Butanol for sustainable aviation

Junicke, Helena

Publication date:
2018

Document Version
Peer reviewed version

Citation (APA):
Butanol for sustainable aviation

Sustainable Aviation Fuel - Workshop
20.11.2018

Dr. Helena Junicke
heljun@dtu.dk
Outline

Introduction
– Alternative jet fuel pathways
– Alcohol-to-jet

Opportunities for butanol
– Butanol from waste
– The GreenLogic project

Methods and results
– Continuous enrichment studies
– Thermodynamic system design
– Modelling of full-scale reactors

Conclusions

Outlook
Alternative jet fuel pathways

- There are five ASTM D7566 certified pathways for synthetic paraffinic kerosene (SPK) production

<table>
<thead>
<tr>
<th>Type</th>
<th>Pathway</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas-to-jet</td>
<td>FT-SPK</td>
<td>SPK from syngas via Fischer-Tropsch (FT)</td>
</tr>
<tr>
<td></td>
<td>FT-SPK/A</td>
<td>FT-SPK with increased aromatic content</td>
</tr>
<tr>
<td>Oil-to-jet</td>
<td>HEFA-SPK</td>
<td>SPK from hydro-processed esters and fatty acids (HEFA)</td>
</tr>
<tr>
<td>Sugar-to-jet</td>
<td>SIP-SPK</td>
<td>Synthesized iso-paraffins (SIP) obtained via farnesene intermediate</td>
</tr>
<tr>
<td>Alcohol-to-jet</td>
<td>ATJ-SPK</td>
<td>SPK from C2-C5 alcohols</td>
</tr>
</tbody>
</table>

FOCUS

The alcohol-to-jet pathway

Energy crops

Cellulosic materials

Fermentation

(bio)chemical pretreatment

Dehydration

Oligomerization

Hydrogenation

Distillation

ATJ (C8-C16)

Feedstock opportunity

Opportunities

- ASTM D7566-18 permits blending iso-butanol and ethanol derived SPK with conventional jet fuels of up to 50%
- Sourcing C2-C5 alcohols from waste

Non-competition with food production
Cheap feedstock
Closing the circular economy gap
Energy recovery
Butanol from waste – How?

- Anaerobic mixed microbial cultures
- Non-standard conditions (pH 5, increased pH$_2$)

The GreenLogic project

- Production of **C2-C5 alcohols** from industrial and municipal waste streams
- Upgrading waste water treatment plants (WWTP) into water **resource recovery** facilities (WRRF)

![Diagram showing waste streams leading to clean water, biogas, and liquid biofuels.]
Anaerobic digestion: The classical view

Polymers
carbohydrates, proteins, lipids

Monomers
monosaccharides, amino acids, LCFA

Short-chain fatty acids
propionate, butyrate, ...

H₂

Acetate

CH₄ + CO₂

Hydrolysis

Acidogenesis

Acetogenesis

Methanogenesis

Current focus
Different microbial groups degrade complex waste streams into biogas.
Anaerobic digestion: Butanol enrichment

Hydrolysis

Polymers
- carbohydrates, proteins, lipids

Acidogenesis

Monomers
- monosaccharides, amino acids, LCFA

Solventogenesis

Short-chain fatty acids
- propionate, butyrate, ...

C2-C5 alcohols

New focus

Operate at pH 5 and high pH₂ to promote alcohol formation.

- H₂ + Butyrate ➡ Acetate + H₂
- Acetate ➡ CO₂ + CH₄
- CO₂ + H₂ ➡ CH₄

Anaerobic Butyrate Conversion
Acetoclastic Methanogenesis
Hydrogenotrophic Methanogenesis
Thermodynamic system design

- Unlocking butanol formation
- Increase $H_2$, decrease pH (see arrow)

Butanol formation
Butyrate$^- + H^+ + 2H_2 \rightarrow$ Butanol + $H_2O$

![Diagram showing the thermodynamic system design with $\Delta G^1$ values and pH vs. $H_2$ partial pressure](image)
Modelling of full-scale anaerobic digesters

• From biogas towards butanol formation

Confidential information on this slide has been removed.
Conclusions

- **Butanol production** from waste under non-standard conditions

- **Mixed culture biotechnology** as a solution for cheap feedstock conversion into ATJ-SPK

- ATJ-SPK approval for C3-C5 alcohols expected in the **mid-term**; ethanol and iso-butanol are certified already
Outlook

- **Techno-economic analysis** of upstream (H₂ and butyrate sources) and downstream processing

- **Enrichment of new biocatalysts** for butanol formation (microorganisms, enzymes)

- Municipal and industrial waste streams as **cheap and sustainable feedstock** for jet fuel production
Thank you for your attention!

Project partners: