sequence, we identified clones with L-Gln auxotrophy. 

Therefore we suggest that the designed sgRNA generated a disruption in an unannotated but 

expressed GLUL gene variant, whereas the originally targeted GLUL sequence might actually be a 

pseudogene. 

In our study, the engineered clones were found to have decreased N-glycan heterogeneity and lower 

mAb productivity than the parental cell line. Also, the cell growth of all engineered clones was different 

to the parental cell line. However it is challenging to determine whether a disrupted gene sequence 

with in-frame indel leads to a non-functional protein - and therefore to a certain phenotype - or not.  

The two control clones without indels in the targeted genes had lower max. VCD than the parental cell 

line, but did not reveal altered N-glycosylation or qp. Unlike N-glycosylation, we suggest that cell 

growth can be affected by the presented CLD protocol. To not compromise qp due to possibly unstable 
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transgene integration, cell engineering by multiplexing should be performed prior integrating the gene 

of interest and not vice versa.  

We conclude that simultaneous CRISPR/Cas9 multiplexing of a high number of CHO target genes can 

be a time saving method. However the amount of clones to screen increases exponentially with the 

number of targeted genes. The generation of undesired in-frame indels decreases overall efficiency, 

whereas improved sgRNA (plasmid) design could keep screening efforts in a practical range. 

Abbreviations: 
B4GALT, β-1, 4-Galactosyltransferase; BAK, BCL2 Antagonist/Killer1; BAX, BCL2 Associated X; 
Cas9, CRISPR associated protein 9; CHO, chinese hamster ovary; CLD, cell line development; 
CRISPR, clustered regularly interspaced short palindromic repeats; FACS, fluorescence-activated cell 
sorting; GFP, green fluorescent protein; GlcNAc, N-Acetylglucosamine; GLUL, glutamate-ammonia 
ligase; indel, gene insertion/deletion; LC-MS, liquid chromatography-mass spectrometry; L-Gln, L-
glutamine; mAb, monoclonal antibody; qp, cell specific productivity; sgRNA, single guide RNA; 
SPPL3, signal peptide peptidase like 3; TSTA3, tissue specific transplantation antigen P35B; VCD, 
viable cell density 
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CHAPTER 3 

Decreasing CHO N-glycan 
galactosylation 
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A major advantage of expressing therapeutic proteins in CHO cells is their capability to 

produce complex type N-glycosylation similar to humans. However, the N-glycan 

structures of CHO cells are highly heterogeneous leading to inconsistent product quality. 

The disruption of N-glycosyltransferases can decrease this heterogeneity and researchers 

can design certain N-glycan profiles which potentially have beneficial effects on efficacy or 

pharmacokinetics of therapeutic proteins. In this chapter we describe the disruption of 

beta-1,4-galactosyltransferase isoforms by CRISPR/Cas9 multiplexing to produce non-

galactosylated glycoproteins and to elucidate the contribution of each isoform to CHO-S N-

glycan galactosylation. 
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CRISPR/Cas9-Multiplexed Editing of Chinese Hamster
Ovary B4Gal-T1, 2, 3, and 4 Tailors N-Glycan Profiles of
Therapeutics and Secreted Host Cell Proteins

Thomas Amann, Anders Holmgaard Hansen,* Stefan Kol, Gyun Min Lee,
Mikael Rørdam Andersen, and Helene Faustrup Kildegaard*

In production of recombinant proteins for biopharmaceuticals, N-glycosyla-
tion is often important for protein efficacy and patient safety. IgG with
agalactosylated (G0)-N-glycans can improve the activation of the lectin-
binding complement system and be advantageous in the therapy of lupus
and virus diseases. In this study, the authors aimed to engineer CHO-S cells
for the production of proteins with G0-N-glycans by targeting B4Gal-T
isoform genes with CRISPR/Cas9. Indel mutations in genes encoding B4Gal-
T1, -T2, and -T3 with and without a disrupted B4Gal-T4 sequence resulted in
only �1% galactosylated N-glycans on total secreted proteins of 3-4 clones
per genotype. The authors revealed that B4Gal-T4 is not active in N-glycan
galactosylation in CHO-S cells. In the triple-KO clones, transiently expressed
erythropoietin (EPO) and rituximab harbored only �6% and �3% galactosy-
lated N-glycans, respectively. However, simultaneous disruption of B4Gal-T1
and -T3 may decrease cell growth. Altogether, the authors present the
advantage of analyzing total secreted protein N-glycans after disrupting
galactosyltransferases, followed by expressing recombinant proteins in
selected clones with desired N-glycan profiles at a later stage. Furthermore,
the authors provide a cell platform that prevalently glycosylates proteins with
G0-N-glycans to further study the impact of agalactosylation on different in
vitro and in vivo functions of recombinant proteins.

1. Introduction

Chinese hamster ovary (CHO)-derived cells
are the major workhorses within mamma-
lian cell lines and represent the cell
platform in which >50% of the marketed
recombinant proteins are produced.[1]

Thereof, recombinant monoclonal antibod-
ies (mAbs) are the main product subclass
and are utilized for the treatment of cancer
and various inflammatory diseases.[2] As a
result of post-translational protein process-
ing, mAbs harbor two predominantly bi-
antennary N-glycans, one on each heavy
chain at Asparagine (Asn) 297. In contrast to
mAbs, erythropoietin (EPO) has three
N-glycosylation sites occupied by predomi-
nantly tri- and tetra-antennary structures.[3]

In general, N-glycosylation can impact
protein folding, immuneregulation, cellular
homeostasis and the biological half-life of
proteins.[4,5] Within mAbs, the fragment
crystallizable (Fc)N-glycans atAsn297 have a
strong influence on anti-inflammatory prop-
erties, antibody-dependent cell-mediated
cytotoxicity and complement-dependent
cytotoxicity.[6]

The heterogeneous N-glycan profile of
glycoproteins produced in CHO is one of the main factors
that causes mAb heterogeneity and can be further optimized
regarding core-fucosylation, galactosylation, antennarity, and
terminal capping by sialic acids. Rituximab is an immunoglob-
ulin G (IgG) 1-class molecule, one of the recombinant
glycoproteins produced in CHO, and exceeds annual revenues
of USD 7 billion.[7] Rituximab targets the B-cell surface antigen
CD20 in B-cell lymphoma and is predominantly N-glycosylated
by A2FG0 and A2FG1 structures when produced in non-
glycoengineered CHO cells.[8] Since several studies revealed
nonfucosylated IgGs have significantly higher binding affinity
for the Fc-gamma receptor IIIa (FcγRIIIa) than fucosylated IgG
versions,[9,10] different approaches successfully removed the
core-fucose by knockout of alpha-(1,6)-fucosyltransferase (FUT8)
or tissue-specific transplantation antigen P35B (TSTA3) in IgG-
expressing CHO cell lines.[11–14]

Additionally, agalactosylated IgG1 variants with terminal
N-Acetylglucosamine (GlcNAc) (referred to as G0 glycoforms)
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can increase the binding to FcRIIIa[15] and are accessible for
the mannose-binding protein. They can therefore promote
activation of the lectin-binding complement system[16] without
impacting in vivo clearance.[17–19] Furthermore, HIV patients
with high viral inhibition displayed an increased proportion of
agalactosylated N-glycans on global serum IgG, suggesting that
agalactosylated IgG variants may have antiviral activity.[20]

Interestingly, lupus patients showed improved disease symp-
toms after treatment with agalactosylated antibodies.[21] These
G0-IgG variants can be obtained by sequential treatment of
wild type (WT)-IgG with neuraminidase and galactosidase or by
supplementing the cultivationmediumwith galactose analogues
to block cellular B4Gal-Ts.[22] Nevertheless, fewer cell engineer-
ing attempts were initiated to produce G0-IgG1 compared to
engineering nonfucosylated IgG1 variants.

As the CHO genome sequence became publicly available,[23]

CHO cell engineering is no longer performed in a “black box,”
which shortens cell line development and empowers a targeted
approach for the engineering of a G0 CHO cell line. The classes
of glycosyltransferases are made of homologous gene families,
where the class of β-1,4-galactosyltransferases (B4GalTs) consists
of seven members, B4Gal-T1–T7, which all transfer galactose
from uridine diphosphate galactose (UDP-Gal) to GlcNAc and
GlcNAc-terminated oligosaccharides (EC 2.4.1.38).[24,25] B4Gal-
T5 and -T6 are described to mainly function in O-glycosyla-
tion,[26,27] whereas B4Gal-T7 transfers UDP-Gal within glycos-
aminoglycan biosynthesis and, therefore, is not involved in the
N-glycosylation of proteins.[28,29] A further study indicated that
B4Gal-T1, -T2, -T3, and -T4 perform N-glycan galactosylation
more efficiently than B4Gal-T5 and -T6 and suggested different
branch preferences for the family members of β-1,4-galactosyl-
transferases.[30] In addition, B4Gal-T4 is reported to also be
active in the galactosylation of mucin-type core 2 branching in
the O-glycosylation pathway.[31] Furthermore, B4Gal-T1-KO
mutants are described to have dramatically reduced galactosy-
lation on secreted host cell proteins (secretome) N-glycans and
reduced growth ofmice.[27,32] In a previous study performed with
CHO-K1 cells, disruption of B4Gal-T1, -T2, and -T3 led to almost
fully agalactosylated EPO and rituximab.[33] However, the impact
of B4Gal-T disruptions on cell growth of more than one clone
was not performed. The CHO-K1 study included single-KO of
the B4Gal-T isoforms targeted in our work. In contrast, we aimed
to study the N-glycosylation activity of B4Gal-T1, -T2, -T3, and
-T4 after combinatorial KO in the industrially relevant CHO-S
cell line. Especially, the role of B4Gal-T2 and -T4 in CHO-S
and the effect of B4Gal-T indels on cell growth, both with respect
to clonal variation, were the driving motives of this work.
Therefore, we applied clustered regularly interspaced short
palindromic repeats/CRISPR-associated protein 9 (CRISPR/
Cas9) to multiplex B4Gal-T disruptions in CHO-S cells. Cell
growth and protein N-glycosylation profiles of multiple clones
for each triple- and quadruple-KO combinations were analyzed
to additionally examine clonal variation. N-glycosylation analysis
of total secreted proteins, as well as transiently expressed
rituximab and EPO (representing dissimilar N-glycan profiles),
in the B4Gal-T edited cell lines was performed. The analysis
demonstrated that N-glycans can be tailored for a greater variety
of secreted glycoproteins, as represented by more than 250
proteins within the CHO-S secretome[34] in addition to EPO and

rituximab. With this, we found that screening the secretome
N-glycans of our engineered clones is a promising strategy
toward the expression of rituximab and EPO with G0 N-glycans
in selected clones.

2. Experimental Section

2.1. sgRNA and GFP_2A_Cas9 Plasmid Design

GFP_2A_Cas9 and single-guide RNA (sgRNA) plasmids were
constructed as previously described.[13] The sgRNA target design
for B4Gal-T1, B4Gal-T2, B4Gal-T3, and B4Gal-T4 was performed
using CRISPy.[35] The target sites for the mentioned genes and
the oligos for sgRNA cloning are listed in Tables S1 and S2,
Supporting Information, respectively.

2.2. Cell Cultivation and Transfection for Multiplexed
Genome Editing

CHO-S suspension cells (Life Technologies, Carlsbad, CA) were
cultivated in a CD CHO medium supplemented with 8mM
L-glutamine and 1mLmL�1 anticlumping agent (Life Technol-
ogies). Cells were incubated in a humidified incubator at
120 rpm, 37 �C and 5% CO2. Cell passaging was conducted
every 2–3 days at 3� 105 cellsmL�1 after measuring viable
cell densities (VCDs) and viabilities with the NucleoCounter
NC-200 Cell Counter (ChemoMetec, Allerod, Denmark). One
day prior transfection with CRISPR reagents, the anticlumping
agent was removed by centrifugation and 5 to 6� 105

cellsmL�1 were seeded in a six well plate (BD Biosciences,
San Jose, CA) for each transfection. At the day of transfection,
each sample was seeded at 1� 106 cellsmL�1, and a total DNA
load of 3.5mg was transfected with FuGENE

1

HD transfection
reagent (Promega, Madison, WI) and OptiPRO SFM medium
(Life Technologies), according to the manufacturer’s recom-
mendations. The GFP_2A_Cas9/sgRNAplasmid ratios for each
sample are presented in Table S3, Supporting Information. To
measure transfection efficiency, pmaxGFP

1

vector (Lonza,
Basel, Switzerland) transfection was performed. Cells were
harvested for fluorescence-activated cell sorting (FACS) 48 h
after transfection.

2.3. Single-Cell Cloning Using FACS

Before FACS, cells were filtered through a 40mm cell strainer
into a FACS-compatible tube.

Operating a FACSJazz (BD Biosciences), single fluorescent-
positive cells were sorted into 384-well plates (Corning, New York,
NY) already containing 30mL CD CHO medium supplemented
with 8mM L-glutamine, 1.5% HEPES buffer and 1% Antibiotic-
Antimycotic (Gibco, Waltham, MA) per well. For cell sorting,
fluorescent-positive cell populations were gated based on
nontransfected WT CHO-S cells. Two weeks after cell sorting
the clones were moved to 96-well flat-bottom plates (BD
Biosciences) and expanded for deep sequencing analysis and
batch cultivation.
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2.4. Deep Sequencing Analysis

Confluent colonies from 96-well flat-bottom replicate plates were
harvested for genomic DNA extraction. DNA extraction was
performed using QuickExtract DNA extraction solution (Epi-
centre, Illumina, Madison, WI) according to the manufacturer’s
instructions. The library preparation was based on Illumina 16S
Metagenomic Sequencing Library Preparation, and deep
sequencing was carried out on a MiSeq Benchtop Sequencer
(Illumina, San Diego, CA). The protocol for amplifying the
targeted genomic sequences, amplicon purification, adapter-
PCR and following quality analysis was based on a previously
published work.[13] PCR primers are presented in Table S4,
Supporting Information.

2.5. Batch Cultivation to Study Cell Growth and Secretome
N-Glycans

For batch cultivation and secretome analysis, cells were seeded at
3.0� 105 cellsmL�1 in Corning vent cap shake flasks (Sigma–
Aldrich, St. Louis, MI) as duplicates in 30mL CD CHOmedium
supplemented with 8mM L-glutamine and 1mLmL�1 anti-
clumping agent (Life Technologies). Cells were incubated in a
humidified incubator at 120 rpm, 37 �C and 5% CO2. Cell
densities and viabilities were determined once per day using the
NucleoCounter NC-250 Cell Counter (ChemoMetec). Based on
cell densities from days 0 to 7 we calculated the integral of viable
cells (IVC). The IVC was used to statistically determine
differences in cell growth between the generated clones. Using
a two-tailed, unpaired t-test with Prism7 software, we grouped
the clones into two sets. One set with (n¼ 16) and one set
without combinatorial disruption of B4Gal-T1 and -T3 (n¼ 16).
Combining all IVC values of the clones in each set, we
determined if a set of clones had a significant change of IVC
compared to CHO-S WT and WT ctr cells. Secretome sample
volume was calculated to harbor 20� 106 cells and harvested
5 days after seeding to be pooled within biological replicates.

2.6. Batch Cultivation for Transient Rituximab/EPO
Transfection and Rituximab/EPO N-Glycan Analysis

For transient expression of rituximab and EPO, cells were seeded
in Corning vent cap shake flasks (Sigma–Aldrich) as duplicates
with cell densities �1� 106 cellsmL�1 in 60mL CD CHO
medium supplemented with 8mM L-glutamine (Life Technolo-
gies). Cells were incubated in a humidified incubator at 120 rpm,
37 �C and 5% CO2 and transfected with 75mg of rituximab
or EPO encoding plasmid for each flask using FreeStyleTM

MAX reagent together with OptiPRO SFM medium (Life
Technologies) according to the manufacturer’s recommenda-
tions. A total of 1mLmL�1 anticlumping agent was added 24 h
after transfection. pmaxGFP

1

vector (Lonza) transfection was
performed to measure transfection efficiencies. Cell densities
and viabilities were determined once per day using the
NucleoCounter NC-250 Cell Counter (ChemoMetec). To purify
rituximab and EPO, the supernatants of the transfected clones

were harvested 3 days after transfection and pooled within
duplicates.

2.7. Rituximab and EPO Purification

For rituximab purification, supernatant samples were centri-
fuged (1000 g, 5min, 4�C) and afterwards filtered (�0.22mm
pore size) to remove cells and cell debris. Rituximab was purified
by protein A affinity chromatography (MabSelect, GE Health-
care, Uppsala, Sweden) according to the manufacturer’s
protocol. Human protein C4 (HPC4)-tagged EPO was purified
from supernatants using Anti-Protein C Affinity Matrix from
Roche (Basel, Switzerland, Cat. Nr. 11815024001) as per the
instructions of the manufacturer.

2.8. N-Glycan Analysis

Sample preparation for N-glycan analysis was performed with
GlycoWorks RapiFluor-MS N-Glycan Kit (Waters, Milford, MA)
according to the manufacturer’s instructions. A total of 12mg
purified protein or 12mL of 10� concentrated (Amicon Ultra-15,
Merck, Darmstadt, Germany) secretome sample were used for
each sample. Labeled N-Glycans were analyzed by a LC-MS
system using a Thermo Ultimate 3000 HPLC with fluorescence
detector coupled online to a Thermo Velos Pro Iontrap MS, as
described previously with minor modifications.[13] Separation
gradient was 30% to 43% buffer, and MS was run in positive
mode. The amount ofN-Glycan wasmeasured by integrating the
areas under the normalized fluorescence spectrum peaks with
Thermo Xcalibur software (Thermo Fisher Scientific, Waltham,
MA) giving the normalized, relative amount of the glycans.

3. Results

3.1. Generation of Engineered CHO-S Cell Lines With
Combinations of Indels in Multiple B4Gal-T Genes

To investigate the exact impact of B4Gal-T1, -T2, -T3, and -T4-KO
on N-glycan galactosylation, we aimed to generate clones with
insertion or deletion (indel) mutations in several of the genes. To
get these combinations in a minimal number of operations, we
co-transfected Cas9 (GFP_2A_Cas9) with sgRNAs against
B4Gal-T1, -T2, and -T3 in the first transfection (Table S3,
Supporting Information). After single-cell cloning, we carried
out deep sequencing to identify clones with exclusively out-of-
frame indels in the targeted sequences. In a second round of
transfections, we aimed to generate clones with indels in
additional B4Gal-T target genes. Therefore we co-transfected
GFP_2A_Cas9 with sgRNAs against B4Gal-T1 and -T4 into a
clone with confirmed indels in B4Gal-T2 and -T3 (Table 1). In our
study, a total of 109 potential deletion clones were deep
sequenced for genomic indels in the targeted regions (Table S5,
Supporting Information). Thereof, clones with in-frame indel or
indel frequency <98% were discarded. We expanded clear
single- and multi-KO clones of 1–4 targets. Next, we isolated
multiple independent clones for each genotype to study true
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biological replicates of the phenotypes, in total 17 clones
(Table 1). Two control clones (WT ctr and T2-3-KO), which
showed no additional insertion or deletion after each round of
transfection, were additionally selected to investigate the impact
of transfection and subcloning on growth and N-glycan profile.

3.2. Effect on Growth From Different B4Gal-T-KOs and
Indel Combinations

The overall aim of our study is to provide a CHO-S platform to
produce recombinant proteins with agalactosylated N-glycans.
Engineering cells toward G0-glycans leads to altered N-glycans
on the recombinant protein and also on total host cell
glycoproteins. As cell growth performance is a substantial
factor for industrial protein production platforms, we first
evaluated whether decreasedN-glycan galactosylation influences
CHO cell growth. During shake flask batch experiment, the WT
ctr clone was identified to have similar growth and viability
compared to CHO-SWT (Figure 1). Double-KO of B4Gal-T1 and
-T3 (T1-3-KO) indicated decreased growth (Figure 1A), whereas
the two clones with frame-shifts in B4Gal-T3 were not
influenced in cell growth (Figure 1A). Compared to CHO-S
WTandWTctr, T2-3-KO clone revealed similar growth and T2-3-
KO ctr clone exhibited decreased growth (Figure 1B). The four
triple-KO clones with frame-shifts in B4Gal-T1, -T2, and -T3
(T1-2-3-KO) and the three T1-2-3-4-KO mutants had decreased

growth compared to CHO-SWT (Figure 1B and C). For the three
T2-3-4-KO and three T1-2-KO clones, we observed a high
diversity in growth between the clones (Figure 1D and E). We
additionally calculated the IVC for the different clones over the
7 days of the batch experiment. Compared to CHO-SWTandWT
ctr, averages of clone groups without combinatorial disruption of
B4Gal-T1 and -T3 had no change in IVC (Figure S4, Supporting
Information). In contrast, the IVC from clones harboring a
combination of disrupted B4Gal-T1 and -T3 (T1-2-3-KO, T1-3-
KO, T1-2-3-4-KO) was slightly decreased.

3.3. Effects of B4Gal-T-KOs on Secretome N-Glycan Profiles

To examine the contribution of the targeted B4Gal-Ts on
galactosylation of the different N-glycan branches, we analyzed
the remaining levels ofN-glycan galactosylation on total secreted
proteins in 17 clones with combinatorial disruption of B4Gal-Ts.
As presented in Figure S1, Supporting Information, the complex
bi-antennary di-sialylated N-glycan structure (A2FG2S2) was the
major structure within the CHO-S WT secretome. Notably, in
CHO-S WT cells, only one minor peak (0.7%) of G0-N-glycans
could be annotated (Figure S1, Supporting Information). T3-KO
A, T2-3-KO, and T2-3-4-KO clones showed a N-glycan pattern
with minor differences compared to CHO-S WT, and G0
structures were only present in T2-3-KO and T2-3-4-KO clones
(Figure 2 and Figure S1, Supporting Information). In contrast,

Table 1. Overview of sgRNA/Cas9 transfections and generated cell lines.

Target with indel size [bp]

Parental cell line Clone name Transfected with sgRNA against target B4Gal-T1 B4Gal-T2 B4Gal-T3 B4Gal-T4

CHO-S WT WT ctr B4Gal-T1,-T2,-T3

T2-3-KO B4Gal-T1,-T2,-T3 þ1 �5

T1-3-KO B4Gal-T1,-T3 þ1 þ1

T3-KO A B4Gal-T1,-T2,-T3 þ1

T3-KO B B4Gal-T1,-T3 þ1/�10

T1-2-KO A B4Gal-T1, -T2 þ1 þ1

T1-2-KO B B4Gal-T1, -T2 þ1 �19

T1-2-KO C B4Gal-T1, -T2 þ1 þ1

T1-2-3-KO A B4Gal-T1,-T2,-T3 þ1 �2/�1 þ1

T2-3 KO T1-2-3-KO B B4Gal-T1 þ1 þ1 �5

T1-2-3-KO C B4Gal-T1 þ1 þ1 �5

T1-2-3-KO D B4GalT-T1 þ1 þ1 �5

T1-2-3-4-KO B B4Gal-T1, -T4 þ1 þ1 �5 þ1

T1-2-3-4-KO E B4Gal-T1, -T4 þ2 þ1 �5 �1

T1-2-3-4-KO H B4Gal-T1, -T4 �1 þ1 �5 �1

T2-3-4-KO H B4Gal-T1, -T4 þ1 �5 �13

T2-3-4-KO K B4Gal-T1, -T4 þ1 �5 �1

T2-3-4-KO C B4Gal-T1, -T4 þ1 �5 �13

T2-3-KO ctr B4Gal-T1 þ1 �5

The first round of transfections was performed with a CHO-SWT. The T2-3-KO clone was used as a parental cell line for the second transfection round. Values are generated
indels in bp for each target confirmed by deep sequencing.
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the T1-3-KO clone exhibited a total of �65% G0 structures and
�10% G1 N-glycans (Figure 2). Indels in B4Gal-T1 and -T2
resulted in the absence of G4 forms, reduced G3 and G2 forms,
and increased G1 and G0 proportions (Figure 2). Additionally,
we could only annotate �1% galactosylated N-glycan structures
in the secretomes of T1-2-3-KO and T1-2-3-4-KO clones
(Figure 2). The major N-glycan structures of T1-2-3-KO and
T1-2-3-4-KO clones were A2FG0, A3FG0 and A4FG0 (Figure S1,
Supporting Information). Furthermore, the additional B4Gal-T4
indel in T1-2-3-4-KO clones did not increase G0 proportions or
eliminate G1 N-glycans when compared to T1-2-3-KO cell lines
(Figure 2). Altogether, disruption of B4Gal-T2 in conjunction
with B4Gal-T1 and -T3 decreased the galactosylated secretome
N-glycan proportion from �10% (T1-3-KO) down to �1% (T1-2-
3-KOs) with A2FG0 as the dominating N-glycan structure
(Figure S1, Supporting Information). The role of B4Gal-T2 in
N-glycan galactosylation has previously not been studied in exact

terms. To address this, we compared sets of two clones differing
in their genotype by the KO of B4Gal-T2 (Figure 2). The
occurrence of agalactosylation without (clone T3-KO A and T1-3-
KO) and with additional KO of B4Gal-T2 (clones T1-2-3-KO, T2-
3-KO, and T2-3-KO ctr) was analyzed. We conclude that the
additional disruption of B4Gal-T2 stacked on T3-KO or T1-3-KO
increased the proportion of G0-N-glycans by�3–10% (Figure 2).

3.4. Tailored Rituximab and EPO N-Glycosylation After
B4Gal-T-Double and Triple-KOs

To investigate if engineered secretome N-glycans will also be
represented on selected therapeutic proteins, we transiently
expressed rituximab and EPO in CHO-S WT and KO clones T3-
KO A, T2-3-KO, T1-3-KO, and T1-2-3-KO A and analyzed the
resulting N-glycan structures upon purification. CHO-S WT,

Figure 1. Growth profiles of expanded clones in batch cultivation. A total of 30mL volume batch cultivation with VCDs for the duration of 7 days after
sampling every 24 h (n¼ 2). Seeding was performed at 3.0� 105 cellsmL�1, and error bars indicate range of shake flask duplicates. A) T3-KO & T1-3-KO;
B) T1-2-3-KOs; C) T1-2-3-4-KOs; D) T2-3-KOs; E) T1-2-KOs.
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clone T3-KO A, and T2-3-KO displayed comparable rituximab
N-glycan profiles with G0 and G1 as prevalent structures with
both �40% of total rituximab N-glycans (Figure 3A and
Figure S2, Supporting Information). In contrast, rituximab
purified from clones T1-2-3-KO A and T1-3-KO clones was
mostly N-glycosylated by bi-antennary G0 structures. As
presented in Figure 3B, double-KO of B4Gal-T1 and -T3 (T1-
3-KO) resulted in higher G0-N-glycan proportions on rituximab
(�84%) than in clone T1-2-3-KO A (�68%). In both clones, the
bi-antennary, G0-galactosylated A2FG0 was clearly the main
structure. However, HM, A2G0 and A2FG1 N-glycans were also
annotated, where T1-2-3-KO A revealed higher HM proportions
than other cell lines. Cell growth after rituximab transfection was
comparable between CHO-S WT, WTctr, T3-KO A, and T1-3-KO
(Figure S2, Supporting Information), whereas clones T2-3-KO
and T1-2-3-KO A revealed increased viable cell concentrations on
day 3. For transiently expressed EPO, the N-glycan profiles of
CHO-S WT, T3-KO A, and T2-3-KO are similar where annotated
N-glycan structures predominantly harbor �4 galactose resi-
dues; however, G0 forms are not present in EPO from CHO-S
WT (Figure 3C and Figure S3, Supporting Information). In
contrast, double-KO of B4Gal-T1 and -T3 resulted in increased
G0 proportions (�72%), whereas G3- and G4-glycans could not
be identified. Analyzing N-glycan structures of EPO from the
triple-KO clone T1-2-3-KO A, we could only annotate agalactosy-
lated and mono-galactosylated N-glycans (Figure S3, Supporting
Information). Overall, disruption of B4Gal-T1 and -T3 with or
without additional disruption of B4Gal-T2 resulted in rituximab
with �2–3% galactosylated N-glycans. Single disruption of

B4Gal-T3 or disruption of both B4Gal-T2 and
-T3, did not change rituximab N-glycosylation.
However, disruption of B4Gal-T2 in addition
to indels in B4Gal-T1 and -T3 increased the G0
N-glycan proportion of transiently expressed
EPO from �72% to �91%.

4. Discussion

Targeting multiple genes in one transfection
with CRISPR/Cas9 is a time-saving method to
generate clones with different indel combina-
tions in several genes.[13] However, clones
often have in-frame indels, which may not
disrupt the gene(s).[36] First, we co-transfected
with sgRNAs against a combination of B4Gal-
T1, -T2, and -T3. In a second round of
transfection, we built up triple-KO (T1-2-3-
KO and T2-3-4-KO) and quadruple KO clones
(T1-2-3-4-KO) based on transfections of the
T2-3-KO cell line. Although it is faster, a
limitation of this multiplexing method is that
not all desired KO combinations might appear
after deep sequencing of single-cell clones. An
alternative approach would be to use two
sgRNAs per target to remove major parts of
target DNA sequences from the genome. The
double-cut approach is in general less efficient
than single cut and furthermore complicates

multiplexing. However, in-frame indels become less of a
concern.[37]

The effects of B4Gal-T disruptions on cell growth and the
glycosylation of total secreted proteins have to our knowledge not
been studied in details previously. In a previous study, cell
growth was investigated for one clone with a combinatorial
disruption of B4Gal-T1 and FUT8.[33] Here, we aimed to assess
the impact of B4Gal-T indels on cell growth and N-glycosylation
in groups of clones with the same combination of indels to
additionally address clonal variation. After disrupting the four
targets, we observed that clones with indels in B4Gal-T1 and -T3
have decreased IVC when compared to CHO-S WT and WT ctr
(Figure 1 and Figure S4, Supporting Information). The reduced
IVC in T1-3-KO, T1-2-3-KO, and T1-2-3-4-KO could be associated
to the highG0-N-glycan proportions of their secretome (Figure 2)
or be linked to clonal variation, which is known to be challenging
when working with CHO cells.[38] However, glycosylation plays
a main role in cell–cell communication via, for example,
endocytosis, receptor activation, and cell adhesion,[39] and
glycosylation engineering, therefore, might impact cultivation
performance.We also report heterogeneous cell growth of clones
within the generated indel combination groups. This might also
be a result of clonal variation after subcloning or due to off-target
effects. While subcloning did not influence growth of the WTctr
clone, subcloning of T2-3-KO lead to decreased growth of the
T2-3-KO ctr (Figure 1).

We investigated if disruption of B4Gal-T1, -T2, and -T3 in
CHO-S cells is sufficient to produce predominantly agalactosy-
lated proteins and if additional disruption of B4Gal-T4 is of any

Figure 2. Secretome N-glycan profile of generated B4Gal-T-KO clones. N-glycan secretome
analysis from batch cultivation of parental cell lines and KO cell lines harvested after 5 days of
cultivation and normalized to area under the curve (AUC) of total agalactosylated (G0), mono-
galactosylated (G1), bi-galactosylated (G2), tri-galactosylated (G3), tetra-galactosylated (G4),
and high-mannose (HM) N-glycan peaks per cell line. Increase of G0-proportion is given in %
after additional B4Gal-T2-KO in T2-3-KO and T1-2-3-KO compared to T3-KO A and T1-3-KO,
respectively. Where present, error bars indicate SD of three clones (T1-2-3-4 KO, T2-3-4-KO, and
T1-2-KO) or four clones (T1-2-3-KO).
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benefit for decreased galactosylation. In contrast to a previous
study, which suggested B4Gal-T1–4 to all be active in N-glycan
galactosylation,[30] our results indicate that B4Gal-T1, -T2, and
-T3 are the most active B4Gal-Ts in the N-glycosylation pathway
of CHO-S cells and that B4Gal-T4 has very little or no
contribution to galactosylation of N-glycans in CHO-S cells.
The lack of N-glycosylation activity of B4Gal-T4 in our work
supports another study where B4Gal-T4 was reported to be
active in the galactosylation of mucin-type core 2 branching in
the O-glycosylation pathway.[31] Furthermore, B4Gal-T5, -T6,
and -T7 (and potentially unknown B4Gal-Transferases) in sum
contribute only up to �3% N-glycan galactosylation of the
secretome, as seen in Figure 2. Our results indicate that
subcloning had no impact on secretome N-glycosylation as the
WT ctr and T2-3-KO ctr clones showed comparable N-glycan
structures to their parental cell lines in the batch cultivation
(Figure 2).

As the T2-3-KO clone still produced G1, G2, G3, and G4
structures and all KO cell lines with indels in B4Gal-T1 lack G4
N-glycans, B4Gal-T1 is very likely capable of transferring
galactose to all four branches. Therefore, we suggest that
B4Gal-T1 is the most active N-glycan processing B4Gal-Twithin
the family of β-1,4-galactosyltransferases of CHO-S cells, which
is in line with previous work in another CHO cell line.[33] We
expected to reveal branch specificities for all four targeted B4Gal-
Ts. Due to low galactosylation activities of B4Gal-T2, -T3, and -T4,
we can only conclude that B4Gal-T1 can galactosylate all four
antennas (Figure 2) and that its branch preference needs to be
explored further.

Moreover, we analyzed that B4Gal-T2 activity contributes to
�3–10% of N-glycan galactosylation (Figure 2). Since single
B4Gal-T3-KO did not decrease galactosylation (Figure 2), we
suggest that B4Gal-T3 has only a minor role in CHO-S
N-glycosylation or that its disrupted N-glycan transferase

Figure 3. Rituximab and EPO N-glycosylation profiles in WT and B4Gal-T KO cell lines after transient transfection. A) Comparison of rituximab
N-glycans purified out of pooled supernatants within shake flask duplicates from CHO-SWT, T3-KO A, T2-3-KO, T1-2-3-KO A, and T1-3-KO withN-glycan
proportions of agalactosylated (G0), mono-galactosylated (G1), bi-galactosylated (G2), and high-mannose structures (HM) normalized to AUC of total
N-glycan peaks per clone. B) Detailed N-glycan profiles of rituximab purified out of pooled supernatants within shake flask duplicates from T1-2-3-KO A
(orange line) and T1-3-KO (black line) after HPLC histogram annotation via MS. C) Comparison of EPO N-glycans purified out of pooled supernatants
within shake flask duplicates from CHO-S WT, T3-KO A, T2-3-KO, T1-2-3-KO A, and T1-3-KO with N-glycan proportions of agalactosylated (G0), mono-
(G1), bi- (G2), tri- (G3) and greater or equal tetra-galactosylated structures (�G4) normalized to AUC of total N-glycan peaks per clone. D) Detailed
N-glycan profile of EPO purified out of pooled supernatants within shake flask duplicates from T1-2-3-KO A.
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function can be compensated by B4Gal-T1 and -T2 activity in the
T3-KO clone.

The remaining level of rituximab galactosylation of the
CHO-S-derived clone T1-3-KO (�2–3%) is comparable, yet
slightly higher to another study where decreased rituximab
galactosylation (�1%) was achieved by knocking out B4Gal-T1
and -T3 in CHO-K1-derived cell lines.[33] This difference in
remaining N-glycan galactosylation could be due to differences
in the N-glycan pathways of the cell lines used (CHO-S versus
CHO-K1)[33] or due to clonal variation. Within our triple-KO cell
line T1-2-3-KO A, we also noticed a significant amount of high-
mannose (HM) structures on transiently expressed rituximab
(Figure 3A and B). HM structures are a critical quality attribute
within biopharmaceutical protein production[40] and can
accumulate during cell culture performance. Process design
and genetic engineering could be two possibilities to overcome
accumulated HM structures, which might represent proteins
accumulated in the Golgi-situated N-glycan machinery after
disrupting Golgi-residing B4Gal-T1, -T2, and -T3. This
disruption might cause increased traffic and residence time
of secretome proteins in the Golgi lumen without being further
processed by glycosyltransferases. Recent studies displayed
increased processing of N-glycans after overexpression of
Mgat4 and Mgat5, which could result in lower HM proportions
on glycoproteins.[41]

For glycoproteins harboring tri- or tetra-antennary
N-glycans, as is the case for EPO, KO of B4Gal-T1 and -T3
is not sufficient to produce mainly agalactosylated glycopro-
teins (Figure 3B with �20% EPO galactosylation in T1-3-KO).
In comparison, rituximab expressed in clone T1-3-KO resulted
in only �3% galactosylated structures (Figure 3A). Therefore,
we propose that bi-antennary N-glycosylated proteins as
rituximab can be produced with mostly agalactosylated
N-glycans after double-KO of B4Gal-T1 and -T3. However,
tri- and tetra-antennary N-glycosylated secretome proteins as
EPO additionally need KO of B4Gal-T2 to be predominantly
agalactosylated. For transiently expressed EPO in CHO-K1-
derived cells with triple-KO of B4Gal-T1, -T2, and -T3 the
proportions of galactosylated N-glycans were found to be �4%
in an earlier study.[33] In our study, we annotated �6%
galactosylated N-glycans on transiently expressed EPO from
the CHO-S-derived triple-KO T1-2-3-KO A (Figure 3C).
Although these results indicate similar effects on galactosy-
lation of EPO after disruption of two identical gene targets,
deviations could be related to differences between CHO-K1
and CHO-S expression levels of nontargeted B4Gal-T
isoforms.

Therefore, we suggest that engineering cells with non-
galactosylated N-glycans on a secretome level in CHO-S WT is a
promising strategy toward producing G0-IgG1 and G0-EPO at a
later stage. Despite the divergent gene expression levels between
different CHO cell lines[42] this engineering strategy is suitable
for both CHO-K1[33] and CHO-S-derived cell lines as utilized in
our work. In the presented study the triple-KO with �1%
galactosylated structures on the secretome also showed
predominantly agalactosylated N-glycans on transiently
expressed rituximab with only �3% galactosylated N-glycans
and on transiently expressed EPO with remaining �6%
galactosylated N-glycan structures.

In summary, our study presents the necessity of disrupting
the three genes, B4Gal-T1, -T2, and -T3, to produce
predominantly agalactosylated secretome proteins, rituximab
and EPO in CHO-S cells. The possibility to engineer tri- and
tetra-antennary G0 N-glycans, which are naturally not produced
in CHO-S WT cells (Figure S1, Supporting Information), is
presented. Prior engineering of secretome N-glycans in a WT
cell gives rise to the flexibility of expressing several different
model proteins in the engineered cell line at a later stage. Such
model proteins might include already marketed antibodies
or other therapeutic proteins. With our cell platform that
prevalently glycosylates proteins with G0-N-glycans, we
demonstrate an alternative to galactosidase treatment of
recombinant proteins to investigate further beneficial in vitro
and in vivo characteristics based on tailored G0 N-glycosylation
profiles.
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As described in the previous chapters, CRISPR/Cas9 multiplexing in CHO can be used for 

the design of certain N-glycan profiles on therapeutic proteins. In Chapter 4 we (i) 

analyzed the N-glycan structures of the two marketed drugs Prolastin® (A1AT) and 

Cinryze® (C1INH), which are predominantly sold as purifications from human plasma, to 

then (ii) generate a cell line with disruptions in ten gene targets by CRISPR/Cas9 

multiplexing for (iii) the expression of a human glycosyltransferase which enables the 

production of recombinant A1AT and C1INH with N-glycan profiles and in vitro activities 

similar to the counterparts from human plasma. By providing this cell line, we contribute to 

the strategy recommended by the Medical and Scientific Advisory Council to replace 

plasma-derived therapeutics with more safe and scalable recombinant products for the 

treatment of diseases1. 

1 National Hemopilia Foundation, https://www.hemophilia.org/Researchers-Healthcare-Providers/Medical-and-Scientific-Advisory-
Council-MASAC/MASAC-Recommendations/MASAC-Recommendations-Regarding-Standards-of-Service-for-Pharmacy-Providers-of-
Clotting-Factor-Concentrates-for-Home-Use-to-Pat. 2014. 
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UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 2; Cas9, CRISPR-associated protein 
9; C1INH, C1 esterase inhibitor; CHO, Chinese hamster ovary; CRISPR, clustered regularly 
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alpha-2,6-sialyltransferase 1; VCD, viable cell density; WT, wild type 
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Abstract 

Recombinant Chinese hamster ovary (CHO) cells are able to provide biopharmaceuticals that are 

essentially free of human viruses and have N-glycosylation profiles similar, but not identical, to 

humans. Due to differences in N-glycan moieties, two members of the serpin superfamily, alpha-1-

antitrypsin (A1AT) and plasma protease C1 inhibitor (C1INH), are currently derived from human 

plasma for treating A1AT and C1INH deficiency. Deriving therapeutic proteins from human plasma is 

generally a cost-intensive process and also harbors a risk of transmitting infectious particles. 

Recombinantly produced A1AT and C1INH (rhA1AT, rhC1INH) decorated with humanized N-glycans 

are therefore of clinical and commercial interest. 

Here, we present engineered CHO cell lines producing rhA1AT or rhC1INH with fully humanized N-

glycosylation profiles. This was achieved by combining CRISPR/Cas9-mediated disruption of 10 gene 

targets with overexpression of human ST6GAL1. We were able to show that the N-linked glyco-

structures of rhA1AT and rhC1INH are homogeneous and similar to the structures obtained from 

plasma-derived A1AT and C1INH, marketed as Prolastin®-C and Cinryze®, respectively. rhA1AT and 

rhC1INH produced in our glyco-engineered cell line showed no detectable differences to their plasma-

purified counterparts on SDS-PAGE and had similar enzymatic in vitro activity. The work presented 

here shows the potential of expanding the glyco-engineering toolbox for CHO cells to produce a wider 

variety of glycoproteins with fully humanized N-glycan profiles. We envision replacing plasma-derived 

A1AT and C1INH with recombinant versions and thereby decreasing our dependence on human 

donor blood, a limited and possibly unsafe protein source for patients.  

1 Introduction 

Chinese hamster ovary (CHO) cells serve an important role in the biotechnology industry as the 

primary workhorse for the production of recombinant protein therapeutics [1]. Many of these 

therapeutics are glycoproteins that contain one or more N-glycan and/or O-glycan chains. As N-

glycans can potentially affect protein folding, immune regulation, cellular homeostasis and the 

biological half-life of proteins [2, 3], it is considered a critical quality attribute and much effort has been 

put forth to improve features of protein N-glycosylation. The production of diverse N-glycan structures 

is a major contributor to the heterogeneity of protein products derived from CHO cells. The inherent 

heterogeneity of CHO N-glycan profiles is especially a drawback when one distinct N-glycan structure 

is desired on the protein product. Two examples of human plasma proteins with distinct, 

homogeneous N-glycan structures are found within the serpin superfamily, alpha-1-antitrypsin (A1AT) 
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and C1 esterase inhibitor (C1INH) [4]. Patients with the genetic disorders alpha-1-antitrypsin 

deficiency (AATD) or hereditary angioedema (HAE-C1INH) have decreased plasma levels of 

functional A1AT or C1INH, respectively, and are currently treated with prophylactic augmentation 

therapy of plasma purified A1AT or C1INH[5, 6]. Augmentation therapy is cost intensive [5], and 

C1INH purified from pooled donor plasma has been associated with hepatitis C virus infections prior 

to the introduction of virucidal methods[7]. Despite current dedicated virus inactivation steps, cases of 

Hepatitis G transmission have been reported [8] and non-enveloped viruses can still be transmitted 

via plasma-derived products [9]. Nevertheless, approved C1INH formulas are concentrates purified 

from human donors (Berinert®, Cinryze) despite containing undesired protein impurities identified as 

α1-antichymotrypsin, ceruloplasmin and Factor C3 [6].  

Both native human plasma A1AT (plA1AT) and C1INH (plC1INH) possess a N-glycan profile with 

~60–80% diantennary, disialylated, non-fucosylated (A2G2S2) structures with human-like alpha-2,6-

linked sialic acids. plA1AT has three N-glycosylation sites [4], where natural A2G2S2 structures are 

not essential for biological activity but enhance in vivo half-life and in vitro protein stability [10, 11]. 

plC1INH is thought to be one of the most heavily glycosylated plasma proteins and harbors ten O-

linked and six N-linked glycan structures [12]. The six N-linked glycan moieties with A2G2S2 as 

predominant structure have been shown to be increase serum half-life and are reported to increase in 

vivo efficacy [13–15]. 

The ability to generate high A2G2S2 N-glycan proportions on rhA1AT/rhC1INH may be critical for 

improving product quality. Although efforts have been reported,  generating high proportions of 

A2G2S2 N-glycans has not to our knowledge been published. For instance, CHO cells lack active St6 

beta galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) to cap N-glycans with alpha-2,6-linked 

sialic acids [16]. rhA1AT and rhC1INH were produced in various platforms [17-29]. However,  these 

approaches revealed low productivity or the N-glycosylation was far from the profile of plA1AT or 

plC1INH and therefore cleared rapidly from the human blood making intravenous administration 

impractical. 

Commercially available rhC1INH from transgenic rabbits shows activity similar to plC1INH and has 

decreased virus transmission risk. However, it differs in N-glycosylation profiles from plC1INH and 

therefore reveals a risk of allergy, a dissatisfactory pharmacokinetic profile and consequently is 

unlikely to be of use in prophylaxis [30]. Glycosylation-engineering in primary human cells aimed to 

mimic O-glycan profiles of plC1INH. However, complete sialylation of rhC1INH N-glycan structures 

was not achieved [31].  
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By combining the publicly available CHO-K1 genome sequence [32], clustered regularly interspaced 

short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) for multiplexing gene editing 

[33] and reported CHO glycosyltransferases [34], we aimed to engineer the heterogeneous CHO-S N-

glycan profile towards a predominantly non-fucosylated biantennary A2G2 structure. To this end, we 

made functional knockouts of the GLUL-gene and nine glycosylation-gene targets (10x KO, Suppl. 

Table 1). We hypothesized that rhA1AT and rhC1INH produced in this genetic background with 

parallel co-expression of St6gal1 would display an N-glycan profile similar to plA1AT and plC1INH 

with predominant A2G2S2 N-glycan structures. We present CHO clones producing rhA1AT/rhC1INH 

similar to plA1AT/plC1INH by N-glycan analysis, protein activity, SDS-PAGE and isoelectric focusing. 

CHO derived rhA1AT and rhC1INH with fully humanized N-glycan profiles have the potential to 

replace the cost-intensive and possibly unsafe plasma-based augmentation therapy of AATD and 

HAE-C1INH patients without compromising activity and N-glycosylation.  

2 Materials and methods 

2.1 sgRNA, GFP_2A_Cas9 and A1AT/C1INH_ST6GAL1_GLUL plasmid design 

GFP_2A_Cas9 and single guide RNA (sgRNA) plasmids were constructed as previously described 

[33]. The sgRNA target design for MGAT4A, MGAT4B, MGAT5, ST3GAL3, ST3GAL4, ST3GAL6, 

B3GNT2, FUT8, SPPL3 and GLUL was performed using “CRISPy” [35]. The target sites for the 

mentioned genes and the oligos for sgRNA cloning are listed in Suppl. Table S1 and Table S2, 

respectively.  

Plasmids for co-expression of A1AT/C1INH and ST6GAL1 were constructed with uracil-specific 

excision reagent cloning method as previously described [36, 37] (Suppl. Fig. 1). The DNA sequences 

of the plasmids are listed in Suppl. Table S5. 

2.2 Cell cultivation and transfection for genome editing 

CHO-S suspension cells were incubated in a humidified incubator at 120 rpm, 37°C, 5% CO2, 

passaged to 2-3 x 105 cells/mL every 2-3 days and transfected in 6-well plates (BD Biosciences, San 

Jose, CA) as described previously [33]. The GFP_2A_Cas9 / sgRNA plasmid ratios for each 

transfection was 1:1 of which the plasmid load of sgRNA was divided equally by the amount of 

different sgRNAs used per transfection (Suppl. Table S4). To measure FACS sorting efficiency, 

pmaxGFP® vector (Lonza, Basel, Switzerland) transfection was performed as well. Cells were 
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harvested for fluorescence-activated cell sorting (FACS) 48 h post transfection. 

2.3 Single cell cloning of genome edited cells using FACS 

Before FACS, cells were filtered through a 40 µm cell strainer into a FACS-compatible tube. Single 

fluorescent-positive (GFP) cells were sorted into 384-well plates (Corning, New York, NY) containing 

30 µL CD CHO medium supplemented with 8 mM L-glutamine, 1.5% HEPES buffer and 1% 

Antibiotic-Antimycotic (Gibco, Waltham, MA) per well as described previously [38]. For cell sorting, 

fluorescent-positive cell populations were gated based on non-transfected WT CHO-S cells. Two 

weeks after cell sorting cell colonies were moved to 96-well flat-bottom plates (BD Biosciences) and 

expanded for deep sequencing analysis and batch cultivation. 

2.4 Deep sequencing analysis 

Confluent colonies from 96-well flat-bottom replicate plates were harvested for genomic DNA 

extraction. DNA extraction was performed using QuickExtract DNA extraction solution (Epicentre, 

Illumina, Madison, WI) according to the manufacturer's instruction. The library preparation was based 

on Illumina 16S Metagenomic Sequencing Library Preparation and deep sequencing was carried out 

on a MiSeq Benchtop Sequencer (Illumina, San Diego, CA). The protocol for amplifying the targeted 

genomic sequences, amplicon purification, adapter-PCR and following quality analysis was based on 

previously published work [33]. PCR primers are presented in Suppl. Table S3.  

2.5 Transfection and expression in polyclonal cell lines by applying MSX-selection 

Cells were seeded in 250 mL Corning vent cap shake flasks (Sigma-Aldrich) as duplicates with cell 

densities ~1 x 106 cells/mL in 60 mL CD CHO medium supplemented with 8 mM L-glutamine (Life 

Technologies) and transfected with 75 µg of A1AT-GLUL-St6gal plasmid or 75 µg of C1INH-GLUL-

ST6GAL1 plasmid (Suppl. Fig. 1) using FreeStyleTM MAX reagent together with OptiPRO SFM 

medium (Life Technologies) according to the manufacturer’s recommendations. 1µL/mL anti-clumping 

agent was added 24 h after transfection. pmaxGFP® vector (Lonza) transfection was performed to 

measure transfection efficiencies. Two days after transfection, cells were transferred into 60 mL CD 

CHO medium lacking L-glutamine (Life Technologies) and supplemented with 1µL/mL anti-clumping 

agent and 0 µM, 10 µM, 30 µM or 50 µM MSX (EMD Millipore, Billerica, MA). 

Cell densities and viabilities were determined once per day using the NucleoCounter NC-250 Cell 

Counter (ChemoMetec). The cells were passaged in fresh selection medium every 2-3 days until 

viability and doubling time reached stable values. Polyclonal cell lines (pools) were seeded in 
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duplicates at ~1 x 106 cells/mL with corresponding MSX concentrations. Cell densities and viabilities 

were determined once per day and supernatants of the pools were harvested three days after seeding 

and pooled within duplicates for purification of rhA1AT and rhC1INH. 

2.6 Single cell cloning of cells from polyclonal cell pools using FACS 

Non-stained single cells were sorted from pools as described above. For cell sorting, all viable cells 

were gated for sorting into 384-well plates with L-glutamine-free medium. Two weeks after cell sorting 

the clones were moved to 96-well flat-bottom plates (BD Biosciences) and expanded to shake flask 

format in CD CHO medium supplemented with 1µL/mL anti-clumping agent, 25 µM MSX and lacking 

L-glutamine.  

2.7 Screening cell pools and single cell clones for human-like α-2,6-sialic acid linkage 

formation with lectin staining  

For lectin staining of cells, triplicates of 10,000 cells per sample were diluted in 200 µL of 0.22 µm 

pore size filtered CD CHO medium (Life Technologies) supplemented with 5 µg/mL Hoechst 33342 

(Merck, Darmstadt, Germany) and 1 µg/mL Fluorescein isothiocyanate (FITC) labeled Sambucus 

nigra agglutinin (SNA) lectin (Biomol, Hamburg, Germany). After 60 min incubation in the dark at 37°C 

and 5% CO2, the cells were washed with 200 µL CD CHO medium and then washed twice with 200 

µL phosphate buffered saline (PBS) (300g, 5 min, RT). The samples were resuspended in 200 µl PBS 

and transferred to 96-well plate for final centrifugation at 300 g for one minute. Percentage of FITC 

SNA positive cells was determined in a 96-well optical-bottom microplate (Greiner Bio-One, 

Frickenhausen, Germany) using a Celigo Imaging Cell Cytometer (Nexcelom Bioscience, Lawrence, 

MA). Cells were identified using the blue channel (Hoechst-positive cells), and the green channel 

(FITC SNA-positive cells) was used to detect cells with alpha-2,6-sialic acid linkage. A Hoechst/FITC 

SNA-stained CHO-S WT sample was gated to distinguish between FITC-positive and FITC-negative 

cells.  

2.8 Batch cultivation: cell growth analysis and N-glycosylation profiling 

For batch cultivation and N-glycan analysis, cells were seeded at 0.4 x 106 cells/mL in 250 mL 

Corning vent cap shake flasks (Sigma-Aldrich, St. Louis, MI) as duplicates in 60 mL CD CHO medium 

supplemented with 1 µL/mL anti-clumping agent (Life Technologies). CHO-S WT and non-producing 

parental 10x KO cell lines were additionally supplemented with 8 mM L-glutamine. rhA1AT/rhC1INH 

producing clones were cultivated in L-glutamine-free medium at all times and passaged in medium 
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containing 25 µM MSX until the batch cultivation was initiated. Cell densities and viabilities were 

determined once per day using the NucleoCounter NC-250 Cell Counter (ChemoMetec) until the 

viability was <70%, at which point the culture was terminated. Supernatant samples with total 

secreted protein (secretome) from CHO-S WT and parental, non-producing 10x KO cell lines were 

taken five days after seeding and pooled within biological replicates. The volume for secretome 

samples was calculated to harbor 20 x 106 cells. For all shake flasks, additional supernatant samples 

were taken by centrifuging 1 mL of cell suspension for 5 minutes at 1000 g and storage of 

supernatant at -80°C until further analysis. 

2.9 rhA1AT and rhC1INH purification  

rhA1AT and rhC1INH were purified using CaptureSelect affinity resins (Thermo Fisher Scientific) 

according to the manufacturer’s instructions. rhA1AT was further purified by size exclusion 

chromatography on a Superdex 200 increase 10/300GL column (GE Healthcare) equilibrated in PBS. 

2.10 Titer assessment of rhA1AT/rhC1INH producing clones 
rhA1AT and rhC1INH titers were determined using biolayer interferometry on an Octet RED96 (Pall, 

Menlo Park, CA, USA) as described previously for A1AT [39]. After hydration in PBS, streptavidin 

biosensors (18-5021, Fortebio, Pall) were functionalized with CaptureSelect biotin anti-A1AT 

conjugate or CaptureSelect biotin anti-C1INH conjugate (Thermo Fisher Scientific) at 5 µg/mL in 

PBS, and blocked in PBS containing 1 µg/mL biocytin (600 and 300 s incubation steps, respectively). 

Standards were prepared in spent CHO-S medium using plasma-derived A1AT (Athens Research & 

Technology) at 100, 50, 25, 12.5, 6.3, 3.1 and 1.6 µg/mL or C1INH (R&D systems) at 40, 20, 10, 5, 

2.5, 1.25 and 0.625 µg/mL. Samples and standards were diluted two-fold and contained 0.1% BSA 

w/v, 0.1% tween-20 v/v, and 500 mM NaCl. When needed, samples were further diluted to fall within 

the range of the standard dilution series. After equilibration in spent CHO-S medium (120 s), samples 

and standards were measured for 300 s with a shaking speed of 1000 rpm at 30°C. Regeneration 

was performed with 50 mM TRIS, 2 M MgCl2, pH 7.5. Assays were performed in 96-well black 

microplates (Greiner Bio-One, Kremsmünster, Austria). Octet System Data Analysis 7.1 software was 

used to calculate binding rates and absolute A1AT and C1INH concentrations.   

2.11 SDS-PAGE, isoelectric focusing and PNGase treatment 

SDS-PAGE was performed on Novex 4-12% Tris-Glycine mini gels and isoelectric focusing (IEF) was 

performed on Novex pH 3-10 IEF gels (Thermo Fisher Scientific) as per the manufacturer’s 
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instructions. Deglycosylation with PNGase F was performed according to the manufacturer's 

instructions (New England Biolabs, Ipswich, MA).  

2.12 Activity assays 

A1AT inhibitory activity was determined using the EnzChek Elastase Assay Kit (Molecular Probes, 

Eugene, OR) according to the manufacturer's instructions. In short, A1AT (8.0, 4.0, 2.0, 1.0, 0.5, 0.25, 

0.13, and 0.06 µM) was incubated with purified active porcine pancreatic elastase and fluorescently 

labelled substrate (DQ-elastin). Measurement of fluorescence was performed after 45 min at room 

temperature (Excitation: 485 nm, slit width 9.0 nm; Emission: 530 nm, slit width 13.5 nm). 

C1INH inhibitory activity was determined using the Technochrom C1INH Assay Kit (TechnoClone, 

Vienna, Austria). In short, plasma containing C1INH activity (120%, 60%, 30%) and samples (~0.25 

µM) were incubated with substrate-buffer mixture for 3 min at room temperature, after which 50% 

acetic acid was added.  Extinction was measured at 405 nm. 

2.13 N-Glycan analysis 

N-glycans were derivatized  with GlycoWorks RapiFluor-MS N-Glycan Kit (Waters, Milford, MA) 

according to the manufacturer’s instruction. Briefly; 12 µg purified protein or 12 µl of 10x concentrated 

(Amicon Ultra-15, Merck) secretome sample were used for each sample. Labeled N-Glycans were 

analyzed by LC-MS as described previously [33]. Separation gradient from 30% to 43% 50 mM 

ammonium formate buffer and MS were run in positive mode. Amount of N-Glycan was measured by 

integrating the peaks with Thermo Xcalibur software (Thermo Fisher Scientific, Waltham, MA) giving 

the normalized, relative amount of the glycans.  

3 Results 

3.1 Growth profile and N-glycan profile of clonal 10x KO cell lines 

The aim of our study was to produce rhA1AT and rhC1INH in CHO cells with N-glycan profiles similar 

to human plA1AT and plC1INH. Our approach was to engineer the heterogeneous N-glycan profile of 

CHO-S WT cells towards a homogeneous A2G2S2 N-glycan structure, which is the predominant N-

glycan on plA1AT/plC1INH. To this end, we generated out-of-frame insertions or deletions (indels) in 

eight glycosyltransferases (MGAT4A, MGAT4B, MGAT5, ST3GAL3, ST3GAL4, ST3GAL6, B3GNT2, 

FUT8) as well as in the genes SPPL3 and GLUL (Suppl. Table S4) over four successive rounds of 
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multiplexed CRISPR/Cas9 gene editing. Two clones with indels in the targeted genes were subjected 

to growth analysis and N-glycan profiling.  

Two clones (10x KO  A and 10x KO  B) with out-of-frame indels in all ten gene targets were obtained 

and both showed a pronounced increase in batch culture longevity when compared to the parental 

CHO-S WT cell line (Fig. 1A). CHO-S WT reached maximal viable cell density of ~6 x 106 cells/mL on 

day five and cell viability declined rapidly to <50% on day 6. In contrast, the 10x KO A and 10x KO B 

clones had cell viabilities >75% until day 10 of the batch cultivation and reached higher maximal 

viable cell density than CHO-S WT. 

N-glycan analysis of the CHO-S WT secretome resulted in more than 25 annotated N-glycan 

structures (Fig. 1B) where the A2G2S2 structure, predominantly found on plA1AT and plC1INH, was 

not detected. The majority of CHO-S WT N-glycans contained core-fucosylation. The N-glycans 

produced by CHO-S WT cells appear diverse and comprise high-mannose structures as well as non-

galactosylated, fully and partially sialylated di-, tri- and tetra-antennary structures (all with alpha-2,3-

linked sialic acids). A2FG2S2 was found as the main N-glycan on total secreted proteins of CHO-S 

WT. In contrast, the N-glycan profiles of 10x KO A and 10x KO B are more homogeneous (Fig. 1B) 

with all structures lacking core-fucosylation. In addition, only relatively small amounts of CHO-specific 

alpha-2,3-linked sialylation were present. After disruption of the targeted genes, the proportion of 

A2G2 within N-glycan structures of total secreted proteins was increased from 3.5% (CHO-S WT) to 

79% in both 10x KO clones (Fig. 1C). We concluded that the 10x KO A and B clones were suitable 

host cell lines in our effort to generate humanized N-glycans. 
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Fig. 1: Growth and N-glycan structure analysis of CHO-S WT and 10x KO cell lines. (A) Viable cell density 
(VCD) and viability of batch cultures of CHO-S WT and two clonal cell lines (10x KO A and 10x KO B) with 
indels in eight glycosyltransferases as well as GLUL and SPPL3. Error bars indicate the standard deviation of 
triplicate parallel cultures. (B) N-glycan profiling of total secreted proteins from CHO-S WT and the 10x KO A 
and 10x KO B clones. In the chromatogram, elution time indicated on the x-axis and y-axis represents signal 
intensity normalized to highest peak. (C) Proportion of non-fucosylated, biantennary N-glycans with terminal 
galactose (A2G2) in total secreted proteins from CHO-S WT and the 10x KO A and 10x KO B clones. 
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3.2 Introducing human-like sialylation in 10x KO cell lines  

On the basis of A2G2 secretome N-glycan structures of clone 10x KO B, we aimed to develop clonal 

cell lines expressing St6gal1 and rhC1INH or St6gal1 and rhA1AT. We envisioned that such cell lines 

are capable to produce rhA1AT or rhC1INH with predominant A2G2S2 N-glycan structures as found 

on plA1AT and plC1INH. The functional GLUL-KO selection system was confirmed by MSX-dosage 

dependent recovery times of cell viabilities from transfected cell pools (Suppl. Fig. 3A). Passaging of 

the different transfection pools was performed until viability and doubling times were stable. We then 

conducted FACS-based single cell cloning with the 50 µM MSX-selected cells. During the expansion 

of the generated clones, only clones exhibiting predominant FITC-SNA staining and detectable levels 

of rhA1AT/rhC1INH in supernatants on coomassie-stained SDS-PAGE gels were selected (Suppl. 

Fig. 2). Based on these criteria, two rhA1AT (A1-1 and A1-2) and two rhC1INH (C1-1 and C1-2) 

producing clones were selected for further characterization.  

SNA lectins are reported to bind predominantly to sialic acids of N-glycans linked to the galactose 

residue in a human-like alpha-2,6-sialylation. Analyzing FITC-SNA-stained CHO-S WT, we found 

relatively low levels of alpha-2,6-sialylation (Fig. 2A). To determine the proportion of cells with human-

like sialylation, FITC-SNA stained CHO-S WT samples were used to gate between FITC-positive and 

FITC-negative cells (Suppl. Fig. 2A). Within the two 50 µM MSX-selected polyclonal cell lines, <30% 

of the cells were found to comprise alpha-2,6-linked sialic acids on N-glycans of cell surface proteins 

(Fig. 2B). 2B). In comparison, 82-90% of the cells in the populations of the selected four clones (A1-1, 

A1-2, C1-1 and C1-2) had the desired alpha-2,6-linked sialic acids on their N-glycans. 
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Fig. 2: FITC-SNA lectin staining of selected poly- and monoclonal cell lines. (A) Fluorescent images of CHO-S 
WT and A1-1 cell line. Cells were stained for alpha-2,6-sialic acid linkage with FITC-SNA (green) and for nuclei 
with Hoechst (blue). The bottom right corner bar displays a length of 500 µm (B) Comparison of FITC-SNA 
positive cells. FITC-SNA lectin staining of CHO-S WT, two 50 µM MSX polyclonal cell lines and four selected 
clones. Bars indicate the proportion of cells with positive FITC signal due to SNA lectin binding on alpha-2,6-
linked sialic acids on the cell surface. Error bars represent standard deviation of three individual measurements 
per sample. 
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3.3 Extended culture longevity retained in rhA1AT and rhC1INH-producing clones 

Both the two rhA1AT- and the two rhC1INH-producing clones showed the extended culture longevity 

as well as maximum VCD similar to the parental 10x KO B cell line (Fig. 3A). Viabilities of all clones 

were >75% until day 9 and clone C1-2 maintained cell viability >75% until day 11, similar to the non-

producing parental 10x KO B. 

In both rCh1INH-producing clones, rhC1INH titers increased from day 0 until day 5 but then stagnated 

at ~40 µg/mL until the end of the batch cultures (Fig. 3B). In comparison, rhA1AT titers from clones 

A1-1 and A1-2 increased continuously to 123 µg/mL and 117 µg/mL , respectively. Despite increasing 

numbers of viable cells, the stagnation of C1INH titers at ~40 µg/mL for clones C1-1 and C1-2 in the 

second half of the batch cultures leads to the assumption that rhC1INH is unstable in the cell culture. 

By SDS-PAGE gel analysis of late phase supernatant samples we observed protein bands migrating 

just below rhC1INH (~70-100 kDa) which are not present in the non-producing parental clone  (Suppl. 

Fig. 4). On the basis of titers and integral of viable cells (IVC) we determined the average specific 

productivity of the four clones during day 2 – 5 and day 6 - 9 (Fig. 3C). In the early phase, the specific 

productivity of rhA1AT for clones A1-1 and A1-2 was 5.8 and 4.0 pg/cell*day, respectively, decreasing 

to 2 – 3 pg/cell*day in the late phase (day 6 – 9). On the contrary, the two rhC1INH-producing clones 

expressed rhC1INH at ~5 pg/cell*day in the early phase, whereas their specific productivity in the late 

phase decreased to ~0 pg/cell*day. Overall, cell growth of all four clones was comparable to the 

parental cell line whereas product titers of A1AT-producing clones were increased compared to 

C1INH-producers. 
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Fig. 3: Growth profiles, product titers and specific productivities of selected producing and non-producing 
clones. (A) Viable cell densities and cell viabilities of CHO-S WT, 10x KO B the rhA1AT- (A1-1 and A1-2) and 
rhC1INH- (C1-1 and C1-2) producing clonal cell lines measured in batch cultures. Error bars indicate range of 
duplicate parallel cultures. (B) rhA1AT and rhC1INH titer in supernatants during the batch culture experiment. 
Error bars indicate standard deviation of three individual measurements from two shake flasks per clone. (C) 
Specific productivities of the rhA1AT and rhC1INH-producing clonal cell lines  in the batch culture experiment. 
Average specific productivity was calculated from day 2 – 5 and from day 6 – 9. Colored symbols represent 
average measured specific productivity for shake flask duplicates. Black lines shows the average specific 
productivity based on the three measurements of shake flask duplicates.  

3.4 Activity and N-glycosylation profile of CHO-produced rhA1AT and rhC1INH are similar to 

plasma-derived products  

We purified and characterized rhA1AT and rhC1INH to investigate the impact of our N-glycosylation 

engineering approach on product quality and protein activity. Therefore we compared the protein 

products produced in clonal cell lines derived from 10x KO B (rhA1AT and rhC1INH) to the CHO-S 

WT and plasma-derived counterparts (plA1AT and plC1INH). 

SDS-PAGE gel analysis revealed that purified rhA1AT and rhC1INH produced in the four clones 

seem to have hydrodynamic volumes (molecular weight) similar to plA1AT and plC1INH without 

detectable impurities as seen in plC1INH (Fig. 4A). rhA1AT and rhC1INH produced in CHO-S WT 

background did not co-migrate with plA1AT and plC1INH, respectively. However, after 
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Fig. 4: Characterization of purified rhA1AT and rhC1INH. (A) SDS-PAGE gel analysis of commercially available 
Cinryze (plC1INH) and Prolastin-C (plA1AT) as well as rhA1AT and rhC1INH purified from polyclonal CHO-S 
WT or from monoclonal cell lines derived from 10x KO B. Removal of N-glycans by PNGaseF was performed 
where indicated. PNGaseF migrating as a ~40 kDa band is indicated with an asterisk and impurities of plC1INH 
are indicated with arrows. (B) IEF gel analysis of same proteins as described for panel A. 2.5 µg purified protein 
was analysed per sample if not indicated otherwise. (C) N-glycan structures annotated from rhA1AT and 
rhC1INH produced in clones A1-1 and C1-1. (D) Left panel: In vitro assay measuring the inhibition of elastase 
activity at different concentrations of plA1AT and rhA1AT purified from clones A1-1 and A1-2. Error bars indicate 
range of duplicate measurements. Maximum proteolytic activity of porcine elastase was set to 100%. Right 
panel: In vitro activity assessment of plC1INH and rhC1INH purified from clones C1-1 and C1-2. As described in 
the assay, 1 IU/ml C1INH activity was set to 100%. Error bars indicate range of duplicate measurements.	  	  
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deglycosylation with PNGaseF, all recombinantly produced proteins aligned with corresponding bands 

of plA1AT and plC1INH with the exception of rhC1INH produced in a CHO-S WT background 

displayed an additional protein band at ~65 kDa. 

To further characterize the CHO-produced rhA1AT and rhC1INH, we performed IEF gel analysis (Fig. 

4B). rhA1AT from clones A1-1 and A1-2 manifested in two bands with isoelectric points (pI) at pH 5.2 

and 5.3 similar to plA1AT. In contrast, rhA1AT produced in a CHO-S WT background displayed more 

than nine detectable isoforms with pI between pH 4 – 6. 

IEF gel analysis of rhC1INH produced in a CHO-S WT background resulted in isoforms with pI 

ranging from pH ~4 – 6.5. A high degree of heterogeneity was also found in purified rhC1INH 

produced in clone C1-1. However, rhC1INH produced in clone C1-2 was less heterogeneous with pI 

at pH ~3.5 similar to plC1INH. 

In N-glycan analysis of purified rhA1AT and rhC1INH from CHO-S WT cells we detected a higher 

degree of heterogeneity compared to N-glycan structures on rhA1AT and rhC1INH from polyclonal 

10x KO cell pools (Suppl. Fig. 3B). The polyclonal cell lines revealed two predominant sugar 

structures on both proteins (A2G2 and A2G2S2 N-glycans), whereas we could not detect the A2G2S2 

structure on products from CHO-S WT. Moreover, the amount of predominant N-glycan structures on 

rhA1AT and rhC1INH was decreased from two (polyclonal pools) to one (monoclonal producers), 

identified as A2G2S2 N-glycan (Fig. 4C).   

All four 10x KO-derived monoclonal cell lines produced rhA1AT and rhC1INH with higher proportion of 

A2G2S2 structures than plA1AT and plC1INH (Suppl. Fig. 2C and Suppl. Fig. 3C). The proportion of 

A2G2S2 in rhA1AT and rhC1INH was approximately 88 - 92% and 84%, respectively, and 82% for 

plA1AT and 66% for plC1INH . 

Finally, we investigated the activity of purified rhA1AT and rhC1INH. rhA1AT activity was determined 

by its inhibitory function of elastase activity (Fig. 4D). Similar to plA1AT,  a decrease in elastase 

activity was detected at A1AT concentrations >0.1 µM for rhA1AT from clones A1-1 and A1-2. In 

addition, 50% of elastase inhibition was reached at ~0.3 µM A1AT for plA1AT as well as rhA1AT. In 

vitro activity of purified rhC1INH produced by clones C1-1 and C1-2 was similar or higher compared 

to plC1INH. 
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4 Discussion  

We aimed to produce rhA1AT and rhC1INH in CHO-S with N-glycan profiles similar to plA1AT and 

plC1INH, which to our knowledge has not yet been achieved by recombinant expression. First, the 

heterogeneous N-glycan profile of CHO-S WT cells was changed to more homogeneous profiles in 

bespoke cell lines with predominant A2G2 N-glycan structures (Fig. 1B). Disrupting nine N-

glycosylation-related genes increased the A2G2 proportion on total secreted protein from 3.5% in 

CHO-S WT-derived cells to ~80% in 10x KO cell lines (Fig. 1C). This supports the previously 

suggested strategy to decrease N-glycan branching and alpha-2,3-sialylation by disrupting MGAT4A, 

MGAT4B, MGAT5, ST3GAL3, ST3GAL4 and ST3GAL6 [34]. The impact of gene disruptions on cell 

culture performance was assessed in batch cultures. Interestingly, the monoclonal cell lines with 

disruption in ten gene targets showed enhanced growth characteristics compared to CHO-S WT cells 

(Fig. 1A). Overexpression of the GLUL gene has previously been found to decrease ammonia levels, 

which might explain improved CHO cell growth of the four characterized producer clones in L-

glutamine-free medium [39]. However, the cause for the boosted cell growth of GLUL-lacking 10x KO 

cell lines in L-glutamine-supplemented medium (Fig. 1A) remains to be explored in further studies. 

Since the disruption of the ten targets did not seem to interfere with cell culture performance, we 

performed co-expression of ST6GAL1 and rhA1AT or St6gal1 and rhC1INH in the 10x KO-derived 

clone B. After transfection, we observed a MSX-concentration dependent recovery of the transfected 

cell pools and successful killing of untransfected 10x KO B after 5 days of growth in L-glutamine-free 

medium similar to a previous study (Suppl. Fig. 3A) [40]. However, untransfected CHO-S WT cells 

were also able to recover up to the highest MSX-concentration of 50 µM, which is in accordance to 

previous work [36]. As shown in the killing curve of the untransfected 10x KO cells, the advantage of 

the GLUL-KO system here seems to be the elimination of untransfected cells. 

Surprisingly, after selection at 50 µM MSX, the polyclonal cell lines did not show the desired 

predominant A2G2S2 glycosylation of purified rhA1AT and rhC1INH as we found incomplete 

sialylation on both proteins (Suppl. Fig. 3B). Similar lack of sialylation in the polyclonal cell lines was 

found after FITC-SNA lectin staining where only <30% of cells were identified to have alpha-2,6-

sialylation (Fig. 2B). This might be due to incomplete vector integration into the genomic DNA or 

chromosome instability leading to a heterogeneous cell population with reduced stability of the 

integrated elements as reported earlier [41]. However, we were able to discard clones with incomplete 

sialylation by single cell cloning and screening for FITC-SNA lectin positive clones producing rhA1AT 

or rhC1INH.  
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Although the stagnating rhC1INH titer at day 5, the reported rhC1INH titer here is  higher than 

previously reported production platforms with maximum titers of only 6 µg/mL in insect cells [29] and 

30 µg/mL in P. pastoris [27] albeit the media we used was without any optimization for protein 

production. In comparison to plC1INH (Cinryze), the rhC1INH from C1-1 and C1-2 did not show α1-

antichymotrypsin, ceruloplasmin and Factor C3 impurities on SDS-PAGE gels [8] (Fig. 4A), implying 

that CHO-based cell platforms possibly can supply HAE-C1INH patients with higher purity than 

human plasma. 

With titers between 300 – 400 µg/mL, human neuronal cell lines produce rhA1AT with higher titers 

than our clones A1-1 and A1-2. However, rhA1AT from these neuronal cells exhibits core-

fucosylation, is not fully sialylated and therefore differs largely from plA1AT N-glycosylation [24]. 

Similarly, earlier studies expressed rhA1AT in CHO with titers of up to 1.15 g/L, though differing from 

plA1AT by revealing core-fucosylation and alpha-2,3-sialylation [25, 26, 42]. 

In contrast to the production platforms listed earlier, rhA1AT and rhC1INH produced in our 10x KO 

cell lines are not only exceeding sialylation levels of plA1AT and plC1INH (Suppl. Fig. 2C) but also 

reveal human-like alpha-2,6-sialylation instead of alpha-2,3-sialylation. Previous work reported only 

2.6% A2G2S2 structures on rhA1AT expressed in CHO-K1, however with 2,3- sialic-acid linkage [26, 

43]. 

Interestingly, the increased sialylation of rhA1AT from the two clones had no impact on in vitro activity 

(Fig. 4D). This is in accordance with previous work, which showed that A1AT activity is not linked to 

its N-glycosylation and CHO WT produced rhA1AT has similar activity to plA1AT [10, 38]. 

Furthermore, differences of CHO-S WT- and 10x KO-derived rhA1AT were made visible using IEF gel 

analysis, where rhA1AT from the two clones revealed similar patterns to plA1AT (Fig. 4B). 

As presented in Fig. 4B, in contrast to rhA1AT, rhC1INH differed partially in IEF gel analysis profile 

from plC1INH. Increased rhC1INH sialylation (Suppl. Fig. 2C) might lead to altered charge distribution 

and consequently cause changes in IEF gel patterns. For rhC1INH from clone C1-1, we observed a 

double-band in SDS-PAGE analysis although N-glycans were removed by PNGaseF treatment (Fig. 

4A). This might indicate that O-glycan charge variants are responsible for the heterogeneity observed 

in IEF gel analysis and SDS-PAGE of rhC1INH from C1-1 (Fig. 4A and 4B) as described previously 

[44].  

In summary, our work describes a strategy to successfully engineer the heterogeneous N-

glycosylation profile of CHO-S WT cells towards the specific A2G2S2 N-glycan structure with the 

purpose of producing rhA1AT and rhC1INH with N-glycan profiles similar to human plasma-derived 

products. We used CRISPR/Cas9 to disrupt ten genes and then overexpressed rhA1AT or rhC1INH 
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on a ST6GAL1- and GLUL-encoding plasmid. After selection with MSX and single cell cloning, we 

identified clones expressing rhA1AT or rhC1INH with titers of up to 124 µg/mL and 42 µg/mL, 

respectively (Fig. 3B). Purified rhA1AT and rhC1INH were similar to the plasma-derived counterparts 

judged by SDS-PAGE analysis (Fig. 4A), degree and type of sialylation (Fig. 2B, Suppl. Fig. 2C, 

Suppl. Fig. 3C) and in vitro activity (Fig. 4D). Thus, the work presented shows the promise and 

potential of replacing cost-intensive and possibly unsafe plasma-derived augmentation therapy for 

AATD and C1INH-HAE patients by CHO- produced rhA1AT and rhC1INH. This strategy is in 

compliance with the Medical and Scientific Advisory Council (MASAC) recommendation of replacing 

plasma-derived products with recombinant products for the treatment of diseases [45].  
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Chapter 5 

Concluding remarks 
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Besides the well-established CHO-derived cell lines, other host platforms are on the rise to produce 

the increasing amount and variety of biopharmaceuticals. The cost-effective and time saving 

protocols for developing novel expression platforms is mostly driven by available genetic engineering 

tools as CRISPR/Cas9. However, with the existing history of approved biopharmaceuticals produced 

in CHO and the consolidated knowledge of bioprocessing and genetic modifications, CHO cells are 

superior to most other expression platforms. Due to recent and ongoing platform improvement efforts 

within industry but also several research groups1 CHO cells will most likely continue their domination 

as the predominant working horse of the pharmaceutical industry. In order to provide novel CHO cell 

lines that enable the production of therapeutic proteins with homogeneous and/or human-like N-

glycan structures, we disrupted up to ten target genes combined with the overexpression of a human 

glycosyltransferase. The possibility of multiplexing several gene targets simultaneously speeds up the 

rational design of improved CHO cell platforms significantly. 

We explored that our protocol for simultaneous multiplexing of ten gene targets in a single round of 

transfection gave rise to undesired in-frame indels and therefore a inconvenient high number of 

clones to screen for cell lines with exclusively out-of-frame indels in all ten targets. To keep the 

screening efforts at a reasonable volume, we recommend to improve sgRNA efficacy, encode 

sgRNAs and Cas9 on the same plasmid and/or decrease the amount of targeted genes in each 

multiplexing round.

Based on the work of our explorative study described in Chapter 2, we reduced the maximum amount 

of simultaneously multiplexed gene targets to five targets per multiplexing round for the work 

presented in Chapter 3 and 4. Compared to repeated rounds of single target knockouts, the 

presented strategy allowed us to generate numerous cell lines in an efficient and time saving manner. 

Our multiplex protocols might also find application for other types of CHO engineering where several 

gene targets need to be disrupted for a desired phenotype, e.g. reducing toxic by-products or deleting 

secreted host cell proteins.

Unlike for the ten disrupted genes for humanized A1AT/C1INH production, certain combinations of 

disrupted target genes for decreased galactosylation were possibly associated with slightly decreased 

cell growth. This exemplifies that N-glycan engineering via gene disruption can impact cell 

characteristics beyond the biopharmaceutical N-glycan structure which could be disadvantageous 

from certain economic perspectives. Therefore one must also study whether the disrupted 

combination of gene targets for altered glycosylation also affects cell growth or the ability to express 

and secrete recombinant proteins properly. However, we proved the feasibility of tailoring certain N-

glycan structures, which only occur little or are absent in the original host cell line. While genetic 

engineering represents a powerful tool to control N-glycosylation, researchers could combine our 
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protocols with medium and process design - the classical engineering approaches - to further explore 

strategies for designed N-glycosylation. 

The protocols and results of this thesis support the de novo design of optimal N-glycosylation profiles 

for different therapeutic glycoproteins, presumably also for proteins or sugar residues not covered in 

our studies. Our engineering approach will aid the production of therapeutic proteins with improved 

properties and therapeutic potential. Furthermore, we expand the possible scope of 

biopharmaceuticals by enabling the recombinant production of therapeutic proteins which require 

human-identical N-glycosylation.

1. Fischer, S., Handrick, R. & Otte, K. The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol.

Adv. 33, 1878–1896 (2015).
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Supplementary Figure S1: Total secreted protein N-glycan analysis. Analysis of released N-

glycans from total secreted proteins of the parental cell line, two control cell lines and three clones 

with indels in some of the targeted genes.  
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Supplementary Table S1: sgRNA target sequences. The bases in red mark the PAM site. 

Target gene Target sequence (5’ → 3’) 

BAX GCTGATGGCAACTTCAACTGGG 

BAK1 GGAAGCCGGTCAAACCACGTGG 

GLUL GGCCCAGGGAAGCCATCGGAGG 

SPPL3 AGAGAGACGGACGCTCCAATGG 

B4GALT1 TATCCCATTTCGCAACCGGCGG 

B4GALT2 GGAGCACCACCTACGCTATGG 

B4GALT3 TGATGCTCGCGGGCACGATGG 

B4GALT4 TGGAGGCCGGTATCACCCTGG 

B4GALT5 GAGAGTGACCGCAACTACTAGG 

TSTA3 GAGGTGGTCGCAGATGGCGCGG 
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Supplementary Table S2: Oligos for sgRNA expression vector cloning. 

Oligo name Oligo sequence (5’ → 3’)

gRNA_BAX_1345650_fwd GGAAAGGACGAAACACCGCTGATGGCAACTTCAACTGGTTTTAGAGCTAGAAAT 

BAX_1345650_rev CTAAAACCAGTTGAAGTTGCCATCAGCGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_BAK1_1544257_fwd GGAAAGGACGAAACACCGGAAGCCGGTCAAACCACGTGTTTTAGAGCTAGAAAT 

BAK1_1544257_rev CTAAAACACGTGGTTTGACCGGCTTCCGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_GLUL_941540_fwd GGAAAGGACGAAACACCGGCCCAGGGAAGCCATCGGAGTTTTAGAGCTAGAAAT 

GLUL_941540_rev CTAAAACTCCGATGGCTTCCCTGGGCCGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_Sppl3_NW_003613978.1_213040_fwd GGAAAGGACGAAACACCAGAGAGACGGACGCTCCAATGTTTTAGAGCTAGAAAT 

gRNA_Sppl3_NW_003613978.1_213040_rev CTAAAACATTGGAGCGTCCGTCTCTCTGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_B4galt1_NW_003615120.1_283507_fwd GGAAAGGACGAAACACCTATCCCATTTCGCAACCGGCGTTTTAGAGCTAGAAAT 

gRNA_B4galt1_NW_003615120.1_283507_rev CTAAAACGCCGGTTGCGAAATGGGATAGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_B4galt2_NW_003613906.1_163085_fwd GGAAAGGACGAAACACCGGGAGCACCACCTACGCTATGTTTTAGAGCTAGAAAT 

gRNA_B4galt2_NW_003613906.1_163085_rev CTAAAACATAGCGTAGGTGGTGCTCCCGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_B4galt3_NW_003614301.1_233251_fwd GGAAAGGACGAAACACCGTGATGCTCGCGGGCACGATGTTTTAGAGCTAGAAAT 

gRNA_B4galt3_NW_003614301.1_233251_rev CTAAAACATCGTGCCCGCGAGCATCACGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_B4galt4_NW_003614660.1+444821_fwd GGAAAGGACGAAACACCGGAGGCCGGTATCACCCTGGTTTTAGAGCTAGAAAT 

gRNA_B4galt4_NW_003614660.1+444767_rev CTAAAACAAGTGAGGTCCGGCTCAAAGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_B4galt5_751697_fwd GGAAAGGACGAAACACCGAGAGTGACCGCAACTACTAGTTTTAGAGCTAGAAAT 

gRNA_B4galt5_751697_rev CTAAAATAGTAGTTGCGGTCACTCTCCGGTGTTTCGTCCTTTCCACAAGATAT 

Tsta3_NW_003617373.1-6731_gRNAfwd GGAAAGGACGAAACACCGAGGTGGTCGCAGATGGCGCGTTTTAGAGCTAGAAAT 

Tsta3_NW_003617373.1-6731_gRNArev CTAAAACGCGCCATCTGCGACCACCTCGGTGTTTCGTCCTTTCCACAAGATAT 
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Supplementary Table S3: Cas9_2A_GFP and sgRNA plasmid ratio for transfection. 

plasmid μg for transfection 

Cas9_2A_GFP 1.88 

sgRNA BAX 0.19 

sgRNA BAK1 0.19 

sgRNA GLUL 0.19 

sgRNA SPPL3 0.19 

sgRNA B4GALT1 0.19 

sgRNA B4GALT2 0.19 

sgRNA B4GALT3 0.19 

sgRNA B4GALT4 0.19 

sgRNA B4GALT5 0.19 

sgRNA TSTA3 0.19 
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Supplementary Table S4: Primer list for deep sequencing (MiSeq). The primers contain overhang 

sequences compatible with Illumina Nextera XT indexing (forward primer overhang: 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG, reverse primer overhang: 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG). 
Oligo name

Oligo sequence (5’ → 3’) 

MiSeq_BAX_1345650_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGTGGATACTAACTCCCCACG 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCCTGAACCTCACTACCCC 

MiSeq_BAK1_1544257_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAAGGTGGGCTCTCCGTGAT 

MiSeq_BAK1_1544257_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGATGCAATGGTGCAGTATGAT 

MiSeq_GLUL_941540_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAAGACACACGTGTAAACGGA 

MiSeq_GLUL_941540_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCCTGCGATAGGCTTTGTC 

MiSeq_Sppl3_NW_003613978.1_213040_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGTGGAGTAACTTACCTGCTGT 

MiSeq_Sppl3_NW_003613978.1_213040_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAAGTGGTGAGTGTGTCCTGT 

MiSeq_B4galt1_NW_003615120.1_283507_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACGCATTTGTGTACCCGAGT 

MiSeq_B4galt1_NW_003615120.1_283507_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGATGGGCGGTCGTTATTCC 

MiSeq_B4galt2_NW_003613906.1_163085_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGCAGACACATCCACAGGTG 

MiSeq_B4galt2_NW_003613906.1_163085_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCTGGGAGGCCGTTATACA 

MiSeq_B4galt3_NW_003614301.1_233251_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGGATTTCTGTATGGGGCCA 

MiSeq_B4galt3_NW_003614301.1_233251_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTGGGTCCTGTGTCGGTATC 

MiSeq_B4galt4_NW_003614660.1+444821_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGCCCCTCTTTCGACATGTG 

MiSeq_B4galt4_NW_003614660.1+444821_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGCCATAGTCCAGTTGCTGC 

Tsta3_NW_003617373.16731_MiSeqfwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCTCAGGAACAGACCCAACA 

Tsta3_NW_003617373.16731_MiSeqrev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTGCAGCAACAATGGGTGAG 
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Supplementary Table S5: Deep sequencing results of single cell derived clones. Detailed 

sequencing analysis results for the targeted genes of generated clones. Indels are marked in 

green and in-frame indels highlighted in red.
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Supplementary Fig. 1. Detailed HPLC histograms of analyzed N-glycan samples from parental and 

generated KO cell lines. Structures from MS-annotated peaks are indicated with N-glycan cartoons and 

represent N-glycans from total secreted cell protein. 
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Supplementary Fig. 2: Rituximab N-glycan profiles and cell growth after transient transfection. N-

glycan analysis of rituximab purified from different B4Gal-T-KO clones and CHO-S-WT. Rituximab was 

harvested three days after transient transfection for purification, N-glycan labeling and analysis. 

Annotated N-glycan structures point at corresponding histogram peaks. VCD and cell viabilities are 

presented in bottom right panel. 
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Supplementary Fig. 3: EPO N-glycan profiles and cell growth after transient transfection. N-glycan 

analysis of EPO purified from different B4Gal-T-KO clones and CHO-S-WT. EPO was harvested three 

days after transient transfection for purification, N-glycan labeling and analysis. Annotated N-glycan 

structures point at corresponding histogram peaks. VCD and cell viabilities are indicated in bottom right 

panel. 
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Supplementary Fig. 4: IVC comparison of different cell lines during batch experiment. Two major 

groups of genotypes with (T1-2-3-KO, T1-2-3-4-KO, T1-3-KO) and without combinatorial disruption of 

B4Gal-T1 and –T3 are compared to IVC of WT and WT ctr clone. 
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Supplementary Table S1: sgRNA target sequences. The bases in red mark the PAM site. 

Target gene Target sequence (5’ →  3’) 

B4GalT1 TATCCCATTTCGCAACCGGCGG 

B4GalT2 GGAGCACCACCTACGCTATGG 

B4GalT3 TGATGCTCGCGGGCACGATGG 

B4GalT4 TGGAGGCCGGTATCACCCTGG 
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Supplementary Table S2: Oligos for sgRNA expression vector cloning. 

Oligo name Oligo sequence (5’ → 3’)

gRNA_B4galt1_NW_003615120.1_283507_fwd GGAAAGGACGAAACACCTATCCCATTTCGCAACCGGCGTTTTAGAGCTAGAAAT 

gRNA_B4galt1_NW_003615120.1_283507_rev CTAAAACGCCGGTTGCGAAATGGGATAGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_B4galt2_NW_003613906.1_163085_fwd GGAAAGGACGAAACACCGGGAGCACCACCTACGCTATGTTTTAGAGCTAGAAAT 

gRNA_B4galt2_NW_003613906.1_163085_rev CTAAAACATAGCGTAGGTGGTGCTCCCGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_B4galt3_NW_003614301.1_233251_fwd GGAAAGGACGAAACACCGTGATGCTCGCGGGCACGATGTTTTAGAGCTAGAAAT 

gRNA_B4galt3_NW_003614301.1_233251_rev CTAAAACATCGTGCCCGCGAGCATCACGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_B4galt4_NW_003614660.1+444821_fwd GGAAAGGACGAAACACCGGAGGCCGGTATCACCCTGGTTTTAGAGCTAGAAAT 

gRNA_B4galt4_NW_003614660.1+444767_rev CTAAAACAAGTGAGGTCCGGCTCAAAGGTGTTTCGTCCTTTCCACAAGATAT 
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Supplementary Table S3: Cas9_2A_GFP and sgRNA plasmid ratios for transfections.

Amount of transfected plasmid [μg] 

Transfection # GFP_2A_Cas9 sgRNA T1 sgRNA T2 sgRNA T3 sgRNA T4 pmaxGFP® 

1.1 1.9 0.6 0.6 0.6 

1.2 1.9 0.9 0.9 

1.3 3.8 

2.1 1.9 1.9 

2.2 1.9 0.9 0.9 

2.3 3.8 
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Supplementary Table S4: Primer list for deep sequencing (MiSeq). The primers contain overhang 

sequences compatible with Illumina Nextera XT indexing (forward primer overhang: 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG, reverse primer overhang: 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG). 

MiSeq_B4galt1_NW_003615120.1_283507_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACGCATTTGTGTACCCGAGT 

MiSeq_B4galt1_NW_003615120.1_283507_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGATGGGCGGTCGTTATTCC 

MiSeq_B4galt2_NW_003613906.1_163085_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGCAGACACATCCACAGGTG 

MiSeq_B4galt2_NW_003613906.1_163085_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCTGGGAGGCCGTTATACA 

MiSeq_B4galt3_NW_003614301.1_233251_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGGATTTCTGTATGGGGCCA 

MiSeq_B4galt3_NW_003614301.1_233251_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTGGGTCCTGTGTCGGTATC 

MiSeq_B4galt4_NW_003614660.1+444821_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGCCCCTCTTTCGACATGTG 

MiSeq_B4galt4_NW_003614660.1+444821_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGCCATAGTCCAGTTGCTGC 
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Supplementary Table S5: 

Deep sequencing results of 

single cell derived clones. 

Detailed sequencing analysis 

results for B4Gal-T1, -T2, -T3 

and –T4 of generated clones. 

Clones selected for batch 

analysis are marked in red with 

out-of frame indels in blue. 
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Supplementary Table S6: Gene-ID overview of targeted B4Gal-T-Isoforms. 

Target Gene-ID 

B4Gal-T1 100689430 

B4Gal-T2 100689434 

B4Gal-T3 100689346 

B4Gal-T4 100689435 
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Suppl. Fig. 1: Vector 
design for 
overexpression. (A) 
rhC1INH and ST6GAL1 are 
under the control of mCMV-
hEF-1a-5’ consisting of an 
mCMV enhancer element, 
a hEF-1a promoter 
element, and a 5’ HTLV 
untranslated region. The 
plasmid backbone consists 
of an ampicillin resistance 
cassette and SV40 early 
promoter in front of the 
GLUL (GS) sequence. 
Poly-A sequences (purple) 
terminate GLUL, rhA1AT 
and rhC1INH cassettes. (B) 
rhA1AT and St6gal1 are 
under the control of mCMV-
hEF-1a-5’. The plasmid 
backbone consists of an 
ampicillin resistance 
cassette and SV40 early 
promoter in front of the 
GLUL (GS) sequence. 
Poly-A sequences (purple) 
terminate GLUL, rhA1AT 
and rhC1INH cassettes.  
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Suppl. Fig. 2: Screening for FITC SNA positive and rhA1AT producing clones. (A) Supernatant of monoclonal cell 
lines (clone 1 - 5) on SDS PAGE to screen for rhA1AT producing clones. Control samples consist of plA1AT and 
supernatant from non-producing CHO-S WT cells. (B) Cells of CHO-S WT, the 50 µM MSX A1AT polyclonal cell 
line and the clones A1-1 and A1-2 were stained with FITC-SNA. The histograms show the number of cells on y-
axis and FITC mean intensity on the x-axis. CHO-S WT cells were used for gating between FITC-positive and -
negative cells (red line). (C)  N-glycan analysis of purified A1AT and C1INH versions. A2G2S2 proportions of 
purified rhA1AT and rhC1INH from different clones compared to plA1AT and plC1INH. 
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Suppl. Fig. 3: Viability of cells during MSX-based selection and N-glycan analysis of A1AT and C1INH derived 
from plasma as well as polyclonal and monoclonal cell lines. (A) Cell viability of non-transfected and transfected 
cell lines during selection with different concentrations of MSX. (B) N-glycan histograms of purified A1AT and 
C1INH from transiently transfected CHO-S WT and 50 µM MSX-selected polyclonal cell lines  in comparison to 
Cinryze and Prolastin-C. (C) N-glycan analysis of purified rhA1AT and rhC1INH from four selected monoclonal 
producing cell lines. 
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Suppl. Fig. 4: SDS-PAGE gel analysis of supernatants from C1INH-producing clones and the 10x KO B parental 
cell line during batch cultivation. 10 µL of supernatant from day 8 and 10 of triplicate cultures as well as plC1INH 
at different concentrations were analyzed by SDS-PAGE under reducing conditions. Intact C1INH is migrating 
slightly above 100 kDa as indicated by an asterisk. 

Table S1: sgRNA target sequences. The bases in red mark the PAM site 

Gene name of target hypothesized KO effect Target sequence (5’→ 3’) 

MGAT4A decreased branching GTCTACATTCGTCACTGTCGGGG 

MGAT4B decreased branching GCTTCAGTCGCGGATCCTCTGGG 

MGAT5 decreased branching GGATGGCTACCCCCACTGCGAGG 

ST3GAL3 decreased sialylation GATCCTAGCCCACTTTCGAAAGG 

ST3GAL4 decreased sialylation GTGTCGTCGTTGTGTTGTGGTGG 

ST3GAL6 decreased sialylation GGAGTTGTGATCATTGTGAGCGG 

B3GNT2 decreased elongation GTTGGGCAAGACGCCCCCCGAGG 

FUT8 no core-fucosylation GTCAGACGCACTGACAAAGTGGG 

SPPL3 hyper-glycosylation AGAGAGACGGACGCTCCAATAGG 

GLUL* Gln-dependent growth TCCCAAATCAGCAAACAGACTGG 

*the GLUL sgRNA efficiency during KO-generation of the presented sequence was very low compared to other
target sgRNAs and we recommend the usage of a different design 
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Table S2: Oligos for sgRNA expression vector cloning. 

Oligo Name Oligo sequence (5’ → 3’) 

gRNA_MGAT4A_411545_fwd GGAAAGGACGAAACACCGTCTACATTCGTCACTGTCGGTTTTAGAGCTAGAAAT 

gRNA_MGAT4A_411545_rev CTAAAACGACAGTGACGAATGTAGACCGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_MGAT4B_1280368_fwd GGAAAGGACGAAACACCGCTTCAGTCGCGGATCCTCTGTTTTAGAGCTAGAAAT 

gRNA_MGAT4B_1280368_rev CTAAAACAGAGGATCCGCGACTGAAGCGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_MGAT5_327084_fwd GGAAAGGACGAAACACCGGATGGCTACCCCCACTGCGGTTTTAGAGCTAGAAAT 

gRNA_MGAT5_327084_rev CTAAAACCGCAGTGGGGGTAGCCATCCGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_ST3GAL3_244730_fwd GGAAAGGACGAAACACCGATCCTAGCCCACTTTCGAAGTTTTAGAGCTAGAAAT 

gRNA_ST3GAL3_244730_rev CTAAAACTTCGAAAGTGGGCTAGGATCGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_ST3GAL4_964386_fwd GGAAAGGACGAAACACCGTGTCGTCGTTGTGTTGTGGGTTTTAGAGCTAGAAAT 

gRNA_ST3GAL4_964386_rev CTAAAACCACAACACAACGACGACACCGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_ST3GAL6_1812502_fwd GGAAAGGACGAAACACCGGAGTTGTGATCATTGTGAGGTTTTAGAGCTAGAAAT 

gRNA_ST3GAL6_1812502_rev CTAAAACCTCACAATGATCACAACTCCGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_B3GNT2_1273293_fwd GGAAAGGACGAAACACCGTTGGGCAAGACGCCCCCCGGTTTTAGAGCTAGAAAT 

gRNA_B3GNT2_1273293_rev CTAAAACCGGGGGGCGTCTTGCCCAACGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_FUT8_681494_fwd GGAAAGGACGAAACACCGTCAGACGCACTGACAAAGTGTTTTAGAGCTAGAAAT 

gRNA_FUT8_681494_rev CTAAAACACTTTGTCAGTGCGTCTGACGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_SPPL3_213040_fwd GGAAAGGACGAAACACCAGAGAGACGGACGCTCCAATGTTTTAGAGCTAGAAAT 

gRNA_SPPL3_213040_rev CTAAAACATTGGAGCGTCCGTCTCTCTGGTGTTTCGTCCTTTCCACAAGATAT 

gRNA_GLUL_941540_fwd GGAAAGGACGAAACACCGGCCCAGGGAAGCCATCGGAGTTTTAGAGCTAGAAAT 

gRNA_GLUL_941540_rev CTAAAACTCCGATGGCTTCCCTGGGCCGGTGTTTCGTCCTTTCCACAAGATAT 
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Table S3: Primer list for deep sequencing (MiSeq). The primers contain overhang sequences compatible with 
Illumina Nextera XT indexing  
(forward primeroverhang: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG,  
reverse primer overhang: GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG). 

primer name  sequence (5’ → 3’) 

MiSeq_MGAT4A_411545_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGACAGACAGAAGGCAAATCTACG 

MiSeq_MGAT4A_411545_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTAACAGCTACACAGGAAGAGCA 

MiSeq_MGAT4B_1280368_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGGATGGGGTGTATGGAGGT 

MiSeq_MGAT4B_1280368_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTGCAGACTGCTCTCCTTGG 

MiSeq_MGAT5_327084_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCATGAATCTCATGGTTTCCTTTGT 

MiSeq_MGAT5_327084_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTTCAAGACTCAACTCTTTCCC 

MiSeq_ST3GAL3_244730_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGGAAACAGCATGGGCAAAC 

MiSeq_ST3GAL3_244730_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTGGAATGTGGATGGTGGC 

MiSeq_ST3GAL4_964386_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACACCTGATGACCACATCGT 

MiSeq_ST3GAL4_964386_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCAGGGTCCACTTCTGGATT 

MiSeq_ST3GAL6_1812502_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCACTGTCTTACTACCCACAGGA 

MiSeq_ST3GAL6_1812502_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCTTTCATTATATTCAAGAGCCAC 

MiSeq_B3GNT2_1273293_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCACCCACCGGAGAAACAG 

MiSeq_B3GNT2_1273293_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGAAGGCAAGCAATTCGGGA 

MiSeq_FUT8_681494_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCCCCCATGACTAGGGATA 

MiSeq_FUT8_681494_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCTGCGTTCGAGAAGCTGAAA 

MiSeq_SPPL3_213040_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGTGGAGTAACTTACCTGCTGT 

MiSeq_SPPL3_213040_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAAGTGGTGAGTGTGTCCTGT 

MiSeq_GLUL_941540_fwd2 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAACCAGCACCCCTGGTT 

MiSeq_GLUL_941540_rev2 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAGCTGCCAGTCTGTTTGC 

Table S4: Indels generated in ten targeted genes by CRISPR/Cas9 multiplexing. 
Multiplexing 
round 

1 2 3 4 

Gene MGAT4
A 

MGAT4B MGAT
5 

ST3GAL4 ST3GAL6 ST3GAL3 B3GNT2       GLUL SPPL3 FUT8 

10x KO clone A +2 -1 +1 -5/+1 +1 +1/+2 -1 -13/-10/-2 +1 +1 

10x KO clone B +2 -1 +1 -5/+1 +1 +1/+2 -1 -13/-10/-2 +1 -7/-1 
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Table S5: Nucleotide sequences for overexpression vectors. 

vector 

SerpinG1-
plasmid 

AmpR 

Bla 
promoter 

SV40pA 

GLUL 

SV40 
Promoter 

mCMV-hEF-
1a-5’ 
promoter 

agacgtcaTGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTT
TTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTAT
AAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCC
GCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTC
CAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAAC
CCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTA
CAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTT
ACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCA
GCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAA
ACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAA
TCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTC
TATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGT
GCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGC
GCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCA
GTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGC
TCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGAT
CGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATC
CGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTG
CCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGC
GAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTT
TTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAA
TGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGA
ATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCGACGGATCGGGAG
ATCTCCCGATCCCCTATGGTCGACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATCTGCTCCCTGCTTG
TGTGTTGGAGGTCGCTGAGTAGTGCGCGAGCAAAATTTAAGCTACAACAAGGCAAGGCTTGACCGACAATTGCATGAAGA
ATCTGCTTAGGGTTAGGCGTTTTGCGCTGCTTCGCGACAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACT
AGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACA
AGTTCCGCGGTTAGTTTTTGTATTGGAAGGGCTGGTCGCCAGTCTCATTGAGAAGGCATGTGCGGACGATGGCTTCTGTC
ACTGCAAAGGGGTCACAATTGGCAGAGGGGCGGCGGTCTTCAAAGTAACCTTTCTTCTCCTGGCCGACAGTCCGGGGAA
TGCGGATGCTGGCACTGCGATTGGCGACACCAGCAGAAAAGTCGTTGATGTTGGACGTTTCGTGGAACCCAGTCAGACG
ACGGGCATTGTCCAGGCCCCCCTTGGGATCGTAGGCTCGAATGTGGTACCGGTGCCGCTTGCTTAGTTTCTCGATGGCC
TCCTCGATGTGCTTCAGACCATTCTCCTCCCGCATGGCCTTGGTGCTAAAGTTGGTATGGCAGCCTGCACCATTCCAGTT
CCCAGGAATGGGCTTGGGGTCAAAGGTTGCTATTACCCCAAAGTCTTCACATACTCGATGCAAGATGAAACGGGCCACCC
AGAGATGATCTCCCATGCGGATTCCTTCACAGGGTCCTATTTGGAATTCCCACTGGGCAGGCATGACCTCAGCATTTGTT
CCTGTAATCTTGACCCCAGCATACAAGCAGGCGCGGTAGTGAGCCTCCACGATATCCCTGCCATAGGCTTTGTCTGCGCC
CACACCACAGTAATACGGACCTTGGGGCCCAGGAAAGCCATTGGAAGGCCAACCAAAAGGGTGCCCATCTGTTCCCATC
AGAGTATACTCCTGTTCCATTCCAAACCAGGGGTGCTGGTTGCTCACCATGTCCATTATCCGTTTACACGAGTGCCTTAAA
TTGGTCTCTGCAGGCTTCCGGTTGTACTTGAAAACTTCACAGAACACCAGCTTGTTGGGATCTCTGCGGAAGGGGTCCCG
AAACATGGCAACAGGGCTGAGATACATGTCACTGTTGGAGCCCTCAGACTGAAAGGTACTAGAGCCATCAAAATTCCACT
CAGGTAACTCTTCTACACACTTGGGCTCACAGTCCAGGGTGCGGGTTTTGCAGCGCAGTCCTTCTCCAGTACCATCAACC
CAGATATACATGGCTTGGACTTTCTCACCCTGGGGCAGGCACAAGTACATTTGCTTGATGTTTTTGTTCAAGTGGGAACTT
GCTGAGGTGGCCATATCGATCGAAAATGGATATACAAGCTCCCGGGAGCTTTTTGCAAAAGCCTAGGCCTCCAAAAAAGC
CTCCTCACTACTTCTGGAATAGCTCAGAGGCAGAGGCGGCCTCGGCCTCTGCATAAATAAAAAAAATTAGTCAGCCATGG
GGCGGAGAATGGGCGGAACTGGGCGGAGTTAGGGGCGGGATGGGCGGAGTTAGGGGCGGGACTATGGTTGCTGACTA
ATTGAGATGCATGCTTTGCATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCTGGTTGCTGACTAATTGAGAT
GCATGCTTTGCATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCCTAACTGACACACATTCCACAGACGTCGC
TCGATGTACGGGCCAGATATACGCGTAGTCAATGGGAAAAACCCATTGGAGCCAAGTACACTGACTCAATAGGGACTTTC
CATTGGGTTTTGCCCAGTACATAAGGTCAATAGGGGGTGAGTCAACAGGAAAGTCCCATTGGAGCCAAGTACATTGAGTC
AATAGGGACTTTCCAATGGGTTTTGCCCAGTACATAAGGTCAATGGGAGGTAAGCCAATGGGTTTTTCCCATTACTGACAT
GTATACTGAGTCATTAGGGACTTTCCAATGGGTTTTGCCCAGTACATAAGGTCAATAGGGGTGAATCAACAGGAAAGTCCC
ATTGGAGCCAAGTACACTGAGTCAATAGGGACTTTCCATTGGGTTTTGCCCAGTACAAAAGGTCAATAGGGGGTGAGTCA
ATGGGTTTTTCCCATTATTGGCACATACATAAGGTCAATAGGGGTGACTAGTCAGTGGGCAGAGCGCACATCGCCCACAG
TCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTG
ATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTTGCCGTGAACGTTCTT
TTTCGCAACGGGTTTGCCGCCAGAACACAGCTGAAGCTTCGAGGGGCTCGCATCTCTCCTTCACGCGCCCGCCGCCCTA
CCTGAGGCCGCCATCCACGCCGGTTGAGTCGCGTTCTGCCGCCTCCCGCCTGTGGTGCCTCCTGAACTGCGTCCGCCG
TCTAGGTAAGTTTAAAGCTCAGGTCGAGACCGGGCCTTTGTCCGGCGCTCCCTTGGAGCCTACCTAGACTCAGCCGGCT
CTCCACGCTTTGCCTGACCCTGCTTGCTCAACTCTACGTCTTTGTTTCGTTTTCTGTTCTGCGCCGTTACAGATCCAAGCT
GTGACCGGCGCCTACagtgcgatCGCCACCATGGCCAGCAGACTGACACTGCTGACCCTGCTGCTCCTCCTGCTGGCTGGA
GACAGGGCTTCCTCCAACCCCAACGCCACCAGCAGCAGCTCCCAGGACCCTGAGTCCCTCCAGGACAGGGGAGAAGGC
AAGGTCGCCACCACCGTCATCTCCAAAATGCTCTTCGTCGAGCCCATCCTCGAGGTCAGCTCCCTCCCCACCACAAACAG
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C1INH/ 
SerpinG1 

BGHpA 

mCMV-hEF-
1a-5’ 
promoter 

ST6GAL1 

BGHpA 

CACAACCAACAGCGCCACCAAGATCACCGCCAACACCACCGACGAACCCACAACCCAGCCCACCACAGAGCCTACAACA
CAGCCTACCATCCAGCCTACCCAACCCACCACCCAGCTCCCTACCGACTCCCCTACCCAGCCTACCACAGGCTCCTTTTG
TCCCGGACCTGTGACCCTGTGCTCCGACCTGGAGTCCCATAGCACAGAGGCTGTCCTCGGAGATGCCCTGGTGGATTTC
AGCCTCAAACTCTACCACGCCTTCAGCGCCATGAAGAAGGTCGAGACCAATATGGCCTTCTCCCCCTTTAGCATCGCCAG
CCTGCTCACCCAAGTCCTGCTCGGAGCCGGCGAGAATACCAAGACCAACCTGGAGAGCATCCTGTCCTACCCTAAGGAC
TTCACCTGCGTCCACCAGGCCCTCAAGGGCTTTACCACCAAAGGAGTCACATCCGTCAGCCAGATCTTCCATTCCCCTGA
CCTCGCCATTAGGGACACATTCGTGAACGCCTCCAGGACCCTGTACAGCAGCTCCCCTAGGGTCCTGTCCAACAACAGC
GACGCCAACCTGGAGCTCATTAATACATGGGTGGCCAAGAATACAAACAACAAGATTAGCAGGCTCCTGGATAGCCTGCC
TTCCGACACCAGGCTCGTGCTCCTCAATGCCATCTACCTCTCCGCCAAGTGGAAGACCACATTCGACCCCAAGAAAACAA
GGATGGAGCCCTTTCACTTTAAAAATAGCGTGATCAAGGTGCCCATGATGAACAGCAAGAAGTACCCTGTCGCCCACTTC
ATCGACCAGACCCTGAAGGCTAAGGTGGGACAGCTCCAACTGTCCCATAATCTGAGCCTGGTCATCCTCGTGCCTCAGAA
CCTGAAGCACAGGCTGGAGGACATGGAACAGGCCCTGTCCCCCAGCGTGTTTAAGGCCATCATGGAAAAACTCGAGATG
TCCAAGTTTCAACCCACCCTCCTCACCCTGCCCAGAATTAAGGTCACCACAAGCCAGGACATGCTCAGCATTATGGAGAA
GCTCGAGTTCTTCGATTTCTCCTACGACCTCAACCTCTGCGGCCTGACAGAAGACCCTGACCTGCAGGTGAGCGCCATGC
AGCACCAGACAGTGCTGGAGCTCACCGAGACAGGAGTGGAAGCTGCTGCCGCCTCCGCTATTTCCGTGGCCAGGACCC
TCCTGGTGTTCGAGGTGCAACAACCCTTCCTGTTCGTCCTGTGGGACCAACAACACAAGTTCCCTGTGTTCATGGGCAGA
GTCTACGACCCCAGAGCCTGAacacagtctCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCC
TTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCAT
TCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGC
GGTGGGCTCTATGGATTAAGCTCGCGTAGTCAATGGGAAAAACCCATTGGAGCCAAGTACACTGACTCAATAGGGACTTT
CCATTGGGTTTTGCCCAGTACATAAGGTCAATAGGGGGTGAGTCAACAGGAAAGTCCCATTGGAGCCAAGTACATTGAGT
CAATAGGGACTTTCCAATGGGTTTTGCCCAGTACATAAGGTCAATGGGAGGTAAGCCAATGGGTTTTTCCCATTACTGACA
TGTATACTGAGTCATTAGGGACTTTCCAATGGGTTTTGCCCAGTACATAAGGTCAATAGGGGTGAATCAACAGGAAAGTCC
CATTGGAGCCAAGTACACTGAGTCAATAGGGACTTTCCATTGGGTTTTGCCCAGTACAAAAGGTCAATAGGGGGTGAGTC
AATGGGTTTTTCCCATTATTGGCACATACATAAGGTCAATAGGGGTGACTAGTCAGTGGGCAGAGCGCACATCGCCCACA
GTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGT
GATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTTGCCGTGAACGTTCT
TTTTCGCAACGGGTTTGCCGCCAGAACACAGCTGAAGCTTCGAGGGGCTCGCATCTCTCCTTCACGCGCCCGCCGCCCT
ACCTGAGGCCGCCATCCACGCCGGTTGAGTCGCGTTCTGCCGCCTCCCGCCTGTGGTGCCTCCTGAACTGCGTCCGCC
GTCTAGGTAAGTTTAAAGCTCAGGTCGAGACCGGGCCTTTGTCCGGCGCTCCCTTGGAGCCTACCTAGACTCAGCCGGC
TCTCCACGCTTTGCCTGACCCTGCTTGCTCAACTCTACGTCTTTGTTTCGTTTTCTGTTCTGCGCCGTTACAGATCCAAGCT
GTGACCGGCGCCTACagtgcgatCGCCACCATGATCCACACCAACCTGAAGAAGAAATTCTCCTGCTGCGTGCTGGTGTTCC
TGCTGTTCGCCGTGATCTGCGTGTGGAAAGAGAAGAAGAAGGGCTCCTACTACGACTCCTTCAAGCTGCAGACCAAAGAA
TTCCAGGTGCTGAAGTCCCTGGGCAAGCTGGCCATGGGCTCCGACTCTCAGTCCGTGTCCTCCAGCTCTACCCAGGACC
CCCACAGAGGCAGACAGACCCTGGGCTCTCTGAGAGGCCTGGCCAAGGCTAAGCCTGAGGCCTCCTTCCAGGTGTGGA
ACAAGGACTCCTCCAGCAAGAACCTGATCCCCCGGCTGCAGAAGATCTGGAAGAACTACCTGTCCATGAACAAGTACAAG
GTGTCCTACAAGGGCCCTGGCCCTGGCATCAAGTTCTCTGCCGAGGCCCTGAGATGCCACCTGAGGGACCATGTGAACG
TGTCCATGGTGGAAGTGACCGACTTCCCATTCAACACCTCCGAGTGGGAGGGCTACCTGCCCAAAGAGTCCATCCGGAC
CAAGGCTGGCCCTTGGGGCAGATGTGCTGTGGTGTCCTCTGCCGGCTCCCTGAAGTCCTCTCAGCTGGGCAGAGAGATC
GACGACCACGACGCCGTGCTGCGGTTTAATGGCGCCCCTACCGCCAACTTCCAGCAGGACGTGGGCACCAAGACCACC
ATCCGGCTGATGAACTCCCAGCTCGTGACAACCGAGAAGCGGTTCCTGAAGGACTCCCTGTACAACGAGGGCATCCTGA
TCGTGTGGGACCCCTCCGTGTACCACTCCGACATCCCCAAGTGGTATCAGAACCCCGACTACAACTTCTTCAACAACTAC
AAGACCTACCGGAAGCTGCACCCCAACCAGCCCTTCTACATCCTGAAGCCCCAGATGCCCTGGGAGCTGTGGGACATTC
TGCAGGAAATCTCCCCCGAGGAAATCCAGCCCAACCCCCCTTCCTCTGGCATGCTGGGCATCATTATCATGATGACCCTG
TGCGACCAGGTGGACATCTACGAGTTTCTGCCCTCCAAGAGAAAGACCGACGTGTGCTACTACTACCAGAAGTTCTTCGA
CTCCGCCTGCACCATGGGCGCCTACCACCCTCTGCTGTACGAGAAGAACCTCGTGAAGCACCTGAACCAGGGCACCGAC
GAGGATATCTACCTGCTGGGCAAGGCCACCCTGCCTGGCTTCAGAACCATCCACTGCTGAacacagtctCTGTGCCTTCTAGT
TGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAA
AATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGG
AGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGG 

A1AT plasmid 

AmpR 

agacgtcaTGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTT
TTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTAT
AAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCC
GCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTC
CAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAAC
CCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTA
CAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTT
ACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCA
GCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAA
ACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAA
TCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTC
TATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGT
GCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGC
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Bla 
promoter 

SV40pA 

GLUL 

SV40 
Promoter 

mCMV-hEF-
1a-5’ 
promoter 

A1AT 

BGHpA 

GCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCA
GTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGC
TCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGAT
CGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATC
CGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTG
CCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGC
GAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTT
TTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAA
TGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGA
ATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCGACGGATCGGGAG
ATCTCCCGATCCCCTATGGTCGACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATCTGCTCCCTGCTTG
TGTGTTGGAGGTCGCTGAGTAGTGCGCGAGCAAAATTTAAGCTACAACAAGGCAAGGCTTGACCGACAATTGCATGAAGA
ATCTGCTTAGGGTTAGGCGTTTTGCGCTGCTTCGCGACAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACT
AGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACA
AGTTCCGCGGTTAGTTTTTGTATTGGAAGGGCTGGTCGCCAGTCTCATTGAGAAGGCATGTGCGGACGATGGCTTCTGTC
ACTGCAAAGGGGTCACAATTGGCAGAGGGGCGGCGGTCTTCAAAGTAACCTTTCTTCTCCTGGCCGACAGTCCGGGGAA
TGCGGATGCTGGCACTGCGATTGGCGACACCAGCAGAAAAGTCGTTGATGTTGGACGTTTCGTGGAACCCAGTCAGACG
ACGGGCATTGTCCAGGCCCCCCTTGGGATCGTAGGCTCGAATGTGGTACCGGTGCCGCTTGCTTAGTTTCTCGATGGCC
TCCTCGATGTGCTTCAGACCATTCTCCTCCCGCATGGCCTTGGTGCTAAAGTTGGTATGGCAGCCTGCACCATTCCAGTT
CCCAGGAATGGGCTTGGGGTCAAAGGTTGCTATTACCCCAAAGTCTTCACATACTCGATGCAAGATGAAACGGGCCACCC
AGAGATGATCTCCCATGCGGATTCCTTCACAGGGTCCTATTTGGAATTCCCACTGGGCAGGCATGACCTCAGCATTTGTT
CCTGTAATCTTGACCCCAGCATACAAGCAGGCGCGGTAGTGAGCCTCCACGATATCCCTGCCATAGGCTTTGTCTGCGCC
CACACCACAGTAATACGGACCTTGGGGCCCAGGAAAGCCATTGGAAGGCCAACCAAAAGGGTGCCCATCTGTTCCCATC
AGAGTATACTCCTGTTCCATTCCAAACCAGGGGTGCTGGTTGCTCACCATGTCCATTATCCGTTTACACGAGTGCCTTAAA
TTGGTCTCTGCAGGCTTCCGGTTGTACTTGAAAACTTCACAGAACACCAGCTTGTTGGGATCTCTGCGGAAGGGGTCCCG
AAACATGGCAACAGGGCTGAGATACATGTCACTGTTGGAGCCCTCAGACTGAAAGGTACTAGAGCCATCAAAATTCCACT
CAGGTAACTCTTCTACACACTTGGGCTCACAGTCCAGGGTGCGGGTTTTGCAGCGCAGTCCTTCTCCAGTACCATCAACC
CAGATATACATGGCTTGGACTTTCTCACCCTGGGGCAGGCACAAGTACATTTGCTTGATGTTTTTGTTCAAGTGGGAACTT
GCTGAGGTGGCCATATCGATCGAAAATGGATATACAAGCTCCCGGGAGCTTTTTGCAAAAGCCTAGGCCTCCAAAAAAGC
CTCCTCACTACTTCTGGAATAGCTCAGAGGCAGAGGCGGCCTCGGCCTCTGCATAAATAAAAAAAATTAGTCAGCCATGG
GGCGGAGAATGGGCGGAACTGGGCGGAGTTAGGGGCGGGATGGGCGGAGTTAGGGGCGGGACTATGGTTGCTGACTA
ATTGAGATGCATGCTTTGCATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCTGGTTGCTGACTAATTGAGAT
GCATGCTTTGCATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCCTAACTGACACACATTCCACAGACGTCGC
TCGATGTACGGGCCAGATATACGCGTAGTCAATGGGAAAAACCCATTGGAGCCAAGTACACTGACTCAATAGGGACTTTC
CATTGGGTTTTGCCCAGTACATAAGGTCAATAGGGGGTGAGTCAACAGGAAAGTCCCATTGGAGCCAAGTACATTGAGTC
AATAGGGACTTTCCAATGGGTTTTGCCCAGTACATAAGGTCAATGGGAGGTAAGCCAATGGGTTTTTCCCATTACTGACAT
GTATACTGAGTCATTAGGGACTTTCCAATGGGTTTTGCCCAGTACATAAGGTCAATAGGGGTGAATCAACAGGAAAGTCCC
ATTGGAGCCAAGTACACTGAGTCAATAGGGACTTTCCATTGGGTTTTGCCCAGTACAAAAGGTCAATAGGGGGTGAGTCA
ATGGGTTTTTCCCATTATTGGCACATACATAAGGTCAATAGGGGTGACTAGTCAGTGGGCAGAGCGCACATCGCCCACAG
TCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTG
ATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTTGCCGTGAACGTTCTT
TTTCGCAACGGGTTTGCCGCCAGAACACAGCTGAAGCTTCGAGGGGCTCGCATCTCTCCTTCACGCGCCCGCCGCCCTA
CCTGAGGCCGCCATCCACGCCGGTTGAGTCGCGTTCTGCCGCCTCCCGCCTGTGGTGCCTCCTGAACTGCGTCCGCCG
TCTAGGTAAGTTTAAAGCTCAGGTCGAGACCGGGCCTTTGTCCGGCGCTCCCTTGGAGCCTACCTAGACTCAGCCGGCT
CTCCACGCTTTGCCTGACCCTGCTTGCTCAACTCTACGTCTTTGTTTCGTTTTCTGTTCTGCGCCGTTACAGATCCAAGCT
GTGACCGGCGCCTACagtgcgatCGCCACCATGCCCAGCTCCGTGAGCTGGGGCATTCTCCTCCTCGCTGGCCTGTGCTGT
CTGGTGCCTGTGAGCCTGGCCGAAGACCCCCAAGGAGACGCTGCTCAGAAGACAGACACATCCCACCATGACCAGGAC
CACCCCACCTTCAATAAGATCACCCCTAACCTCGCTGAGTTTGCCTTTTCCCTCTACAGGCAACTGGCCCACCAGAGCAA
CTCCACCAATATCTTCTTTAGCCCTGTGAGCATCGCCACAGCCTTCGCCATGCTGAGCCTGGGCACCAAGGCTGATACAC
ATGACGAGATCCTGGAAGGACTGAACTTCAACCTGACCGAGATCCCCGAGGCCCAGATCCACGAGGGCTTCCAGGAACT
GCTGAGGACCCTGAACCAGCCTGACAGCCAGCTCCAGCTCACCACCGGCAATGGCCTCTTCCTGAGCGAGGGCCTCAA
GCTCGTGGATAAGTTCCTGGAAGACGTGAAGAAGCTGTACCACTCCGAAGCCTTCACAGTGAACTTTGGCGACACAGAG
GAGGCCAAGAAGCAGATCAACGACTATGTGGAGAAGGGCACCCAGGGCAAGATCGTGGACCTCGTGAAGGAGCTGGAT
AGGGACACCGTGTTCGCTCTCGTGAACTATATCTTCTTCAAGGGCAAGTGGGAGAGGCCCTTCGAGGTGAAAGACACAG
AGGAAGAGGACTTCCACGTCGACCAAGTGACCACAGTCAAGGTCCCCATGATGAAGAGACTGGGCATGTTCAACATCCA
GCATTGCAAAAAGCTGAGCAGCTGGGTGCTGCTCATGAAGTATCTCGGCAACGCCACAGCCATCTTCTTCCTGCCCGATG
AGGGCAAGCTCCAGCATCTGGAAAACGAGCTCACCCACGACATTATCACCAAGTTTCTGGAGAACGAAGACAGGAGGAG
CGCTAGCCTCCACCTCCCCAAACTCAGCATCACCGGCACATATGACCTGAAGTCCGTCCTCGGCCAGCTGGGCATCACA
AAGGTCTTCTCCAACGGCGCCGACCTGAGCGGAGTCACAGAAGAGGCTCCCCTGAAGCTGAGCAAGGCTGTGCATAAGG
CCGTGCTGACAATTGACGAGAAAGGCACAGAGGCTGCCGGAGCCATGTTCCTGGAAGCTATCCCCATGAGCATCCCCCC
CGAGGTGAAATTCAACAAACCCTTCGTGTTCCTGATGATCGAGCAGAACACCAAGTCCCCCCTCTTCATGGGCAAGGTCG
TGAACCCCACCCAGAAGTAAacacagtctCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCT
TGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATT
CTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCG
GTGGGCTCTATGGATTAAGCTCGCGTAGTCAATGGGAAAAACCCATTGGAGCCAAGTACACTGACTCAATAGGGACTTTC
CATTGGGTTTTGCCCAGTACATAAGGTCAATAGGGGGTGAGTCAACAGGAAAGTCCCATTGGAGCCAAGTACATTGAGTC
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AATAGGGACTTTCCAATGGGTTTTGCCCAGTACATAAGGTCAATGGGAGGTAAGCCAATGGGTTTTTCCCATTACTGACAT
GTATACTGAGTCATTAGGGACTTTCCAATGGGTTTTGCCCAGTACATAAGGTCAATAGGGGTGAATCAACAGGAAAGTCCC
ATTGGAGCCAAGTACACTGAGTCAATAGGGACTTTCCATTGGGTTTTGCCCAGTACAAAAGGTCAATAGGGGGTGAGTCA
ATGGGTTTTTCCCATTATTGGCACATACATAAGGTCAATAGGGGTGACTAGTCAGTGGGCAGAGCGCACATCGCCCACAG
TCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTG
ATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTTGCCGTGAACGTTCTT
TTTCGCAACGGGTTTGCCGCCAGAACACAGCTGAAGCTTCGAGGGGCTCGCATCTCTCCTTCACGCGCCCGCCGCCCTA
CCTGAGGCCGCCATCCACGCCGGTTGAGTCGCGTTCTGCCGCCTCCCGCCTGTGGTGCCTCCTGAACTGCGTCCGCCG
TCTAGGTAAGTTTAAAGCTCAGGTCGAGACCGGGCCTTTGTCCGGCGCTCCCTTGGAGCCTACCTAGACTCAGCCGGCT
CTCCACGCTTTGCCTGACCCTGCTTGCTCAACTCTACGTCTTTGTTTCGTTTTCTGTTCTGCGCCGTTACAGATCCAAGCT
GTGACCGGCGCCTACagtgcgatCGCCACCATGATCCACACCAACCTGAAGAAGAAATTCTCCTGCTGCGTGCTGGTGTTCC
TGCTGTTCGCCGTGATCTGCGTGTGGAAAGAGAAGAAGAAGGGCTCCTACTACGACTCCTTCAAGCTGCAGACCAAAGAA
TTCCAGGTGCTGAAGTCCCTGGGCAAGCTGGCCATGGGCTCCGACTCTCAGTCCGTGTCCTCCAGCTCTACCCAGGACC
CCCACAGAGGCAGACAGACCCTGGGCTCTCTGAGAGGCCTGGCCAAGGCTAAGCCTGAGGCCTCCTTCCAGGTGTGGA
ACAAGGACTCCTCCAGCAAGAACCTGATCCCCCGGCTGCAGAAGATCTGGAAGAACTACCTGTCCATGAACAAGTACAAG
GTGTCCTACAAGGGCCCTGGCCCTGGCATCAAGTTCTCTGCCGAGGCCCTGAGATGCCACCTGAGGGACCATGTGAACG
TGTCCATGGTGGAAGTGACCGACTTCCCATTCAACACCTCCGAGTGGGAGGGCTACCTGCCCAAAGAGTCCATCCGGAC
CAAGGCTGGCCCTTGGGGCAGATGTGCTGTGGTGTCCTCTGCCGGCTCCCTGAAGTCCTCTCAGCTGGGCAGAGAGATC
GACGACCACGACGCCGTGCTGCGGTTTAATGGCGCCCCTACCGCCAACTTCCAGCAGGACGTGGGCACCAAGACCACC
ATCCGGCTGATGAACTCCCAGCTCGTGACAACCGAGAAGCGGTTCCTGAAGGACTCCCTGTACAACGAGGGCATCCTGA
TCGTGTGGGACCCCTCCGTGTACCACTCCGACATCCCCAAGTGGTATCAGAACCCCGACTACAACTTCTTCAACAACTAC
AAGACCTACCGGAAGCTGCACCCCAACCAGCCCTTCTACATCCTGAAGCCCCAGATGCCCTGGGAGCTGTGGGACATTC
TGCAGGAAATCTCCCCCGAGGAAATCCAGCCCAACCCCCCTTCCTCTGGCATGCTGGGCATCATTATCATGATGACCCTG
TGCGACCAGGTGGACATCTACGAGTTTCTGCCCTCCAAGAGAAAGACCGACGTGTGCTACTACTACCAGAAGTTCTTCGA
CTCCGCCTGCACCATGGGCGCCTACCACCCTCTGCTGTACGAGAAGAACCTCGTGAAGCACCTGAACCAGGGCACCGAC
GAGGATATCTACCTGCTGGGCAAGGCCACCCTGCCTGGCTTCAGAACCATCCACTGCTGAacacagtctCTGTGCCTTCTAGT
TGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAA
AATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGG
AGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGG 
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