Butanol for sustainable aviation

Junicke, Helena

Publication date: 2018

Document Version: Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Butanol for sustainable aviation

Sustainable Aviation Fuel - Workshop
20.11.2018

Dr. Helena Junicke
heljun@dtu.dk
Outline

Introduction
 – Alternative jet fuel pathways
 – Alcohol-to-jet

Opportunities for butanol
 – Butanol from waste
 – The GreenLogic project

Methods and results
 – Continuous enrichment studies
 – Thermodynamic system design
 – Modelling of full-scale reactors

Conclusions

Outlook
Alternative jet fuel pathways

- There are five ASTM D7566 certified pathways for synthetic paraffinic kerosene (SPK) production

<table>
<thead>
<tr>
<th>Type</th>
<th>Pathway</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas-to-jet</td>
<td>FT-SPK</td>
<td>SPK from syngas via Fischer-Tropsch (FT)</td>
</tr>
<tr>
<td></td>
<td>FT-SPK/A</td>
<td>FT-SPK with increased aromatic content</td>
</tr>
<tr>
<td>Oil-to-jet</td>
<td>HEFA-SPK</td>
<td>SPK from hydro-processed esters and fatty acids (HEFA)</td>
</tr>
<tr>
<td>Sugar-to-jet</td>
<td>SIP-SPK</td>
<td>Synthesized iso-paraffins (SIP) obtained via farnesene intermediate</td>
</tr>
<tr>
<td>Alcohol-to-jet</td>
<td>ATJ-SPK</td>
<td>SPK from C2-C5 alcohols</td>
</tr>
</tbody>
</table>

FOCUS

The alcohol-to-jet pathway

Energy crops
Cellulosic materials
Municipal & Industrial waste streams

Fermentation
(bio)chemical pretreatment

Alcohols
Dehydration
Oligomerization
Hydrogenation
Distillation

ATJ (C8-C16)

Opportunities

- ASTM D7566-18 permits blending iso-butanol and ethanol derived SPK with conventional jet fuels of up to 50%
- Sourcing C2-C5 alcohols from waste

Non-competition with food production Cheap feedstock
Closing the circular economy gap Energy recovery
Butanol from waste – How?

- Anaerobic mixed microbial cultures
- Non-standard conditions (pH 5, increased pH$_2$)

Surplus electricity

Butyrate and H$_2$: typical intermediates
The GreenLogic project

- Production of **C2-C5 alcohols** from industrial and municipal waste streams
- Upgrading waste water treatment plants (WWTP) into water **resource recovery** facilities (WRRF)

![Diagram of waste streams processing into liquid biofuels, biogas, and clean water](image)

- Liquid biofuels
- Biogas
- Clean water
Anaerobic digestion: The classical view

- **Polymers**
 - carbohydrates, proteins, lipids

- **Monomers**
 - monosaccharides, amino acids, LCFA

- **Short-chain fatty acids**
 - propionate, butyrate, ...

Current focus:

Different microbial groups degrade complex waste streams into biogas.

- Hydrolysis
- Acidogenesis
- Acetogenesis
- Methanogenesis

\[\text{CH}_4 + \text{CO}_2 \]
Anaerobic digestion: Butanol enrichment

- **Polymers**
 - carbohydrates, proteins, lipids

- **Monomers**
 - monosaccharides, amino acids, LCFA

- **Short-chain fatty acids**
 - propionate, butyrate, ...

- **C2-C5 alcohols**

New focus

Operate at **pH 5 and high pH₂** to promote alcohol formation.

- $\text{H}_2 + \text{Butyrate} \rightarrow \text{Acetate} + \text{H}_2$
- $\text{Acetate} \rightarrow \text{CO}_2 + \text{CH}_4$
- $\text{CO}_2 + \text{H}_2 \rightarrow \text{CH}_4$

Operational Processes

- **Hydrolysis**
 - Polymers → Monomers
 - Monomers → Short-chain fatty acids
 - Short-chain fatty acids → C2-C5 alcohols

- **Acidogenesis**

- **Solventogenesis**
Thermodynamic system design

- Unlocking butanol formation
- Increase H₂, decrease pH (see arrow)

Butanol formation
Butyrate⁻ + H⁺ + 2H₂ → Butanol + H₂O

\[\Delta G^1 < 0 \]
\[\Delta G^1 = 0 \]
\[\Delta G^1 > 0 \]
Modelling of full-scale anaerobic digesters

• From biogas towards butanol formation
Conclusions

• **Butanol production** from waste under non-standard conditions

• **Mixed culture biotechnology** as a solution for cheap feedstock conversion into ATJ-SPK

• ATJ-SPK approval for C3-C5 alcohols expected in the **mid-term**; ethanol and iso-butanol are certified already
Outlook

- **Techno-economic analysis** of upstream (H₂ and butyrate sources) and downstream processing

- **Enrichment of new biocatalysts** for butanol formation (microorganisms, enzymes)

- Municipal and industrial waste streams as **cheap and sustainable feedstock** for jet fuel production
Thank you for your attention!

Project partners: